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a b s t r a c t

The rapid advances in mobile devices and their embedded sensors have enabled a compelling paradigm for

collecting ubiquitous data to share with each other or the general public. In this paper, we study how to

achieve the close-to-optimal transmission utility performance for sensor-enhanced mobile devices that are

capable of harvesting energy from the environment. This is a very challenging task due to the stochastic and

unpredictable nature of data arrival, channel condition, and energy replenishment. By taking advantage of

the Lyapunov optimization framework, we propose an online scheduling algorithm called OSCAR (Optimal

SCheduling AlgoRithm), which jointly make control decisions on system state, energy harvesting, and data

transmission for achieving optimal utility on mobile sensing devices. Different from traditional techniques,

OSCAR does not require any knowledge of system statistics, including the energy state process. Rigorous

analysis and extensive experiments have demonstrated both the system stability and the utility optimality

achieved by the OSCAR algorithm.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Recent advances in mobile devices (e.g., smartphones, wearable

evices and sensor-equipped vehicles) and their embedded sensors

e.g., camera, microphone and GPS) have provided a novel paradigm

or sensing and monitoring human daily behaviors [1], urban envi-

onment [2], and even earth surface [3]. Data information collected by

hese mobile devices combined with the support of the cloud where

ata fusion takes place [4], make mobile sensing a versatile platform

o relieve the need for deploying and maintaining static sensing in-

rastructures. However, the advances in battery have been slow to re-

pond to mobile application demands evolved over the years. Energy-

arvesting, i.e., converting ambient energy to electricity energy, has

merged as an alternative to address the problem of finite battery ca-

acity [5]. To take full advantage of the energy harvesting capacity, it

s of central importance to develop energy management algorithms

or mobile sensing devices to improve communication performance

nd energy efficiency [6].

In this paper, we consider the problem of designing an utility

ptimal scheduling algorithm for a single sensor-enhanced mobile

evice system. The system operates in discrete time with unit time

lots. In every time slot, the first decision for the device to make is to
∗ Corresponding author. Tel.: +86 10 51688536.
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ecide whether to enter the sleep state or stay active during this slot.

f it enters the sleep state, it turns off the network module and does

ot respond to any task request for processing or transmitting data.

f instead the device stays active, then it determines how much sen-

ory data to admit for the flows it supports, and how to use current

etwork and energy resources efficiently for data transmission. The

ystem receives utility by transmitting sensory data to a dedicated

erver that is responsible for data storage and analysis [7]. Our ob-

ective is to maximize the aggregate flow utility, subject to the con-

traints that the average data backlog is finite, and the energy con-

umed is no more than the energy stored at all time. The constraint

n energy availability obviously complicates the design of scheduling

lgorithm, since the current control decisions may cause energy out-

ge in the future and affect some future control decisions [7]. Such a

roblem can be modelled and solved by Dynamic Programming [8].

owever, the Dynamic Programming approach requires substantial

tatistical information of the system dynamics, and suffers from the

curse of dimensionality” where the complexity of computing the op-

imal strategy grows with the system size [8].

To address the above problem, we propose an Optimal SCheduling

lgoRithm (OSCAR) for achieving optimal utility for sensor-enhanced

obile devices with energy harvesting capabilities, based on the

ecently developed technique of Lyapunov optimization [8]. OSCAR

aximizes the traffic utility by independently and simultaneously

aking online decisions to control system state, energy harvesting

nd data transmission behaviors. It is able to obtain a time aver-

ge utility within a deviation of O(1/V) from the optimum, with an
vesting mobile sensing devices, Computer Communications (2015),
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average queue size tradeoff that is O(V), where V is a non-negative

parameter that weights the extent to which utility maximization is

emphasized as compared to system stability. OSCAR operates with-

out requiring any statistical knowledge of system dynamics, and is

computationally efficient for implementation. We thoroughly evalu-

ate the performance of OSCAR with rigorous theoretical analysis and

extensive simulation experiments.

The remainder of this paper is organized as follows. In Section 2,

we present the problem formulation, and in Section 3, we develop our

online algorithm, OSCAR, as well as provide its performance analysis.

The analysis is further validated by extensive simulation experiments

introduced in Section 4. Section 5 reviews some related studies. Fi-

nally, Section 6 concludes this paper.

2. Problem formulation

We consider a system consists of a single mobile sensing device,

which has been equipped with M types of sensors [9]. This device

is powered by a finite capacity battery, and is capable of harnessing

energy from the environment and converting it to electrical energy

[5,10]. Due to inherent resource constraints, the device has to trans-

fer the sensory data to a dedicated server for storage, analysis and

making them available to interested people [4,11]. The whole system

operates in discrete time with unit time slots t ∈ {0, 1, 2, . . .}.

2.1. Device working state model

In each time slot t, the device can choose to stay in the active state

or in the sleep state, so as to better utilize the harvested and stored

energy. We model this active/sleep decision by θ (t). That is, θ(t) = 1

if the device transmits data in time slot t, otherwise θ(t) = 0.

2.2. Data transmission utility model

In time slots when the device stays active, it decides how much

sensory data generated from its sensor m ∈ {1, . . . , M} can be admit-

ted into the transmission buffer for further handling. These data are

classified and stored in separate queues according to their types. Let

Rm(t) represents the amount of type m data queued at time t. We as-

sume that 0 ≤ Rm(t) ≤ Rmax for all m ∈ {1, . . . , M} with some finite

constant Rmax at all time. During time slots when the device is in the

sleep state (i.e., θ(t) = 0), we have Rm(t) = 0 for all m ∈ {1, . . . , M}.

Each type of sensory data is associated with a utility func-

tion �m(r̄m), where r̄m is the time average rate of the type

m sensory data admitted into the buffer, defined as r̄m =
limT→∞ 1

T

∑T−1
t=0 E{θ(t)Rm(t)}. Each function �m(r) is assumed to be

non-decreasing, continuously differentiable, and strictly concave in r

with a bounded first derivative [7]. Besides, �m(0) = 0. We use λm

to denote the maximum first derivative of �m(r), i.e., λm = (�m)′(0)
and denote

λ = max
m

λm (1)

2.3. Transmission energy consumption model

We assume that the device has been equipped with more than one

wireless interfaces, e.g., Bluetooth, WiFi or 3G [12,13], that are hetero-

geneous in terms of network availability, achievable throughput and

energy expenditure [11,14]. If the device stays active in a time slot, its

network module needs to choose a suitable one from available wire-

less links for transmitting data to the server [11,15]. Let ω(t) denotes

this transmission decision, and the vector of data service rates [8]

μ(t) = (μ1(t), . . . ,μM(t)) is jointly determined by ω(t) and channel

state S(t). Specifically, the network module observes the current S(t)

and selects ω(t) within some abstract set � that specifies the decision

options. Then, the service rates for slot t can be given by functions
Please cite this article as: W. Fang et al., Optimal scheduling for energy har
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ˆ m(ω, S) as μm(t) = μ̂m(ω(t), S(t)) for each m ∈ {1, . . . , M}. We as-

ume a maximum transmission rate μmax
m , regardless of ω(t) and S(t),

o that 0 ≤ μ̂m(ω(t), S(t)) ≤ μmax
m .

It has been revealed by recent studies [14] that, the amount of en-

rgy consumed for data transmission by a mobile device is primarily

ssociated with the wireless interface used and its current link band-

idth, as formally characterized as follows:

(t) = [αB(t) + β]τ (2)

here α and β denote the empirical coefficients in the power model,

nd different types of interfaces have distinct power coefficients

14]. Besides, τ denotes the time span of one time slot, and B(t) =
ˆ(ω(t), S(t)) is the bandwidth of current selected link in time slot t.

t is obvious that there exists the constraint that Nmin ≤ N(t) ≤ Nmax

or some 0 < Nmin < Nmax < ∞. Since the system bandwidth is shared

y all the M types of data flows, we know that B(t)τ = ∑M
m=1 μm(t).

.4. Energy queue model

The device is assumed to be powered by a battery with a finite

apacity. We use E(t) to denote the amount of remaining energy left

n the battery observed by the device at time t. It is compulsory that

he consumed energy must be no more than what is available. There-

ore, the energy consumption actions have to satisfy the following

onstraint:

(t) + N(t) ≤ E(t) (3)

here P(t) denotes the energy consumed for state transition, data

rocessing and system management. We assume that P(t) is known

o the device [15,16], and 0 ≤ P(t) ≤ Pmax with some finite Pmax for all

ime. Actually, for some mobile devices featured by low power and

ong lifetime, this portion of energy consumption can even be ne-

lected (i.e., P(t) ≈ 0) as compared with that for data transmission

9,17].

The device is assumed to be capable of harnessing energy from

he environment and converting it to electrical energy. The energy

arvested in time slot t is assumed to be available for use in the

ext time slot t + 1. However, the amount of harvestable energy in

time slot is typically unpredictable and varies over time. To model

his dynamic nature, we use h(t) to denote the amount of harvestable

energy at time t. We also assume that h(t) takes values from some

nite set H, and 0 ≤ h(t) ≤ hmax where hmax is dependent on en-

ironmental factors for a given battery [5,7]. The device is able to

ake a decision on energy harvesting by choosing e(t) ∈ [0, h(t)],

here e(t) denotes the amount of energy that is actually harvested at

ime t.

.5. Queue dynamics

Let Q(t) = (Qm(t), m ∈ {1, . . . , M}) be the data queue backlog vec-

or in the device, where Qm(t) is the amount of type m sensory data

ueued at the device in time slot t. We can capture the following

ueueing dynamics of the device:

m(t + 1) = max[Qm(t) − θ(t)μm(t), 0] + θ(t)Rm(t) (4)

here Qm(0) = 0 for all m ∈ {1, . . . , M}. Accordingly, we can define

he stability constraint on the queues, which ensures that the average

ueue length is finite. The queue stability can be defined as follows:

¯ � lim
T→∞

1

T

T−1∑
t=0

M∑
m=1

E{Qm(t)} < ∞ (5)

Similarly, E(t) denotes the energy queue size. Due to the constraint

n energy availability (3), the energy queue E(t) evolves according to
vesting mobile sensing devices, Computer Communications (2015),

http://dx.doi.org/10.1016/j.comcom.2015.09.010
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he following:

(t + 1) = E(t) − θ(t)[P(t) + N(t)] + e(t) (6)

We will show that under our OSCAR algorithm, the energy level

(t) is deterministically upper-bounded, which is desirable for prac-

ical implementations.

.6. Optimization objective

The goal of OSCAR is to design a joint system state, energy harvest-

ng, and data transmission algorithm that at every time slot makes

he right sleep/active decision θ (t), admits the right amount of data

m(t), chooses the suitable wireless interface (i.e., ω(t)) subject to

3), and then transmits packets accordingly, so as to solve the fol-

owing optimization problem subject to the constraint on system

tability (5):

ax f (r̄) =
M∑

m=1

�m(r̄m) (7)

here r̄ = (r̄m, m ∈ {1, . . . , M}) denotes the vector of the time average

xpected admitted rates.

. Algorithm design

In this section, we propose the Optimal SCheduling AlgoRithm

OSCAR) algorithm designed following the Lyapunov optimization

ramework, as developed in [8], to solve the optimization problem

7). In particular, OSCAR is designed to solve problem (7) with close-

o-optimal performance by using Lyapunov optimization with weight

erturbation. The technique of weight perturbation, as proposed in

7], is used to ensure that the energy queue E(t) is kept close to a tar-

et value to avoid battery underflow.

Specifically, we choose a perturbation value φ and define the Lya-

unov function as follows:

(t) � 1

2

M∑
m=1

[Qm(t)]2 + 1

2
[E(t) − φ]2 (8)

The design parameter φ is used to avoid battery underflow, and to

nsure that the energy queue always have enough energy when the

evice is active and working. We will show that with a proper choice

f φ, the energy level of device battery is guaranteed to be such that

onstraint (3) is never violated.

Then, we denote �(t) = (Q(t), E(t)) and define a one-slot condi-

ional Lyapunov drift as follows:

(�(t)) � E[L(�(t + 1)) − L(�(t))|�(t)] (9)

Here, the expectation is taken over the randomness of data arrival,

hannel condition and energy replenishment, as well as the random-

ess in choosing the control actions. If control decisions are made in

very time slot t to greedily minimize �(�(t)), then all queue back-

ogs are consistently pushed towards a lower congestion state, which

ntuitively maintains system stability [8]. However, the objective util-

ty function in (7) should also be incorporated. Thus, following the

yapunov optimization framework, we add a function of the expected

tility function over one period (i.e., the penalty function) to obtain

he following drift-plus-penalty term:

V (�(t)) � �(�(t)) − VE

{
M∑

m=1

�m(θ(t)Rm(t))|�(t)

}
(10)
Please cite this article as: W. Fang et al., Optimal scheduling for energy har
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here V ≥ 0 is a parameter set by system operators to control the

radeoff between utility maximization (i.e., problem (7)) and system

tability. Note that the sign of the penalty expression in (10) is nega-

ive, since we need to transform the maximization problem (7) into

n equivalent one of penalty minimization in Lyapunov optimization

8,11].

We have the following lemma regarding the drift-plus-penalty

erm:

emma 1. Under any feasible action that can be implemented in time

lot t, we have:

V (�(t)) ≤ B + E{(E(t) − φ)e(t)|�(t)}

−E

{
M∑

m=1

[V�m(θ(t)Rm(t))−Qm(t)θ(t)Rm(t)]|�(t)

}

−E

{
M∑

m=1

Qm(t)θ(t)μm(t)+(E(t)−φ)θ(t)N(t)|�(t)

}

−E{(E(t) − φ)θ(t)P(t)|�(t)} (11)

here B � 1
2 [MR2

max + ∑M
m=1 (μmax

m )2 + (Pmax + Nmax)2 + h2
max].

roof. First by squaring both sides of (4), summing over m ∈
1, . . . , M}, and by using the fact that for any Q ≥ 0, b ≥ 0, A ≥ 0,

max[Q − b, 0] + A)2 ≤ Q2 + A2 + b2 + 2Q(A − b), we have:

1

2

M∑
m=1

([Qm(t + 1)]2 − [Qm(t)]2) ≤ 1

2

M∑
m=1

([Rm(t)]2 + [μm(t)]2)

−θ(t)
M∑

m=1

Qm(t)[μm(t) − Rm(t)] (12)

Using a similar approach, we get that:

1

2
([E(t + 1) − φ]2 − [E(t) − φ]2) ≤ 1

2
[P(t) + N(t)]2

+1

2
[e(t)]2 − (E(t) − φ)[θ(t)(P(t) + N(t)) − e(t)] (13)

Then, by summing (12) and (13), and by defining B � 1
2 [MR2

max +
M
m=1 (μmax

m )2 + (Pmax + Nmax)2 + h2
max], we have:

L(t + 1) − L(t) ≤ B − θ(t)
M∑

m=1

Qm(t)[μm(t) − Rm(t)]

−(E(t) − φ)[θ(t)(P(t) + N(t)) − e(t)] (14)

Taking expectations on both sides over the system dynamics and

he randomness over actions conditioning on �(t), subtracting from

oth sides the term VE{∑M
m=1 �m(θ(t)Rm(t))}, and rearranging the

erms, we can see that the lemma follows. �

Hence, rather than directly minimize the drift-plus-penalty ex-

ression in each time slot, we can actually seek to minimize the

ound given in the right-hand-side of (11). In our algorithm presen-

ation, we use the following metric for determining the sleep/active

ecision in each time slot:

(t) �
M∑

m=1

[V�m(Rm(t)) − Qm(t)Rm(t)]

+
M∑

Qm(t)μm(t) + (E(t) − φ)N(t) + (E(t) − φ)P(t) (15)
m=1

vesting mobile sensing devices, Computer Communications (2015),

http://dx.doi.org/10.1016/j.comcom.2015.09.010
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Optimal SCheduling AlgoRithm (OSCAR): Initialize φ. In each

time slot t, perform the following actions:

• Sleep/Active scheduling: Observe Q(t), E(t), S(t) and P(t), solve:

max : E{A(t)}
s.t. 0 ≤ Rm(t) ≤ Rmax,ω(t) ∈ �

(16)

Denote the optimal solution by A∗. Then, if A∗ < 0, the device sets

θ(t) = 0, and enters the sleep state. Otherwise, it enters the ac-

tive state, i.e., θ(t) = 1. If the device enters the sleep state, it sets

Rm(t) = 0 for all m ∈ {1, . . . , M} and stops data transmission. Else

if it enters the active state, it performs the following actions for

data admission and interface selection in the same time slot t to

maximize (15):

– Data admission: Choose Rm(t) to be the optimal solution of the

following optimization problem:

max : V�m(Rm(t)) − Qm(t)Rm(t)

s.t. 0 ≤ Rm(t) ≤ Rmax

(17)

– Interface selection: Choose one from current available inter-

faces [11,15] to be the optimal solution of the following opti-

mization problem:

max :
∑M

m=1 Qm(t)μ̂m(ω(t), S(t))

+ (E(t) − φ)[αB̂(ω(t), S(t)) + β]τ

s.t. ω(t) ∈ �

(18)

• Energy harvesting: If E(t) − φ < 0, perform energy harvesting

and store the harvested energy, i.e., e(t) = h(t). Otherwise, set

e(t) = 0. Note that this decision is to minimize the E{(E(t) −
φ)e(t)|�(t)} term in (11).

• Queue update: Update Qm(t) and E(t) according to (4) and (6), re-

spectively.

The time complexity for the OSCAR algorithm is O(M). From the

energy harvesting step of OSCAR, we know that the device will har-

vest energy only when the energy level is lower than φ, and therefore

E(t) ≤ φ + hmax for all t. This is an important feature because it allows

to implement OSCAR using a battery providing energy with finite ca-

pacity size of φ + hmax.

Theorem 1. Under the OSCAR algorithm, we have the following:

(a) The data queues and the energy queue satisfy the following for all

time slots:

0 ≤ Qm(t) ≤ λV + Rmax (19)

0 ≤ E(t) ≤ φ + hmax (20)

(b) Define the parameter φ as:

φ � MV Rmaxλ + (Vλ + Rmax)μmax

Nmin

+ (Pmax + Nmax) (21)

then in any time slot t, if the device enters the active state, we

must have E(t) ≥ Pmax + Nmax.

(c) With the same definition of φ in part (b), we have:

f (r̄) ≥ f ∗ − B

V
(22)

where f∗ is the optimal time average utility function of our prob-

lem.

Proof.

(a) It is easy to see that (19) holds for t = 0 since Qm(t) = 0 for

all m ∈ 1, . . . , M. Suppose this is true for a particular time

slot t. We show it also holds for t + 1. If 0 ≤ Qm(t) ≤ λV,
Please cite this article as: W. Fang et al., Optimal scheduling for energy har
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then Qm(t + 1) ≤ λV + Rmax, because Qm(t) can increase by

at most Rmax. If λV ≤ Qm(t) ≤ λV + Rmax, and we know that

�m(Rm(t)) < λRm(t) from the definition of �m(t) and λ, then

the data admission decision will choose Rm(t) = 0 according

to (17). Thus, the queue Qm(t) can not increase in the next

time slot, and we have Qm(t + 1) = Qm(t) ≤ λV + Rmax. This

proves (19).

Similarly, it is easy to see from the energy harvesting decision

that whenever E(t) > φ, OSCAR will choose e(t) = 0, which

proves (20).

(b) We first show that whenever E(t) < Pmax + Nmax, OSCAR will

put the node into the sleep state. This claim will allow us to

compare our algorithm with alternative algorithms that make

control decisions without taking the energy constraint (3)

into consideration. To prove this claim, consider a given time

slot t and assume that E(t) < Pmax + Nmax. Let R∗
m(t), μ∗

m(t) =
μ̂m(ω∗(t), S(t)), and N∗(t) = [αB̂(ω∗(t), S(t))]τ be the opti-

mal solution of (15) for the given E(t) and Qm(t). Then, us-

ing (1), (19), �m(Rm(t)) < λRm(t), and Nmin ≤ N(t) ≤ Nmax, we

have:

A(t) ≤
M∑

m=1

[V�m(R∗
m(t)) − Qm(t)R∗

m(t)]

+
M∑

m=1

Qm(t)μ∗
m(t)+(E(t)−φ)N∗(t)+(E(t)−φ)P(t)

≤ MV Rmaxλ + (Vλ + Rmax)μmax

+(Pmax + Nmax − φ)(N∗(t) + P(t))

≤ MV Rmaxλ + (Vλ + Rmax)μmax

−MV Rmaxλ + (Vλ + Rmax)μmax

Nmin

(N∗(t) + P(t)) ≤ 0

(23)

Therefore, the device will enter the sleep state according to the

sleep/active scheduling rule of OSCAR. Though OSCAR explic-

itly considers the constraint (3), it remains the same if this re-

dundant constraint is removed as long as φ is defined as equal

to or larger than that in (21). The right-hand-side of the in-

equality (11) can be minimized without considering the energy

constraint (3)

(c) We now use π to denote any alternative (possibly random-

ized) policy other than the optimal one. According to Theo-

rem 4.8 in [8] and part (b), the resulting values of θπ (t), Rπ
m(t),

μπ
m(t) = μ̂m(ωπ(t), S(t)), and Nπ (t) = [αB̂(ωπ(t), S(t))]τ are

independent of the current queue backlogs �(t). According

to Caratheodory’s theorem [8,18], there exists a η > 0 such

that

E

{
M∑

m=1

�m(θπ (t)Rπ
m(t))|�(t)

}

= E

{
M∑

m=1

�m(θπ (t)Rπ
m(t))

}
= f ∗ + η (24)

E

{
θπ(t)

M∑
m=1

[μπ
m(t) − Rπ

m(t)]|�(t)

}

= E

{
θπ(t)

M∑
m=1

[μπ
m(t) − Rπ

m(t)]

}
= η (25)

E{θπ(t)(P(t) + Nπ(t)) − e(t)|�(t)}
= E{θπ(t)(P(t) + Nπ(t)) − e(t)} = η (26)
vesting mobile sensing devices, Computer Communications (2015),
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Table 1

Power parameters for different wireless

interfaces.

α (mW/Mbps) β (mW)

WiFi 283.17 132.86

3G 868.98 817.88
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Fig. 1. Twenty-hours trace of uplink throughput for different wireless interfaces.
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Plugging the above (24)–(26) into the right-hand-side of (11)

and taking η → 0 yields:

�(�(t)) − VE

{
M∑

m=1

�m(θ(t)Rm(t))|�(t)

}
≤ B − V f ∗

Taking expectations over �(t) on both sides, and summing the

resulting telescoping series over t ∈ {0, . . . , T − 1} yields:

E{L(T)−L(0)}−V

T−1∑
t=0

E

{
M∑

m=1

�m(θ(t)Rm(t))

}
≤ BT − V T f ∗

Using the fact that L(T) ≥ 0 and L(0) = 0, and rearranging the

terms yields:

1

T

T−1∑
t=0

E

{
M∑

m=1

�m(θ(t)Rm(t))

}
≥ f ∗ − B

V

Taking a limit as T → ∞, and using Jensen’s inequality [8,11],

we conclude that:

f (r̄) =
M∑

m=1

�m

(
lim

T→∞
1

T

T−1∑
t=0

E{θ(t)Rm(t)}
)

≥ lim
T→∞

1

T

T−1∑
t=0

E

{
M∑

m=1

�m(θ(t)Rm(t))

}
≥ f ∗ − B

V

This completes the proof of part (c). �

Theorem 1 demonstrates the [O(1/V),O(V)] utility-backlog

radeoff for the problem (7). Meanwhile, (20) and (21) imply that the

ize of energy queue is upper bounded by O(V). These results pro-

ide explicit characterizations of the size of system queues needed

or achieving the desired utility performance.

. Simulation results

In this section, we provide further insights into the performance

f OSCAR, via some simulation results. We consider a mobile sens-

ng device equipped with a set of m = 3 types of sensors, and two

ireless interfaces (WiFi and 3G [12,13]), i.e., � = {WiFi, 3G}. The

andwidth traces we use in the simulations are the UMICH measure-

ent datasets from 4G Test Project [14]. The parameters for energy

onsumption of wireless interfaces are listed in Table 1. According to

mpirical studies in [11,15], we set the length of one time slot τ = 60 s

A portion of two hour bandwidth variation for the two interfaces is

hown in Fig. 1), and we also set R ∈ [0, 20] and Rmax = 20Mb [15].

esides, h(t) is a Bernoulli random variable [7], which takes value 20

oules with probability 0.5 and 0 otherwise. For all m = {0, 1, 2}, the

tility function is defined as �m(x) = log(1 + λmx), where λm = 5

7,8]. The portion of energy consumption P is neglected [9,17], i.e.,

(t) = 0 for all t.

In the first set of experiments, we fix T = 10000 time slots, and

hen run simulation experiments with different V values. We com-

are OSCAR with an intuitive algorithm “Fastest”, which always tries

o admit the maximum amount (i.e., Rmax) of data and select the in-

erface currently providing the highest bandwidth [11]. Note that the
Please cite this article as: W. Fang et al., Optimal scheduling for energy har

http://dx.doi.org/10.1016/j.comcom.2015.09.010
astest algorithm has nothing to do with the control parameter V de-

ned in OSCAR. According to Theorem 2.4 in [8], we use a simple ad-

ission policy to enforce that Rm(t) = 0 when r̄m is larger than the

ime average of μm(t), so as to guarantee the rate stability of data

ueue Qm. Besides, we use the same rule and setting for energy har-

esting as those in OSCAR. The corresponding results are plotted in

ig. 2. We can see that as the V parameter increases from 20 to 500,

he time-average utility achieved by OSCAR increases from 5.74 and

onverges to 10.55 (Fig. 2(a)). Note that the utility grows quickly at

he beginning, and then tends to ascend slowly. Meanwhile, both the

verage data queue size and the average energy level grow linearly in

(Fig. 2(b) and (c)). This quantitatively confirms Theorem 1 that OS-

AR achieves an [O(1/V),O(V)] utility-backlog tradeoff for our prob-

em, and the energy queue size is deterministically upper bounded

y a constant of size O(V). On the other hand, the Fastest algorithm

dmits and transmits data aggressively without taking energy con-

umption and sleep/awake scheduling into consideration. To satisfy

he energy availability constraint, the device has to switch more fre-

uently between the awake and the sleep state, while in the sleep

tate it can neither admit nor transmit data. Such discoordination be-

ween data processing and energy state definitely has a significant

egative impact on the system throughput. As a result, Fastest is not

apable of achieving the optimal utility as OSCAR does when V is large

nough.

Moreover, we compare the theoretical and the experimental up-

er bound of queue backlogs of Q1 under this setting. The results are

hown in Table 2. In our experiments, the queue backlogs are smaller

han the mathematical bounds, especially when V is relatively larger.

he results in Table 2 are consistent with (19)–(21) of Theorem 1.

In the second set of experiments, we fix V = 60, 140, 500, respec-

ively, and vary T from 1000 time slots to 10000 time slots, which is

sufficient range for exploring the characteristics of different time-

cales of long-time operation. The results are depicted in Fig. 3. It

s obvious to us that changing T has very small impacts on the sys-

em stability. For example, as shown in Fig. 3(a), the time-average

tility only fluctuates within [−0.83%,+0.93%], [−0.33%,+0.52%],

nd [−0.44%,+0.28%] for V = 60, 140, 500, respectively. This con-

rms that the OSCAR algorithm can guarantee stable performance

ver time.

In the third set of experiments, we fix T = 10000 time slots, and

hen run simulation experiments with different hmax values. As men-

ioned in Section 2, hmax represents the amount of harvestable energy

or the device battery. From Fig. 4, we can see that with the growth

f hmax, OSCAR is able to achieve relatively higher objective utilities

ith relatively lower data queue backlogs, as shown in Fig. 4(a) and
vesting mobile sensing devices, Computer Communications (2015),
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(a) Achieved utility (b) Data queue size

(c) Energy queue size

Fig. 2. OSCAR performance under different V value.

Table 2

Comparison on theoretical (TH) and experimental (EX) upper bounds of Q1 and E under different V value.

V 20 60 100 140 180 220 260 300 340 380 420 460 500

QTH 120 320 520 720 920 1120 1320 1520 1720 1920 2120 2320 2520

QEX 20 20.4 23.6 28.7 34.8 41.5 45.9 52.1 58.3 63.4 68.6 73.0 78.9

ETH 2368.1 5899.8 9431.5 12963.2 16494.9 20026.6 23558.3 27090 30621.7 34153.4 37685.1 41216.8 44748.5

EEX 2360.1 5883.4 9412.1 12943.2 16474.9 20006.6 23538.3 27070 30601.7 34133.4 37665.1 41196.8 44728.5
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n

h

i
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a

(b). This is because when the device is able to obtain more replen-

ishment for each time of energy harvesting, it will have more oppor-

tunities to use the wireless interface currently having a higher band-

width (according to the rule in (18)). As a result, it is more capable

of transmitting admitted data in the data queues and admitting new

data into the data queues. However, the total amount of available op-

portunities is limited when other system conditions being the same.

Thus, we can notice from Fig. 4(a) and (b) that the gap between curves

becomes much smaller as hmax grows from 20 to 1000. As shown in

Fig. 4(c), in our experiment the value of φ is considerably larger than

that of hmax, so the increment of hmax has little impact on the size of

energy queue (according to (20)).

5. Related work

The contribution of this work lies in the intersection of the follow-

ing two important research topics.
Please cite this article as: W. Fang et al., Optimal scheduling for energy har
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.1. Energy-harvesting sensing system

The proliferation in Micro-Electro-Mechanical-System (MEMS)

as facilitated the development of smart sensors. These small, in-

xpensive sensors could be equipped on a specialized wireless node

17] or a common mobile device [19] to sense, measure and gather

nformation from the environment. Such embedded sensing systems

re commonly powered using finite capacity batteries, and the en-

rgy supply has become a severe bottleneck. Various studies have

een conducted to increase battery lifetime and improve energy ef-

ciency, including data compression [20], modulation optimization

21] and protocol design (e.g., MAC [22], routing [23]). More recently,

nother alternative has been explored to address the problem of fi-

ite battery lifetime: harvesting energy from the environment. There

ave been many harvesting aware communication schemes that take

nto account and exploit the energy harvesting characteristics to op-

imize wireless sensing systems. [24] develops energy management

lgorithms for a sensor node to achieve maximum packet capacity
vesting mobile sensing devices, Computer Communications (2015),

http://dx.doi.org/10.1016/j.comcom.2015.09.010


W. Fang et al. / Computer Communications 000 (2015) 1–9 7

ARTICLE IN PRESS
JID: COMCOM [m5G;September 28, 2015;20:12]

(a) Achieved utility (b) Data queue size

(c) Energy queue size

Fig. 3. OSCAR performance under different T value.
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nd minimum queue delay when the energy-rate function is linear.

25] exploits the node’s knowledge of current energy level and the

tate of the processes of data generation and battery recharge to se-

ect the appropriate transmission state for maximize the quality of

overage. [26] presents an optimized wind energy harvesting system

hat uses a specially designed ultra-low-power-management circuit

or sustaining the operation of a wireless sensor node. In [27], the au-

hors propose offline packet scheduling algorithms for a single-user

ireless communication system to minimize the transmission com-

letion time by controlling the transmission rate and power. [28] de-

elops a dynamic energy-oriented scheduling scheme to achieve a

alance between the system’s available energy and the energy con-

umption of tasks in real time. [29] proposes low-complexity trans-

ission policies for optimizing the data reporting performance of an

nergy harvesting sensor in the presence of the stochastic ambient

nergy source. Interested readers can referred to the surveys [5,10] for

ore progresses in this field of research. Most of the aforementioned

ork are based on Markov Decision Theory and Dynamic Program-

ing [30]. However, these traditional techniques require more strin-

ent system modelling assumptions and statistical knowledge of sys-

em dynamics, and cannot necessarily adapt if these statistics change

nd/or if there are unmodeled correlations in the actual processes

31]. Moreover, the aforementioned studies assume that the sensor

ode is always kept in the active state, whereas in practice, the node

an periodically cycles between the active state and the sleep state

or energy saving [32].
Please cite this article as: W. Fang et al., Optimal scheduling for energy har

http://dx.doi.org/10.1016/j.comcom.2015.09.010
.2. Lyapunov optimization framework

Lyapunov optimization is a newly proposed technique for solv-

ng problems of joint system stability and performance optimization

n stochastic networks, especially the communication and queueing

ystems. The basic idea of this framework is to make control deci-

ions that greedily minimize a bound on the drift-plus-penalty ex-

ression over fixed-length time slots , so as to optimize the time

verages of certain quantities [8]. Unlike traditional Dynamic Pro-

ramming and Markov Decision Theory [33], Lyapunov optimization

oes not require the statistical knowledge of relevant stochastic mod-

ls, but instead the queue backlog information, to make online con-

rol decisions. It has a good computational complexity, and is easy

o be implemented in reality. This new theory has been applied in

olving many optimization problems on stochastic systems, including

ower/cost management in smart grid [31,34,35], workload/resource

cheduling among data centers [18,30,36], and performance opti-

ization for mobile/wireless systems [7,11,15,37,38]. Among them,

ur paper is mostly related to the recent work [7,38], both of which

se a similar Lyapunov optimization approach for algorithm design.

owever, the work [7] is designed for more powerful mobile comput-

ng devices, and has different system models and optimization objec-

ive from ours. Moreover, the algorithm in [7] is constructed based

n a two-timescale Lyapunov optimization approach [18], which

s unnecessarily complex for resource-constrained sensing devices.

he other work [38] is proposed for the utility optimal scheduling
vesting mobile sensing devices, Computer Communications (2015),
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(a) Achieved utility (b) Data queue size

(c) Energy queue size

Fig. 4. OSCAR performance under different hmax value.
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problem in multi-hop energy-harvesting networks. The model and

algorithm in [38] are not suitable for the mobile sensing devices in

this paper.

6. Conclusion

This paper addresses transmission utility maximization among

sensory data flows for the energy harvesting mobile sensing device

powered by a finite battery. A new scheduling algorithm, OSCAR, is

proposed that can achieve utility optimality with system stability

guarantee using Lyapunov optimization techniques. Different from

existing works that heavily relied on prediction-based or statistical

offline approaches [5,33], OSCAR is an online algorithm and does not

require any statistical knowledge of the harvestable energy processes.

Especially, it can approach the optimal utility within a diminishing

gap of O(1/V) with a battery of O(V) size, while bounding the traffic

queue backlog by O(V), where V > 0 is a tunable control parameter.

The parameter V empowers system operators to make flexible design

choices among various tradeoff points between system stability and

utility optimization. Besides, OSCAR can ensure stable performance

over time. This algorithm does not require complicated computation,

and all the control operations are well supported by common mo-

bile devices nowadays. It will be our future work to evaluate OSCAR

using a prototype implement on the modern mobile device platform

[4,15,39].
Please cite this article as: W. Fang et al., Optimal scheduling for energy har
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