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Complex networks facilitate the understanding of natural and man-made processes and are classified based

on the concepts they model: biological, technological, social or semantic. The relevant subgraphs in these

networks, called network motifs, are demonstrated to show core aspects of network functionality and can be

used to analyze complex networks based on their topological fingerprint. We propose a novel approach of

classifying social networks based on their topological aspects using motifs. As such, we define the classifiers

for regular, random, small-world and scale-free topologies, and then apply this classification on empirical

networks. We then show how our study brings a new perspective on differentiating between online social

networks like Facebook, Twitter and Google Plus based on the distribution of network motifs over the fun-

damental topology classes. Characteristic patterns of motifs are obtained for each of the analyzed online

networks and are used to better explain the functional properties behind how people interact online and to

define classifiers capable of mapping any online network to a set of topological-communicational properties.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Complex networks cover an active area of scientific research in-

pired largely by the empirical study of real-world networks such as

ommunication networks, economical networks and social networks.

hey are classified into four major types, based on the context which

hey model: biological networks (e.g., metabolic networks, tran-

cription regulatory networks, protein–protein interaction networks,

rotein structure networks, neural networks, ecological networks,

nd natural food chains) [1,15,50], social networks (e.g. friendship

etworks, citation networks, voter networks, world markets, and po-

itical structures) [36,42,50], technological networks (e.g., computer

etworks, electrical circuits, and road networks) [1], and semantic

etworks (e.g. word-net [31] and recipe networks [43]). Without

xception, all these networks can be represented as graphs, which

nclude a wide variety of subgraphs. One fundamental property of

etworks are the so-called network motifs, which were introduced

y Milo et al. [33]. They represent recurrent and statistically signifi-

ant subgraphs or patterns in these complex networks. The fact that

otifs repeat themselves in specific networks, or even among vari-

us networks, is highly correlated with the concepts of evolutionary

heory. Each of these subgraphs, defined by a particular pattern of
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nteractions between graph nodes, may reflect a framework in which

articular functions are achieved efficiently. Motifs are considered

o have a notable importance today because they may reflect under-

ying functional properties [30]. In light of their ability to uncover

tructural design principles of complex networks, motifs have been

lowly adopted from Systems Biology into the broader perspective

f Network Science. Although they foster a deep insight into the

unctional abilities of a network, their detection is computationally

hallenging even by current standards.

Particular research has been done in the areas of biology and

enetics where motifs are associated with functional roles of tran-

cription regulation networks which control the expression of genes

2]. Experimental studies show how motifs serve as basic building

locks of transcription networks. Another example is the understand-

ng of how some cellular components are conserved across species

ut others evolve rapidly [54]. A notable study brings forward this

ew motif-inspired paradigm to uncover drug development strate-

ies that help in the identification of drug target candidates [12]. A

imilar scientific track to our proposal is presented by Wang et al. in a

tudy focused on detecting important nodes, not through the classic

entrality metrics approach, but through specific motif patterns[49].

While conceptually (and functionally), complex networks can

epresent biological, technological, social or conceptual relationships

etween entities, we propose a motif-based analysis of networks

rom the topological perspective. As such, the fundamental topolog-

cal families are: regular networks, random networks, small-world

etworks and scale-free networks [50]. Regular [8] and random

http://dx.doi.org/10.1016/j.comcom.2015.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
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Fig. 1. The two classifications of complex networks: the conceptual perspective versus

the topological perspective.
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networks [16] represent the basics of complex networks. The effort to

mathematically express accurate and realistic models of natural phe-

nomena (e.g. social influence, collaboration, and internet communi-

cation) has been triggered by the observation of the three fundamen-

tal properties of complex networks: average path length, clustering

coefficient and degree distribution [42,50]. The well-known models

of small-world [51] and scale-free [4] networks both present these

network properties. Since their introduction to the literature, a con-

siderable amount of new networks have been added, yet all fall into

one of the two categories: small-world or scale-free. To recreate nat-

ural processes with a higher fidelity, there are proposals which add

the small-world property to scale-free models [18,20,28], or ones that

add power-law degree distribution to the small-worlds [9,22,48,55].

Our work stems from an initiative to bring the concept of network

motifs closer to the field of social networks analysis (SNA) and define

a new way at looking at social graphs [14]. We bring substantial new

insight in terms of the types of motifs analyzed, the size and number

of real-world datasets and the results and conclusion based on this

new research. Thus the motivation of this paper is to provide an an-

alytical perspective over existing state of the art complex topologies

using an novel approach – classification using the network structure,

namely through network motifs.

In the second part of this paper, we apply this novel perspective to

differentiate between online social networks. We use empirical data

to demonstrate how real social networks can be classified with dif-

ferent levels of appurtenance to the four topological models. Even

though similar in nature, it is shown in this paper that Facebook net-

works, Twitter networks and Google Plus networks have very distinct

topological features, as revealed by the motif-based analysis. This

points out to the different features the three social platforms have

in the real world.

We set out to measure the motif distributions of sizes 3 and 4

on a comprehensive database of undirected online social networks.

For this, we obtain encouraging results regarding the particular pat-

terns each of the three mentioned online platforms reveals. Their fin-

gerprint is highly visible in terms of distribution of triadic closures,

which is correlated with the clustering of nodes and short paths in

the graph. The mark of triads is important as it has been shown to

drive the scaling and emergence of social networks in general [24].

Also, using our approach to reveal triadic closure formation is cor-

related with the predictability of evolving contacts in human prox-

imity networks [40], an important aspect of modern communication

frameworks. The classifiers we obtain for each of the three online so-

cial network classes are mapped onto the four topological families

and also provide a new methodology of identifying key functional

properties for new network data.

1.1. Motivation and outline

In light of the general concept-driven approach to complex and

social networks analysis, we propose a new perspective of looking

at networks from their topological point of view. This perspective is

conceptualized in Fig. 1 using the four main complex network classes:

regular, random, small-world and scale-free and is provided by in-

depth network motif analysis. Thus, we bring forth the following

main contributions:

• Large-scale computational generation and motif distribution

analysis for the synthetic topology classes. We obtain a distinct

motif pattern for each such class.
• Comprehensive motif analysis of online social networks (Face-

book, Twitter, and Google Plus) from which we obtain three quan-

tifiable characteristic motif fingerprints.
• Mapping and similarity assessment of empirical networks onto

topology classes, and defining a general methodology for such an

approach.
• Correlation and discussion of the individual motifs that occur in

each fingerprint, and an outlining of the functional properties be-

hind the three online social platforms.

. A new perspective over the related work

Comparing complex networks is aimed at a deeper understanding

f the interaction patterns between these systems [4,42,51], and

xtracting their common properties helps improve the models even

urther [3,23,51]. However, the predominant method of graph metric

omparison suffers from limited information [27]. Some notable

eans of comparison are the distance ratio measure [7], used to

ompare individual mental models, a comparison from the data

nalysis perspective [27] and the study of the self-similarity of

omplex networks [41]. The network dimension is a key feature in

nderstanding not only network topology, but also dynamical pro-

esses on networks, such as diffusion, percolation and other critical

henomena [13]. The fractal dimension dB is proposed based on the

elief that social networks are not invariant or self-similar under a

ength-scale transformation. Fractal dimension has been measured

n multiple varied real world networks like the WWW, biological

etworks, and actor networks, and we will use it as an alternative to

he standard metric comparison.

From a topological perspective there are studies done both in the

irection of classifying social network models [23] and of structural

attern detection [37]. These methods however serve a higher level

f meta-analysis rather than as measures of similarity.

The work done in the field of network motifs, since their introduc-

ion [33], has seen the definition of several super-families of evolved

nd designed networks by the same authors [32]. They present fami-

ies of complex networks grouped together by the similar significance

rofiles (SP) of motifs in the networks compared to the normal occur-

ence in random networks. These families include:

• direct transcription interactions (in bacteria and yeast);
• signal-transduction interactions (cell signaling, neural networks);
• web hyperlinks and social networks;
• word-adjacency networks networks (in English, Spanish,

Japanese).

Another study shows an alternative approach to the analysis of

ommunity structure by partitioning a network into a core of high

egree nodes that are highly interconnected to each other, and a pe-

iphery of nodes that are not so well connected. The core has an im-

ortant role in mediating most of the minimum path length motifs

nd has an integrative aspect over the topology [35].

With great preponderance, all studies revolve around the clas-

ification of networks – empirical or synthetic – from the concep-

ual point of view, into one of the mentioned four main categories.
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owever, many of the functional properties inherent to the different

lasses of complex networks stem from their underlying topological

eatures.

In accordance to our previous work [14,44], we propose an alter-

ative perspective, in which we consider any emergent complex net-

ork a mixture of the four fundamental topology classes: random,

egular, small-world and scale-free. In the context of social networks,

or example, it is a well know fact in the literature that characteris-

ics of each topology are present. Collaborations, sexual interactions,

riendships, and citation networks are good examples of scale-free

etworks [34,50]; voter networks, influence networks, food chains,

nd human communities are examples of small-worlds [15,50], and

hey feature properties of regular organization and/or random long

ange links as well. Our main motivation for reclassifying networks

ased on topology is driven by the fact that each network model

an be characterized by a certain mixture of topological properties.

e find out that this mixture of properties creates specific patterns

ver which apparently diverse networks can overlap. By applying this

ethodology on online social networks we bring an original contri-

ution of how we can do social networks analysis.

The core analytical instrument with which we define the classifi-

ation based on topology classes is network motifs. More specifically,

iven a distribution of motifs DN over a network N one can classify

he network into one super-family which encompasses a particular

oncept (e.g. social and technological), but one cannot associate the

istribution DN with the fundamental complex network topologies.

ig. 1 depicts the two types of classifications for complex networks.

he solution to this main outline is discussed in the next section.

. Methodology

We propose a two step approach into classifying online social net-

orks. First, we measure the distributions of motifs of sizes 3 (i.e.

ubgraphs with 3 nodes) and 4 on synthetically generated networks.

e have implemented the algorithms for generating regular mesh

etworks, Erdős-Rényi random networks [16], Watts-Strogatz small-

orld networks [51], and Barabási-Albert scale-free networks [4] in

ephi [5]. Gephi is a world-leading open-source large data visualiza-

ion tool built on the Netbeans framework using Java. After generat-

ng a relevant amount of such networks, ranging from 100 to 5000

odes, with parameter values characteristic for each class, we use

ANMOD to run the motif detection [53]. FANMOD is a light-weight

ool for fast motif detection designed using one of the fastest detec-

ion algorithms available, RAND-ESU [52]. As depicted in Fig. 2, the

rst step is to find the distributions Dreg, Drnd, Dsw, Dsf for the four cor-

esponding topology classes.

All the generated and used networks are undirected and un-

eighted, since edges model mutual social ties with no additional in-

ormation regarding tie strength, reciprocity, etc. Many studies (from

he originating fields of Medicine) rely on the analysis of motifs of size

in directed contexts. The upper size limit is commonly imposed due

o the computational complexity of detecting larger motif structures.

owever, since we deal with an undirected context, the processing

ime is greatly reduced. For example, there are 13 different combina-

ions of motifs of size 3 in a digraph, as depicted in Fig. 3, but only 2,

espectively 6 undirected motifs of sizes 3 and 4. The codes of each

otif depicted in Fig. 3 are standardized in the literature and repre-

ent the serialized binary value of the adjacency matrix (row by row)

onverted to a decimal value. For example, code 14 originates from

he matrix 000 001 110 converted to base 10. In this paper we mea-

ure the distributions of motifs depicted in Figs. 3b and 3c, and will

efer to them using the corresponding codes.

The second step is to run the same process of detecting motifs and

etermining the distributions on the three chosen online social net-

orks. We have chosen Facebook, Twitter and Google Plus as they

re the most popular sites in this field [17,29]. The empirical data
s gathered from the Stanford large network dataset collection [25]

nd from a comprehensive private repository populated with Face-

ook friendship graphs of students aged 19-25. The averaged results

f running FANMOD on these networks yields the characteristic dis-

ributions DFB, DTW, DGP.

To correlate the distribution vectors of the empirical datasets with

ach vector of the reference distributions we use the existing fidelity

etric ϕ [45]. The metric is tailored to express of similarity between

ny two generic vectors, in a weighted or unweighted context. In this

aper we use the unweighted arithmetic fidelity metric:

j =

⎧⎨
⎩

1
n

∑
i

mi

2mi−mj
i

i f mj
i
< mi

1
n

∑
i

mi

mj
i

i f mj
i
≥ mi

(1)

here j is the index of empirical distribution model being compared

o the reference, i = {1, 2, . . . n} is the index of the motif which de-

cribes the two models being compared, and n is the total number

f common motifs. The closer the ϕ metric is to 1 the more similar

he models are. The measurements on the reference model are mi,

espectively m
j
i

on the model being compared.

By measuring all similarities one can express each empirical dis-

ribution using one or more distributions of the four topological

lasses as:

j = αreg
j

× Dreg + αrnd
j × Drnd + αsw

j × Dsw + αs f
j

× Ds f (2)

here j is the index of any of the three social network distributions

i.e. FB, TW, GP; e.g. j = FB → DFB, αreg
FB

, αrnd
FB

, αsw
FB

, αs f
FB

etc.), or any

mpirical complex network in general. The coefficients α are ob-

ained from the normalized similarities with each topology respec-

ive class. For example, αreg
FB

is the normalized similarity of the Face-

ook motif distribution (vector) towards the distribution found in

egular networks.

In contrast to previous work [14], the motif sizes used in this

tudy are fixed to 3 and 4, in an undirected context. While there

re approaches in the literature studying network functionality us-

ng motifs of larger sizes (up to 6), we rely only on the size 3 and

motifs since there are few such distinct patterns, and are much

ore numerous to be found in graphs, and thus substantially more

elevant [2].

. Dataset analysis

The presented motif-driven methodology requires the synthetic

eneration of networks pertaining to each of the four topology classes

within the characteristic parameter values), and the acquisition of

riendship networks for each of the three online platforms. In this

ection we briefly present the parameters and settings used for gen-

rating the data, as well as the graph metrics obtained for each net-

ork class.

Even though friendship graphs vary in size significantly, from as

ew as 100 nodes to as many as 5000 nodes, it is a known statistic that

he predominant majority of such networks revolve around the size

f 300 nodes [19]. We thus generate data accordingly and concentrate

n synthetic networks within that range. Moreover, we rely on public

ata gathered from the Stanford large network dataset collection [25]

hich offers networks of hundreds up to millions of nodes. Taking

nto consideration the fact that graph size significantly impacts motif

istributions, in order to enable a comparison at the same scale, all

hosen synthetic networks are within the range of real-world ego-

etworks. The following datasets are used in this paper:

• Regular: we have generated standard 2D mesh networks of sizes

200, 300 and 500.
• Random: we have generated random networks of the same sizes

using the Erdős-Rényi algorithm [16], and the wiring probabilities

p = 0.05 and p = 0.1.
1 2
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Fig. 2. The process of classifying the three online social networks (Facebook, Twitter, and Google Plus) using the four topological classes. Each motif distribution of the social

networks (DFB , DTW , DGP) is expressed as a combination of the four theoretical distributions (Dreg , Drnd , Dsw , Dsf).

Fig. 3. Motifs representation. a. All existing motifs of size 3 in a directed graph. b. The two types of motifs of size 3 in an undirected graph. c. All existing motifs of size 4 in an

undirected graph. The code of each motif corresponds to the decimal value of its serialized adjacency matrix.

Table 1

Specific values for average degree (AD), average path length (L), average

clustering coefficient (C), modularity (Mod), diameter (Dmt), and den-

sity (Dns) averaged for each data set.

AD L C Mod Dmt Dns

Regular 6.63 3.34 0.065 0.05 8 0.013

Random 7.55 2.40 0.049 0.27 4 0.050

Small-world 3.99 5.61 0.321 0.73 11 0.005

Scale-free 3.12 4.60 0.015 0.62 10 0.003

Facebook 19.82 2.48 0.266 0.47 8.5 0.050

Twitter 12.39 2.68 0.239 0.28 7 0.054

Google Plus 12.15 3.90 0.404 0.44 12 0.035

5
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a

p

• Small-world: multiple networks have been generated using the

Watts-Strogatz algorithm [51], with sizes 300 and 500 nodes,

wiring distance k1 = 2 and k2 = 5, and rewiring probability p1 =
0.05 and p2 = 0.1.

• Scale-free: multiple networks have been generated using the

Barabási–Albert preferential attachment algorithm [4], with sizes

200, 300 and 500 nodes.
• Facebook: over 50 different friendship ego-networks have been

used for metric measurements and motif analysis. Ten ego-

networks are obtained from the Stanford large network dataset

collection [25,26] and have a total of 4039 nodes and 88234

edges, when combined. Furthermore, we also rely on per-

sonally gathered data using the netvizz Facebook application

[39] with which we have obtained 50 ego-networks of sizes

150–5000 nodes.
• Twitter: using the same online repository [25], 973 Twitter circles

are provided. The combined network consists of 81306 nodes and

1.7M edges. For this study, we rely on 50 chosen ego-networks,

with sizes within the mentioned ranges of 200–500 nodes.
• Google Plus: we use 50 ego-networks from the same study of

Leskovec et al. [26]. The combined friendship network consists

of 107614 nodes and 13.7M edges. The chosen networks are all

within 200–500 nodes.

Measuring the representative graph metrics over the acquired

data gives conclusive results for average degree (AD), average path

length (L), average clustering coefficient (C), modularity (Mod), net-

work diameter (Dmt), and network density (Dns). Table 1 shows

the distribution of averaged topological properties on each network

class.
. Results and discussion

Following the methodology description in Section 2, the first re-

ult is the motif distribution on the four topology classes. The distri-

utions Dreg, Drnd, Dsw and Dsf are depicted in Fig. 4 and, numerically,

n Table 2. Important to note is that, for each class of networks in part,

e have obtained the same motif distributions regardless of network

ize or other specific parameters (presented in Section 3). For exam-

le, all small-worlds exhibit the same distribution Dsw independent

f the generated network size (100–5000 nodes) and of the rewiring

robability p (0.05-0.1).

By applying the same methodology on the empirical data, we ob-

ain the distributions DFB, DGP and DTW. These are depicted in Fig. 5

nd also show very distinct fingerprints.

If we were to analyze the presented datasets from the conceptual

erspective of social networks, there would be little to differentiate
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Fig. 4. The resulting motif distributions on the regular (Dreg), random (Drnd), small-world (Dsw) and scale-free (Dsf) topologies. The occurrence of each motif is expressed in

percentage in the central histogram for each network class in part. As can be seen, only distinct motifs (not all) characterize each network class. All 6 motifs of size 4 are depicted

at the bottom of the figure.

Table 2

Numerical values for the distributions of the four topology classes (rows 1–4) and of the three online social networks (rows 5–

7), expressed in percentages as to how often the respective size-4 motifs occur relative to the total number of recurring motifs.

Each column highlights in bold the highest motif occurrence for any of the four toplogy classes (1–4).

Motif ID: Triads [%] No triads [%]

4958 13278 31710 4382 8598 27030

one triad two triads four triads star chain rectangle

1 Regular Dreg 13.45 1.54 0.084 22.63 60.16 2.14

2 Random Drnd 5.613 0.26 0.004 23.25 69.46 1.41

3 S-World Dsw 17.46 3.51 1.08 12.62 65.12 0.19

4 S-Free Dsf 1.76 0.01 0.001 54.39 43.65 0.017

5 F-book DFB 32.44 11.41 5.25 17.49 31.75 1.66

6 GPlus DGP 28.86 12.33 4.14 31.48 21.34 1.84

7 Twitter DTW 27.33 11.94 6.23 22.50 30.43 1.53
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Table 3

Percentage of total motifs of size-4 that have triadic closures ver-

sus motifs that do not have any closed triangles in their structure,

measured for each network type in part. The results are obtained

through the condensation of the two sections in Table 2.

Triads [%] No triads [%]

Regular 15.08 84.92

Random 5.88 94.12

S-World 22.06 77.94

S-Free 1.78 98.22

Facebook 49.1 50.9

Google Plus 45.33 54.67

Twitter 45.54 54.46

a

m

t

nd conclude, since most online social networks serve a similar pur-

ose. However, even at a first visual impression over Figs. 4 and 5 it

s interesting to point out how diverse the motif-based fingerprints

f all 7 network types are. To facilitate the results discussion we also

rovide the numerical results in Table 2

To begin with, the conclusions based on the obtained data are that

ach of the four topology classes has a distinct element in its motif-

ngerprint. In our discussion we reference the fact whether networks

avor the formation of triadic closures more, or keep triangles open.

ooking at Fig. 3c, the six motifs can be divided in two categories: mo-

ifs with triads (2nd (4958), 4th (13278), and 5th (31710)) and with no

riads (1st (4382), 3rd (8598), and 5th (27030)) in their structure. Tri-

dic closures have been found to be one of the fundamental proper-

ies that give complexity and heterogeneity to social networks [6,24].

his strongly impacts the communication through each network. By

ondensing the data from Table 2 we present the occurrence of the

wo types of mentioned motifs in Table 3.

To ease the discussion based on each motif type, we keep them

ighlighted in italics and redefine them using a more intuitive key-

ord. To the best of our knowledge, this useful naming is a novelty

ntroduced in this paper and was not found in any notable previous

ork [14,32,33].
 t
• Motifs: 4382 - star, 8598 - chain, 27030 - rectangle.
• Motifs: 4958 - one triad, 13278 -two triads, 31710 - four triads.

Bridging our obtained motif distributions with the study of tri-

ds, we note that regular networks have the least characteristic

ark, with a preference towards chain and also star and simple one

riad constructs. The overall homogenous mixture reveals the fact

hat mesh networks keep a high local clustering (one triad). Overall,
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Fig. 5. The resulting motif distributions on the online social networks: Facebook (DFB), Google Plus (DGP), and Twitter (DTW). The occurrence of each motif is expressed in percentage.

As can be seen, distinct motif patterns characterize each network class. The codes of each motif are the same as the ones used in Fig. 4.

Table 4

Numerical values for the distributions of the four topology classes and

of the three online social networks, expressed in percentages as to

how often the respective size-3 motifs occur relative to the total num-

ber of recurring motifs.

Motif ID: 78 228

chain triangle

Regular Dreg 93.22 6.78

Random Drnd 97.37 2.63

S-World Dsw 84.31 15.69

S-Free Dsf 99.49 0.51

Facebook DFB 72.58 22.42

Google Plus DGP 76.87 23.13

Twitter DTW 75.28 24.72
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regular networks have 84.92% motifs that do not contain triads, and

15.08% motifs that contain them (from Table 3), which replicates the

state of the art experiments in this field [50]. Random networks have

the same high occurrence of chains, and a very specific low occur-

rence of one-, two- and four triads. Summing up the values, random

networks have less than 6% triads in them, which again strengthens

the known facts about low clustering in favor of a short path length.

Small-worlds are a special case of empirically observed networks that

lie their properties between the regular and random topologies. They

favor high clustering and short path length. Our analytical approach

shows a fingerprint in terms of high density of chains, one triads

and especially four triads (over 1%). Looking also at Table 3 we no-

tice that small-worlds are the most balanced type of topology with

roughly 22% triads, and 78% no triadic formations. This balance gives

them their realism in terms of replicating real social networks. Fi-

nally, scale-free networks have emerged to cover one shortcoming

of small-worlds, namely the lack of preferential attachment and a

power-law degree distribution, which are essential in modeling real

world friendships. The scale-free network is characterized through

many chains, but more interesting, many stars, and an extremely low

number of two- and four triads. Added together, we can observe that

there are only 1.78% motifs with triads in a scale-free network. The

high occurrence of stars is correlated with the hub nodes with on top

of the power-law degree distribution, which is specific only to this

topology class.

Moving on to the empirical online social networks, we notice very

distinct distributions of the six motifs (Fig. 5). Facebook friendship

networks are characterized though a lower number of stars, but

many one triads and chains. We can conclude that while there is a

low tendency for hub formation (like in pure scale-free networks)

the average path length is also maintained short. Complementary

to previous work [14], the obtained remarks also coincide with

the data presented in Table 1. Google Plus one the other hand

has a relatively lower number of chains, and a high number of

stars and one triads. This network can be interpreted as one with

higher clustering and and longer path lengths. Google Plus net-

works are known for their community (circle) based organization.

Finally, Twitter networks are the most homogenous, with many

chains, and an average-high number of stars and one triads. This

fact translates into a more regular structure due to the concept of

followers, which enable the creation on many random long-range

links, with a disregard towards local clustering and triadic closure

formation.

Taking the analysis beyond the mere topological level, we find

a correlation between the characteristic graph metric values (see

Table 1) and the obtained distributions of motifs. To begin with,

the prevalent occurrence of triads in the small-worlds can be ex-

plained by the higher clustering coefficient and higher modularity.
hese networks have a 15–1000 times higher concentration offour

riads than all other topology classes. The low concentration of stars

omes to support the lack of a power-law degree distribution. The

mall-world effect is mapped in the real-world network through the

tronger community structure of Facebook and Google Plus networks.

n the other hand, the lack of triads found in scale-free networks is

result of the power-law degree distribution. Its low clustering and

elatively higher average path length are explained though the lower

ccurrence of chains and rectangles. The very low modularity of regu-

ar networks is correlated with the very high occurrence of rectangles,

hich suppress the formation of clear, distinguishable communities.

ne of the goals of social networks analysis is to create better gen-

rative models for real-world networks, thus our motif distribution –

raph metric correlation may help improve the generation of specific

ynthetic networks. Based on these results, there are heuristic algo-

ithms which can used to create synthetic networks with the required

etric distributions. [38,46].

To enhance the visual differentiation and similarity between the

btained motif patterns we provide a radar chart overview in Fig. 6.

otable in Fig. 6a are the higher occurrence of stars in scale-free net-

orks, the low preference towards triads of the scale-free and ran-

om networks. In Fig. 6b we notice a good overlap between Facebook

nd Twitter networks, with high occurrences of chains and one triads,

hile Google Plus favors more star formations.

In order to further validate the insightful perspective revealed by

otifs of size 4, we reapply the same methodology using motifs of

ize 3. In support of our claims, we briefly mention that the are only

wo types of motifs of size 3 in an undirected context. These can be

een in Fig. 3b and we will refer to them as chain (78) and triangle

238). Table 4 contains the distribution data for each of the seven

etworks.

Even though motifs of size 3 have significantly less structural

omplexity compared to size 4, they do reveal and sustain out
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Fig. 6. Radar chart showing the 2-dimensional distribution of motifs of size 4 for the topology classes (a) and the online social networks (b).

Table 5

Similarity between the empirical network models and each topology class. The

similarity is measured by applying the ϕ-metric on the distribution vectors as

described in Eq. 1. The columns labeled n display the normalized values for the

obtained similarities, according to Eq. 2. The sum of n-s is equal to 1 (100%) on

each column.

Facebook Google Plus Twitter

ϕFB n ϕGP n ϕTW n

Regular 0.62 0.266 0.61 0.269 0.65 0.267

Random 0.60 0.257 0.58 0.255 0.65 0.267

Small-world 0.60 0.257 0.56 0.247 0.59 0.243

Scale-free 0.51 0.219 0.52 0.229 0.53 0.219
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revious claims. Scale-free networks consistently favor open trian-

les to closed ones, with roughly 0.5% triangles in their structure.

mall-worlds present the same balance between chains and triangles

ike in Table 3. Regular networks have a notably higher occurrence of

riangles, and random networks of chains, in conformity with previ-

us claims. Finally, Facebook, Google Plus and Twitter networks share

imilar distributions of chains and triangles. We note that motifs of

ize 3 are insufficient to assess undirected friendship graphs.

For a final overview, we apply the ϕ-metric on the distribution

ectors of motifs of size 4 and obtain the numerical data shown in

able 5. A value of 1 means complete similarity, while a value of 0

eans complete dissimilarity. The percentages of the fidelity are nor-

alized into n-values which, summed on each column, add up to

. The data is interpreted as, for example, Facebook can be mapped

6.6% over regular, 25.7% over random, 25.7% over small-world, and

1.9% over scale-free networks.

In interpreting the obtained fidelity results, we have to keep in

ind the fact that the overall open-versus closed-triangles ratios

re very similar. Specifically, this is displayed in the lower halves

f Tables 3 and 4. Thus, the variations in terms of ϕ are small, but

hey map to significant structural differences [45]. Fig. 7a shows

he 2-dimensional similarity mapping between the online social

etworks and the four topologies and Fig. 7b shows how much each

opology contributes, in total, to the mapping of the three online

ocial networks.

The fact that the highest overall occurrence is that of the regular

opology, and the lowest, that of the scale-free topology, denotes

n important real-world aspect of social networks: the formation
f hubs is a rather exceptionally rare event, seemingly random long

ange links tend to form much more often, and the fundamental

tructure of social networks is based on mesh networks with a

endency towards local clustering. This observation sustains the fact

hat geographical proximity is indeed the main drive for friendships

reation in society [10,47]. Furthermore, the predominantly high

ccurrence of chains in all topology classes seems to be a natural

acilitator of new friendships creation. A new study proves that

ew friendships are preferentially created between nodes located

t geodesic distances 2 and 3 in the social graph [11]. This conclu-

ion strongly supports our results regarding chainswhich become

atural pathways of length 3 between unconnected nodes. To better

nterpret the similarity results we corroborate the results in Table 1

ith measurements of variance of the normalized fidelities (n) and

onclude upon the following:

• Google Plus networks have the lowest variance (2.77-e4) showing

a greater topological homogeneity. They have higher scale-free

and regular appurtenances, which translates into a higher average

path length (L) and a strong community structure (Mod). Empiri-

cally and intuitively, we explain this through the circle concept in-

troduced by Google. Circles tend to offer better socializing within

clusters of friends but they also limit external contacts. As most

friendship clusters follow a normal distribution of contacts (de-

grees), the resulting model is classified as a regular topology with

preferential community formations.
• Twitter networks have the highest variance (5.63-e4) presenting

the highest topological heterogeneity. They have more notable

random and regular characteristics, which translates into a very

short average path length (L) and a weak community structure

(Mod). Intuitively, we explain this through the follower concept

specific to the Twitter online platform. The act of following tends

to omit local clusters formation, or be in any way linked to geo-

graphical proximity. On the other hand, many users follow distant

celebrities and/or users with same interests that are evenly spread

across the globe. Uncharacteristic for real tie formations, Twitter

is classified as a heterogeneous regular topology with random long

range links.
• Facebook networks have a variance situated between the other

two (4.47-e4), presenting a good mixture of all topology types.

Nonetheless, they have higher small-world and regular proper-

ties, which translates into a short average path length (L) and
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Fig. 7. a. Radar chart showing the 2-dimensional mapping of the online social networks over the four topology classes. The mapping is done using the fidelity metric ϕ to assess

the similarities based on the distribution of size 4 motifs. b. The cumulative occurrence of each topology class obtained by adding the normalized fidelities (n) on each row (from

Table 5). It shows how much each topology contributes overall to the three empirical networks.
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a strong community structure (Mod). Based on these observa-

tions, one could say that they lie between Twitter and Google

Plus. Intuitively, but also backed up by other relevant research,

Facebook friendships are considered the best replica and substi-

tute for real-world friendships [21]. This idea is further supported

by the fact that their fidelity distribution also coincides with the

overall fidelity distribution depicted in Fig. 7b. The stronger com-

munity structure, but with low average path lengths, seems to

be a natural emerging property of the society, modeled through

the friend-ing concept on Facebook. In fact, this seems to nar-

row down the distances between communities until they start

overlapping. With a very characteristic real tie formation pro-

cess, we classify Facebook as a regular topology with interspersed

small-worlds.

6. Conclusions

In this paper, we have shown that studying complex networks

from a topological perspective, though the insight offered by net-

work motifs, is a new fundamental approach in understanding the

emergence of social networks. Indeed, motifs highlight functional

aspects of the driving forces behind online social network creation,

ties formation, community emergence, and overall communication

trends. Our comprehensive social networks analysis, based on graph

metric and fidelity assessments, has found a predisposition for

characteristics of regular networks (geo-proximity drives tie forma-

tion), followed closely by random network aspects (long range link

formation), then, with diminishing predisposition, by small-world

properties (tendency to cluster and close triads), and, with very low

occurrence, characteristics of scale-free networks (hub formation).

Finally, we have shown that each online social platform has quite

distinct properties, which imply distinct motif fingerprints, and thus

different communication mechanisms.

Based on our observations, and stemming from motif analysis,

Facebook, Google Plus, and Twitter networks are not similar at all

when it comes to mapping them over the fundamental topology

classes. Each presented characteristic defines a different approach to

dealing with processes like network growth, new tie formation, com-

munity formation, information diffusion and triadic closures. We be-

lieve our work will pave the way for a better understanding of the

secrets that lie behind modeling and understanding dynamics in our

societies.
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