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Elementary to the success of the Internet of Things (IoT) is the capability to accurately and efficiently
localize its network components, information, and processes. In this paper, we focus on enabling local-
ization of Things that have limited capabilities deployed in isolated areas. Specifically, we explore the
scenario where the deployment or the utilization of dedicated anchor nodes becomes costly or
practically unfeasible, and where the dependence on multi-hop localization techniques becomes
inevitable. We further advocate the use of emerging IoT components such as smart vehicles, capable
of self-localization and short-range communication. The proposed scheme thus illustrates the feasibility
of a multi-hop wireless localization scheme dependent on mobile anchors (reference points). A key
advantage of the proposed scheme is overcoming collinear trajectory (flip-ambiguity) problem, which
arises whenever the smart vehicle moves in a straight trajectory. A Kalman Filter (KF) is used to decrease
the location error introduced from the multi-hopping during the localization process. Through simula-
tion, we show that the use of our localization scheme with KF reduces errors by 31% compared to
localization using anchors from a single direction and 16% compared to a weighted means approach.
Moreover, our scheme with KF consistently outperforms the typical range-based DV-Distance scheme
with fixed anchors.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Rapid evolutions in wireless communication and electronic
technologies have substantially decreased the cost and size of
embedded devices with sensing, processing and communication
capabilities. Such devices have made ubiquitous monitoring and
tracking applications cost-effective by enabling the collection of
data from hundreds of different locations in large-scale scenarios
[1]. These advancements have facilitated a new vision where infor-
mation from millions or even billions of devices can be collected,
processed and exploited collaboratively within a global Internet
of Things (IoT) [2].

In IoT, ‘‘Things’’ communicate and collaborate with each other.
Energy consumption, storage management, heterogeneity of
devices and communication bandwidth are major challenges facing
this emerging paradigm. As well, Things have to be locatable and
addressable in order to be trackable and accessible in application
domains such as geographic routing, marketing, data aggregation
algorithms and environmental monitoring applications [3]. However,
many Things cannot autonomously identify their position, and may
require multiple anchors to estimate their location. Given the
important role assumed by Sensor Nodes (SNs) in IoT, our focus in
this paper is on location of SNs with limited capabilities.

Many Wireless Sensor Networks (WSNs) applications involve a
random deployment of SNs in isolated areas with challenging ter-
rains and no central access roads, e.g., dense rain forest or rocky
mountainous areas. Due to the limited transmission range of
WSNs, SNs collect information about the environment and send
the collected information to the sink node at the edge of the topol-
ogy using multi-hop communication. Fig. 1 shows an example of
isolated SNs. To localize SNs isolated from the network edge, a
multi-hop localization scheme is needed. As the processing of the
position information propagates to the isolated nodes, error
accumulates, decreasing the estimation accuracy as the number
of hops increases [4].

Localizing SNs using multi-hop schemes involves deploying
anchor nodes that broadcast their location information with
operation instructions to the SNs. In turn, SNs would utilize this
information to estimate their own positions. Such schemes
oi.org/
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Fig. 1. WSN with anchor nodes from multiple directions.
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commonly relied on high-density deployment of costly anchor
nodes to ensure the availability of sufficient reference points for
all SNs. Such assumptions become problematic in the context of
IoT, where densities of SNs or Things are expected to be higher,
more ad hoc, and spread over wider areas, and where the use of
dedicated ‘‘anchoring’’ becomes, eventually, both costly and
ineffective.

While IoT emerges with its unique challenges, it also brings
forth unique opportunities. A relevant example can be readily seen
in the ubiquity of today’s smartphones that possess a collective
capability of communication, processing, storage, recording (audio,
image and video), and localization (GPS and assisted GPS). How-
ever, a more pronounced manifestation of an IoT opportunistic
resource are smart vehicles that interact not only with navigation
and broadcast satellites, but also with passenger smartphones,
roadside components, and other vehicles on the road.

In this work we abstract on the emergence of these smart vehi-
cles, specifically by using them as mobile anchors. When smart
vehicles move in straight trajectories, the flip ambiguity problem
results [5]. Traditionally, the term ‘‘flip ambiguity’’ labels the con-
fusion resulting from collinear anchor nodes. As illustrated in
Fig. 2, anchor nodes a; b, and c are collinear. Node n estimates its
position through measurements da; db, and dc . Each measurement
defines a ranging circle centered at the anchor node. Due to mea-
surement errors, the three measured circles do not intersect at a
common point, which causes ambiguities in determining whether
the position of the SN is n or n0 [6].

We propose a new and robust localization scheme that uses
smart vehicles to localize isolated SNs. In the proposed scheme,
the SNs estimate their positions from multiple directions, which
decrease the effect of the error propagation. After this process, a
Kalman Filter (KF) is used to decreases the localization error
coming from the longer hop direction, based on the information
n
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Fig. 2. Collinear anchor nodes a, b and c causing a flip ambiguity for SN n.
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coming from the shorter hop direction. Simulation results show
that using information from two different directions significantly
increases localization accuracy.

The contributions presented in this work are listed as follows:

1. Illustrating the use of smart vehicles as mobile anchors
(reference points) for localization.

2. Facilitating wireless multi-hop localization based on location
information received from multiple directions.

3. Overcoming collinearity to account for smart vehicles moving
in straight trajectories.

4. Employing Kalman filtering to reduce localization error in
multi-hop wireless localization scheme which utilize mobile
anchors (reference points).

The remainder of this paper is organized as follows. In Section 2, we
present the motivation behind our work through reviewing related
effort in the literature and establishing the addressed void. Section 3
offers a concise definition of the problem addressed, and details the
proposed solution. Section 4 details the simulation environment
used for validation and analysis, along with results and discussions.
Finally, conclusions are made in Section 5, along with an elabora-
tion on possible future directions.
2. Related work and motivation

The specific tool with which a thing can be localized depends on
its capabilities, in addition to the type of nodes or localization ser-
vices available in its direct context. Readers interested in surveys
on various localization schemes should refer to references [7,8].
Our interest in this work is in localizing Things that are isolated
from direct access to location information, i.e., have no direct
access or interaction with a self-localizing entity, or a location
broadcasting network element. To this end, the use of mobile
anchors and multi-hop localization becomes inevitable if the Thing
is to label its communication with accurate location information.
The independent application of these localization techniques have
been extensively discussed within the context of localizing sensors
in WSNs. In motivating our work, we review the state of the art in
three relevant aspects: (1) multi-hop localization techniques, (2)
addressing the problem of flip ambiguity, and (3) localization using
mobile anchors.
2.1. Multi-hop localization

Multi-hop localization schemes are based on either distance-
based or connectivity-based strategies. In connectivity-based strat-
egies the SNs obtain the absolute measurements of node distances
using Receive Signal Strength Indicator (RSSI), Time of Arrival
(ToA), or Time Difference of Arrival (TDoA) [4,9,10], while in dis-
tance-based strategies the SNs use the connectivity information
to estimate the location of SNs based on the position of the anchor
nodes [4,11–13].

Niculescu and Nath propose two localization schemes, one
based on distance measurement, the other is based on connec-
tivity information [4]. The authors’ distance-based scheme is
called Distance Vector (DV)-distance, and has the anchor node
sending beacon messages to all its immediate neighbors. Immedi-
ate (first-hop) neighbors to the anchor node estimate the distance
to the anchor by using signal strength measurement. These neigh-
boring nodes then forward the beacon message to the second-hop
neighbors to infer the distance to the anchor, and so on until the
network is completely covered in a controlled flooding manner.
Once an unknown node has three or more distances estimated to
or localizing isolated Things, Comput. Commun. (2014), http://dx.doi.org/
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different anchor nodes, it computes its position using multi-
lateration.

The second scheme proposed in [4] is the DV-hop, which oper-
ates in three stages. First, the algorithm computes the number of
hops for all the SNs to the anchor nodes. Next, the anchor node
gets the number of hops required to reach the other anchor nodes,
calculating the average length for one hop by dividing the total
distance by the number of hops. SNs then estimate the distance
by multiplying the number of hops by the average length for
one hop.

Stoleru et al. propose a scheme called MDS-MAP that uses mul-
tidimensional scaling (MDS) to determine SN locations by using
only connectivity information [9]. The operation of MDS-MAP con-
sists of three steps: (1) Finding the shortest paths for all pairs; (2)
applying classical MDS to the distance matrix; and (3) using three
or more anchor nodes to transform the relative map to positions
based on the positions of anchor nodes.

Wu et al. propose a self-configurable positioning technique for
multi-hop wireless networks [10]. A number of nodes at each cor-
ner of the network serve together as an anchor for estimating the
distances by a Euclidean distance estimation model. The authors
use ToA to estimate the distance for each hop. Once ToA informa-
tion is received by an SN, the sum of these distances is computed
by minimizing an error objective function.

The above solutions work well in isotropic networks, i.e., net-
works where the hop count between two nodes is proportional
to their geometric distance. The schemes, however, exhibit a dra-
matic decrease in performance when used in anisotropic networks,
i.e., in networks with non-uniform node distribution where there is
a concave region at its center. Fig. 3 shows the difference between
isotropic and anisotropic networks. Li and Wang mined the charac-
teristic of anisotropic WSN when anchor SNs send non-uniform
beacon messages [14]. They use the mined network connectivity
characteristics to make appropriate adjustments on measured dis-
tance between nodes based on the directions of message and
degrees of inflections. Their simulation results show that their
method outperforms DV-distance especially in anisotropic net-
works. Xiao et al. solve the problem of anisotropic network by
defining 3 different patterns based on number of hops and line-
of-sight rule [15]. The three patterns are (1) Concentric Ring (CR)
pattern, in which the SN is within few hops from the anchor node,
in this case SN is treated as it is in isotropic anchor. (2) Centrifugal
Gradient (CG) pattern, in which the SN is far from the anchor node,
in this case SN is treated as anisotropic where they use a proposed
solution named DiffTriangle that tolerate the inaccurate HopSize
estimates. (3) Distorted Gradient (DG) pattern which is considered
the worst case, in which the line-of-sight rule is breach by an
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(a) Example for Isotropic Network

Fig. 3. (a) The shortest path between source and destination is close to a straight line.
between them.
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object between them, in this case the message is dropped. A SN
estimates its location using weighted MMSE multi-lateration after
it collects sufficient distance estimates from different anchors
using CR or CG patterns only. They show that using analytical anal-
ysis and simulation that their solution for anisotropic gives higher
accuracy compared to previous localization solutions that claims to
tolerate network anisotropy.

For connectivity based multi-hop localization Savarese et al.
[11] propose AHLoS (Ad-Hoc Localization System) algorithm,
where a small fraction of nodes have the knowledge of their
position to estimate the location of other SNs using collaborative
and iterative multi-lateration algorithm. In AHLoS at least three
SNs know their position in order to estimate the position of other
nodes. Nagpal et al. [12] calculate a global coordinate system for
the whole network by estimating the Euclidian distance of each
hop between SNs. The SNs use the number of communication hops
to estimate how far they are from anchor nodes. When an SN
receives at least three different positions from different anchor
nodes, the SN combines the distance from the anchor nodes and
estimates its position based on the hop count to each anchor.
Akbas et al. [13] localize the position of SNs flooding in the Amazon
river based on stationary anchor nodes placed at the bank of the
river. Their localization algorithm uses multi-hop between SNs
and anchor nodes. Each SN keeps a single weight value for each
anchor it is associated with. The saved weight represents how far
the SNs are to each anchor node. The anchor node uses these
weights to estimate the SNs position.

2.2. Flip ambiguity

The problem of flip ambiguity is approached from different per-
spectives in the literature. The work done by Eren et al. and Gold-
enberg et al. test the unique localization conditions and construct
localizable networks using rigidity theory [16,17]. The authors
show that maintaining a global rigidity in the localized networks
decreases the collinearity of anchor nodes. However, it is hard to
maintain the global rigidity of the network unless it is compen-
sated by a priori information from the network [8].

Localization algorithms in [6,18] identify possible flip
ambiguities caused by collinearity of anchor nodes and decrease
the effect of flip ambiguity during the localization processes.
Moore et al. propose a robust quadrilaterals localization scheme
to identify possible flip ambiguities in fully connected sensor qua-
druples [6]. The scheme has two steps. In the first step, the distance
measurement between two anchor nodes SA and SB is used to esti-
mate the two possible locations of the un-localized SN SD. In the
second step, a third anchor SN SC is used to decide which of the
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(b) Example for Anisotropic Network

(b) The shortest path between source and destination is curved caused by the hole
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two possible locations for the un-localized SN satisfy the distance
constraint. If both locations satisfy the condition, the scheme
will ignore this SN. In [18], it was noted by Sittile that if sensors
SA and SC are used in the first step in [6] instead of sensors SA

and SB, and sensor SB is used in step 2 instead of sensor SC, this
may result in a different value for the robustness criterion, which
would affect the overall localization performance. Such depen-
dency is eliminated by including all three permutations when
localizing SD, i.e., (SA, SB, SC), (SA, SC, SB) and (SB, SC, SA). This
inclusion, however, increases the computational complexity of
the algorithm.

To reduce the error caused by trilateration, Yang et al. [19] pro-
pose a sequential localization scheme that estimates SNs location
and controls the errors introduced in each step. In their sequential
scheme, a set of anchor nodes is chosen and the expected error is
tracked in each step to minimize the error. However, flip ambiguity
cannot be avoided by error control alone as it can be triggered even
by the smallest errors if the anchor nodes used to localize the SN
are collinear. Basu et al. solved the problem of collinearity by using
both distance and angle measurements [20], where the localization
problem is transferred to a convex form and solved using linear
programming. However, the scheme by Basu et al. cannot work if
either the distance or angle measurement does not have a clear
boundary. Moreover, the scheme depends on the knowledge of
both distance and angle measurements, which requires additional
hardware. To identify and reduce the error caused by flip ambigu-
ities, Kannan et al. introduce a scheme that recognizes SNs with
possible flips using simulated annealing, and offer a refined
scheme through the use of a ranging model and a bounder check,
despite the refinement, however, the scheme may not identify all
flips [21].

2.3. Localization using mobile anchors

Pathirana et al. use mobile anchor nodes that move in random
paths to localize SNs in a delay-tolerant sensor network [22].
Han et al. show that localization using mobile anchor nodes that
move randomly results in poor performance in terms of localiza-
tion time and accuracy [5]. Another work [23] uses a mobile anchor
node that adopts Gauss–Markov motion model, and uses the
weighted centroid algorithm to localize the position of SNs. They
use a genetic algorithm to decrease the estimated error.

To overcome the poor performance of random movement for
mobile anchor nodes, Koutsonikolas et al. propose a pre-deter-
mined path for a single mobile anchor node [24]. They also address
the collinearity problem when a single anchor node is used. Differ-
ent fixed trajectory types such as Circle, S-Curves, Rectangle, Spiral
and Triangle are proposed for a single mobile anchor node to over-
come the collinearity problem [5,25,26]. Predetermined paths are
efficient if the deployment area has a regular shape (i.e., square
or rectangle) and the density of sensors is uniform, but can lead
to wasteful anchor movement in irregular areas and non-uniform
sensors’ density. Wang et al. propose a scheme that handles non-
uniform placement scenarios [27]. In Wang et al. scheme, the
mobile anchor node sends a start message all over the network
and when an SN receives the start message it adds the neighbor
SNs surrounding it and then the SN forwards the message. When
the anchor node receives the start message back, it calculates the
shortest path to localize all SNs. The anchor node moves in half-cir-
cle movements to avoid the collinearity property for the mobile
anchor node.

2.4. Motivation for our work

From the above, it can be seen that existing multi-hop localiza-
tion approaches have only exploited the use of stationary anchor
Please cite this article in press as: W.M. Ibrahim et al., Using smart vehicles f
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nodes. Existing schemes also either avoid or try to refine the result
of flipped SNs. When mobile anchors are utilized, localization is
only applied to SNs within a single-hop range from the anchor
node. Collectively, these drawbacks eliminate the possibility of
localizing isolated Things or nodes.

The objective of this work is to demonstrate the possibility of
localizing isolated Things using mobile anchors. We realize this
possibility through combining the use of multi-hop localization
and mobile anchors. As mobile anchors may travel in straight
paths, the designed scheme will need to accommodate both collin-
ear and non-collinear movements. In presenting our solution, we
first illustrate its overall operation with mobile anchors moving
in pre-defined paths that deliberately avoid collinear measure-
ments. We then introduce a scheme that relaxes this assumption,
allowing for any trajectory for mobile anchors.
3. Robust multi-hop localization scheme

The robust multi-hop localization scheme using multiple direc-
tions is described in detail in this section.1 The two main goals for
this approach are: (1) to enhance the position estimation of local-
ized SN without deploying anchor nodes in the sensing area as
the cost of anchor nodes is much higher than normal SNs and (2)
to propose a solution that overcomes the collinearity problem that
appears from using a mobile vehicle that moves in straight lines.
To simplify the description of our scheme, and without loss of gen-
erality, we review the operation of the scheme using only two
mobile anchors, each sending position messages from a different
direction.

To overcome flip ambiguity, we propose a new localization
scheme that estimates the distance between two nodes using RSSI
measurements. SNs then estimate their position using the esti-
mated distance and laws of trigonometry [29]. In the following,
we first formulate the localization problem. The proposed scheme
is then described. Next, the Kalman Filter is used to reduce the
localization errors introduced in the localization process.
3.1. Problem formulation

We consider a two-dimensional WSN localization problem,
where there are two roads at both ends of the sensing area as
shown in Fig. 1. Assume that there are M SNs that are deployed
randomly in the sensing area, where the SNs need to localize their
positions. The position of ith SN is denoted by xi ¼ ½xi yi�

T . The
distance measured between the ith and jth SN is

di;j ¼ dj;i ¼ ri;j þ ei;j 8i; j ¼ 1;2; . . . ;M ð1Þ

where ri;j ¼ kxi � xjk is the noise-free distance between SN i and j,
and ei;j � Nð0;r2

i;jÞ represents the uncorrelated noise. The r2
i;j is

assumed to be accurately estimated and is known a priori [30].
Let al

i and ar
i ;8i ¼ 1;2; . . . ;n, respectively be the positions where

the left and right mobile anchor nodes broadcast their positions
while they are moving on the edges of the sensing area. The mobile
anchor sends its position in the position packet that is sent to
localize the SNs. Each SN localizes its position twice from the left
and right sides and saves the number of hops to the left and right
edge. The estimated positions of ith SN from the left and right side
that are p and q hops away from the left and right anchor nodes
are represented by ~xl;p

i and ~xr;q
i , respectively. For example, ~xl;3

k

means SN k received a packet that is 3 hops away from the left
edge.
or localizing isolated Things, Comput. Commun. (2014), http://dx.doi.org/
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Algorithm 1. Processing the position message at Node k.
Algorithm 2. Message direction is known. The message is coming
from the left direction.
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Each SN estimates its position ~xi using position location coming
from left (~xl;p

i ) and right (~xr;q
i ) directions. The SNs, therefore, need

not know the direction of the message to estimate position. Each
SN requires a minimum of two SNs, with a known position from
each direction, in order to estimate its position from one direction.
This localization scheme contains two phases of position messages.
The first position message phase is when the direction of message
is unknown, while the second position the message phase is when
the direction of the message is known and the position of the SNs
at the border is estimated.

The the first phase position message has three different maps:
unknownPosMap, leftPosMap and rightPosMap. The unknownPosMap
saves anchor SN positions along with the distance between the
anchor node and itself when the direction of the message is
unknown at the beginning. The leftPosMap and rightPosMap are used
when the SN has enough information that enables the SN to identify
whether the message is coming from the right or left direction. This
localization scheme has three cases, as shown in Algorithm 1, to
process the position message: case 1 is used when the three Maps
are empty; case 2 when the leftPosMap and rightPosMap are
empty; and case 3 when leftPosMap and rightPosMap contains data.

In case 1, when the three maps are empty, this means that this
is the first position message received by the SN. The position of the
anchor and the estimated distance is saved in unknownPosMap.
After that, the SN checks the number of hops, if equal to 1, then
the SN declares itself to be a border SN otherwise it is a normal SN.

For case 2, when leftPosMap and rightPosMap are empty, it
means the direction of the message is not identified yet. Thus the
SN has to identify whether the received message is coming from
the same direction or from the other direction. This process is done
as follows. First, the SN calculates the average of y in unknownPos-
Map. It then compares the yavg with the received yi. If the
difference between them is smaller for a given threshold, it means
that the change in y is very small, and the message is coming from
the same direction as the previous messages. In this case, the SN
verifies that the message is not coming from a longer route and
then adds the received anchor SN position to the unknownPosMap.
However, if the difference between yavg and received yi is greater
than the given threshold, then this means the message is coming
from the other direction. If the received yi is less than the saved
average yavg , then the received message is coming from the left
direction. Thus the position of the anchor node is saved in
leftPosMap and unknownPosMap is copied to rightPosMap and
vice versa if the received yi is greater than the saved average
yavg . Finally, the SN forwards the position message.

For case 3, when leftPosMap and rightPosMap are not empty, it
means that the direction of the message can be determined. To
identify the direction of the received message, the SN estimates
the average y of one of the saved Maps (in our case, we chose aver-
age of leftPosMap). If the difference between yleft

avg and received yi is
less than a given threshold, this means the message is received
from the left direction, otherwise it means it is coming from the
right direction. If the message is coming from the left direction,
the SN checks that the message is not coming from a longer route.
After that, the anchor node position is added to the leftPosMap and
vice versa if it is coming from the right direction. Then the SN
checks its status, if it is a normal SN then it will forward the
received position message. But if it is a border SN, it estimates its
position then forwards its position to the surrounding SNs.

When an SN in the middle receives a second phase position
message, it processes the second phase position message as
follows. The SN checks the number of hops of the received
message. If the received number of hops is larger than the saved
number of hops, the SN discards the message as it is coming via
or localizing isolated Things, Comput. Commun. (2014), http://dx.doi.org/
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a longer route. Otherwise, the SN saves the received number of hops
and this hop number represents how far the SN is from the edge in
the direction of the received message. The SN then saves the posi-
tion of the SN that sends the position message. Algorithm 2 shows
the main procedure to check the message with known direction.

3.3. Estimating the node position

After an SN receives two or more location packets that have the
same number of hops, it estimates the three distances di;j; di;k; dj;k

for each pair as shown in Fig. 4, where the positions of xi and xj

are previously known (i.e., two different locations for two mobile
anchor nodes or normal SNs that have estimated their position in
a previous step) and xk is the location of SN k that needs to esti-
mate its position.

In order to estimate xk, we need to estimate the coordinates of
point xl representing the intersection between di;j and the height h
of triangle di;j; di;k; dj;k. The coordinates of xl are calculated as follows:

xl

yl

� �
¼

xi

yi

� �
þ l

di;j

xj � xi

yj � yi

" #
for bDj;k 6 90

xi

yi

� �
þ l

di;j

xj � xi

�ðyj � yiÞ

" #
otherwise

8>>>>><>>>>>:
; ð2Þ

where l is calculated using laws of sines, cosines and tangents.

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ d2

i;k � 2� h� di;k � cos bL� �� �r
: ð3Þ

In order to calculate l we need to calculate h and angle bL. h is
given by

h ¼
2� di;k � di;j � sin bDj;k

� �
di;j

: ð4Þ

where the angle bDj;k is calculated using:

bDj;k ¼ cos�1 d2
i;j þ d2

j;k � d2
i;k

2� di;j � dj;k

 !
; ð5Þ

and the angle bL as

bL ¼ 90� bDj;k for bDj;k 6 90bDj;k � 90 otherwise

(
: ð6Þ

After estimating the coordinates of xl, we get the slope between
SN i and j to calculate xk to consider the shift in x and y coordinates
caused by the slope of the line mdi;j

¼ tan�1 yj�yi

xj�xi
. This allows us to

estimate the position of the SN using collinear and non-collinear
anchor nodes.
Fig. 4. Estimating node k using the estimated distance.
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SN k estimates its position based on the direction of the mes-
sage. Thus, if the message is coming from the left direction, SN K
estimates ~xl;p

k by

~xl;p
k ¼

xk

yk

� �
¼

xl

yl

� �
þ h

sinðmdi;j
Þ

� cosðmdi;j
Þ

" #
: ð7Þ

Otherwise, if the message is coming from the right direction, SN k
estimates ~xr;q

k by

~xr;q
k ¼

xk

yk

� �
¼

xl

yl

� �
þ h

� sinðmdi;j
Þ

cosðmdi;j
Þ

" #
; ð8Þ

where ~xl;p
k is the estimated position from the left direction that is

p hops away from the left edge and ~xr;q
k is the estimated position

from the right direction that is q hops away from the right edge.
Algorithm 3 shows the procedure for estimating the SN’s position
from the left and right directions.

After SN k estimates its direction from both directions, the SN
can use the mean to estimate its position. However, the estimated
position from the direction with the larger number of hops con-
tains more errors than the direction with smaller hops number
(i.e., if q < p, then ~xr;q

k is more accurate than ~xl;p
k ). Using the mean

the SN does not take into consideration the error propagated for
each hop. Thus, the weighted mean can be used to consider the
propagation error for each hop. The weighted mean estimation is
calculated as follows:

~xk ¼
ð~xl;p

k � qÞ þ ð~xr;q
k � pÞ

pþ q
: ð9Þ

Algorithm 3. Estimate the position of Node k
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Fig. 5. The Kalman filter left/right integration for p < q [31].

Table 1
A summary of Kalman filter equations for p < q.

Kalman filter algorithm

Covariance matrix initialization:

P0 ¼ Ehðx� ~x0Þðx� ~x0ÞT i ð14Þ
State estimate extrapolation:

x̂r
kð�Þ ¼ /kx̂r

k�1ðþÞ ð15Þ

A priori covariance matrix:

Pkð�Þ ¼ /kPkðþÞ/T
k þ Q k�1 ð16Þ

Kalman gain matrix:

Kk ¼ Pkð�ÞHT
k ðHkPkð�ÞHT

k þ RkÞ
�1 ð17Þ
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However, the weighted mean does not take into consideration
the error gained from each hop, which motivates our use of Kalman
filtering.
Update the estimated location:

x̂r
kðþÞ ¼ ~xr

kð�Þ þ Kkð~xl
k � Hk~xr

kð�ÞÞ ð18Þ

A posteriori covariance matrix:

PkðþÞ ¼ ðI � KkHkÞPkð�Þ ð19Þ
3.4. Location enhancement using Kalman filter

We propose to use KF in place of the weighted mean. KF is an
optimal estimation tool that enhances one measurement given a
more accurate measurement from another source using a sequen-
tial recursive algorithm [31]. We use KF that corrects the estimated
location of the side that has the larger number of hops using the
information provided from the side that has the smaller number
of hops. This helps to estimate the error resulting from the larger
number of hops. Fig. 5 shows the KF block diagram used in this
study.

In order to complete the development of the state-space of the
discrete time KF equations, the system dynamic and measurement
models for the SN have to be defined. The system’s dynamic and
measurement model equations when p < q (the values of ~xl;p

k and
~xr;q

k are switched if q < p) are represented as follows, respectively:

xr;q
k ¼ /kxk þxq

k ð10Þ

zk ¼ xl;p
k ¼ Hkxk þ mp

k ð11Þ

where xk is the actual location of the SN, /k is a static transmission
matrix that relates xk with its previous state. Since there is no
change in the SN state, i.e., location, the /k;k�1 matrix is represented

as an identity matrix, Qp
k ¼ E½xp

k ðx
p
kÞ

T � and Rq
k ¼ E½mq

k ðm
q
kÞ

T � are the
covariance matrices for the p and q hop count coming from the left
and right directions. Qk and Rk are assumed to be uncorrelated as
they are received from two different directions with different num-
bers of hops.

Cho et al. calculate Qk and Rk for single hop as R3
2 � I, where R is

the normal distribution of error placement for a single hop [32]. In
order to calculate Q k and Rk for multi-hops, we expanded their
proof to calculate Qk and Rk for multiple hops. Q p

k and Rq
k are calcu-

lated in our work as follows:

E½xp
k ðx

p
kÞ

T � ¼

Pp

i¼1
ðr2

i
Þ3

2 0

0
Pp

i¼1
ðr2

i
Þ3

2

264
375 ð12Þ

E½mq
k ðm

q
kÞ

T � ¼

Pq

i¼1
ðr2

i
Þ3

2 0

0
Pq

i¼1
ðr2

i
Þ3

2

264
375 ð13Þ

where
Pp

i¼1r2
i , is the summation of the uncorrelated noise in Eq. (1)

from hop 1 to hop p and similar for
Pq

i¼1r2
i .

The KF equations used in this study are summarized in Table 1.
The steps using KF are as follows if p < q (~xl;p

k and ~xr;q
k are switched

if q < p). First, the covariance matrix is initialized at the left border
SN using Eq. (1). After that, the SN calculates the priori covariance
and Kalman gain matrices using Eqs. (1) and (1). Then, the right
position ~xr

k is updated to x̂r
k using Eq. (1). Later, the SN calculates
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the posteriori covariance matrix using Eq. (1) and forwards its
value to the next hop SNs. The SNs that are away from the edge
of the network do the same steps except they use the received pos-
teriori covariance matrix instead of creating a new one. Finally the
SNs estimate their new position using the following equation:

~xk ¼
~xl;p

k þ x̂r;q
k

2
ð20Þ
4. Performance evaluation

In this section we evaluate the performance of the proposed
scheme in three different scenarios. The first scenario compares
the error between using fixed anchor nodes against using mobile
anchor nodes. To do so, we first calculate the number of fixed
anchors required to cover a road with a given length, then perform
the comparison between using fixed and mobile anchors. In the
second scenario we investigate the accuracy of the localization
estimation as the number of hops increases. Finally in the third
scenario we compare the effect of increasing the number of hops
by increasing the width of the simulation area.

The metric utilized in the first scenario is the localization mean
error after estimating the position using KF as in Eq. (20). In the
second and third scenarios, we compare four different estimation
techniques for our localization scheme: (1) using one direction that
has fewer number of hops; (2) using the mean of both sides; (3)
using the weighted mean of both sides using Eq. (9); and (4) using
KF using Eq. (20) against DV-Distance localization scheme [4]. The
anchor nodes used for DV-Distance are fixed on the edge of the
simulated area.

Our simulations are made in ns-3 [33]. The communication
range of anchor and SN is set to 30 m. The range measurement
noise ei;j is a zero-mean white Gaussian process with variance

r2
i;j ¼ d2

=SNR, where SNR is the signal-to-noise ratio received by
the SN [30]. All results are averages of ten different independent
runs with distinct random seeds. Table 2 summaries the experi-
mental parameters we used in our simulation model.

4.1. Minimum number of static anchor nodes

Before we compare the result between using mobile against
static anchor nodes, we need to identify the minimum number of
static anchors on each side of the road that are required to replace
the mobile anchor. To facilitate the illustration, we assume that the
or localizing isolated Things, Comput. Commun. (2014), http://dx.doi.org/
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Fig. 7. Comparison between static and mobile anchor nodes.

Table 2
Summary of the experimental parameters.

Parameter Value

Number of SNs 200
Transmission range 30 m
Measurement noise ei;j r2

i;j ¼ d2
=SNR

Sensing area width (variable) 100–400 m
Sensing area length (variable) 100–400 m

Fig. 6. Determining the minimum number of fixed anchor nodes required.
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static anchor nodes are placed in a straight line, and that transmis-
sion ranges are fixed and are not effected by signal distortion (i.e.,
have a perfectly circular shape).

The scenario considered in Fig. 6 where SN A and C are almost
on the same border line. However SN A is only covered by 1 anchor
node ‘‘x2’’, while SN C is covered by 2 anchor nodes ‘‘x1 and x2’’. This
means that not all SNs on border line 1 are guaranteed to be cov-
ered by 2 anchors nodes. On the other hand, SN B by comparison
is covered by 3 anchors nodes, which means that SNs on border
2 are guaranteed to be covered by at least 2 anchors. This line is
defined by the point of intersection between the two circles x1

and x3, which is the position of SN B. Thus, to measure the distance
between the anchor nodes ‘‘d’’, we have to know how far the bor-
der line of the isolated SNs is from the line where the anchor nodes
are located. The distance between the line of anchor nodes and the
border SN is represented by the symbol h.

The distance between two anchor nodes can be calculated using
triangle x1, x2 and SNB. Since we have two known sides, which are
how far the SNs are from the anchor nodes represented by h and
the transmission range for the anchor node represented by r, we
can get the length of the third side using Pythagoras theorem
formula. Thus the distance between two anchor nodes can be
calculated as
Please cite this article in press as: W.M. Ibrahim et al., Using smart vehicles f
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d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2

q
ð21Þ

Therefore, the number of SNs required to cover each side is
given by the following equation:

Number of anchor nodes ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � h2

p þ 1 ð22Þ

where l is the length of the road. Thus the number of SNs is directly
proportional with the height of the simulated area, and inversely
proportional with the transmission range and how far the SNs are
from the border.

4.2. Static vs. mobile anchors

After we identified the minimum number of static nodes that
are required to cover each side of the road in the previous subsec-
tion, in this subsection we compare the performance of static and
mobile anchor nodes. 200 SNs are deployed randomly in a simu-
lated area with a width of 100 m and the length of the road is chan-
ged from 100 m to 400 m in 50 m increments. For the static nodes
approach, SNs are fixed in their position and the distance between
fixed anchor nodes is calculated based on Section 4.1. The position
of the static SN is assumed to arrive accurately at the SNs, while a
fixed error is introduced in the mobile anchors location broadcasts.
The error is equal to 10% of the distance between the road and the
sensor network.

Fig. 7 shows the average location error for fixed and mobile
anchor nodes, these results were obtained after using the KF.
Fig. 7 shows that the accuracy of using fixed anchors is almost
the same as when using mobile anchors. However, static anchors
give a little higher location accuracy than mobile anchors.
Although there is a position error introduced to the position of
the mobile anchor, the difference between the accuracy of using
a mobile anchor with inaccurate position is less than 0.5 m, which
is much lower than the error introduced to the mobile anchors.
This is because the KF enhances the estimated localization.

4.3. Localization error per number of hops

In this scenario, we examine the localization error for each hop
as the number of hops of the shortest side increases in the same
simulation area. We randomly deploy 200 SNs in a simulation area
with dimension of 400 m � 100 m, since we are interested in
studying the effect of number of hops on our localization accuracy,
which is affected by the width of the simulated area. Thus we
increase the width of the simulated area to be 4 times its length.
The maximum number of hops from one end to the other using
the above dimension is 17. For DV-Distance, the number of fixed
nodes is calculated using Eq. (6) in Section 4.1.

Fig. 8 illustrates that using mean estimation for our techniques
gives a similar trend as using DV-Distance, as the localization
accuracy is worse at the edges and improves in the middle of the
simulation area. This shows that DV-Distance scheme works simi-
or localizing isolated Things, Comput. Commun. (2014), http://dx.doi.org/
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Fig. 8. Relation between localization error and number of hops.

Fig. 9. Relation between localization error and the width of the simulated area.
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lar to the mean estimation i.e., give similar weight to the longer
and shorter hops. For all other estimation techniques as the num-
bers of hops increases the localization error increases. Fig. 8 shows
that using KF gives the least estimation error, while the mean esti-
mation gives the highest estimation error. The mean estimation
gives the worst results when the difference between the number
of hops is larger as the error from the direction that has a larger
number of hops is huge, which affects the overall estimation accu-
racy when we take the mean. However by taking the weighted
mean, we give a lower weight for the estimation from the direction
that has a larger number of hops. The improvement of KF over the
weighted mean is between 19% and 13% with an overall mean of
15.6%. Estimating the position using shortest hop only, weighted
mean and KF gives a very high accuracy when the difference
between the two directions is the maximum (i.e., near the edge
of the simulation area). However, the estimation error for shortest
hop only is higher than weighted mean and KF for SNs that are four
hops away from the edge of the network and reaches the maxi-
mum in the middle of the network performance is worse than
the KF by 51.7%. This is because the shortest hop only does not
benefit from the information coming from the other direction.
Moreover, using our scheme with KF is better than using DV-Dis-
tance scheme by 28% on average.

4.4. Localization error per width change

In this scenario, we compare the overall localization error as we
increase the number of hops by increasing the simulation area. We
randomly deployed 200 SNs in a simulation area with a length of
100 m and the width of the simulation area is changed from
200 m to 400 m in 40 m increments.

Fig. 9 shows that using the mean gives the worst localization
accuracy, while using the KF gives the best accuracy. KF gives bet-
ter localization accuracy than weighted mean by 15.6% on average
and better than a single side by 31% on average. The DV-Distance
localization techniques gives a better accuracy than using the
Please cite this article in press as: W.M. Ibrahim et al., Using smart vehicles f
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mean, however its localization performance is worse than Shortest
distance only, weighted mean and using KF. The reason that the KF
gives a better result than the weighted mean is the KF estimates
and assigns the weights automatically. Moreover, KF takes into
consideration the propagation error per hop, while the weights in
the weighted mean are fixed and the propagation errors per hop
are not taken into consideration.
5. Discussion

In IoT, decreasing energy and resource consumption is on of the
key components to enable Things to function for a longer time. The
number of messages transmitted between Things has a direct
impact on energy consumption and bandwidth consumed. Thus
by decreasing the number of messages, we decrease the energy
and resources used during the localization process. In this paper
we propose a new scheme that consists of two phases. The first
phase, which localizes the position of SNs consumes the same
amount of energy as other localization schemes. While the second
phase, which is used to enhance the localization accuracy using KF,
is an optional phase that can be used to enhance the localization
accuracy at the expense of increasing the message transmitted
between Things. In order to decrease the transmitted message a
similar technique used in our previous work [34] can be used. In
the scheme in [34], a SN receiving message, would store it for a
pre-defined interval, as opposed forwarding it directly. The SN then
filters redundant information and forwards the most accurate mes-
sage. Using such technique significantly reduces wasted resources.

Estimating the distance between a pair of SNs is the main com-
ponent of localizing SNs. RSSI and Time-based measurement tech-
niques are the most common ranging techniques used in WSN
localization. Both techniques are prone to noise causing the esti-
mated distance to be imprecise [35]. Time-based techniques are
relatively immune to most sources of noise including signal atten-
uation, refraction and reflection as Time-based techniques rely on
the signal speed. The main source of errors are the absence of LoS
between SNs and the processing time of the packets. On the other
hand, RSSI techniques are sensitive to channel noise, interference
and reflections as they estimate the distance using the strength
of the received radio frequency signal. RSSI techniques use either
RSSI profiling measurements or estimate the distance via analytical
models by mapping the RSSI to distance using path-loss propaga-
tion models. Analytical mapping models are attractive since they
do not require additional hardware and can provide reasonable
localization accuracy [8,36].
6. Conclusion

Our intent in this work is to demonstrate the viability of local-
izing isolated Things through the use of a combination of multi-
hop wireless localization and mobile anchors (or mobile reference
points). We advocate the high feasibility of this proposal in IoT
through the emergence of smart vehicles. A novel multi-hop local-
ization scheme was introduced for Sensor Nodes (SNs) with limited
capabilities, with the scheme capable of utilizing location informa-
tion from multiple mobile anchor nodes. The scheme operates in
two stages. In the first stage, the scheme estimates the location
for each SN from multiple directions using the estimated distance
between SNs and the flow direction of the message. In the second
stage, we apply Kalman filtering to improve localization accuracy.
Simulation results illustrated our scheme’s superiority over other
mechanisms that rely on location information from a single direc-
tion. As well, and unlike existing schemes, our proposal was shown
to accurately perform position estimation regardless of mobile
anchor collinearity.
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With the above mentioned viability demonstrated, a fundamen-
tal concern in IoT remains to be addressed, and that is the energy
consumption in localization schemes. In previous work [34], we
investigated the general limitations inhibiting scalability in localiz-
ing Things using state-of-the-art multi-hop wireless localization
techniques. There we highlighted the impact of minor modifica-
tions in behaviors for forwarding location information on the
aggregate network signaling and, thereby, on consumed energy.
Such findings can be readily applied to the work presented herein,
where error reduction was optimized by the use of Kalman filter-
ing. These issues motivate a deeper understanding of the trade-offs
between localization accuracy, localization delay, signaling over-
head, and energy consumption. Indeed, our future work seeks this
very understanding.
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