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Cognitive information-centric sensor networks represent a paradigm of wireless sensor networks in
which sensory information is identified from the network using named-data, and elements of cognition
are used to deliver information to the sink with quality that satisfies the end-user requirements. Special-
ized nodes called Local Cognitive Nodes (LCNs) implement knowledge representation, reasoning and
learning as elements of cognition in the network. These LCNs identify user-requested sensory informa-
tion, and establish data delivery paths to the sink by prioritizing Quality of Information (QoI) attributes
(e.g., latency, reliability, and throughput) at each hop based on the network traffic type. Analytic Hierar-
chy Processing (AHP) is the reasoning tool used to identify these paths based on QoI-attribute priorities
set by the user. From extensive simulations, parameters that can be controlled to improve the values of
QoI attributes along each hop were identified, and performance of the AHP-based data-delivery technique
was compared with two traditional data-centric techniques in terms of lifetime and QoI attribute perfor-
mance. It was found that the use of cognition improves the number of successful transmissions to the
sink by almost 30%, while closely adapting the data delivery paths to the QoI requirements of the user.
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1. Introduction

Wireless Sensor Network (WSN) applications have evolved from
catering to application-specific requirements, to supporting large
scale application platforms such as smart cities and Smart Outdoor
Monitoring (SOM) in public sensing [1]. These applications typically
require a large scale, dense deployment of the sensor network,
which generates a large amount of data. However, end-users may
be interested in accessing specific information from the network
(such as temperature in the north-east region of deployment, or
issue pollen alerts for people with allergies). These ‘smart’ applica-
tion platforms require the underlying WSN to not only gather infor-
mation from the relevant information sources, but also prioritize
and efficiently manage the heterogeneous traffic flows generated
by the requests, and deliver information with quality that satisfies
the end-user’s requirements in terms of attributes such as reliability
and latency. Providing a good quality of experience to end-users in
such large-scale deployments requires a shift in focus from tradi-
tional address-centric communication abstractions to data-centric
77

78

79

80
routing and storage, where information from multiple, concurrent
information sources produced anywhere in the network can be
coherently delivered to the end-user.

Information Centric Network (ICN) is one such paradigm that
focuses on content delivery, rather than the point-to-point infor-
mation flow in the network [2,3]. It makes use of ‘‘named data
objects’’ instead of IP addresses to gather data, thus decoupling
information source from its location or node identification. ICN is
touted as the future technology for content delivery over the inter-
net because of its ability to bring information to the network layer
to improve communication efficiency. Moreover, using the infor-
mation-centric approach in such a resource rich, static environ-
ment, positively impacts data delivery to the end-user. Data-
Centric Sensor Networks (DCSNs) [4–8] are a parallel paradigm in
WSNs where attribute–value pairs are used for named identifica-
tion of sensed data. Although DCSNs existed much before ICNs,
the limited resource and energy capabilities of sensor nodes, and
their inability to adapt data delivery decisions to the dynamic net-
work conditions decreased the popularity of this approach in
WSNs. Later, with the introduction of the ZigBee standard [9], most
of the data processing and communication tasks were off-loaded to
relay nodes. However, this also led to a shift to a more address-
centric approach for WSNs. Then, with need to enhance the
rt out-
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multi-objective optimization and dynamic decision making capa-
bilities of the network, increased research activity in the field of
applying cognition to sensor networks. These cognitive sensor net-
works were able to achieve various goals such as making the sen-
sor network aware of user requirements, reduce network resource
consumption, and make the network exhibit self-configuration,
self-healing and self-optimization properties [10–12]. Despite
these advances, it still remains a challenge for sensor networks
to differentiate traffic flows in smart environments, where the user
requirements change over time. Sensor networks still lack the abil-
ity to adapt data delivery techniques to different traffic flows gen-
erated by the network. In addition, it is desirable to have the sensor
network functioning as an information gathering network, to make
it easier for users to make name-based requests, and for ease of
adaptability to the future ICN.

To cater to all these requirements, we put together the idea of
an information-centric approach from ICNs/DCSNs, along with the
concept of cognition in this paper, and propose a Cognitive Infor-
mation Centric Sensor Network (ICSN) framework-COGNICENSE.
The information centric strategy is used to identify relevant
sensed information from the network, and the elements of cogni-
tion (i.e. knowledge representation, reasoning and learning) are
implemented at special nodes called Local Cognitive Nodes (LCNs)
and Global Cognitive Nodes (GCNs), to enhance their information
processing and intuitive decision making capabilities. GCNs inter-
pret the user request for the network, and the LCNs help to iden-
tify appropriate return paths for data delivery. Relay nodes
participate in information transmission over multiple hops, thus
maintaining the network’s scalability. End-user satisfaction is
based on the Quality of Information (QoI) delivered to the sink
[13,14], characterized by the attributes of latency, reliability,
and throughput associated with the application specific traffic.
Accordingly, we summarize our contributions in this paper as
follows:

i. We propose a framework called COGNICENSE that makes
use of elements of cognition and an information-centric
approach for data delivery in WSN applications for Smart
Outdoor Monitoring (SOM).

ii. We investigate three Quality of Information (QoI) attributes:
latency, reliability and throughput. Based on simulations
considering an IEEE 802.15.4 PHY-MAC model, we identify
the parameters that affect these QoI attributes.

iii. Using a multi-criteria decision making (reasoning) tech-
nique called Analytic Hierarchy Process (AHP), we show
how the values of the QoI attributes obtained from the sim-
ulations can be used to make decision choices about the data
delivery path that provides the best value of information at
the sink (end-user).

The rest of the paper has been organized as follows: Section 2
reviews related work in literature. Section 3 provides the system
models and problem description. Section 4 provides details about
the proposed data delivery framework using elements of cognition,
i.e. knowledge representation and inference. Section 5 provides sim-
ulation results and discussions, and we conclude the paper in Sec-
tion 6.

2. Related work

The idea of focusing on information objects rather than the host
of the information in communication networks is hardly new.
Data-centric sensor networks in the wireless world and the TRIAD
project [15] for the internet, described early forms of information
centric networks, that aim to move away from the end-to-end
communication paradigm and focus on the content being delivered
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
door monitoring, Comput. Commun. (2015), http://dx.doi.org/10.1016/j.comco
to the end user. In this section, we review DCSNs, and ICNs with
respect to their network and design components, and implementa-
tion challenges. We also explore the use of cognition in wireless
networks with respect to their ability to enable networks to adapt
to changing environment conditions, and cater to end-user
requirements as they evolve with the applications.
2.1. Information centric networks

Information centric network is an information-oriented com-
munication model proposed for the future internet, to help with
managing the huge amount of IP traffic being exchanged globally.
Unlike traditional host-centric networks where data routing
requires the establishment of single end-to-end path to the host,
ICNs decouple senders and receivers by leveraging in-network
caching [16,17] and replication of data. User requests for named
data objects are addressed irrespective of the source of the pub-
lisher or the content’s location. This is facilitated by the use of
intermediate nodes, which are in-network devices that process
and cache named data objects. Thus named data access, routing
of requests and data, and information caching comprise the impor-
tant features of ICNs, and the intermediate nodes play a very
important role in implementing these features. These nodes will
need to make smart decisions to coordinate their actions and deci-
sions across the network, and also adapt to services and applica-
tions as they evolve. Despite the various ongoing research
activities in ICNs, not much work is being done with regards to
empowering the intermediate nodes to adapt dynamically to
changes in the network and end-user behavior, to help them learn
and evolve on their own.
2.2. Data-centric sensor networks

The DCSN approach is very similar to ICNs, in naming the
sensed objects and in caching data as it is forwarded to the sink.
One of the striking differences between DCSNs and ICNs in terms
of the network components is that the DCSNs approaches con-
sider only 2 types of devices in the network – sensor nodes
and sink, whereas ICNs typically use 3 types of devices – pub-
lishers, subscribers and intermediate nodes. Some DCSNs do pro-
pose choosing sensor nodes as cluster heads and involve them in
routing data to the sink [18], but this approach burdens the sen-
sor node in terms of energy, data processing and memory capac-
ities and affects the network lifetime and performance on the
whole. What has not been explored much in DCSN is applying
the ZigBee network model for DCSNs. ZigBee routers are a better
choice in terms of conserving sensor’s energy and making rou-
ters available for more functions such as information processing,
routing and data caching. ZigBee topology is a big energy saver
in terms of off-loading the burden from sensor nodes. Another
aspect that has not been explored much in DCSNs is the ability
to deal with heterogeneous traffic flows generated in the net-
work as a result of the different request that the network
receives. The request could be event-driven, time-driven,
query-driven or a mix of any of these types [19]. Most DCSNs
deal with one type of traffic, typically query-driven traffic. How-
ever, the challenge is in enabling the network to deal with all
types of requests and provide satisfactory service to the end-user
while adapting to changing network conditions and application
requests at the same time [20]. But just as the case with inter-
mediate nodes in ICNs, routers in DCSNs would be burdened
with too many responsibilities, if they had to carry out all these
function and are not empowered with techniques to deal with
them effectively. Hence we look at the possibility of introducing
cognition in the routers of the DCSNs.
ramework for cognitive information-centric sensor networks in smart out-
m.2015.01.002
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2.3. Cognition in communication networks and cognitive sensor
networks

To understand the correlation between cognition and commu-
nication networks, we’ll start with the way wired and wireless
communication network architectures have been standardized:
the layered protocol stacks of the OSI and TCP-IP models, and
the 802 series specifications. As network sizes grew, it became
challenging to correlate information from different parts of the
network, and make decisions with incomplete or inconsistent
information from different layers of the protocol stack. So the
concept of a knowledge plane was proposed by Clark et al. [21]
for the wired world, to break the barriers of the layered architec-
ture and enable seamless communication across the layers of the
protocol stack and across the network. This idea from the wired
world was adopted into wireless networks by Thomas et al.
[22], who proposed the idea of a Cognitive Network. This network
would be aware of the application requirements as well as the
network dynamics, and make use of learning, reasoning and feed-
back from past interactions to make decisions that improve both
network performance and end-user satisfaction. The feedback in
the network is based on an Observe-Analyze-Decide-Act loop
[23], which when combined with learning and reasoning consti-
tuted the idea of cognition in the cognitive network. This concept
of cognition has been extended to WSNs as well [24], which we
will collectively refer to as cognitive sensor networks (CSNs) in
this work. But these architectures and applications are address-
centric, which cater to the end-to-end communication paradigm.
To the authors’ best knowledge, information-centric architectures
(ICNs and DCSNs) have not leveraged the idea of cognition, in the
way we have described above to handle diverse traffic flows and
satisfy end-user requirements simultaneously. Specifically, cogni-
tion in data-centric sensor networks can provide the following
benefits: (i) In-network information processing (aggregation)
can save the energy expended on the huge amount of data
exchanged within the network before being delivered to the sink.
(ii) Using intermediate nodes that incorporate cognition can
reduce the burden on sensor nodes and make smart data delivery
decisions based on evolving application requirements, and chang-
ing environment conditions. Table 1 shows a comparison of the
infrastructure and data-delivery techniques used in DCSNs, ICNs,
and CSNs.

To this end, the COGNICENSE framework we propose will be
able to deal with changing application requirements, and make
smart decisions to provide the requested information to end-
users with quality that satisfies the SOM application require-
ments. SOM applications are challenging to handle in terms of
the large amounts of data that needs to be handled in-network,
and the network nodes are prone to disruptions caused by loss
of nodes or poor link quality among communicating nodes
[25–27]. Hence the ability to provide information with QoI attri-
butes of high reliability, low latency and good hop-to-hop
throughput are essential for improving the experience of an
end-user receiving such data. We make use of an information-
centric approach to deal the large amount of information avail-
able in the network. Sensed data is identified using attribute tags
at sensor nodes. Request for sensory information issued at the
sink is routed towards the location(s) in the network where
the information has been published. As the request traverses
through the network, intermediate nodes are checked for cached
copies. As soon as an instance of the desired sensory information
is found, it is returned to the sink using cognitive data delivery
techniques based on the relative priorities of the QoI attributes
that satisfy end-user requirements for a given traffic flow.
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
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3. System models

In this section, we explain the COGNICENSE system models and
its core components in details, in addition to listing our main
assumptions.
3.1. Quality of Information (QoI)

QoI is defined as the level of satisfaction experienced/perceived
by the end-user on the information received from the network
[13]. Attributes such as reliability, latency and throughput are used
to evaluate the QoI of data delivered to the sink. To differentiate
QoI from Quality of Service (QoS) of WSNs [28], QoS takes care of
the operational aspects of the network, while QoI is associated
with the characteristics of the sensory information made available
to the end-user. In our proposed approach, priorities are evaluated
for these QoI attributes for each application traffic type at the sink,
and the network tries to deliver the information with the desired
QoI to the sink/end-user. For SOM applications in WSNs, QoI attri-
butes that help us assess how well the network is able to gather
and provide relevant sensory information is based on the following
QoI attributes: reliability, latency and throughput. Their definitions
are based on the work in [29], and are presented here briefly:

Latency (L): is defined in terms of the mean frame service time
at the MAC layer and is estimated as the time interval from the
instant a packet is at the head of its MAC queue and ready to trans-
mit, till an ACK for such a packet is received. In other words, it is
the average delay for a successfully received packet.

Reliability (R): is defined as the probability that a frame is not
blocked, or lost due to channel access failure or discarded as a
result of reaching the maximum number of retries limit.

Average throughput (AT): is a function of reliability and is
defined as: k ⁄ Reliability ⁄ Application load (bits), where k is the
average frame arrival rate at a node in bits/s.

Instantaneous throughput (IT): is a function of latency and is
defined as: Application payload (bits)/Latency(s).

We use the instantaneous throughput value for computations in
our work, and refer to it simply as T.
3.2. Network lifetime

In this work, we propose a novel definition for network lifetime
based on the Quality of Information (QoI) perceived by the end-
user. Network Lifetime is defined as: the time or number of trans-
mission rounds beyond which the network can no longer deliver
useful information to the end-user. This is reflected by the net-
work’s inability to find a data delivery path with satisfactory val-
ues for QoI attributes (latency, reliability and throughput), as
determined by the end-user, or when there is insufficient energy
in the network nodes to deliver such data to the sink for any of
the application generated requests.

This definition not only caters to satisfying the application
requirements, but also considers the status of the network and
node resources (especially in terms of remaining energy at the
nodes) in defining the network lifetime. If sensor nodes or LCNs
were drained of energy, then at each hop, the QoI attribute values
would be affected, and thus reflected in the overall value of infor-
mation delivered at the sink. Thus it also justifies the fact that if the
network does not have sufficient resources to deliver data, it can-
not satisfy the end-user, and hence it should be considered as
the end-of-life of the network, as no useful information can be
derived from it.
ramework for cognitive information-centric sensor networks in smart out-
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Table 1
Comparison of infrastructure and data delivery techniques in DCSNs, ICNs and CSNs.

DCSN ICN CSN

Network components Sensor nodes (SNs) and Sink node(s). SNs
participate in sensing, transmission, and even
data aggregation when they function as
cluster heads. Sink nodes disseminate
request, store data returned from network,
process stored data to respond to user
queries, and manage network topology

Publisher, Subscriber and Intermediate
nodes. Publishers only publish the
information. Intermediate nodes deliver
published information to the Subscriber.
Senders and receivers are decoupled

Typically address-centric sensor networks
with sensor nodes, relay nodes (RNs) and a
Sink node or Base Station. In ZigBee based
networks, SNs gather sensed data, transmit to
RNs only. RNs participate in multi-hop
transmission to Sink. Intelligent agents
modelled as software agents within network
nodes

Node deployment and
control

Typically self-organizing. SNs randomly
deployed. Dynamic network with Centralized
control and decision making at Sink

The ICN environment is a static, resource rich
environment for wired communication
networks

Random, deterministic or mixed deployment
for network nodes in a dynamic network
environment. Distributed control through
intelligent agents within the network

Request dissemination Requests are sent out in attribute–value pairs
from the sink, which are disseminated in the
network through flooding, multicasting or
geocasting or some combination of
multicasting and flooding

Name-resolution (content name is resolved
into components to identify locators for
request), or name- based routing (request
forwarded based on identifier name)

Request dissemination is mostly address
centric, containing node addresses or end-
point ids from where data is to be fetched, for
end-to-end communication.

Data gathering/aggregation Typically along reverse paths of memorized
links, established during request
dissemination through broadcast trees; using
chains of reporting sensor nodes or through
token circulation among equally probable
next hop nodes. Data may or may not be
aggregated depending on correlation of
observed data. Minimum spanning trees are
constructed for aggregating data at specific
nodes before forwarding them for reporting

ICNs explore prefix aggregation, request
aggregation and aggregation of routing
information for functions such as load
balancing, and better routing scalability

Most implementations of CSNs do not depend
on or focus on data aggregation methods, or
the benefits it can offer. However, data may
be aggregated in dense deployments. The
cognitive agents focus more on achieving
various objectives such as reduced resource
consumption, enabling self-organizing and
self-healing capabilities of the network and
QoS routing under diverse application
scenarios

Cache storage and
replacement

Information sensed from a given region may
vary over time. Hence stored data may
become stale and provide inaccurate
information to users demanding current
information. Hence responding to query
requires awareness of its type in order to
generate useful responses from the network.
This traffic classification, and cache
replacement policies suitable for such
environments do not currently exist

Caching is inherent in the architecture.
Published data does not vary over time.
Hence cached information can be reused any
number of times and improves network
performance over time, as data becomes
available from caches closer to the
subscriber than the original publisher

Data storage aspects have not been explored
by intelligent agents of CSNs

Scalability Scalability and communication range are
limited by the use of resource constrained
sensor nodes in the network

The information centric approach has been
proposed to overcome the limitation
imposed by IP addressing, for improved
scalability

Since CSNs are based mostly on ZigBee based
communication, scalability is not an issue.
RNs provide multi-hop communication over
long distances

Limitations/challenges Energy consumption and delay involved in
data processing, aggregation and delivery.
Resource limitations at sensor nodes hinder
implementation of advanced routing
algorithms and limit caching

Privacy issues, scalability in caching, cost
efficiency

Cognition has not been explored in a way that
can be applied to sensor networks at an
architectural level. Implementations are very
application/goal specific
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3.3. Application traffic profiles for smart outdoor monitoring
applications

Application traffic is profiled into three categories [30] based
on how often sensed information from the network needs to be
delivered to the end-user, and the priorities associated with the
QoI attributes for each traffic type. They traffic profiles are as
follows:

Type I: periodic (application defined rate).
Type II: intermittent (application/external stimulus defined
rate) or event driven/query driven traffic.
Type III: low-latency data (emergency/alerting information).

We illustrate this traffic classification by making use of a sensor
network deployed in the following SOM applications. The first one is
a sensor network deployed for urban environment monitoring. In
this application, traffic flow for an air-quality monitoring station
is classified as Type I. Information flow generated in response to
queries from an operator or end-user, requesting for specific
information such as temperature or humidity at a specific time of
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
door monitoring, Comput. Commun. (2015), http://dx.doi.org/10.1016/j.comco
the day is classified as Type II traffic. Finally, a service that issues
alerts such as: High Ultra-Violet radiation warning, heat wave
warning during extreme temperatures, reduced visibility warning,
and pollen alerts, has traffic flow corresponding to Type III. Another
example of a SOM application is a sensor network deployed for
monitoring a forest environment [31]. When the network transmits
information corresponding to periodically sensed data from the for-
est region, the flow corresponds to Type I traffic. Information flow
corresponding to the assessment of factors that influence the type
of flora and fauna found in the monitored region is classified as Type
II traffic, and traffic flow associated with alerts issued in emergency
situations such as forest fires is classified as Type III traffic.

3.4. Network architecture and components

Fig. 1 represents the components of the COGNICENSE frame-
work and their interactions. Sensor nodes (SNs), Relay Nodes
(RNs), Local Cognitive Nodes (LCNs) and Global Cognitive Nodes
(GCNs) constitute the nodes of the cognitive information–centric
sensor network (CICSN). SNs constitute the leaf nodes that are
deployed uniformly and randomly in the network. They communi-
cate with LCNs and RNs lying within their communication range.
ramework for cognitive information-centric sensor networks in smart out-
m.2015.01.002
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Fig. 1. The cognitive information-centric sensor network architecture.

Fig. 2a. Hierarchical organization of network nodes in the CICSN.

Fig. 2b. Representation of LCNs and RNs in a 2-dimensional grid structure.
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Typically, SNs communicate with only one parent LCN or RN at a
time. LCNs communicate with each other, with RNs, and a cogni-
tive sink node called the GCN, which is located at the center of
the deployment region. The GCN carries information to and from
the sensor network to the end-user through a gateway and
access-point. When hierarchically represented, the CICSN node
interactions are as depicted in Fig. 2a. LCNs and RNs are deployed
at pre-determined locations on a grid as shown in Fig. 2b, so as to
ensure complete coverage of the target area and connectivity of
SNs with the GCN.

3.4.1. Cognition in ICSNs
Haykin [32] and Mitola [33] have perhaps defined cognition in

its most extensive form in the context of wireless communication
systems. Going beyond simple adaptations, they make use of a
feedback loop: the Observe-Analyze-Decide-Act (OADA) loop
[20], to model cognition in a way that does not deal with imitating
human-like behavior, but in making intuitive decisions based on
learning from the environment to adapt to current network
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
door monitoring, Comput. Commun. (2015), http://dx.doi.org/10.1016/j.comco
conditions, while inferring from past behavior and knowledge, to
predict a course of action for the future that the network can
benefit from. Based on this idea, and drawing from the work on
cognitive networks [34] and extending our work on cognitive
information centric sensor networks [35,36], we define elements
of cognition to implement the functionality of the Observe-Ana-
lyze-Decide-Act (OADA) loop. Knowledge representation, reason-
ing, and learning constitute the elements of cognition, which
when implemented in specialized nodes of the network, will help
them make cognitive decisions, and make the sensor network, a
cognitive one. In the CICSN, LCNs and GCNs are the specialized
nodes that implement the elements of cognition.

3.4.2. Node functions
In this section we describe the functions of the sensor, relay and

cognitive nodes of the ICSN. We start with the sensor nodes.Sensor
nodes host a multitude of sensors as required by the application
platform. Raw sensed-data is stored in attribute–value pairs. This
representation facilitates named-data identification to locate the
ramework for cognitive information-centric sensor networks in smart out-
m.2015.01.002
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user-requested information. Thus, the two main functions of the
sensor nodes are: (i) sensing raw-data, and (ii) storing sensed
information in attribute–value pairs. Details of the attribute–value
pair representation follow in Section 4.1, where we deal with
Knowledge Representation. They communicate with relay and
local cognitive nodes. Relay nodes communicate with SNs and
LCNs to act as intermediate nodes that gather information from
SNs, and forward them to their LCN neighbors. They deliver data
over multi-hop paths to the GCN.

LCNs perform two main functions: (i) gathering sensory-data
from sensor nodes, and forwarded information from relay nodes,
(ii) data delivery based on QoI requirements of the traffic type.
LCNs also function as caches to store the data as it travels through
the network. LCNs make use of the sensor attributes to identify the
relevant data, similar to the named data-object search in ICNs and
DCSNs. The requirements on the QoI attributes are based on the
type of traffic flow generated as a result of the end-user’s request.
As for dealing with the QoI attribute requirements, an Analytic
hierarchy process (AHP) [14,37] is implemented as the reasoning
element of cognition to make the decision in the LCNs. We elabo-
rate on this technique in Section 4.3.

GCNs have the following main functions: They receive user
requests and synthesize it to identify the following information:
application traffic type, requested sensor attributes, and QoI attri-
bute priorities. They broadcast the synthesized information to the
LCNs, so that they may process it further to gather the requested
information from the network. Once the network returns the
requested information, GCNs process it to determine if the QoI pro-
vided by the network meets with the user requirements, and deli-
ver information with acceptable QoI to end-user. They also
determine when the network is no longer able to deliver useful
information from the network, thus flagging the end-of-life of the
network.
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4. The COGNICENSE framework

Elements of cognition in the network nodes and an Informa-
tion-Centric data delivery approach are the two main constituents
of the COGNICENSE framework. The elements that help in imple-
menting cognition in the cognitive nodes are: knowledge represen-
tation, reasoning and learning. Knowledge representation helps in
identifying data using attribute–value pairs, contributing towards
identifying named-data objects for the information-centric
approach. Reasoning helps in multi-criteria decision making to pri-
oritize the QoI attributes for a given traffic flow, and decide on the
number of sensor nodes chosen for data transmission to the LCN, or
the next hop node chosen along the data delivery path to the GCN.
While reasoning helps in achieving short-term objectives and mak-
ing decisions that help the current situation, learning helps in
achieving long-term goals of the network, such as improving its
lifetime. Feedback obtained from the network’s past behavior aids
the learning process, and helps in planning proactive responses to
changes in network behavior and user requests.
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4.1. Knowledge representation

A Frame structure based on attribute–value pairs is used in sen-
sor nodes and the cognitive nodes for knowledge representation. In
frame-based knowledge representation [38], the frame is defined
as a hierarchical data-structure with inheritance [39]. It has slots
which are function-specific cells for data. In sensor nodes, these
function-specific cells store sensor attribute–value pairs. In LCNs,
they store more information, such as the one-hop neighbor LCNs
and the associated values of QoI attributes in the last communica-
tion round. Information accumulated over several rounds of infor-
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
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mation transmission leads to the formation of a Knowledge Base
(KB), which can be looked up by the reasoning mechanism to make
quick decisions on choosing the data delivery path which satisfies
the QoI delivered to the end-user.

We make use of a semantic naming scheme using strings
(sequence of characters) that provide information about the origi-
nator of the request, traffic type expected to be generated in
response to the request, direction from which the data is
requested, and the sensor data attribute(s) corresponding to which
the data is to be gathered. The naming scheme has two main com-
ponents: (i) Request Classifier. (ii) Information Attributes. The
Request Classifier (RQ) field has two sub-fields: the originator of
the request, and the type of traffic expected. The Information Attri-
bute (IA) component also has two sub-fields: Direction Attribute
and Sensory data attribute. The two fields are separated by a colon
‘:’ and the sub-fields within a field are separated by an underscore
‘_’. Here is the format of a request string: <Request_classifier> :
<Information_Attribute>. Let us consider an example request
string. Sink_type1:N_temp. Here, ‘‘Sink’’ indicates that the request
has been originated by the sink. ‘‘type1’’ indicates that the
expected response from the network is a periodic traffic flow.
‘‘N’’ indicates that the direction from which the data is expected
to be gathered is North. ‘‘temp’’ indicates that temperature data
is being requested. Thus the request string means: Sink initiated
a request to collect periodic data from the Northern region of the
deployment for the temperature attribute. Further, a combination
of logical and relational operators can be used to add more details
in the request. For example, the request string Sink_type1-
60:N_temp&&humd specifies that temperature and humidity val-
ues are to be returned periodically, every 60 min. Once a complete
match is found for the request string, the data is returned in attri-
bute–value pairs to the sink by concatenating it to the original
request string using a ‘‘:’’ operator, and changing ‘‘Sink’’ to
‘‘Source’’. For example, the response string: Source_type1:N_temp:-
temp-25_temp-26_temp-24 indicates the temperature-value pairs
recorded were 24 �C, 25 �C and 26 �C.

The alphabets required for a complete representation of this
language are represented in Table 2. For further digitizing the rep-
resentation, each of the alphabet’s values can be uniquely binary
encoded. The cognitive nodes (GCN and LCN) will be able to gener-
ate and parse these strings and arrange the information gathered
from SNs/RNs in the desired format.
4.2. Learning

Learning is used in the COGNICENSE framework for identifying
data delivery paths towards the GCN that satisfy the user’s require-
ments in terms of QoI attributes. In this work, we make use of a
direction-based heuristic to determine the data delivery path
through RNs that lie in the direction of the GCN. This means that
each time an LCN has to choose from among multiple RNs to decide
the next hop, the direction-based heuristic eliminates RNs that
increase the distance between the current LCN and GCN. Knowl-
edge of the positions of the LCN and its one-hop RNs is used by
the heuristic to determine the set of such RNs, which we call for-
ward-hop-RNs. Thus the forward-hop-RNs of an LCN identified by
the direction-heuristic is constituted by those RNs that reduce
the distance between the LCN and the GCN. This information is
stored in the LCN’s knowledge base for use in the next transmis-
sion rounds. Feedback about QoI delivered along the forward-
hop-RNs is used to identify the best forward- hop-RN for each traf-
fic type. Thus the direction-based heuristic, along with feedback
from the network about the QoI delivered along the chosen paths
helps the LCNs to learn data delivery paths to the sink, as the net-
work topology changes due to link variations and node deaths.
ramework for cognitive information-centric sensor networks in smart out-
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Table 2
Alphabet used for representation of attributes as semantic information.

Alphabet Values Remark

a (Information source) {Sink,Source} Indicates if this is a request or response
b (Traffic type) {type1, type2, type3} Traffic flow type expected in the network in response to request
c (Direction attribute) {N,E,W,S, NE,NW,SE,SW,ALL} Direction(s) from which data may be requested. ‘‘All’’ indicates broadcast throughout the network
d (Attributes of sensed data) {temp,humd,uvi,co2, time} Sensory attributes for which data can be provided by sensor nodes

‘‘time’’ indicates the time stamp at which data was registered at the sensor node
Logical and relational operators &&, >, <, >=, <=

Fig. 3. The AHP hierarchy.

Table 3
AHP anal Q5ysis of the QoI attributes.

Latency Reliability Throughput Relative priorities of QoI
attributes

Latency 1 4 6 0.691
Reliability 1/4 1 3 0.2176
Throughput 1/6 1/3 1 0.0914
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4.3. Reasoning

An Analytic Hierarchy Process (AHP) is used for implementing
the reasoning element of cognition. AHP aids with multiple-criteria
decision making while deciding on the data delivery path based on
the Quality of Information requirements of the requested applica-
tion. Example: For Type III traffic, requesting for low latency data,
the QoI requirements are as follows: Highest priority: Latency, fol-
lowed by reliability and finally throughput. This means that while
choosing the next hop node for data delivery, the node which pro-
vides the lowest latency, will be chosen. Reliability is more impor-
tant than throughput. Hence, if two next-hops guarantee the same
latency then the next attribute to compare will be reliability, and
lastly, throughput. AHP provides a method for pair-wise compari-
son of each of the QoI attributes and helps to choose the node that
can provide the best value of information with respect to all three
QoI attributes. Subsequent sections have more details with a run-
ning example on AHP. While these calculations help in deciding
the next-hop, they also help in planning for future actions. The cog-
nitive nodes are able to store the calculated priorities of the QoI
attributes, which they can use to decide which type of traffic the
LCNs can best provide for. Hence, these calculations need not be
necessarily calculated for every transmission round.
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4.4. The AHP framework for data delivery based on QoI attributes

There are three levels in the AHP hierarchy constituted of: Goal,
Criteria and Alternatives as shown in Fig. 3

i. Goal: Deliver application-requested sensory information to
the GCN from LCN by identifying the next hop node.

ii. Criteria: Data must be delivered with the appropriate prior-
ities of QoI Attributes for each application type. The QoI
attributes that are considered are: latency, reliability, and
throughput.

iii. Alternatives: The RNs in the network are available to forward
the data over multiple-hops in the network.

A fundamental scale for pairwise comparisons is then used to
set application-defined priorities for the QoI attributes [37]. Then
the priorities of QoI attributes are established using pair-wise com-
parison. Let us consider an example where a SOM application
wishes to transmit low-latency alerting information to its users.
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
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From the three QoI attributes of latency, reliability and throughput,
we would assign the highest priority to latency, to ensure timely
delivery of the alert, followed by reliability and then throughput.
We tabulate the relative priorities of each the QoI attributes using
pair-wise comparison and generate Table 3. Then, the AHP compu-
tation involves generating the Eigen vector for the values in this
table, using the following steps:

i. Represent the values of Table 3 in matrix form {A = [1,4,6; 1/
4,1,3; 1/6,1/3,1]}.

ii. Compute the eigenvector of the matrix A {[v,d] = eig(A)}.
iii. Isolate the absolute, real values of the eigenvector

{q = abs(real(v(:,1)))}.
iv. Compute the normalized, relative priority values as {Effec-

tive QoI = q/norm(q,1)}.

The QoI attributes are the criteria and the goal is to find the
next-hop RN during data delivery from LCN towards GCN, which
provides the highest value for the Effective QoI as illustrated in
Table 4. This way, the AHP algorithm is implemented at LCNs to
identify the best next hop node based on user priorities. Combining
the value of the effective QoI with the energy consumed during the
process of delivering information to the GCN, provides a measure
of the value of information (VoI) delivered to the end user. VoI
delivered to the end user is said to be maximized when data is
delivered over links that provide the best effective QoI for each
traffic type, while minimizing the energy consumed in the network
while doing so.

Value of InformationðVoIÞ ¼
X

n-hops

ðEffective QoIÞ

�
X

n-hops

ðEnergy CostÞ ð1Þ
ramework for cognitive information-centric sensor networks in smart out-
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Table 4
AHP to evaluate the effective QoI for the next-hop RNs.

Best candidate for next
hop

Priority with respect to attributes

Latency Reliability Throughput Effective
QoI

RNi 0.252 0.015 0.101 0.375
RNj 0.2 0.018 0.11 0.329
RNk 0.164 0.019 0.116 0.296
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Eq. (1) highlights that lower the energy cost of delivering data to the
sink, higher is the VoI associated with that data/information object.
The QoI must be maximized and energy cost minimized to achieve
the best VoI. If energy consumption is measured as a function of the
number of transactions taking place before data is delivered to the
GCN, a simple metric – the hop count can be used to approximate
the energy cost. If the information is transmitted from source to
GCN over minimum number of hops, each link providing the best
combined QoI for that traffic type, we can say that the information
was delivered to the GCN with good VoI. The steps used in the AHP
to establish priorities for the QoI attributes and identify the best
next-hop path in delivering the application data to the GCN are
illustrated in Algorithm 1. Information about the relative priorities
of the QoI attributes as desired by the user are received as input
from GCN in steps 1–3. The output is a next hop RN that provides
the best QoI as shown by steps 4–5. The simulations are set to
run till no path can be found to GCN or till 50% of RNs and LCNs
die. In steps 9–11, AHP analysis identifies the best next-hop RN that
satisfies these requirements, and identifies the next-hop path for
data transmission. Steps 12–17 define actions to be taken when
data reaches the GCN and leads to a successful transmission, or
reaches another LCN from where next hop has to be identified.
Steps 18–21 indicate that if a path to GCN was not found along
the chosen path, GCN issues a re-transmit request. These computa-
tions can be initially carried out for each next-hop node decision in
the data delivery path. This technique helps to build the learning
database at each LCN about its next-hop neighbor, and the priorities
each of them offers with respect to the QoI attributes. This informa-
tion can be stored and used for planning future rounds of data deliv-
ery for application traffic that may need to choose a different next
hop for the same source LCN, based on the expected values of attri-
bute priorities at the GCN. Thus we can see that this AHP process
helps in adaptive multi-criteria decision making during data deliv-
ery, in considering the desired attribute priorities for each applica-
tion-traffic type.

Algorithm 1: AHP analysis to determine the data delivery
path

1. Function AHP (QoI.priorities)
2. Input
3. QoI.priorities: End-user defined priorities on QoI attributes

for requested data
4. Output
5. RNx: Forward-hop RNx 2 {RN1 . . . RNn} with best QoI
6. Begin
7. Initialize: QoI priority matrix for traffic type; Success=0;
8. While (number of dead nodes<50% or network not

disconnected)
9. AHP_analysis(Next-hop RNs v/s QoI attributes)
10. Next hop RN = RNx //This is the RN with best QoI for

chosen traffic type
11. Transmit data to next-hop RN
12. If (next hop = GCN)
13. Success=1;
14. Else
15. Choose next-hop LCN
16. goto step 8
17. End
18. If (Success==0),
19. GCN Retransmits request
20. End
21. End
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
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4.5. Node mobility support in the COGNICENSE framework

The COGNICENSE framework allows for caching data at LCNs
that act as intermediate nodes. This makes data readily available
for users at nodes other than sensor nodes, thus offering two main
advantages: (i) It prevents requests being sent out to sensor nodes,
which may be in a sleep cycle, leading to a lost request and (ii) it
helps to conserve valuable energy resources by reducing the num-
ber of transmissions occurring in the network; both from sensor
nodes towards the sink, and over multiple relay nodes that trans-
mit the sensory information from the sensor nodes to the sink. Fur-
thermore, the named-data identification enhances the advantages
offered by the data caching feature at the LCNs in terms of support-
ing node mobility. We discuss the issue of node mobility under two
categories: (a) Sensor node mobility, and (b) LCN mobility.

4.5.1. Sensor node mobility support
In the COGNICENSE framework, search for data is name-based,

which means that the request is not associated with any specific
address, location or an end-point. This is in contrast with the IP
based approach, where an address is associated with each sensor
node, and the request-response cycle involves the establishment
and maintenance of an end-to-end connection between the sensor
node and the Sink. This restricts the ability of the network to sup-
port node mobility, as the loss of connectivity with the source-sen-
sor node or any intermediate node involved in the end-to-end
connection, due to node death or lossy links, affects the data gath-
ering and routing capability of the network.

However, in a cognitive ICSN, the requested information could
be located anywhere in the network, and the user will be able to
access it, since the request is not tied with any specific node
address. Any node that can provide a match to the requested infor-
mation can provide the data. Moreover, the routing path is not
fixed, and can adapt to the changing network topology. This is
made possible by the LCNs that make use of cognitive reasoning
to dynamically identify data delivery paths based on the type of
request, and how well a link had performed in a previous round.
The data delivery paths are chosen based on the QoI attributes of
latency, reliability and throughput. The LCNs offer another advan-
tage of acting as a data cache. Information gathered from sensor
nodes can be stored in these LCNs to make them available on-
demand, without having to access the source sensor nodes. We
assume that cooperative caching techniques designed for wireless
sensor networks [40] that deal with large amounts of sensed data,
can be applied at the LCNs to enable them to manage information
storage. In addition, we assume that cache replacement algorithms
such as Least Value First (LVF) replacement [16] can be used to
maintain availability of relevant data while evicting stale and
unused data from the cache, to make space for fresh data. Thus,
even if a source sensor node was mobile, the sensed information
is stored in LCNs whenever the node lies in close proximity with
the LCN, and is made available to the user, irrespective of the
mobility condition and/or pattern of the sensor node. Thus the
ramework for cognitive information-centric sensor networks in smart out-
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Fig. 4. Interconnection among SNs, LCNs, and RNs.

Table 5
Parameters of the simulated CICSN.

Parameter Value

Target area 1050 m � 1050 m
Number of nodes SNs: 1500

RNs: 16
LCNs: 8

Transmit power SN:<3 dB
RN: 3 dB
LCN: {3 dB,5 dB,7 dB}

Communication range SN: 175 m
RN: 250 m
LCN: 350 m
GCN: 500 m

Application payload size 121 Bytes
Per node offered load 0–140 0 bits per second

1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
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COGNICENSE framework is capable of supporting sensor node
mobility, without negatively affecting the network performance.

4.5.2. Local cognitive node mobility support
A further advancement that can be made to the COGNICENSE

framework, is the ability to support LCN mobility. A combination
of static and mobile data collector LCNs could be used in the infor-
mation-centric sensor network to improve the data gathering
capability of the network. The advantage offered by having mobile
LCNs is that, when a part of the network starts to deteriorate in its
energy capacity and link conditions, the mobile LCNs will still be
able to gather information from that part of the network, and store
it in their cache. Thus preventing a part of the network from get-
ting completely disconnected from the rest of the network, as long
as the sensor nodes remain functional. These mobile LCNs could
then communicate amongst themselves and with the static LCNs,
to decide on the best way to deliver the collected data to the Sink,
and also to maintain information about the entire network to make
informed decisions while responding to user requests.

4.6. Energy considerations in the COGNICENSE framework

Energy conservation is one of the most important aspects of
WSN design. In ZigBee based address-centric WSNs, sensor nodes
off-load the energy-draining communication tasks to relay nodes.
SNs being leaf nodes do not have the network layer to forward data
beyond their one-hop relay nodes, and they do not even communi-
cate amongst each other. The multi-hop relaying between source
and sink is done by RNs, which have higher battery and processing
capacity. Let us denote the energy cost of the relay node using the
following equation:

CRN�E ¼ CðTETx þ RERxÞ ð2Þ

Most of the energy consumption at the RN is due to data communi-
cation, represented by ETx for energy consumed during transmission
and ERx for energy consumed during data reception. T and R repre-
sent the number of transmitted and received packets respectively.
Let us compare this energy with that at the cognitive node (CCN�E).
Typical functions of CNs that consume additional energy compared
to regular RNs are data aggregation and the cognitive decision pro-
cess. Additional energy consumption is accounted for by two fac-
tors: (a) protocol overhead incurred during cognitive data delivery
due to feedback from the network during the learning process
and the exchange of values of QoI attributes such as latency, reli-
ability and throughput while making routing decisions and (b)
increased transmit power for increasing the communication range
of CNs.

CCN�E ¼ CðTETx þ RERxÞ þ CðAEagÞ þ CðPEcog�processÞ ð3Þ

In Eq. (3) T, R, A, and P, are the total number of packets that are
transmitted, received, aggregated and processed by the cognitive
elements respectively, in each transmission round. CðTETx þ RERxÞ
is the energy cost incurred during data transmission and reception,
CðAEagÞ represents the energy cost incurred during data aggregation
and CðPEcog�processÞ represents the energy cost due to protocol and
processing overhead during the cognitive processes. Expressing
Eq. (3) in terms of the energy cost of RNs we get:

CCN�E P CRN�E þ AEag þ CEcog�process ð4Þ

If the relay and cognitive nodes use the same transmit power, then
the equality sign holds true in Eq. (4).

In any case, the energy cost of the cognitive node is higher than
that of the relay node. In order to ensure that the energy cost of
CNs does not offset the advantages offered by it in terms of adapt-
ing to the dynamic traffic flows and network topology changes, the
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
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cost can be optimized by maximizing the number of RNs and min-
imizing the LCNs in the deployment.
5. Simulations and results

A CICSN for a SOM application was implemented on top of an
IEEE 802.15.4 MAC-PHY simulator [41,42] in Matlab. The deploy-
ment and interconnection among the network nodes (SNs, RNs,
LCNs, and the GCN) is as shown in Fig. 4. The cyan1 and magenta
lines indicate links between SNs and LCNs and SNs and RNs respec-
tively. GCN in red is located at the center of the target area. Blue
lines show inter-LCN communication links and the black lines indi-
cate interactions between LCNs and RNs. Green lines indicate the
links between the GCN and its one-hop RNs, and the red lines are
the links between the GCN and nearest LCNs. The simulations were
used to evaluate the impact of network and node parameters on
QoI attributes. Using parameters identified from this simulation,
the AHP based data delivery technique (AHPDD) was implemented,
and its performance was compared with two other techniques – a
multipath data delivery technique (MDD), and a higher remaining
battery based data delivery technique (HRBDD) in terms of the
number of data transmissions to the GCN, and the QoI along the
data delivery path.
ramework for cognitive information-centric sensor networks in smart out-
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5.1. Simulation setup and parameters

The first set of simulations was used to identify parameters that
affect the QoI attributes of latency, reliability and throughput, for
the application. Parameters chosen for observation were: (a)
N_active: the number of nodes attempting to simultaneously
transmit data, and (b) the offered load: the per node frame arrival
rate expressed as a fraction of the application payload in bits per
second. The simulation was setup to identify the impact of varying
the offered load on the QoI attributes for different values of
N_active. The maximum and minimum possible values for
N_active were chosen based on the node binding information
obtained from the deployed CICSN. From 10 sets of random deploy-
ment of sensor nodes, we found a lower bound of about 10 sensor
nodes per LCN, and an upper bound of close to 60 sensor nodes per
LCN. The range of values for per node offered load was 0–1400 bits
per second, such that the load could be expressed as a fraction of
the application payload, ranging from 0.1 to 1.4 times the size of
the maximum application payload of 121 bytes. The remaining
simulation parameters were set as shown in Table 5.
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5.2. Simulations showing the impact of network and node parameter
variations on the QoI attributes

The impact of varying the offered load and N_active on the QoI
attributes of latency, reliability, and throughput for the SOM appli-
cation, is analyzed using the simulation results in Fig. 5. Fig. 5a
indicates that latency increases almost linearly with increase in
offered load for small values of N_active, up to 10 nodes. However,
for higher values of N_active, latency saturated around 0.1 s for
loads greater than 1000 bps. Fig. 5b shows an overall trend of
decrease in reliability as the offered load increases. However, there
Fig. 5. Impact of varying offered load
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is a marked difference in the variation of reliability with increase in
N_active. Reliability drops exponentially for values of N_active
greater than 30, as offered load increases. For values of N_active
around 20, reliability remains around 1for loads up to 500 bps
per node, after which it drops linearly with increase in offered load.
Fig. 5c indicates an overall decrease in throughput as offered load
increases. For N_active = 10, the decrease is linear, but for higher
values of N_active (20 nodes and above), the decrease in through-
put with increase in offered load is exponential. Fig. 5d indicates a
very different trend compared with instantaneous throughput at
N_active = 10. There is an increase in throughput with increase in
offered load, and stabilizes at around 700 bps for offered load over
1250 bps. However, as the value of N_active is increased, the abso-
lute value of throughput decreases, and the increasing trend in
throughput that was seen for N_active = 10, starts reversing for
loads greater than 500bps for N_active over 30. We made the fol-
lowing observations from analyzing the impact of varying the
per-node offered load and N_active on the QoI attributes: (i) Values
of each of the QoI attributes deteriorates as the offered load
increases. (ii) Restricting the number of nodes attempting to simul-
taneously transmit data (N_active) to around 10 nodes helps to
achieve good values for all the QoI attributes. We use these obser-
vations to setup the simulation parameters for our next set of
simulations.
5.3. Comparative evaluation of data delivery protocols: AHPDD,
HRBDD, and MDD

Using the observations from Section 5.2, a network environ-
ment in which less than 10 nodes are scheduled at a time for
simultaneous transmission, and the maximum transmission load
is limited to 5 frames per second (fps) is setup. Channel conditions
and N_active on QoI attributes.
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Fig. 6a. Comparison of the 3 data delivery techniques based on number of
transmission rounds.
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were varied by varying the application payload and N_active val-
ues. We assume that LCNs and RNs start with an initial energy of
25 units, and SNs have an initial energy of 15 units. Each transmis-
sion from a SN consumes 1unit of its energy; and transmissions
from RN to LCN and vice versa consumes 2 units of energy at the
transmitting node. Direct communication among LCNs or LCN to
GCN consumes 3 units of power. These values are based on the
transmit power and communication range capabilities of the
LCN2
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RN6

GCN
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GCN
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GC

Fig. 7. Tree-based illustration of a sub-set of path
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nodes. At the start of the simulation, we identify a source LCN at
which required data is available. Delivery of data from the identi-
fied source LCN to the GCN is considered as one successful trans-
mission round. Using this setup, we analyze the performance of
the AHP based data delivery protocol (AHPDD) based on the num-
ber of transmission rounds of delivering data from a source LCN to
GCN, until one or both of the following simulation termination
conditions are satisfied: (i) 50% of the total number of LCNs and
RNs die out, or (ii) the network is no longer able to deliver informa-
tion to the GCN as all the one-hop neighbor RNs and LCNs to the
GCN are dead. At this point, the simulations are terminated. AHP
analysis is implemented at LCNs to identify the best next hop
RN. The priority matrix for AHP analysis is set to identify data
delivery path for each of the three traffic types. The AHP based
decision protocol is then compared with two other decision criteria
in the same network setup, but without considering the cognitive
reasoning capabilities at the LCN or GCN. These routing strategies
are based on the ones described by Stojmenovic [7] for reporting
via alternate paths in a broadcast tree in DCSNs. The first one is
based on choosing an RN with the highest remaining energy from
among the one-hop neighbor nodes, and is called highest remain-
ing battery based data delivery technique (HBRDD). The second
one is called multipath data delivery (MDD), where each node
transmits through all its one-hop neighboring nodes with equal
probability to improve the chances of successful data delivery to
the sink. Data is delivered via multiple paths at each hop, until at
least one of the paths leads to the Sink, which is the non-cognitive
version of the GCN. The simulations were allowed to run till one or
both the simulation termination conditions were met, and the
average value of 25 such simulations was taken. The number of
transmission rounds during which data was not delivered to the
GCN was also recorded. The following criteria were used to deter-
mine unsuccessful transmissions to the GCN: (i) inability of the
routing protocol to forward data to the GCN due to node deaths
along the path chosen for data transmission, (ii) transmission fail-
ure due to insufficient remaining energy at the forwarding nodes.
The difference between the total number of transmission rounds,
and the number of failed transmissions gives a measure of the
number of transmission rounds in which data was successfully
transmitted to the GCN. Thus we define the failure rate of the rout-
ing protocols in Eq. (5) as follows:

Failure Rate
¼ ðNumber of failed transmissions
=Total number of transmission roundsÞ � 100 ð5Þ

From the simulation results in Fig. 6a, we can see that AHPDD
and HRBDD perform equally well, and better than MDD, in terms
of the number of transmission rounds. However, from Fig. 6b, we
see that the number of failed transmissions is very high for HRBDD
(57 out of 76). On comparing the failure rates, we find that MDD in
N
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Comparative analysis of data delivery paths in terms of QoI attributes.
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DD 
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DD 

MDD Latency Reliab
ility 
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 Traffic 
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D 
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DD 

MDD AHPDD HRBDD MDD 

2 11 9 9 0.0219 0.7659 4.6606 0.1999 7 
  

2 2,3,6,7 LCN2-
>RN7-
>GCN 

LCN2-
>RN2-

>LCN1-
>RN5-

>LCN4-
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>SINK 

LCN2-
>RN6/7-
>SINK 
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QoI=RN2 
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fact performs better than HRBDD by 12%. While only 31% of the
transmissions using AHPDD fail to reach the GCN, the failure rate
is as high as 75% with HRBDD, which is almost twice as worse
when compared with the 42% failure rate of MDD. Fig. 6c shows
the number of successful transmission rounds for each of the data
delivery techniques. We see that although MDD does not keep the
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
door monitoring, Comput. Commun. (2015), http://dx.doi.org/10.1016/j.comco
network running for more number of transmission rounds com-
pared to HRBDD, it is able to deliver data to the sink successfully
for an average of 42% of the total transmission rounds, which is
17% higher than what is achieved by the HRBDD. However, AHPDD
out performs both these protocols by adapting the data delivery
decisions to user priorities, and successfully delivering data to
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the GCN for 70% of the total transmission rounds. From these sim-
ulations, we can say that AHPDD is better able to adapt to the
changing network topology and deliver data to the GCN with a
lower failure rate compared to the other two techniques.

5.4. Use-case analysis of the data delivery protocols based on QoI
attribute performance

To analyze the performance of the three data delivery tech-
niques in terms of the QoI attributes, we hereby adopt a use case
based on the simulations in Section 5.3. The remainder of this
use case will refer to Fig. 7 and Table 6. LCN2 is identified as the
source node that has data to be delivered to the GCN, in response
to periodic requests (Traffic Type 1) during each transmission
round. The one-hop neighbor RNs of LCN2 are RN2, RN3, RN6,
and RN7, and have battery levels of 11, 9, 7, and 5 units respec-
tively at the start of the simulation instant. Values of the QoI attri-
butes are recorded for each of the one-hop RNs. AHP analysis is
performed to identify the best forward hop RN for AHPDD as
marked in red under the column titled ‘‘Effective QoI’’. The theoret-
ical best next hop RN for the other two protocols is found using
AHP analysis (highlighted in green), to compare the QoI perfor-
mance of the actual next-hop node chosen by the other two
protocols.

Comparing the QoI performance of the chosen next hop node,
we make the following observations: AHPDD always chooses the
best QoI providing node between RN6 and RN7, as long as they
are available. Although RN2 or RN3 might provide better QoI val-
ues for the next hop in some cases, choosing the forward hop
RNs reduces the number of hops to reach the GCN. This leads to
lesser energy consumption in the network on the whole, and also
reduces the cumulative latency along the data delivery path to
the GCN. However, this also means that once the forward hop
RNs die out, AHPDD has to make use of longer data delivery paths
to the GCN. But again, the QoI attributes are still considered in
choosing the best among the available next hop nodes. MDD on
the other hand, is always able to deliver data through at least
one next-hop node that provides the best effective QoI for each
traffic type, even though it does not have a mechanism to identify
the best next hop node. It is also able to find the shortest route to
the Sink because of the multipath approach at each next hop node.
However, this performance comes at the cost of a higher overall
energy consumption in the network. This can be seen from Table
6, where all the one-hop nodes run out of energy before the other
two techniques. Comparing with the observations made from
Fig. 6a–c, we see that although MDD lasts for lesser number of
transmission rounds, not only does it provides a lower failure rate,
it also performs well in terms of identifying at least one next hop
node that provides the best QoI performance. As for HRBDD, what
stands out from Table 6 is the increased number of hops in deliv-
ering data to the Sink, causing an overall increase in energy con-
sumption in the network. This is because HRBDD is always trying
to find a node with higher remaining energy at each next hop, irre-
spective of its QoI performance. Although the chosen next hop
node sometimes provides the best QoI, HRBDD’s performance with
respect to QoI attributes is not consistently good. Over a period of
time, this leads to death of more intermediate nodes, causing a
higher failure rate as indicated by Fig. 6b, as the sink cannot be
reached along a chosen path.

This leads to lesser number of successful transmissions to the
sink, even though the network might be able to run for a little
longer than the multipath routing technique, as shown by Figs.
6c and 6a respectively. Thus, HRBDD performs relatively poorly
among the three data delivery strategies, both in terms of deliver-
ing data with user-desired QoI attributes, and in terms of the num-
ber of successful transmission rounds.
Please cite this article in press as: G.T. Singh, F.M. Al-Turjman, A data delivery f
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6. Conclusions

In this paper, we proposed a framework for cognitive informa-
tion centric sensor networks that can be used to implement infor-
mation-centric data delivery using elements of cognition, i.e.
knowledge representation, and inference to advance data-centric
sensor networks to cognitive information-centric sensor networks.

These CICSNs are able to handle heterogeneous traffic flows in
the network generated as a result of requests coming from multi-
ple clients in SOM applications, while considering the QoI attribute
priorities for each traffic flow. From the simulations we were able
to identify the number of sensor nodes that should be simulta-
neously scheduled while gathering data, to ensure good quality
data from the sensor nodes. Optimally choosing the number of
simultaneously transmitting sensor nodes improves the average
throughput by about 85%, reliability by about 90% and reduces
the latency by about 18% for a given value of offered load
(1000 bits). The simulation-generated values were used in the next
set of simulations that implemented AHP analysis to decide the
best next-hop node that should be used for data delivery to the
GCN. It was found that the network lasted for significantly more
number of transmission rounds, and performed well in responding
to varying traffic types and changing network topology, when it
implemented cognitive routing decisions, when compared with
traditional decision techniques. In our future work, we will
enhancing the learning strategy, and implement cache replace-
ment at LCNs to further exploit the cognitive node’s capabilities
to improve network performance and prolong the network life-
time, while meeting the end-user’s requirements.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.comcom.2015.01.
002.
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