
Computer Communications xxx (2014) xxx–xxx
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
TinyIPFIX: An efficient application protocol for data exchange in cyber
physical systems q
http://dx.doi.org/10.1016/j.comcom.2014.05.012
0140-3664/� 2014 Elsevier B.V. All rights reserved.

q Part of this work was published in Proceedings of the 7th European Conference
on Wireless Sensor Networks (EWSN) 1 and was mostly done when Corinna Schmitt
and Benjamin Ertl were with Technische Universität München 2. The extensions to
the EWSN article include: First, an in-depth analysis on how to apply TinyIPFIX for a
wide range of sensor network deployments. Secondly we demonstrate in-network
aggregation support under TinyIPFIX, which includes data and message aggrega-
tion, as well as individual and direct configuration of the aggregation functionality
on aggregator nodes. Third, an extensive analysis and system level evaluation of
TinyIPFIX’s transmission efficiency and resource consumption is presented along
with a comprehensive comparison with other approaches. Compared to the original
paper, there are significant modifications in Sections 3.4, 4 and 5.
⇑ Corresponding author. Tel.: +41 44 635 7585.

E-mail addresses: schmitt@ifi.uzh.ch (C. Schmitt), kothmayr@in.tum.de
(T. Kothmayr), benjaminertl@tu-berlin.de (B. Ertl), wen.hu@csiro.au (W. Hu),
braun@net.in.tum.de (L. Braun), carle@net.in.tum.de (G. Carle).

Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient application protocol for data exchange in cyber physical systems, C
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
Corinna Schmitt a,⇑, Thomas Kothmayr b, Benjamin Ertl c, Wen Hu d, Lothar Braun b, Georg Carle b

a Department for Informatics, Communication Systems Group, University of Zurich, Switzerland
b Department of Computer Science, Technische Universität München, Germany
c Institute for Telecommunication Systems, Chair for Next Generation Networks, Technische Universität Berlin, Germany
d CSIRO, Brisbane, Australia

a r t i c l e i n f o
Article history:
Available online xxxx

Keywords:
Wireless sensor networks
TinyIPFIX
Aggregation
Efficient data format
Cyber-physical system
a b s t r a c t

Wireless sensor networks (WSNs) as a central part of cyber-physical systems are gaining commercial
momentum in many areas, including building monitoring and intelligent home automation. Users wish
to successively deploy hardware from different vendors. Interoperability is taken for granted by the cus-
tomers who want to avoid the need for exhaustive configuration and set-up. Therefore, the need for an
interoperable and efficient application layer protocol for machine-to-machine communication in and
across the boundaries of WSNs arises. We address these issues with our implementation of TinyIPFIX,
an adaption of the IP Flow Information Export (IPFIX) protocol. Throughout the paper we show how to
leverage TinyIPFIX in the context of an office scenario and we discuss how the protocol may be applied
to other significant WSN deployments presented in literature over the past few years. This article addi-
tionally shows how to improve the functionality of TinyIPFIX by adding both syntactic and semantic
aggregation functionality to the established system. Finally, we evaluate the performance of TinyIPFIX
in a large test bed with over 40 motes running TinyOS and analyze TinyIPFIX’s system performance in
comparison with previous approaches.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Internet of Things (IoT) is seeing rapid adaption across
many industries. For example, Cisco Systems is predicting a growth
from 369 million machine-to-machine (M2M) modules in 2012 to
1.7 billion M2M modules globally in 2017 [3] – and these figures
are only for mobile M2M devices that connect via cellular
networks. Arguably, the number of devices connecting via local
wireless networks is even higher. Because the IoT has a plethora
of different usage scenarios [4], it also covers a wide range of
device classes from powerful smartphones on the high end to
devices that are highly constrained in memory, energy supply
and computing capacity.

The focus of this paper lies in delivering an efficient application
protocol for machine-to-machine communication in a cyber-phys-
ical system. Our target device classes are the constrained devices
(motes) found in wireless sensor networks (WSNs), which often
form a key component of a CPS. One common application area
can be found in the field of building automation, meaning the auto-
nomic monitoring and control of environmental conditions in res-
idential and commercial buildings for improved comfort, as well as
a reduced energy usage and carbon footprint. Wireless sensors are
deployed to monitor key values, such as room temperature or
brightness, in different locations. They transmit the data to a con-
trol and management system, which analyses the measurements
and reacts on the results, e.g. turning on/off heating or lights. Not
only the devices themselves are constrained in this scenario. The
low power wireless network over which they communicate also
imposes severe limits on throughput and message size. Any appli-
cation protocol used in this scenario must be efficient in its use of
omput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012
mailto:schmitt@ifi.uzh.ch
mailto:kothmayr@in.tum.de
mailto:benjaminertl@tu-berlin.de
mailto:wen.hu@csiro.au
mailto:braun@net.in.tum.de
mailto:carle@net.in.tum.de
http://dx.doi.org/10.1016/j.comcom.2014.05.012
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom
http://dx.doi.org/10.1016/j.comcom.2014.05.012

2 C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx
network, computational and energy resources. However, it should
still be comfortable to use for the system developer as well as com-
plete and generic enough to allow easy deployment by the end
user.

Web services are a well-known approach to M2M communica-
tion, but directly adapting the techniques from traditional comput-
ing are not feasible in constrained networks because they rely on
verbose XML formats to exchange messages. For example, it takes
up to 442 bytes to get a temperature value encapsulated with SOAP
1.2 [5]. This is often addressed through compression of the XML
data [6] or by directly encoding the XML message in a binary
format [7]. HTTP itself is also considered too resource intensive
for constrained networks and alternatives like the Constrained
Application Protocol (CoAP) [8] have been developed. The related
work is discussed in Section 2 in more detail.

While suited to the domain of constrained networks, CoAP also
introduces additional implementation complexity that might not
be needed in all usage scenarios of WSNs. For example, a wireless
thermometer that periodically reports to an automation server
with a direct user interface is duplicating functionality that is
available by accessing the data on the data sink it is reporting to.
Our approach focuses on the core functionality of stationary Wire-
less Sensor Networks: Periodic reporting of sensor data to a data
sink with low network, memory and computational overhead
while still enabling easy integration of diverse sensor hardware
on motes from different vendors with minimal configuration and
maintenance overhead. The approach is centered around TinyIPFIX,
a lightweight adaption of the IP Flow Information Export (IPFIX)
protocol [9] for WSNs. Section 3 presents a brief characterization
of the TinyIPFIX protocol and discusses its characteristics focusing
on the constrains of wireless sensor nodes. In general, the design
space for an application protocol to achieve tight integration of a
WSN into a CPS consists of four areas:
1.1. Metrology

Sensor devices measure data, which has a specific format and
must be represented accordingly. This representation should be
general and universal, meaning that a protocol should be able to
uniquely designate each measurement type across all WSN deploy-
ments. A measurement type is defined here as a reading from a
specific model of a sensor, which carries information about the
data type and its conversion to scientific units, rather than an
abstract quantity such as ‘‘temperature’’. In the case of TinyIPFIX
the sensor measurement data is identified by an individual Type
ID and Enterprise Number (EID), which are registered with the
Internet Assigned Number Authority (IANA).1 This ensures adapt-
ability to other platforms or new measurement types. Since an IPFIX
Template only carries syntactical meta data for the measurements
sent in an IPFIX Data packet the semantics for that data still need
to be supplied. If the Enterprise and Type IDs have been allocated
globally unique, a public repository for this semantic data, presented
as XML markup, becomes feasible. We will give an example for such
a markup in Section 5.4.
1.2. Resource efficiency

The resources of sensor nodes are limited in terms of power,
memory space and computational capacities. We evaluate TinyIP-
FIX with regard to its memory requirements and energy consump-
tion. Additionally, we implemented the TinyIPFIX-Aggregation
protocol, which offers in-network aggregation mechanisms for
data pre-processing. By leveraging in-network aggregation
1 http://www.iana.org.

Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
additional energy savings can be achieved through transmission
reduction.

1.3. Syndication

The benefits of using IPv6 in sensor networks were detailed in
previous work [10]. We choose to send TinyIPFIX packets via the
BLIP [11] implementation of IPv6 and UDP, because it offers seam-
less integration into an existing IP-based network infrastructure.

1.4. Scalability

In Section 5.1 we discuss the flexibility of TinyIPFIX by showing
how it could have been leveraged in other significant deployments
presented at IPSN or SenSys over the past few years. We present
the results of numerous real world test runs of TinyIPFIX assuming
an office scenario (see Figs. 1 and 10) and in a large WSN deployment
on the Harvard Sensor Network Testbed (Motelab) testbed [12].

Section 4 describes the integration of a TinyIPFIX based wireless
sensor network into a cyber-physical system used for building
automation. We evaluate the performance of the TinyIPFIX proto-
col concerning its hardware requirements and demonstrate the
functionality of the whole system in Section 5 before concluding
the paper in Section 6.
2. Related work

Widespread adaption of traditional web services in constrained
networks is stymied by HTTP’s verbosity. With the Constrained
Application Protocol (CoAP) Shelby et al. introduced a lightweight,
yet interoperable, alternative to HTTP that allows the adaption of
the web service principle to constrained networks [8]. Compared
to HTTP, CoAP’s main benefits are a reduced header size and no
requirement for reliable message transport (i.e., CoAP only requires
UDP and not TCP). Motes that have data to expose implement a
CoAP server and expose their data offerings to the data consumers
via a discovery service. Similar to HTTP, CoAP does not specify the
actual format in which data is transported but supports different
content encodings. Our approach, which is centered on IPFIX, is
more comparable to a content encoding format in the context of
CoAP. CoAP and IPFIX for sensor networks therefore have different
concerns: While CoAP’s goal is to bring the full suite of features
that is required for a web-like experience to constrained networks,
we aim to offer a simple M2M application protocol with minimal
implementation and network overhead that can be used where
the full set of features offered by CoAP is not necessary or the
implementation complexity cannot be afforded.

A more direct comparison can be drawn between IPFIX and
different content encoding formats used with CoAP, HTTP or stand-
alone: XML is arguably the most well known format for transfer-
ring structured data in a human readable way. However, the
clear text format of XML results in very large message sizes and
slow processing times – even in the field of traditional computing.
JSON is a more compact format to transfer structured, human
readable data but it still cannot achieve the same level of message
compactness as binary formats. A large amount of effort has
been undertaken to reduce the size of XML documents while
simultaneously improving their processing speed. Two representa-
tive approaches are Fast Infoset [13] and Efficient XML Interchange
(EXI) [7]. Compared to Fast Infoset, EXI achieves a higher rate of
compression because it is able to take the structure informa-
tion provided by an XML schema into account. However,
both the encoding and decoding party needs to process the match-
ing schema to leverage the increased rate of compression. A
schema-less mode is available in EXI as well.
plication protocol for data exchange in cyber physical systems, Comput.

http://www.iana.org
http://dx.doi.org/10.1016/j.comcom.2014.05.012

Fig. 1. Abstract system architecture.

C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx 3
Compared to our approach XML offers the capability to transfer
structured (nested, repeating, value constrained, variable length,
etc.) data whereas IPFIX as specified in RFC 5101 [14] and more
recently in RFC 7011 [9] has no support for structured data types.
Further extensions, especially RFC 6313 [15], can be applied to
overcome this limitation. However, it is our observation that most
structure data is used to describe the metadata surrounding a mea-
surement value or to group multiple sensor measurements into
one message. How IPFIX deals with this issue of metrology is
discussed in Section 3.2. The separation of data into a Template
message is comparable to a message containing an XML schema
without which binary XML approaches struggle to reach IPFIX’s
level of compactness (c.f. Section 5.2.2). Overall, the implementa-
tion complexity of IPFIX is significantly lower than with any
approach using XML or a binary XML format.

In the field of in-network aggregation two main approaches
exist today: (1) message aggregation and (2) data aggregation,
which is also referred to as pre-processing in literature. The first
approach concatenates two or more messages into a newly gener-
ated aggregate message without data pre-processing. The second
approach means to evaluate the data transmitted from one sensor
node to another one and to compute aggregates on this data, based
on requested types of values and aggregate functions. The naive
approach consists of performing these aggregates on the data sink.
A better strategy is to perform in-network aggregation on sensor
nodes with more resources. In this paper we present an in-network
aggregation technique called TinyIPFIX-Aggregation, which imple-
ments message and data aggregation features. The remainder of
this section briefly compares our approach to TAG, AIDA, and SIA.
Those three approaches are the most prominent examples in
literature.

In 2002 Madden et al. presented a Tiny AGgregation (TAG)
service for ad-hoc sensor networks [16]. This approach is based
on in-network data pre-processing, because applications often
depend more on data aggregations rather than raw sensor data.
The underlying aggregation queries are formulated in a syntax that
is similar to the well-known SQL.

Przydatek et al. presented a security framework called Secure
Information Aggregation (SIA) for wireless sensor networks in
2003 [17]. In SIA, sensor nodes transmit raw sensor data unsecured
and employ secured computation of aggregates. The computation
of secure aggregates consists of three parts: (1) data collection
and aggregation, (2) commitment of the collected data by the
aggregator, and (3) establishing a communication protocol with
the data sink. One example for the data collection and aggregation
part is the implementation of a spanning tree in the network. Other
algorithms can also be adapted.

One year later He et al. presented the AIDA implementation,
which is an Adaptive Application-Independent Data Aggregation
approach [18]. The AIDA component resides between the data link
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
layer and network layer with no specific application dependent
knowledge. The component includes an aggregation module,
which combines messages into new frames of the AIDA protocol.
Due to the independence from the application layer, the AIDA
framework can provide aggregation mechanisms for a range of
different applications. No data semantics are lost during the aggre-
gation process. AIDA merely combines received messages in larger
frames for a better utilization of the communication channel, and,
therefore, does not reduce the amount of the transmitted bytes,
but as a result of less packets the amount of control messages
can be reduced when congestion in the network occurs. Another
advantage is the dynamically controlled degree of aggregation
(DoA) in accordance with changing traffic conditions.

3. TinyIPFIX design

We start this section by giving a short overview of the original
IPFIX protocol [9] before showing how it can be applied to sensor
networks.

3.1. IPFIX overview

IPFIX was developed by the Internet Engineering Task Force
(IETF) for transmitting flow information between different
instances in the network [9]. Communication takes place between
an Exporter and a Collector. IPFIX is specified as a PUSH-protocol
with an Exporter periodically transmitting data to one or more
Collectors. This makes IPFIX an attractive choice for WSNs, because
they often rely heavily on Collection traffic. This traffic pattern
means that information flows from many source nodes to only a
few information sinks such as the gateway nodes.

A template-based design is used to exchange measurement data
while minimizing overhead. Measurement data is exchanged in
Records. The protocol distinguishes, among others, between Tem-
plate Records and Data Records as shown in Fig. 2. Together with
the corresponding header those messages form a Template Set or
Data Set. A detailed description of the data exchange and special
requirements for sensor measurements can be found in reference
[1].

Data Records contain the measurement data while Template
Records contain the meta information of Data Records. The meta
information covers the semantics, data type, and length of the
measurement data. An Exporter sends a Template Record to its
Collector to announce the structure of the upcoming Data Records.
This Template record is only required once but may be repeated
periodically. The Collector for decoding incoming Data Records
stores the Template Record. A Template ID, which is unique for
every Exporter and the templates it uses, is assigned to every
Template Record sent to a Collector. Further Data Records will
reference this ID.
plication protocol for data exchange in cyber physical systems, Comput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012

Length Set ID =
Template ID Length

Set ID

(A) Template Set (B) Data Set

Field CountTemplate ID

Template Record

Data Length -
ID: Time StampID: Time Stamp

Data Length -
ID: BrightnessID: Brightness

Template Field
Data Length -
ID: Node IDID: Node ID Enterprise

Number

Enterprise
Number

Data Length -
ID: TemperatureID: Temperature Enterprise

Number
Enterprise
Number

Data Record

3 1233419825

20 200

4 1233419827

500

Data Field

34

Fig. 2. Components of the IPFIX protocol showing decoding of the data.

4 C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx
As shown in Fig. 2, each Template Record describes the encod-
ing of the transmitted sensor measurement values in a Data
Record. A Template Record may contain several Template Fields
where a field corresponds to a measurement type, e.g. brightness
or humidity. Each field in the Template Record describes the type
and length of the corresponding field in the Data Record (Fig. 2
shows four template fields). The type is uniquely described by a
tuple consisting of a Type ID (2 bytes), a length statement (2 bytes),
and an Enterprise Number (4 bytes) in a Template Field. The Type ID
specifies the type of data while the Enterprise ID denotes the orga-
nization, which issued the Type ID.

Sensor nodes act as Exporters and transmit their measurement
data using IPFIX. When a sensor node boots up, it has to announce
its Template Record before sending its measurement data to the
Collector. This has to be done only once since a Collector buffers
the Template Record to decode incoming Data Records. They do
not have to contain anything but the measurement data as all meta
information has been already sent in the Template Records. A short
header containing the number of transmitted values and the refer-
enced Template ID only accompanies Data Records. Several Data
Records can be put into a single message.

Section 4 characterizes the implementation of IPFIX for WSNs in
detail. From this point on we mean TinyIPFIX if we use IPFIX in
WSN context. The computation costs for creating a template are
very cheap and the number and size of different templates and
messages used in parallel bound the additional memory require-
ments of TinyIPFIX. Therefore, TinyIPFIX can be used on nodes with
constrained resources when they limit themselves to a few tem-
plates of small size, which will be demonstrated by our implemen-
tation in Section 5.2.1. Multiple templates can be used if the nodes
have more resources. They may also analyze the data directly
instead of shifting this task to a server.

3.2. Metrology

The Type ID and the Enterprise Number (EID) identify Sensor
measurement data. As described in the introduction, each mea-
surement of a sensor should be assigned a globally unique combi-
nation of Enterprise and Type ID. For example, the Sensirion SHT11
temperature and humidity sensor would be assigned two different
combinations, e.g. Enterprise ID 12345 and Type ID 32768 for its
temperature channel and Enterprise ID 12345 and Type ID 32769
for its humidity channel. A public repository would allow an appli-
cation that receives a template with an Enterprise and Type ID
combination that it has not seen before to obtain the semantics
of that measurement from the Internet. The semantic information
includes what kind of data (temperature), the data type (16-bit
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
integer), how to convert to a sensor independent format (formula
to convert to �C), and any other required information. This would
allow flexible deployments of motes with different sensors, for
example, if an existing deployment using Sensirion SHT11 sensors
was augmented with several new nodes that use a Sensirion SHT15
instead, there would be no need for extensive reconfiguration
within the WSN or the converter application if both use IPFIX to
send their measurement data. Nodes can simply transmit the
raw measurements without having to convert them into other for-
mats via potentially complex formulas. The receiving application
on a PC can convert both values to scientific units and combine
the measurements based on semantic information obtained from
the repository. An example is shown in Section 5.4.

3.3. Adaptation to WSNs

Since IPFIX was designed for conventional networks for moni-
toring tasks [19], some extensions and changes have to be intro-
duced to increase its efficiency in the context of WSNs. The
implementation for WSNs is called TinyIPFIX. One of the problems
when deploying IPFIX in sensor networks is the overhead intro-
duced by the relatively large header, as shown in Fig. 3. In order
to address this issue, a header compression scheme was developed,
which is part of the TinyIPFIX protocol. Apart from header
compression, TinyIPFIX is fully compliant with the IPFIX protocol.
TinyIPFIX template and data set contents are identical to those of
standard IPFIX.

Because the header size has large influence on the overall trans-
mission efficiency of TinyIPFIX, we have chosen an aggressive
approach to header compression [1]. It starts by limiting the capa-
bilities of IPFIX to those required in WSNs. The IPFIX packet length
is limited to 1024 bytes, which exceeds the maximum packet
length defined by the IEEE 802.15.4 standard and, thus, requires
packet fragmentation [20], which may be provided by the underly-
ing network layer. For example, it is possible to send IPv6 messages
of up to 1280 bytes length with BLIP [11]. With header compres-
sion, only one set of templates or data is transmitted. Fig. 4 shows
the header of the aggressive approach where the SetID field is
moved to the front of the header and shortened to four bits. It acts
as a lookup field for the SetIDs and provides shortcuts to often used
SetIDs [21]. The bits marked E1 and E2 control the presence of the
extended SetID field and the length of the Sequence Number field
respectively. Typical WSN installations are sending messages in
intervals of multiple seconds or more. Therefore, the Sequence
Number field has been shortened to 1 byte, which should cover a
sufficiently long timespan. Since IPFIX packets are always trans-
ported via an underlying network protocol, which specifies the
plication protocol for data exchange in cyber physical systems, Comput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012

Message Length

Export Time

Sequence Number

Observation Domian

0 1361

Set Length

Message Payload

IPFIX Set Header

IPFIX Message Header
Version Number

Set ID

Fig. 3. General structure of IPFIX headers [bits].

SetID Lookup

0 1 15

E1 E2

Ext. Sequence Number

Ext. SetID

2 6

Sequence Number

Length

Fig. 4. Header used by aggressive TinyIPFIX approach [bits].

 Template ID = 1 Length

Data Record – Typ 1

3 1233419825
20 200

Template ID = 2 Length

Data Record – Typ 2

4 1233419827
7834

Node ID

Temperature

Node ID

Temperature

Time Stamp

Brightness

Time Stamp

Humidity

Fig. 5. Data Set for in-network aggregation of mode 1.B.

C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx 5
source of the packet, the Observation Domain can be equated with
the source of an IPFIX packet and the field can be dropped from the
header. The specification of a 32-bit time stamp in seconds would
require time synchronization across the WSN and produce
additional protocol overhead. Thus, the Export Time is dropped in
TinyIPFIX. Applications requiring an exact time stamp for their
measurements can define an according field in the template and
send the measurement time stamp along with the sensor data in
a data packet. By using the header compression technique the IPFIX
Message Header (16 bytes) and the first Set Header (4 bytes) can be
reduced from in total 20 bytes to only 3 bytes.

3.4. In-network aggregation

As mentioned at the beginning of the paper the resources are
very limited for wireless sensor devices, which makes saving
resources important. One technique for saving energy and compu-
tational capacities is in-network aggregation [22]. Aggregation is
usually performed on aggregator motes, which have more
resources and are located at selected positions within the network.
The following two aggregation techniques are common and imple-
mented in our TinyIPFIX-Aggregation framework:

1. Message Aggregation (mode 1): Aggregation of several data mes-
sages in one packet:
� Type A: Data Records refer same Template.
� Type B: Data Records refer different Templates.

2. Data Aggregation (mode 2): Data pre-processing within the
transmission path to the gateway through aggregate functions.

The first aggregation type (mode 1) can easily be performed if
the link layer MTU is big enough. In the case of TinyIPFIX we can
split this case into two subclasses. In case 1.A several Data Records,
which refer to the same Template, are transmitted in one message
as shown in Fig. 2 where two Data Records are transmitted in one
packet. The second possibility (1.B) is the combination of two dif-
ferent Data Records in one message, which refer to different Tem-
plate Sets. In this case the combined Data Set must refer all needed
Template Sets for decoding. An example is shown in Fig. 5. Assum-
ing Fig. 1 setting and looking at the transmitted messages between
the aggregator nodes (node ID = 3, 6, 0) towards the server, the
number of transmissions is reduced by one.
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
The second type of aggregation (mode 2) uses the aggregate
functions f ¼ max a; bf g; f ¼ avg a; bf g and f ¼ min a; bf g. The cho-
sen aggregation function depends on the application and is applied
to contemporary measurements rather than temporal series of
measurements. For example, if only the maximum temperature
in a room is relevant, as shown in Fig. 1 in the upper room, we
can use f ¼ max a; bf g. In this case the number of transmitted mes-
sages to the gateway node (node ID = 0) can be reduced by one in
total.

As pointed out by Krishnamachar et al. [22], in-network aggre-
gation leads to an increase in data latency, which depends on the
performed aggregation mechanism.

4. An end-to-end cyber-physical system implementation

In this section we show the design and implementation of a
6LoWPAN/TinyIPFIX based end-to-end cyber-physical system. It
consists of the WSN infrastructure, the server, and a connection
to the cloud. We use the term cloud to refer to a pool of applica-
tions and services, which require and access the collected data of
the WSN as illustrated in Fig. 1). For example, the project Auto-
nomic Home Networking (AutHoNe) is a representative for a CPS
in the cloud, which was tested in an office scenario [27]. All com-
ponents in AutHoNe communicate over IPv6 and require different
information of all components. In the case of the WSN the AutHoNe
infrastructure requests, among others temperature and humidity
values in order to regulate the climate control automatically by
comparing monitored data with preset thresholds for individual
rooms as briefly illustrated in Fig. 6 [23]. In order to allow this data
transfer, parsers and interfaces are required, which are partly
implemented in AutHoNe and in the WSN. A brief description is
presented in parts of Section 5.

4.1. General design decisions on the WSN side

The choice of UDP over IPv6 as network and transport protocols
allows the simple integration of motes into the network. A mature
implementation of UDP/IPv6 for sensor networks exists in BLIP
[11]. Fig. 7 shows the used network stack.

A matching application level protocol, which would facilitate the
aforementioned properties while introducing limited protocol over-
head, was still needed. We decided to use TinyIPFIX for this purpose
since it is highly flexible while maintaining high transmission
efficiency through the separation of meta data and sensor measure-
ments into different messages. The Enterprise/Type ID metrology
described in Section 3.2 allows the user to add new motes with
sensors that were not known during the initial deployment, because
the semantic data can be dynamically obtained, thereby fulfilling
plication protocol for data exchange in cyber physical systems, Comput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012

Fig. 6. Examplary information flow in AutHoNe.

Fig. 7. Structure of network stack.

Server

Performing Data Aggregation
with f = maxTemp {node1, node2}

Performing Message
Aggregation

Fig. 8. Testbed 1: Overview of aggregation features. Black marked messages are
original IPFIX records transmitted by sensor nodes. Red marked messages are IPFIX
records transmitted by aggregators as result of aggregation functionality. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

6 C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx
our requirement for easy configuration. Other protocols such as the
XML based COAP [8] or the JSON based sMAP [24] also meet the
aforementioned requirements. However we wanted a simpler
protocol that introduces very little computational, message and
implementation overhead. We decided in favor of TinyIPFIX,
because it does not need to perform compression to achieve high
transmission efficiency as shown in Section 5.2.2.

4.2. Data preprocessing by TinyIPFIX-Aggregation

Due to application requirements and limited resources of WSN
components aggregation techniques are an attractive addition to
cyber-physical system similar to those presented in this paper.

Our TinyIPFIX-Aggregation framework offers the user two
modes of aggregation: (1) message aggregation and (2) data aggre-
gation. Both techniques work with the TinyIPFIX message format
as it is shown in the example of Fig. 8 [25,2].

The functionality of the protocol for message aggregation
(mode 1) is shown in the lower room in Fig. 8. Sensor messages
up to a certain amount are aggregated into newly generated appro-
priate messages. The number of message aggregated is referred to
as the degree of aggregation (DoA), which depends on the aggrega-
tor’s available memory as well as the number of sensor nodes in
range of the aggregator, the acceptable message delay and applica-
tion constraints. In the message aggregation mode information
about the source sensor node of template and data sets is essential
for reconstructing the data and must not be lost during the aggre-
gation process. We address this requirement in our message aggre-
gation algorithm. It is shown in Fig. 9 on the left side and consists
of the following steps [25,2]:

1. Buffer template sets: Before data can be transmitted the IPFIX
protocol requires the announcement of the related template.
Those are buffered by the aggregator to a maximum amount,
the degree of aggregation (DoA).
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
2. Buffer data sets: Incoming data sets are also buffered and allo-
cated to the corresponding template sets stored in the step
before. If the requested template set is unknown the data set
is dropped because it cannot be interpreted.

3. Transmit the aggregated template set: If the maximum
amount of buffered template sets is reached, the aggregator
announces the upcoming data with the aggregated template
set. The template can be announced independently of whether
or not the associated data sets have been received.

4. Transmit the aggregated data set: The aggregated data set is
now transmitted.

5. Update buffered data sets: The updated data sets are assigned
to their buffered template sets and send periodically after the
degree of aggregation has been reached. The timespan for
receiving new data information is generally shorter than the
interval for receiving new template information.

6. Update buffered template sets: If the aggregator receives a
new template definition the buffer for the template set is
updated. As a result, the conditions for the aggregation of
new incoming data sets change which requires the received
data to be reallocated according to the updated template
definitions.

The upper room shown in Fig. 8 is showing data aggregation
(mode 2) in contrast to message aggregation (mode 1). Resulting
messages transmitted by the aggregators are shorter than in nor-
mal message aggregation mode. The idea behind this implementa-
tion is that the aggregator computes aggregates on the received
sensor readings from the sensor nodes by applying aggregate func-
tions on specific values such as MIN, MAX or AVG, i.e. the aggrega-
tor performs semantic aggregation in mode 2 whereas only
syntactic aggregation is performed in mode 1. Because bidirec-
tional communication is provided, the aggregate functions and
the sensor reading types can additionally be selected and changed
during operation. Selecting the aggregate function and value type
via UDP-Shell commands does this. The underlying algorithm for
data aggregation consists of the following steps and is shown in
Fig. 9 on the right side [25,2]:
plication protocol for data exchange in cyber physical systems, Comput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012

Fig. 10. Overview and routing tree of deployed network with heterogeneous node hardware.

 incoming packets Template
received

Data
received

Data pre-
processing

Template
received

Data
received

Template
update

Data
update

Template
Count +1

Template
update

Count +1

Data
Count +1

Data update
Count +1

Count
==

DoA

Count
==

DoA

makeTemplate() makeDate()

Wait for incoming packets

Message Aggregation (mode 1)

Data
received

Data
update

Data
Count +1

Data update
Count +1

Count
==

DoA

makeAggregateData()

Data Aggregation (mode 2)

YES

YES

YES YES YES

YES YES YES

NO

YES NO

NONO

NO NO NO

NO

Fig. 9. Decision tree for TinyIPFIX-Aggregation.

C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx 7
1. Transmit new template set: Since the data pre-processing
aggregation is driven by user requests for specific sensor read-
ings, and, therefore, the recipient of the aggregated data already
has knowledge of the meaning of the expected data, the trans-
mission of a new template by the aggregator can be omitted.
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
2. Buffer template set: The aggregator buffers all incoming tem-
plate sets from the sensor nodes till the buffer limit or the
degree of aggregation is reached.

3. Buffer data set: Incoming data sets are associated with the
matching template sets, which have been received earlier. After
plication protocol for data exchange in cyber physical systems, Comput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012

8 C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx
reaching the buffer limit or degree of aggregation for the data
sets, the selected aggregate function is performed on the stored
data sets.

4. Compute the aggregation function: In order to compute the
selected aggregate function, sensor readings have to be con-
verted from the sensors’ encoding of the measurement to an
universal format. The aggregator holds a lookup table for the
data values announced by the according template set, with
which it can identify the desired value type. It then computes
the aggregate function on all buffered values of that type.

5. Transmit the aggregated data set: After computing the aggre-
gate function, a newly generated data set for the demanded value
type with the aggregated values is generated and transmitted to
the next aggregator or gateway. Additional information on the
aggregated value can also be transmitted in the data set, assum-
ing that the recipient can decode the information properly.

5. Evaluation

In this section we evaluate TinyIPFIX extensively using the fol-
lowing metrics:

� Metrology �! Completeness and Generality: We discuss how
TinyIPFIX can be used in different application scenarios and
for different kinds of transmitted data.
� Resource Efficiency: We evaluate the resource (RAM and ROM)

consumption of the TinyIPFIX protocol, as well as the transmis-
sion efficiency in comparison to a common Type–Length–Value
approach. Additionally we evaluate its system performance in a
large WSN.
� Scalability �! Practical Implementation: We show that TinyIPFIX

is easy to program and present an example in TinyOS. The pro-
tocol can also be transferred to other operating systems if the
implementation follows the description as published in refer-
ence [26].
� Syndication �! Application use: We integrated a WSN perform-

ing TinyIPFIX in the home infrastructure management project
AutHoNe [27]. The included components in AutHoNe can use
the measured data for controlling purposes (e.g. climate con-
trol). By having an interchange format via XML, other applica-
tions are ‘‘portable’’ from a collection of similar sensors.

5.1. Complete and general

Due to the separation of measurement data and corresponding
meta information in two different message types, the TinyIPFIX pro-
tocol is very flexible. A suiting Template Set can be defined for
almost any application scenario and may be changed by the motes
as needed. It must only be ensured that the modified Template Set
is announced to the recipients of the Data Sets. An optional periodic
rebroadcast of the Template helps to address the issue of unreliable
communication protocols and also gives Collectors, which join the
network at a later time, the possibility to parse the incoming sensor
data. The TinyIPFIX protocol is also independent from the mote’s
hardware. Little to no changes (e.g. only changing the sensor code
or adapting the maximum size of IPFIX packets) are needed to use
TinyIPFIX on other platforms supported by TinyOS. So far, TinyIPFIX
has been successfully tested on the IRIS and TelosB platforms.

So far we have focused on an office application scenario. In
order to widen the scope we discuss how TinyIPFIX may be applied
to some major deployments from IPSN/SenSys from the past few
years. These deployments were chosen, because each of them dif-
fers in the way that they send data to the gateway nodes and,
therefore, represent a wide spectrum of possible deployments. In
the remainder of this section IPFIX describes the unaltered protocol
while TinyIPFIX refers to the implementation with activated
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
header compression (cf. Section 3.3). For optimization purposes
the TinyIPFIX-Aggregation framework introduced in Section 4.2 is
included in the upcoming evaluation.

HydroWatch is a sensor network deployed to monitor the ‘‘life
cycle of water as it progresses through a forest ecosystem’’ [28].
It is based on the TMote-Sky, which is compatible with TelosB
motes. It periodically samples the photo synthetically active radia-
tion (Hamamatsu S1087) and the total solar radiation (Hamamatsu
S1087-01), as well as temperature and humidity from a Sensirion
SHT15. The encoding of these measurements in an IPFIX-Template
are straightforward since the data flow model (periodic, single
measurements, no back channel) is very similar to our home
networking environment. Therefore, TinyIPFIX could have been
used in this scenario without any changes to the protocol. Refs.
[29–31] described a similar data flow pattern.

The goal of the project PermaSense is to collect geophysical data
via 15 nodes installed in an alpine environment [32]. It samples rock
temperature and electrical resistance at four different depths per
node, as well as the internal voltage, temperature and humidity
inside the enclosure of each node. One interesting point arises for
how to encode having more than one measurement of the same type
in one IPFIX packet. The basic idea of IPFIX for WSNs is to assign the
Enterprise and Type IDs based on the manufacturer and model of
the sensors used. In this case, one would have to deviate from this
principle by defining an Enterprise ID for the project and separate
Type IDs for each of the sensors at different depths. The semantic
information would have to be supplied via an indirection, as an auto-
matic lookup in a public repository via the Enterprise/Type ID combi-
nation would not yield the correct response. Instead one would have
to instruct the program that queries the repository not to use the com-
bination specified in the IPFIX template but the Enterprise and Type ID
that corresponds to the correct sensor. Another point of interest
comes from the properties of the data flow. PermaSense transmits
data periodically as single measurements when a link between the
gateway node and the sensor node exists. When the link is broken,
e.g. when the mote is covered in snow, measurement data is logged
and transmitted in bulk when connectivity is re-established. Assum-
ing bulk transmission, filling the IPFIX data packet with data records
until the maximum packet size allowed by the transmission protocol
is reached, can increase the relative transmission efficiency of IPFIX.

The system Lance collects seismological data [33]. As such, it
samples data at high rates (100Hz or higher) and performs event
detection on the motes to decide, which parts of the recorded data
are of potential interest since it is not feasible to transmit all mea-
surements. The gateway node requests the bulk transfer of the data
based on a cost model. Other application areas with similar modes
of operation include habitat and structural integrity monitoring.

There is only one point where plain TinyIPFIX is struggling to
achieve the required functionality. Currently it does not support a
back channel as would be needed for the gateway node to request
event records from the motes. This limitation could be fixed by intro-
ducing another template type for instructions: each node announces
an instruction template after boot, which is periodically retransmit-
ted. Any entity that wants to give a command to a node sends an
IPFIX data packet that is in compliance with the previously
announced instruction template. How to assign the Enterprise and
Type IDs still remains an issue. However, IPFIX is fundamentally a
PUSH-protocol and, therefore, does not natively support pulling data.

Transmission of binary data of variable length is supported by
the IPFIX specification [14,9], although our implementation does
currently not support this feature.

5.2. Resource efficiency

This section deals with evaluation of resource consumption
of the TinyIPFIX implementation with aggregation support. It
plication protocol for data exchange in cyber physical systems, Comput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012

Table 1
Memory usage of BLIP and TinyIPFIX [bytes].

Component RAM ROM TinyIPFIX packet

Scaffold 46 2826 –
BLIP 4738 23,012 –
TinyIPFIX 57 2972 0

261 3182 102
2105 3012 1024

Total 4841–6889 29,020 0–1024

Listing 1. XML content used for a Smart Energy Meter. We assume a total size of
9 bytes for the values (five 8-bit integer and two 16-bit integer).

Listing 2. XML content used for a GPS and Temperature System. We assume a total
size of 16 bytes for the values (one 32-bit time stamp and four 32-bit floating point
numbers).

Table 2
Packet size of various encodings compared to a XML encoding. The relative size is
given in percent. TLV8 and TLV48 refer to one and 6 bytes for the length of the ‘‘Type’’
field.

Encoding Listing 1 Listing 2

XML 409B 300B
EXIficient 13B (3%) 57B (19%)
Binary XML 210B (51%) 117B (59%)
FastInfoset 200B (49%) 185B (62%)
IPFIX 31B (8%) 34B (11%)
TinyIPFIX 13B (3%) 16B (5%)

TLV 28 16B (4%) 16B (5%)

TLV 248 51B (12%) 40B (13%)

C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx 9
is important to focus on resource consumption for long life
support of the WSN, because the used sensor nodes (IRIS and
TelosB) are constrained in memory, computational, and energy
capacity.

5.2.1. Embedded implementation
We implemented TinyIPFIX on top of the BLIP IPv6 and UDP

implementation, which comes as a part of TinyOS-2.1.1.2

In order to put the memory usage in perspective, each major
component is considered separately. Since they build upon each
other, the memory consumption has been measured in an incre-
mental fashion, starting with a basic scaffold for obtaining mea-
surements and expanding upon that by adding BLIP and
TinyIPFIX. The results are shown in Table 1, which shows a maxi-
mum RAM consumption of 6889 bytes when using BLIP and setting
the maximum TinyIPFIX package size to 1024 bytes. The memory
consumption of the TinyIPFIX component is only 57 bytes plus
twice the maximum defined IPFIX packet size. The memory con-
sumption on IRIS is similar to that on TelosB.

5.2.2. Comparison to approaches using binary XML
XML [8] or JSON [24] based formats send meta data together

with every sensor measurement and, thus, have a relatively low
transmission efficiency. Previous work has shown that XML-data
should be compressed and sent as binary XML [5], with XML
schema aware techniques such as EXI [7] outperforming general
compression algorithms such as gzip. At their core, schema aware
built a dictionary of the tags used in the schema and prefix data
items with indices into that dictionary. This approach is compara-
ble to a Type–Length–Value (TLV) approach where a sensor mea-
surement would always be prefixed with an index into a
(perfect) dictionary, describing the type of a value and the length
of the value that will follow in bytes. The entries in an IPFIX tem-
plate boil down to the same approach; therefore we will use TLV
with a length of 1 byte for the type field (TLV8) and with 6 bytes
for the type field (TLV48) as the baseline. TLV8 represents the min-
imal example whereas TLV48 represents a TLV approach offering
the same range for the type field as IPFIX.

In order to give some concrete examples of how TinyIPFIX
would perform compared to XML compression techniques
we use the examples in Listings 1 and 2 provided by
Ref. [34].

The encodings used in [34] were EXIficient v0.3 [7] and Fast-
Infoset v1.1.9 [13] as well as a project specific binary XML imple-
mentation [35]. We are comparing this to IPFIX and TinyIPFIX
data packets. The data costs for the template packet have been
added proportionally to the size of the data packet for a data to
template packet ratio of 32 (we will show in Table 4 later that this
ratio achieves very high end-to-end data usable rates, e.g., approx-
imately 97%, in a large multiple hop sensor network testbed). As
can be seen in Table 2 the transmission efficiency of IPFIX matches
2 http://www.tinyos.net.

Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
or outperforms those of comparable approaches. Furthermore,
some of the listed approaches struggle to reduce the transmission
size to one that fits in a single IEEE 802.15.4 packet, thus requiring
fragmentation and more energy for transmitting.
5.2.3. Energy efficiency
In order to obtain measurements of the energy spent for trans-

mitting packets we connected an oscilloscope across a resistor
(10 X) in the circuit of an external power source to a TelosB mote.
This methodology is also described in detail in reference [36]. The
TelosB features a CC2420 Radio chip, which is rated at 17.4 mA
current draw when transmitting.3 We then proceeded to mea-
sure the average transmission time over 128 samples of IPFIX,
TinyIPFIX and TLV packets as they would occur when transmitting
a time stamp (4 bytes), the node ID (2 bytes) and two sensor mea-
surements (2 bytes each). The size of each packet, including meta
data, is given in Table 3. Low power listening was disabled during
our measurements.
3 Datasheet avaliable at http://www.ti.com/product/cc2420.

plication protocol for data exchange in cyber physical systems, Comput.

http://www.tinyos.net
http://www.ti.com/product/cc2420
http://dx.doi.org/10.1016/j.comcom.2014.05.012

Table 4
Percentage of packets that successfully arrived at a PC connected to the edge router
along with the total energy consumed by the WSN. Retransmission intervals for data/
template packets are specified in seconds. TLV8 and TLV48 refer to one and 6 bytes for
the length of the ‘‘Type’’ field.

Packets.Readable (%) . . .Sent (kB) Energy (J)

TLV48 5 s 99.42 1179.27 66.188
IPFIX 5 s/180 s 98.41 827.8 68.246
TinyIPFIX 5 s/180 s 99.42 400.7 63.024
TLV48 15 s 99.68 390.9 24.491
IPFIX 15 s/480 s 98.60 280.9 24.254
TinyIPFIX 15 s/480 s 97.23 135.8 23.046

Table 3
Average transmission times and energy consumption. TLV8 and TLV48 refer to one and
6 bytes for the length of the ‘‘Type’’ field.

Packet type tsend (ms) Payload (bytes) Energy (lJ)

empty 10.48 0 699

TLV 28 10.93 14 730

TLV 248 11.55 34 778

IPFIX Data 11.69 30 779
IPFIX Template 12.3 48 820
TinyIPFIX Data 10.9 13 727
TinyIPFIX Template 11.71 31 780

10 C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx
After recording the measurements shown in Table 3 we found
that the time, when energy is consumed, is largely dominated by
a constant factor which stems from the medium access protocol
and the time it takes to switch the radio from receiving to sending
mode and back. When activating low power listening the variance
and average duration of the transmission time increased up to one
order of magnitude. Therefore, the employment of IPFIX, TLV or
any other application layer protocol does not have a large impact
on overall energy usage when using the default TinyOS settings
and relatively small packages. Nevertheless, the settings for the
back-off period can be changed as detailed in [37], potentially lead-
ing to shorter overall transmission times. Furthermore, other med-
ium access protocols, such as TDMA, can also increase the impact
of transmission efficiency.

5.2.4. System level energy consumption
In order to test if TinyIPFIX scales to large networks with more

complex routing paths and longer distances between nodes com-
pared to our functional experiments (see Fig. 10), we tested TinyIP-
FIX on Motelab4 [12], a sensor network testbed provided by Harvard
University. Of the 184 motes installed 77 were functional at the time
of testing, meaning we could run our experiments with 76 motes
sending sensor measurements to a single gateway node over a max-
imum number of six hops. Each experiment lasted for 30 min with a
start up phase of two minutes in which no sensor measurements
were sent to allow BLIP to establish the routes in the network. After-
wards the nodes would take temperature, humidity and internal
voltage measurements and send them with their mote ID and the
ticks since they booted to the edge router. Every time a mote tried
to send an IPFIX or TLV packet it would log the attempt to a database.
This figure was then compared with the number of packets captured
in Wireshark on the receiving end to determine the percentage of
packets that had arrived successfully. If an IPFIX packet containing
sensor data could not be parsed because it was referencing an
unknown template it was counted as unreadable. In order to calcu-
late the amount of energy spent by the whole WSN during a test run
we collected statistics on the number of sent or forwarded packets
4 http://motelab.eecs.harvard.edu.

Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
from each node and multiplied this number with our measurements
for energy usage from Table 3. Our aim was to get a realistic estimate
for the amount of energy consumed, which does not include the
lower layer, e.g., routing and overhead. Therefore, any additional
packets that could not be traced back to an IPFIX Template or Data
packet, such as topology maintenance packets, were treated like
empty packets from Table 3.

The figures in Table 4 show a high overall percentage of data
packets being delivered and readable when arriving at the process-
ing application although IPFIX has a slightly lower success rate
than TLV. This is due to some Template Packets being lost during
the initial announcement rendering the following data packets
unreadable. The high savings in the amount of transferred data –
TinyIPFIX only transmits around 35% of the amount that TLV sends
with our settings – did not translate to similar savings in energy
consumption. The WSN is consuming 5% less energy when using
TinyIPFIX compared to using TLV, which could be expected given
the slim difference between the amounts of energy needed to send
packets of different length. These results encourage using aggrega-
tion and bulk forwarding, an area in which compressed IPFIX
should have an advantage over a TLV approach: By limiting the
amount of meta data needed more sensor data can be fitted in a
data packet leading to less packets being transmitted and, thus,
an overall reduction in energy consumption.

5.2.5. Impacts of in-network aggregation
In-network aggregation has different impacts on the perfor-

mance of the implementation presented in this paper. In Section 3.4
we described the implemented aggregation modes in detail [2,25].

For the upcoming evaluation on reduction of transmitted mes-
sages we assume a modified testbed, called tesbed 1, with node
deployment as shown in Fig. 8. Fig. 11 shows the data packet cap-
ture. The testbed consists of several nodes where nodes marked in
gray work as aggregators. Further we assume that the nodes with
IDs 1, 2, 4, and 5 transmit their sensor readings on a regular basis in
accordance with the TinyIPFIX protocol described in Section 3.

In order to analyze the impact of aggregation the following
cases are considered [2,25]:

1. No TinyIPFIX aggregation is performed on any node in testbed
1. The gray marked nodes just forward the received data down
to the gateway without any modification on the data. Twelve
messages are transmitted in total in this case.

2. TinyIPFIX aggregation is performed on three nodes (gray
marked) in the testbed 1, which only results in seven messages
being transmitted in total.

As a result of the described setup the aggregation functionality
reduces the number of transmitted messages by 42%. Here a
degree of aggregation (DoA) of two messages per aggregate was
used and the simple message aggregation (mode 1) was per-
formed. If additionally the data aggregation functionality (mode
2) is performed the same result can be shown together with a
reduction of the transmitted packet size, due to the computation
of the aggregate function on the sensors’ values. The reduction of
transmitted messages in this example is only related to the reduc-
tion of transmitted TinyIPFIX messages. We did not take the impact
of the message reduction on the amount of control messages into
account. However, we expect that it should be reduced as well
because fewer packets are transmitted overall which leads to less
congestion in the network. [2,25]

We also observed energy savings in parallel to the message
reduction. In order to achieve energy savings on radio transmis-
sions for the aggregator, the additional transmission time for the
aggregated packets must be compared to the transmission time
that is necessary to forward the unaggregated packets. We assume
plication protocol for data exchange in cyber physical systems, Comput.

http://motelab.eecs.harvard.edu
http://dx.doi.org/10.1016/j.comcom.2014.05.012

|+--[fec0:0:0:0:0:0:0:8ae]:4740[2222], Data: 256 received Jun 22, 2012 11:56:50 AM
|
|----- Sound (MTS300)[2] (3844 - 32769): 466
|----- Temperature[2] (3843 - 32771): 27.8 °C
|----- NodeTime[4] (1 - 32770): 73.24 sec
|----- NodeID[2] (1 - 32769): 1212
|----- Temperature[2] (3847 - 32769): 27.67 °C
|----- Humidity (Sensiron SHT11)[2] (3841 - 32770): 35 %
|----- Light (TAOS TSL2550)[2] (3845 - 32769): 65535 LUX
|----- Voltage MTS400[2] (3846 - 32769): 0.14 V
|----- NodeTime[4] (1 - 32770): 78.13 sec
|----- NodeID[2] (1 - 32769): 2202

|+--[fec0:0:0:0:0:0:0:89a]:20679[2202], Data: 256 received Jun 22, 2012 11:56:54 AM
|
|----- Temperature[2] (3847 - 32769): 27.67 °C
|----- Humidity (Sensiron SHT11)[2] (3841 - 32770): 35 %
|----- Light (TAOS TSL2550)[2] (3845 - 32769): 65535 LUX
|----- Voltage MTS400[2] (3846 - 32769): 0.14 V
|----- NodeTime[4] (1 - 32770): 83.16 sec
|----- NodeID[2] (1 - 32769): 2202

|+--[fec0:0:0:0:0:0:0:4bc]:20679[12152], Data: 256 received Jun 22, 2012 11:56:55 AM
|
|----- Sound (MTS300)[2] (3844 - 32769): 465
|----- Temperature[2] (3843 - 32771): 27.9 °C
|----- NodeTime[4] (1 - 32770): 83.01 sec
|----- NodeID[2] (1 - 32769): 1212

Fig. 11. Transmitted data packets captured by TinyOS-Listener.

Message 1

M
es

sa
ge

1

M
es

sa
ge

 2

Ag
gr

eg
at

ed
M

es
sa

ge
 {1

,2
}

(A) Data transmission without aggregation (B) Data transmission with node 3 performing
 the TinyIPFIX-Aggregation protocol – mode 1

Energy (mJ)

N
od

e
1

N
od

e
2

N
od

e
3

0,066

0,132

Energy consumption for
transmissions performed by each

node until node 4

Energy (mJ)
N

od
e

1

N
od

e
2

N
od

e
3

0,066

0,132

Energy consumption for
transmissions performed by each

node until node 4

0,093

Mes
sa

ge
2 Message 1 Mes

sa
ge

2

Energy Saving

Fig. 12. Average CC2420 energy consumption per mote transmitting TinyIPFIX packets.

C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx 11
DoA ¼ 2 as above. The trade off between the necessary average
transmission energy for forwarding two TinyIPFIX packets and
the necessary average transmission energy for the aggregated
packet for TelosB in comparison to just forwarding functionality
without any aggregation mode is shown in Fig. 12. If data is trans-
mitted in an aggregated format we gain a saving of 30% compared
to transmission of the same number of packets in individual trans-
missions over the CC2420 radio of TelosB. [2,25].

Similar results were also achieved in bigger testbeds as shown
in Fig. 10 and in runs on Motelab consisting of 40 TelosB nodes dur-
ing our test-runs [12].

The implemented aggregation techniques lead to increased
end-to-end transmission latency. This occurs because a DoA > 1
requires the aggregator to wait for more than one incoming packet
before performing the chosen aggregation. In our testbeds the
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
measurement and transmission intervals were configured to rela-
tively high frequencies. Thus, no latency could be observed if
aggregation in both modes were performed. A more detailed anal-
ysis of latency is currently a work in progress.

5.3. Scalability

The existing TinyIPFIX implementation is based on TinyOS 2.x,
and has been tested successfully for TelosB and IRIS motes. We
believe that it could also support other hardware platforms, which
feature IEEE 802.15.4 radios with little modification.

Due to the intuitive structure of IPFIX it is easy for a pro-
grammer to tailor the Template/Data set pair to the application
requirements. For example, to add a new temperature sensor to
the sensor node’s programming, the following changes are
plication protocol for data exchange in cyber physical systems, Comput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012

Table 5
Total RAM and ROM consumption for TinyIPFIX including aggregation and BLIP as the
underlying communication stack.

Components RAM (bytes) ROM (bytes)

Boot, Leds, Timer, Blip 4766 25344
UDP Socket 2 296
UDP Shell 288 4074
TinyIPFIX 559 2160
Aggregation 404 3600

Total 6019 35474

Listing 3. XML parser example for AutHoNe.

12 C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx
needed: Define IPFIXDataSampler interface and instantiate it
with the desired Type ID and enterprise ID. In a next step
instantiate the fitting Sensor and wire it to the Sensor interface
of the IPFIXDataSampler. Finally, wire all IPFIXDataSamplers to
Fig. 13. IPv6 packets arri

Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
the Sampler interface of the main Application by performing
the following three steps:

1. Create a new instance of IPFIXDataSampler, a wrapper interface
that annotates a sensor reading with the matching Enterprise
and Type ID: components new IPFIXDataSampler16C

(uint16_t type_id, uint32_t enterprise_id) as Temp;.
2. Wire the sensor interface to the IPFIXDataSampler: Temp.

Sensor ? Sht11.Temperature;.
3. Add the IPFIXDataSampler instance to the application:

App.Sampler ? Temp;.

The program can now automatically generate templates for all
connected sensors and obtain their measurement data, which is
then automatically encapsulated in a format that complies with
the previously generated template. To allow for more fine grained
control over the creation of a TinyIPFIX packet the programmer can
also use the methods provided by the TinyIPFIX implementation
such as tinyIPFIX.start_template_record (uint8_t
buffer_no, uint16_t template_id) to start handcrafting a
template record or tinyIPFIX.start_data_record (uint8_t
buffer_no) for writing multiple data records into a single packet.
Reference [1] outlines the features of the TinyIPFIX implementa-
tion in more detail.

The consumed ROM and RAM space of the presented work is
shown in Table 5. The reported figures make the protocol viable
for use on constrained hardware. Due to the modular structure of
TinyOS different parts of the implemented protocol can be
excluded for very limited hardware and included on nodes with
more resources in a heterogeneous network as shown in Fig. 10
[2]. This advantage makes the TinyIPFIX protocol attractive for all
common node platforms.

5.4. TinyIPFIX applications and syndications

In our application scenario the first task was to seamlessly inte-
grate a WSN into an already existing smart home infrastructure
(AutHoNe) that supports IPv6. As pointed out before in Section 4,
the requirements are an XML parser (cf. example in Listing 3 and
the reference to a previously announced Template (cf. Section 3.1).
Additionally, due to the idea of the Internet of Things IPv6
ving from the WSN.

plication protocol for data exchange in cyber physical systems, Comput.

http://dx.doi.org/10.1016/j.comcom.2014.05.012

C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx 13
communication is required. The TinyIPFIX data received at the ser-
ver must be translated and forwarded to the cloud of application as
illustrated in Fig. 1. Responsible for the translation is the XML par-
ser included (cf. Fig. 1 server part). When a packet arrives at the
server, the payload including all required information is extracted
from the messages and with the help of the XML parser, which
specifies the interpretation of the data, translated to readable
information for the upcoming data processing (cf. Fig. 6). AutHoNe
can be such an application where all components access data of
different sources using IPv6 communication as briefly indicated
in the beginning of Section 4 [27].

Fig. 13 shows a capture of incoming IPv6 packets by Wireshark.
A network tunnel with IP-Address fec0::64, running on the gate-
way, is functioning as destination address for the packets from
the WSN. The gateway also runs a conversion program between
IPFIX and TinyIPFIX. To receive IPFIX packets, an application pro-
gram listens on the appropriate UDP port (e.g., 4739, as defined
by the IETF) and handles the arriving payload, which is marked
in Fig. 13. One can quickly see the version field of the uncom-
pressed header (0 � 000a), followed by the length (0 � 001a =
26) and all other elements of the valid IPFIX message.
6. Conclusion

Cyber-physical systems, such as intelligent building control sys-
tems like AutHoNe, are needed to achieve both a raised level of
comfort for the inhabitants along with a high overall energy effi-
ciency of the building. Wireless sensor networks as part of a smart
meter infrastructure provide the required level of data quality with
temporally and spatially fine-grained measurements.

In order too facilitate the efficient transfer of sensor data
through a heterogeneous WSN with minimal configuration upon
deployment we utilize TinyIPFIX – a versatile and lightweight
application level protocol for data exchange. In this paper we
briefly described the modifications performed to adapt standard
IPFIX to the resource constrained environment of sensor networks
and evaluated the performance of the TinyIPFIX implementation
with regards to transmission efficiency, system level energy con-
sumption and memory requirements. The rate of successfully
transmitted measurement was similar to conventional approaches
even though the separation of meta data and measurement data
into Template and Data Records in different packets increases the
risk of unreadable data. The savings in the amount of transmitted
data did not translate directly into energy savings on the system
level although a reduction of about 5% could be achieved. Addi-
tional energy savings of up to 30% can be gained with the integra-
tion of aggregation functionality in TinyAggregation. If mode 1 of
the message aggregation is used, 0039 mJ can be saved per aggre-
gated transmission. If the data pre-processing of mode 2 is per-
formed, more energy can be saved due to reduced message sizes
within the network. The aggregation functionality can also be
changed during the system run on the fly, which is a big advantage
to react directly on system changes.

TinyIPFIX is demonstrated to be a suitable choice for the studied
CPS and we believe that it could be leveraged in other scenarios
and deployments as we have outlined. Based on the shown results
an exploration of how TinyIPFIX and IPFIX could be bridged started
that investigated the development of an IPFIX Mediator like device
analog to RFC 6183 [38]. The idea of such a mediator is to take
measurements from a wireless sensor network and send them
across a network using IPFIX with full functionality. Especially as
the benefits of TinyIPFIX disappear at higher levels of spatial
and temporal aggregation the request for an adapted mediator
exist. Thus parts of the authors decided for standardization under
IETF and published a draft including this topic [39]. Further
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
investigations will take place within the FLAMINGO project at Uni-
versity of Zurich [40].

References

[1] T. Kothmayr, C. Schmitt, L. Braun, G. Carle, Gathering sensor data in home
networks with IPFIX, in: Proceeding of the European Conference on Wireless
Sensor Networks, EWSN, Springer, 2010, pp. 131–146.

[2] C. Schmitt, Secure data transmission in wireless sensor networks, net 2013-07-
2, department computer science, Technische Universität München (Jul. 2013),
http://dx.doi.org/10.2313/NET-2013-07-2.

[3] Global Mobile Data Traffic Forecast Update, 20122017, White Paper, Cisco
Systems, Inc., February 2013.

[4] L. Atzori, A. Iera, G. Morabito, The internet of things: a survey, Comput.
Networks 54 (15) (2010) 2787–2805.

[5] N.B. Priyantha, A. Kansal, M. Goraczko, F. Zhao, Tiny web services: design and
implementation of interoperable and evolvable sensor networks, in:
Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems, SenSys, ACM, 2008, pp. 253–266.

[6] C.J. Augeri, D.A. Bulutoglu, B.E. Mullins, R.O. Baldwin, L.C. Baird III, An analysis
of XML compression efficiency, in: Proceedings of the Workshop on
Experimental Computer Science, ExpCS, ACM, New York, NY, USA, 2007.

[7] J. Schneider, T. Kamiya, Efficient XML Interchange (EXI) Format 1.0, W3C
Working Draft 19.

[8] Z. Shelby, K. Hartke, C. Bormann, B. Frank, Constrained Application Protocol
(CoAP), IETF Draft, Work in Progress, RFC Editor, March 2013. <http://
tools.ietf.org/html/draft-ietf-core-coap-14>.

[9] B. Claise, B. Trammell, P. Aitken, Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of Flow Information, RFC 7011 (INTERNET
STANDARD), September 2013. <http://www.ietf.org/rfc/rfc7011.txt>.

[10] J.W. Hui, D.E. Culler, IPv6 in low-power wireless networks, Proc. IEEE 98 (11)
(2010) 1865–1878.

[11] S. Dawson-Haggerty, A. Tavakoli, D. Culler, Hydro: a hybrid routing protocol
for low-power and lossy networks, in: First IEEE International Conference on
Smart Grid Communications, SmartGridComm, 2010, pp. 268–273.

[12] G. Werner-Allen, P. Swieskowski, M. Welsh, MoteLab: a wireless sensor
network testbed, in: 4th International Symposium on Information Processing
in Sensor Networks, IPSN, 2005, pp. 483–488.

[13] P. Sandoz, A. Triglia, S. Pericas-Geertsen, Fast Infoset, Sun Developer Network.
[14] B. Claise, Specification of the IP Flow Information Export (IPFIX) Protocol for

the Exchange of IP Traffic Flow Information, RFC 5101 (Proposed Standard),
obsoleted by RFC 7011, January 2008. <http://www.ietf.org/rfc/rfc5101.txt>.

[15] B. Claise, G. Dhandapani, P. Aitken, S. Yates, Export of Structured Data in IP
Flow Information Export (IPFIX), RFC 6313 (Proposed Standard), July 2011.
<http://www.ietf.org/rfc/rfc6313.txt.>

[16] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TAG: a tiny aggregation
service for ad-hoc sensor networks, SIGOPS Oper. Syst. Rev. 36 (SI) (2002) 131–
146.

[17] B. Przydatek, D. Song, A. Perrig, SIA: secure information aggregation in sensor
networks, in: Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, SenSys, ACM, 2003, pp. 255–265.

[18] T. He, B.M. Blum, J.A. Stankovic, T. Abdelzaher, AIDA: adaptive application
independent data aggregation in wireless sensor networks, ACM Trans.
Embed. Comput. Syst. Special Issue Dyn. Adaptable Embed. Syst. 3 (2) (2004)
426–457.

[19] M. Johnson, Network Monitoring: What You Need to Know for It Operations
Management, Tebbo, 2011.

[20] G. Montenegro, N. Kushalnagar, J. Hui, D. Culler, Transmission of IPv6 Packets
over IEEE 802.15.4 Networks, RFC 4944, September 2007. <http://
tools.ietf.org/html/rfc4944>.

[21] T. Kothmayr, Data Collection in Wireless sensor Networks for Autonomic
Home Networking, Master’s thesis, Department Computer Science, Technische
Universität München, 2010.

[22] B. Krishnamachari, D. Estrin, S.B. Wicker, The impact of data aggregation in
wireless sensor networks, in: Proceedings of the 22nd International
Conference on Distributed Computing Systems, ICDCSW, IEEE Computer
Society, 2002, pp. 575–578.

[23] M.-O. Pahl, C. Niedermeier, M. Schuster, A. Müller, G. Carle, Knowledge-based
middleware for future home networks, in: IEEE IFIP Wireless Days Conference
Paris, Paris, France, 2009.

[24] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, D. Culler, sMAP: a simple
measurement and actuation profile for physical information, in: Proceedings
of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys,
ACM, 2010, pp. 197–210.

[25] B. Ertl, Data Aggregation using TinyIPFIX in Wireless Sensor Networks,
Bachelor Thesis, Department Computer Science, Technische Universität
München (Aug. 2011).

[26] C. Schmitt, L. Braun, G. Carle, IPFIX for Wireless Sensors, IETF Draft, Work in
Progress, IETF, October 2009. <http://tools.ietf.org/html/draft-schmitt-
6lowapp-ipfix-ws-00>.

[27] Autonomic Home Networking DE Project, 2012. <http://www.authone.de>.
[28] J. Taneja, J. Jeong, D. Culler, Design, modeling, and capacity planning for micro-

solar power sensor networks, in: Proceedings of the 7th International
Conference on Information Processing in Sensor Networks, IPSN, IEEE
Computer Society, 2008, pp. 407–418.
plication protocol for data exchange in cyber physical systems, Comput.

http://refhub.elsevier.com/S0140-3664(14)00206-0/h0120
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0120
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0120
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0120
http://dx.doi.org/10.2313/NET-2013-07-2
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0130
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0130
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0135
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0135
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0135
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0135
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0135
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0140
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0140
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0140
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0140
http://tools.ietf.org/html/draft-ietf-core-coap-14
http://tools.ietf.org/html/draft-ietf-core-coap-14
http://www.ietf.org/rfc/rfc7011.txt
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0145
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0145
http://www.ietf.org/rfc/rfc5101.txt
http://www.ietf.org/rfc/rfc6313.txt
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0150
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0150
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0150
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0155
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0155
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0155
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0155
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0160
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0160
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0160
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0160
http://tools.ietf.org/html/rfc4944
http://tools.ietf.org/html/rfc4944
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0165
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0165
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0165
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0165
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0165
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0170
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0170
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0170
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0170
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0170
http://tools.ietf.org/html/draft-schmitt-6lowapp-ipfix-ws-00
http://tools.ietf.org/html/draft-schmitt-6lowapp-ipfix-ws-00
http://www.authone.de
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0175
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0175
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0175
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0175
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0175
http://dx.doi.org/10.1016/j.comcom.2014.05.012

14 C. Schmitt et al. / Computer Communications xxx (2014) xxx–xxx
[29] L. Mo, Y. He, Y. Liu, J. Zhao, S.-J. Tang, X.-Y. Li, G. Dai, Canopy closure estimates
with GreenOrbs: sustainable sensing in the forest, in: Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems, SenSys, ACM,
2009, pp. 99–112.

[30] C.-J.M. Liang, J. Liu, L. Luo, A. Terzis, F. Zhao, RACNet: a high-fidelity data center
sensing network, in: Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys, ACM, 2009, pp. 15–28.

[31] O. Chipara, C. Lu, T.C. Bailey, G.-C. Roman, Reliable clinical monitoring using
wireless sensor networks: experiences in a step-down hospital unit, in:
Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems- SenSys, ACM, 2010, pp. 155–168.

[32] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele, C.
Tschudin, M. Woehrle, M. Yuecel, PermaDAQ: a scientific instrument for
precision sensing and data recovery in environmental extremes, in:
Proceedings of the International Conference on Information Processing in
Sensor Networks, IPSN, IEEE Computer Society, 2009, pp. 265–276.

[33] G. Werner-Allen, S. Dawson-Haggerty, M. Welsh, Lance: optimizing high-
resolution signal collection in wireless sensor networks, in: Proceedings of the
6th ACM Conference on Embedded Network Sensor Systems, SenSys, ACM,
2008, pp. 169–182.
Please cite this article in press as: C. Schmitt et al., TinyIPFIX: An efficient ap
Commun. (2014), http://dx.doi.org/10.1016/j.comcom.2014.05.012
[34] Z. Shelby, M. Luimula, D. Peintner, Efficient XML Encoding and 6LowApp, IETF
Draft, Work in Progress, RFC Editor, October 2009. <http://tools.ietf.org/html/
draft-shelby-6lowapp-encoding-00>.

[35] M. Luimula, Z. Shelby, J. Tervonen, J. Markkula, P. Weckström, P. Verronen,
Developing geosensor network support for locawe platform: application of
standards in low-rate communication context, in: Proceedings of the 2009
International Conference on Pervasive Services, ICPS, 2009, pp. 73–82.

[36] Y. Panthachai, P. Keeratiwintakorn, An energy model for transmission in telos-
based wireless sensor networks, in: International Joint Conference on
Computer Science and Software Engineering, JCSSE, 2007.

[37] David Moss, Jonathan Hui, Philip Levis, Jung Il Choi, 2007. <http://
www.tinyos.net/tinyos-2.x/doc/html/tep126.html>.

[38] A. Kobayashi, B. Claise, G. Muenz, K. Ishibashi, IP Flow Information Export
(IPFIX) Mediation: Framework, RFC 6183 (Informational), April 2011. <http://
www.ietf.org/rfc/rfc6183.txt>.

[39] L. Braun, C. Schmitt, B. Claise, G. Carle, Compressed IPFIX for Smart Meters in
Constrained Networks, IETF Draft, Work in Progress, September 2011. <http://
tools.ietf.org/html/draft-braun-core-compressed-ipfix-03.txt>.

[40] FLAMINGO Consortium, FLAMINGO: Management of the Future Internet,
March 2014. <http://www.fp7-flamingo.eu/>.
plication protocol for data exchange in cyber physical systems, Comput.

http://refhub.elsevier.com/S0140-3664(14)00206-0/h0180
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0180
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0180
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0180
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0180
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0185
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0185
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0185
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0185
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0190
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0190
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0190
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0190
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0190
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0195
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0195
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0195
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0195
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0195
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0195
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0200
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0200
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0200
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0200
http://refhub.elsevier.com/S0140-3664(14)00206-0/h0200
http://tools.ietf.org/html/draft-shelby-6lowapp-encoding-00
http://tools.ietf.org/html/draft-shelby-6lowapp-encoding-00
http://www.tinyos.net/tinyos-2.x/doc/html/tep126.html
http://www.tinyos.net/tinyos-2.x/doc/html/tep126.html
http://www.ietf.org/rfc/rfc6183.txt
http://www.ietf.org/rfc/rfc6183.txt
http://tools.ietf.org/html/draft-braun-core-compressed-ipfix-03.txt
http://tools.ietf.org/html/draft-braun-core-compressed-ipfix-03.txt
http://www.fp7-flamingo.eu/
http://dx.doi.org/10.1016/j.comcom.2014.05.012

	TinyIPFIX: An efficient application protocol for data exchange in cyber physical systems
	1 Introduction
	1.1 Metrology
	1.2 Resource efficiency
	1.3 Syndication
	1.4 Scalability

	2 Related work
	3 TinyIPFIX design
	3.1 IPFIX overview
	3.2 Metrology
	3.3 Adaptation to WSNs
	3.4 In-network aggregation

	4 An end-to-end cyber-physical system implementation
	4.1 General design decisions on the WSN side
	4.2 Data preprocessing by TinyIPFIX-Aggregation

	5 Evaluation
	5.1 Complete and general
	5.2 Resource efficiency
	5.2.1 Embedded implementation
	5.2.2 Comparison to approaches using binary XML
	5.2.3 Energy efficiency
	5.2.4 System level energy consumption
	5.2.5 Impacts of in-network aggregation

	5.3 Scalability
	5.4 TinyIPFIX applications and syndications

	6 Conclusion
	References

