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a b s t r a c t

As the energy bill for mobile operators rises with the continuing traffic growth, energy efficiency problems

attract an increasing attention in the telecommunication industry. However, the investment for the imple-

mentation of any energy-saving solution could be so costly that it may not achieve the total cost reduction.

Therefore, the economic viability of the proposed solutions is of substantial importance for the operators

in the process of investment decisions. In this paper, we present a methodology for assessing the economic

viability of energy-saving solutions. We conduct two case studies using the proposed methodology, and an-

alyze the cost-benefit tradeoff for: (i) hardware upgrade enabling dynamic sleep mode operation at the base

stations (BSs), and (ii) energy efficient network deployment minimizing the network energy consumption.

Simulation results show that the hardware upgrade can save up to 60% of energy consumption particularly

when the high data rate requirement forces low network resource utilization. Consequently, the solution is

shown to be increasingly cost effective as the unit energy cost increases. Network deployment optimized for

energy efficiency is shown to bring about further energy savings, but it demands denser deployment of BSs.

Thus, it is not deemed as economically viable considering today’s cost values.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, with the explosive growth of mobile traffic, the

energy consumption of wireless access networks has experienced a

significant increase. Currently, information and communications

technology (ICT) is responsible for 3% of worldwide electricity con-

sumption, out of which wireless access networks contribute approx-

imately 10% with 60 billion kilowatt-hour per year [1–3]. This situa-

tion poses a big challenge for mobile operators since the rising energy

consumption together with growing energy prices directly leads to an

increase in their operational expenditures (OPEX). In fact, operators’

cost figures show that nowadays the energy cost of running a network

constitutes almost 50% of overall OPEX [4,5].

A multitude of models and approaches have been recently pro-

posed to increase the energy efficiency of these networks at all levels,

including hardware design, network management, network deploy-

ment, and resource allocation [6–9]. A remaining issue is that most

of these solutions require a new investment for the operators due to

the need of hardware and software upgrade, or the deployment of
∗ Corresponding author. Tel.: +46 725838072.

E-mail addresses: sibel.tombaz@ericsson.com (S. Tombaz), sungkw@kth.se (K. Won
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ew sites, etc. Therefore it is a non-trivial question if the proposed

olutions, reducing the energy cost, can provide sufficient economic

ain such that they provide return on investment. To the best of our

nowledge, there is no study addressing this issue and analyzing the

otal cost of investment of the solutions. Considering the fact that the

otivation of reducing the energy consumption of wireless access

etworks is driven not only by environmental concerns, but mainly

y economic reasons, it is essential to assess the economic viability

n order to identify whether or not the additional expenditures re-

uired for energy efficient solutions are compensated by the energy

avings.

In this paper, we aim to answer the following question: Under

hich circumstances an operator achieves a total cost reduction from

n energy-saving solution?. For this, we propose a methodology for

ssessing economic viability of energy-saving solutions for wireless

ccess systems. It incorporates the net present value (NPV) of a given

olution over the network lifetime in order to compare the energy

aving benefit with the increment in overall expenditures with re-

pect to the existing network where the solution is not implemented.

ur methodology builds upon widely accepted economic models

10,11], and it is easy to apply to a variety of energy-saving solutions.

With the aid of the proposed methodology, we conduct two case

tudies and analyze the cost-benefit tradeoff of two popular energy-

aving solutions, i.e., hardware upgrade and energy efficient deploy-

ent. We demonstrate in detail how our methodology can be utilized
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o assess the economic viability of a general energy-saving solution

ith these examples. Furthermore, the case studies give us insights

nto the important parameters to be considered for the network-level

nergy efficiency analysis.

For the case of the hardware upgrade solution, we assume that an

perator decides to upgrade the existing BS transceivers in order to

nable dynamic sleep mode operations, also called cell discontinuous

ransmission (DTX), in its network [7,8,12]. However, this fast traffic

daptability feature comes at the expense of increased CAPEX due

o the necessity of a new hardware. In order to analyze this tradeoff

etween reduced energy cost and increased CAPEX, we first identify

he annual energy savings with cell DTX considering the daily vari-

tion of the traffic and accordingly the variation of the cell loads in

he network. Then, we analyze the break-even cost of the hardware

pgrade below which the incremental increase in CAPEX is compen-

ated by the reduced energy cost, and thus the solution provides total

ost savings for the operator.

As for the energy efficient deployment solution, we assume that

greenfield operator deploys the network guaranteeing the mini-

um network energy consumption. Then, it is compared to the tradi-

ional CAPEX-optimized planning which requires the deployment of

minimum number of BSs to meet the network coverage and capac-

ty requirements. In order to analyze this tradeoff between energy-

nd CAPEX-optimized planning, we first propose a simple algorithm

o identify the optimum network deployment solutions taking into

onsideration the traffic-dependent cell load variations which di-

ectly impact perceived user data rate and annual energy consump-

ion, based on our previous work [12]. We note that the solution

pproach adopted in this paper for defining the energy-optimized

etwork deployment significantly differs from the ones in the liter-

ture that are mostly based on busy hour traffic conditions and full

uffer traffic model assumptions [3,13,14]. Finally, based on the de-

ned deployment solutions with respect to the considered objectives,

nd the proposed viability assessment methodology, we obtain the

reak-even cost of energy above which the energy oriented design

resents total cost savings during the network lifetime.

. A method for analyzing economic viability of energy efficient

olutions

Assume that a mobile operator aims at finding solutions for min-

mizing the total network energy consumption while providing the

equired capacity. The resulted energy efficient solution might be a

aintenance strategy such as to upgrade hardware and/or software,

r to apply an traffic adaptive resource allocation scheme etc., for a

iven deployment. Moreover, the operator might also be interested

n identifying greenfield deployment strategies that provide the min-

mum energy consumption in case of the rolling out the new technol-

gy in their network. However, it should be noted that even though

hese solutions will reduce operators’ energy expenses, they might

e obtained with an increase in the total cost due to required capi-

al expenditures. In this regard, it is essential to analyze the total cost

f investment of the solutions solely aimed at energy minimization

onsidering the fact that operators’ energy interest is driven mainly

y economic reasons.

In this section, we first introduce a detailed total cost of in-

estment model, and then present our economic viability analysis

ethodology.

.1. Total cost of investment model

In this paper, a simple linear cost model is considered which is

idely adopted in cost analyses of wireless access networks [10,11].

ased on this model, total cost of investment for the whole wireless

nfrastructure can be approximated as

tot = c NBS, [AC] (1)
here c is the cost per base station including CAPEX, such as installa-

ion, radio equipment, and OPEX such as energy, site rentals, mainte-

ance, etc. NBS denotes the number of base stations needed to provide

he desired service level in the network.

In order to incorporate the time aspect into the cost analysis, we

eed to capture two main points. The first point is that in the case

f postponing the investment in the radio network, one can earn in-

erest by depositing the money into a bank. This implies the fact that

uture costs are worth less [15]. Second, the price of the equipment

ill decrease over the years. To this purpose, we define the cost of a

S (c) by applying a discount rate, and express it in terms of its NPV

s below:

=
N∑

n=1

cn

(1 + d)n−1
. [AC/unit] (2)

here d is the discount rate, cn and N are the total cost in year n and

he network lifetime, respectively. Here, price erosion can be included

nto the model by letting cn diminish over the years. Note that cn in-

ludes both the capital (c
capex
n ) and the operational (c

opex
n ) expendi-

ures during the year under examination.

Under the assumption that capital expenditures occurs at the be-

inning of the deployment, the total cost of investment of deploying

BS BSs during N years can be written as

tot = NBS

(
ccapex +

N∑
n=1

copex
n

(1 + d)n−1

)
. [AC] (3)

ere ccapex denotes the capital expenditures of deploying a BS in the

rst year, i.e., n = 1.

For simplicity, we assume that all operational costs of a BS, ex-

luding energy cost, i.e., co, are constant during the network lifetime,

years. Under this assumption, total OPEX of a BS in year n can be

ritten as below:

opex
n = co + cenergy

n , [AC/unit] (4)

here c
energy
n is the total energy cost per BS in year n.

Let En[Cenergy] denote the average annual energy cost of the con-

idered wireless access network with NBS BSs in year n. Then, the total

ost of investment presented in Eq. (3) can be expressed in detail as

elow:

tot = NBS

(
ccapex +

N∑
n=1

co

(1 + d)n−1

)

+
N∑

n=1

En[Cenergy]

(1 + d)n−1
. [AC] (5)

ere, the average annual energy cost of a network in year n ∈ N, i.e.,

En[Cenergy]), depends on the average annual energy consumption (En)

n kWh and the unit energy cost (en) in €/kWh and is given by

n[Cenergy] = en × En(NBS). [AC] (6)

Based on the given relationships, total cost of investment will have

he following dependence on number of BSs:

tot = NBS

(
ccapex + co × (1 + d)N − 1

d(1 + d)N

)

+
N∑

n=1

en × En(NBS)

(1 + d)n−1
. [AC] (7)

Note that we made several assumptions on capital and operational

xpenditures based on real-world scenarios in order to increase the

pplicability of the total cost of investment model for general use.
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However, these assumptions are not valid for all scenarios. For exam-

ple, we might expect a case where a mobile operator progressively

pays the capital expenditures over the years, instead of making one-

time investment. Furthermore, operators may have different deal

regarding electricity prices throughout the years. Therefore, we en-

courage the readers to revise the model if the assumptions are not

applicable for their scenarios.

2.2. Methodology for economic viability analysis

We define economic viability as the operator’s ability to raise

enough income from energy-saving solutions to cover the required

investment costs, and to make a profit during the network lifetime.

Let i and Ci
tot denote a candidate solution to reduce the total net-

work energy consumption and the total cost of implementing the ith

solution, respectively. Then, in order to identify whether or not the

additional capital investments required for the ith solution can be

compensated by reduced energy cost, we make the following relative

comparison:

Ci
tot

Cre f
tot

= ci Ni
BS

cre f Nre f
BS

≶ 1 (8)

Here, C
re f
tot denote the total cost of investment for the basic reference

system with N
re f
BS

BSs; each costs cref.

According to this, an operator will get total cost benefit from the

chosen energy oriented solution if the ratio
Ci

tot

C
re f
tot

is less than one. In

order to compare the OPEX term, consisting of annual savings related

to energy consumption, with the CAPEX term, consisting mostly of a

one time expenditure, total cost of investment analysis will be per-

formed over the network lifetime using the model introduced in the

previous section.

Based on Eqs. (7) and (8), we observe that economic viability of

ith solution is highly dependent on important parameters such as

unit cost values, e.g., ccapex, en, discounting factor, d, number of BSs

required in each system, i.e., Ni
BS

and N
re f
BS

, as well as the time de-

pendency of annual energy consumption, unit cost values and the BS

density.

In order to enhance the practicality of the proposed methodology

and maintain simplicity, we make the following assumptions. Firstly,

we restrict the economic viability analysis to the BSs considered in

the first year for both systems, i.e., N
re f
BS

and Ni
BS

. This means that de-

spite the fact that the number of BSs in the network changes over the

years with respect to annual traffic growth, the viability comparison

in Eq. (8) is made based on the same number of BSs over the net-

work lifetime, N. Respectively, we assume that average loads of the

considered BSs stay constant over network lifetime. This can repre-

sent a reasonable expectation that the mobile operator maintains the

same design strategy over the years resulting in steady resource uti-

lization in each BS despite the increasing BS density in the network.

Regarding the time dependency of unit cost values, we assume that

the annual increase in unit energy cost equals to the discount rate, i.e.,

en = en−1 (1 + d). Finally, we ignore the indirect cost saving through

energy consumption reduction in our analysis. An example of this can

be the reduction in BS unit CAPEX due to the reduced need for battery

backup in case of lowering the energy consumption of the site.

Note that the considered assumptions are made to encourage the

widespread usage of this methodology by minimizing the complexity

of the expressions. However, these will not make an impact on the va-

lidity of the proposed methodology since it is applicable for different

set of assumptions with a simple modification.

2.3. Case studies

We carry out two case studies to analyze the economic viability

using the methodology explained above. More specifically, we aim at
dentifying whether or not the investment for the implementation of

he considered two energy-saving solutions can be compensated by

he reduced energy cost. Here we will use the traditional minimum-

APEX solution as the reference scenario. The details of the consid-

red energy efficient solutions and the related viability approaches

re introduced below.

.3.1. Hardware upgrade

Here we assume that an incumbent operator aims at reducing its

nergy consumption through a hardware upgrade. In this respect, it

s decided to change the existing BS transceivers so as to enable a

hort-term sleep mechanism at the BS, also called cell DTX [7,8,12].

ell DTX, or micro sleep, is a new hardware feature enabling the de-

ctivation of some components of a BS during the empty TTIs, and

hus significantly lowers the idle power consumption when there

s no traffic. This solution enables node-level power consumption

daptation in accordance with traffic variation in a very short time

cale (millisecond level) without necessitating any network level co-

peration schemes. However, it comes at the expense of increased

xpenditures.

Let �c denote the additional capital expenditures required for

he hardware upgrade per BS. On the other hand E
re f
n and En are

he annual energy consumption (in year n) of the reference network,

.e., BSs does not have cell DTX capability, and the upgraded net-

ork, i.e., cell DTX is enabled, respectively. Note that in this sce-

ario, number of BSs in the reference system and the improved sys-

em are the same. Moreover, we assume that the BS reconfiguration

o reduce the energy consumption occurs at the beginning of first

ear.

Under these assumptions and using the total cost of investment

odel in Eq. (7), we can define the condition where the total cost of

nvestment of the proposed solution is lower compared to the current

tatic deployment without cell DTX using (8) as

N

n=1

en × (Ere f
n − En)

(1 + d)n−1
> NBS × �c. (9)

ere, the left hand side (LHS) denotes the total energy cost saving

uring N years by upgrading the hardware in the first year, whereas

he right hand side (RHS) shows the incremental increase in capital

xpenditures to achieve this energy saving.

In this scenario, we aim to analyze the break-even cost of the new

ardware �cb, defined as the point where the energy cost saving with

ardware upgrade is equal to the required capital expenditures. Con-

equently, for all hardware cost values below the break-even cost, the

onsidered solution will bring total cost savings.

.3.2. Energy efficient deployment

As a second scenario, we consider a greenfield operator that builds

network from scratch. We assume that the initial idea is to conduct

he deployment for minimum energy consumption which is shown

o require higher capital investments compared to the traditional

APEX-minimum deployment in our previous study [12]. Therefore,

n this paper, we aim to answer “How expensive the energy must be so

hat energy-oriented design will result in lower net present value during

etwork lifetime?”

Despite the fact that BS types can be arbitrary, in this paper we

onsider deployments with same type of BSs ensuring a tractable

nalysis. Let Ne
BS

and Nc
BS

denote the number of base stations required

o provide the desired service level with minimum energy consump-

ion and minimum capital expenditures respectively, i.e., Ne
BS

≥ Nc
BS

.

n the other hand E
re f
n and En are the respective annual energy con-

umption of these deployment solutions in year n, i.e., En ≤ E
re f
n .

Then, based on Eqs. (7) and (8), the energy efficient net-

ork deployment will be more cost-effective compared to the
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APEX-minimum deployment if the following condition is fulfilled:

N

n=1

en × (Ere f
n − En)

(1 + d)n−1
>

[
(Ne

BS − Nc
BS)

(
ccapex + co (1 + d)N − 1

d(1 + d)N

)]

(10)

ere, the LHS denotes the total energy cost saving during N years due

o energy-oriented network planning, whereas the RHS shows the re-

ulted increase in both capital and energy-independent operational

xpenditures.

. System model

This section introduces the system model and assumptions un-

erlying the approaches followed in this paper in order to conduct

he economic viability analysis.

.1. Network layout

We consider an OFDM network with M number of BSs covering

compact region R (km2). We assume the network to be modeled

s a hexagonal grid with density ρBS = 1

3
√

3 R2/2
where each site is

quipped with one omni-directional antenna. Here R denotes the cell

ange. Within the area, users are uniformly distributed with density

u (users/km2).

.2. Traffic model

In order to provide a realistic analysis of the energy efficiency in

ireless access networks, it is essential to know the area traffic de-

and variation in the network. In this respect, the long-term large-

cale traffic model presented in [16] has a significant importance

hich is defined based on real traffic measurements of the downlink

raffic in Europe and the mobile traffic forecast in [17]. Based on this

odel, the daily generated traffic T (t) over a given area is written as

elow:

(t) = ρu α(t) r̄ [Mbps/km
2
]. (11)

ere α(t) represents a typical daily traffic variation in terms of per-

entage of active users in different time intervals t, whereas r̄ denotes

he average data rate demand per user.

In this paper, we consider two different user types, i.e., heavy and

rdinary users, which differ based on users’ monthly data usage. Con-

equently, a heavy user is assumed to utilize the network significantly

ore compared to an ordinary user. Based on the data traffic model

n [16], we assume that ϱ% of the users are classified as heavy users.

Let �heavy and �ordinary denote the hourly data demand per heavy

nd ordinary user respectively given in MB/hour. Then average of-

ered throughput per user will be:

¯ = τ
��heavy + (100 − �)�ordinary

100
[Mbps]. (12)

here τ = 8
3600 . Note that under these assumptions, average area

hroughput T (t) (Mbps/km2) during a certain hour t ∈ [1, 24] is gen-

rated by Nt
act = ρu × α(t) × R number of active users, each request-

ng r̄ Mbps in a given network area R.

.3. Network coverage

We define network coverage A as the fraction of the area where

he received power is above a given level, Pmin.

Let user i be connected to BS bi and the set βk = {i : bi = k} con-

ain the users connected to base station k. Pk is the power spectral

ensity per minimum resource unit in scheduling in cell k. Consider

time instant where the link gain between base station k and user
is stationary and given by gik. Then, the coverage of cell k can be

athematically written as below:

k := 1

|R|
∫
R

r P[gikPk ≥ Pmin]drdφ. (13)

here A = ⋃M
k=1 Ak.

.4. Radio link performance

.4.1. Propagation model

Received power at a terminal is affected by multiplication of three

omponents which are; distance dependent path loss, shadowing and

ultipath. When we neglect the effect of multipath and shadowing,

ink gain between base station k and user i can be written as below:

ik[dB] = G[dB] − PLik[dB] (14)

In this paper, we use COST-231 Hata propagation model to calcu-

ate the mean path loss given below:

Lik[dB] = 46.3 + 33.9 log( fc) − 13.28 log(hb) − a(hm)

+[44.9 − 6.55 log(hb)]log(dik) + cm. (15)

here fc represents the operating frequency in MHz, dik denotes the

istance between the BS k and user i, hb and hr are the antenna height

f base station and receiver height, respectively. Here the parame-

er cm is equal to 3 for urban areas and a(hm) is the mobile station

ntenna height correction factor, i.e., a(hm) = [1.1 log( fc) − 0.7]hm −
1.56 log( fc) − 0.8].

.4.2. Radio link quality

We define the average SINR of a user i ∈ βk that is served by BS k

s defined as

i(η) = gibi
Pj∑M

k �= j ηk gikPk + σ 2
(16)

here σ 2 is the noise power and ηk ∈ [0,1] denotes the load of BS

in the network. The entire network load is given by a vector η =
η1, η2, . . . , ηM), where ηk ∈ [0, ηmax], ∀ k. Here ηmax ≤ 1 denotes the

aximum allowed load for each cell.

The load or cell resource utilization is defined as the fraction of

ime-frequency resources that are scheduled for data transmission in

given cell. It also represents the probability of BS k is transmitting.

herefore in (16),
∑M

k�= j ηk gikPk denotes the time averaged interfer-

nce power.

The corresponding achievable data rate of user i per resource block

RB), which is the minimum time-frequency scheduling unit, is mod-

led based on Shannon capacity considering average SINR, i.e.,

i(γi(η)) = WRB min [ξ1log2(1 + ξ2γi(η)), νmax], (17)

here WRB bandwidth of a RB and νmax reflects the maximum sus-

ainable link spectral efficiency in practice by the highest modulation

nd coding scheme. According to [18], the model parameters ξ 1 and

2 are defined as the bandwidth efficiency coefficient and SINR gap,

espectively.

.4.3. User-perceived throughput

In this paper, we consider user-perceived throughput as user QoS

etric given by the product of the achievable data rate and the idle

ime of serving BSs. Considering the user i ∈ βk, served by BS k, it can

athematically be written as below:

i(γi(η)) = (1 − ηk) NRB ri(γi(η))

= NRB WRB (1 − ηk) min [ζ1log2(1 + ζ2γi(η)), νmax]. (18)

Here NRB denotes the maximum number of RBs in frequency space

epending on available bandwidth W.

Note that user-perceived throughput is monotonically decreasing

n ηk. Therefore, reducing the cell load significantly improves the user

oS in the network.
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3.5. Cell load

As defined in the previous section, cell load describes the fraction

of time-frequency resources allocated for transmission, where zero

load corresponds to no active user in the cell. On the other hand, full

load describes the case where all resources available are provided to

one or more users in the cell.

Let N denote the total number of resource units in a considered

observation period of frequency-time domain, then based on the def-

inition, load of cell k can be written as

ηk = 1

N

∑
i∈βk

φk
i , ∀ k ∈ M. (19)

Here φk
i

represents the required resource consumption of cell k to

serve user i ∈ βk under the assumption that the demand of user i is

�i ∈ {�heavy,�ordinary} which is given by

φk
i = �i

ri(γi(η))
(20)

By these definition, we have the following equations,

ηk =
∑
i∈βk

φk
i =

∑
i∈βk

�i

Nri(γi(η))
, (21)

=
∑
i∈βk

�i

Nri

(
gikPk∑M

j �=k η j gi jPj+σ 2

) . (22)

It is observed from (22) that the load of cell k is a function of the

load levels of the other cells in the network. It is due to the fact that

load of interfering BSs has a direct impact on the SINR of the users for

a cell k. This coupling relation creates the “feasible load problem” [19]

in which the objective is to find a load vector η that balances the re-

source utilization with the interference-dependent resource demand

in all cells which can be written mathematically as below:

T ηk =
∑
i∈βk

�i

ri

(
gikPk∑M

j �=k η j gi jPj+σ 2

) (23)

In order to define the feasible load levels ηt of the cells for a given

area traffic demand during an observation period t, different tech-

niques are recently proposed in literature [19]-[20]. These techniques

provides simple and tractable iterative algorithms to find feasible

load levels for a given deployment and traffic variation compare to

intractable flow level models.

Here we adopt the iterative time static simulation methodology

proposed in [19] that solves (23). This algorithm uses as input the pa-

rameters related to daily area traffic demand variation T Mbps/km2,

such as the user density ρu, the active users percentages in different

hours, i.e., α(t), t ∈ [1, 24], the amount of data delivered to each heavy

and ordinary users � ∈ {�heavy,�ordinary}, together with initial load

vector η0 and accuracy parameter ε, and returns feasible load vec-

tor during the given hour ηt. The details of the algorithm used in the

numerical evaluations is provided in Appendix A.

3.6. Energy consumption model

In this paper, we assume that a cell can be either in active state,

i.e., there is at least one user requesting a service, or in idle state, i.e.,

there is no active user. Based on the linear model proposed in [3],

a cell consumes a considerable amount of power even when there

is no user in the cell, i.e, P0. However, with hardware improvement

a cell can be put into DTX mode during idle state which decreases

the baseline power consumption to Ps = δ P0, where 0 ≤ δ < 1. Based

on these assumptions, average energy consumption per unit time (or
verage power consumption) of cell k with the load of ηk ∈ η can be

ritten as below [12]:

k = ζ Pk ηk + (1 − δ)P0ηk + δP0 (24)

ere, as we mentioned, Pk denotes the power spectral density per

inimum resource unit in scheduling in cell k, whereas ζ represents

he portion of the transmit power dependent power consumption

ue to feeder losses and power amplifier.

Note that δ = 1 represents the case where the BS does not have the

TX capability and therefore consumes Ek = ζ Pk ηk + P0. In this case,

ell load only impacts the transmission related power consumption,

.e., ζ Pk.

.7. Annual energy saving with cell DTX

Let En represents the annual energy consumption of a network

ith M BSs covering A = M × 3
√

3R2/2 km2 in year n. Under the as-

umption that area traffic demand T and its variation α(t) are con-

tant throughout year under exam, En will have the following depen-

ence on hourly energy consumption of the network at the tth hour ,
t = ∑M

k=1 Et
k
, t ∈ [1, 24]:

En = 365 ×
24∑

t=1

M∑
k=1

Et
k, (25)

= 365 ×
24∑

t=1

M∑
k=1

ζ Pk ηt
k + (1 − δ)P0η

t
k + δP0.

Here Et
k

denotes the average energy consumption of the BS k dur-

ng the observation hour t introduced in Eq. (24) which is calculated

ased on the defined feasible load vector ηt = (ηt
1
, ηt

2
, ...., ηt

M
), dur-

ng the hour under consideration.

Let Sn(M, δ) denote the achievable daily energy saving in year n

y upgrading the existing BSs’ transceivers so as to enable cell DTX in

given network with M BSs. Then, we have the following formula,

n(M, δ) = En|δ=1 − En|δ<1. (26)

Here En|δ=1 denotes the daily energy consumption of the network

ith the old hardwares lack of the DTX capability. On the other hand,

n|δ < 1 represents the daily energy consumption of the same network

hen the cells gain fast power consumption adaptation capability in

ccordance with traffic with the hardware upgrade.

Based on the given definitions, the saving is expressed in detail:

n(M, δ) = 365 ×
24∑

t=1

M∑
k=1

(
Et

k|δ=1 − Et
k|δ<1

)
,

= 365 ×
24∑

t=1

M∑
k=1

P0 (1 − δ) (1 − ηt
k). (27)

As can be seen in Eq. (27), the saving is highly dependent on cell

TX performance represented with δ and the load of the BSs in the

etwork. As mentioned before, δ denotes the fraction of the base-

ine power that is reduced during an idle state due to cell DTX. On

he other hand, cell load represents the average resource utilization

etermining the deactivation time of each cell for a given traffic de-

and.

. Viability of hardware upgrade

The viability condition of hardware upgrade has been introduced

n Section 2.2 as

N

n=1

en × (Ere f
n − En)

(1 + d)n−1
> NBS × �c. (28)
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This condition indicates that in order to identify the circumstances

nder which upgrading the hardware with cell DTX capability is eco-

omically preferable, we need to calculate the achievable energy sav-

ngs with cell DTX throughout the network lifetime, N. To this end, the

athematical derivation introduced in Eq. (27), indicating the annual

nergy saving with cell DTX, and the aforementioned assumptions in

ection 2.2 are of great importance.

As we indicated before, we assume that average loads of the con-

idered M BSs stay constant over network lifetime. Moreover, the an-

ual increase in unit energy cost is assumed to be equal to discount

ate, i.e., en = en−1 (1 + d). Under these assumptions, Eq. (28) can be

xpressed as below:

N

n=1

en × Sn(M, δ)

(1 + d)n−1
> M × �c. (29)

Based on the given relationships, the viability condition for hard-

are upgrade can be formulated in detail as follows:

N

n=1

en−1 (1 + d)

(1 + d)n−1
×

(
365 ×

24∑
t=1

M∑
k=1

P0 (1 − δ) (1 − ηt
k)

)
> M × �c.

(30)

It can be observed in Eq. (30) that the break-even cost of the new

ardware �cb, the point where the energy cost saving with hardware

pgrade equals to required capital expenditures, is highly dependent

n unit energy cost en, and the cell DTX performance of the hardware

. Therefore, we identify the break-even cost for various en and δ val-

es by means of system level simulations and present the results in

ection 6.

. Viability of energy efficient deployment

The viability condition of energy efficient deployment has been

ntroduced in Section 2.2 and formulated in Eq. (10). This condition

ndicates that in order to identify the circumstances under which the

nergy-oriented design results in lower total cost of investment com-

ared to CAPEX-oriented deployment, we need to identify the net-

ork deployments based on two different objectives, namely, mini-

izing total energy consumption and minimizing the initial capital

nvestments.

In this section, we first introduce the greenfield deployment prob-

ems for the considered objectives and provide an solution approach.

inally, we explain in detail how the provided solutions can be used

o analyze the viability of energy efficient deployment.

.1. Energy-optimized network planning

Despite the fact that energy efficient network deployment is

ostly determined based only on the busy hour energy consump-

ion, in this paper we consider the objective of minimizing the an-

ual energy consumption which is more relevant for achieving truly

nergy efficient networks. The basis of this novel approach has been

resented in our previous work [12].

This problem can be formulated as

inimize
M

En = 365 ×
24∑

t=1

Et , (31a)

ubject to Fχ%

[
c(ηbh)

]
≥ rmin, (31b)

gikPk ≥ Pmin, ∀ k (31c)

here Fχ%[.] denotes the χ percentile of the cumulative distribution

unction (CDF) of the random variable in the blanket. Here, the first
ondition ensures that χ percentile perceived user data rate at busy

our, i.e., cχ% = Fχ%[c(ηbh)], is higher than rmin Mbps, and the sec-

nd condition ensures full network coverage, which means that the

eceived power of user i in a cell k is above a given threshold, Pmin.

For simplicity, we assume that the number of BSs (M) in the net-

ork is constant, whereas network coverage A = M × 3
√

3R2/2 is

hanging based on the control variable, i.e., cell range R. With this

espect, the problem of energy-optimized planning equals to opti-

izing cell range that minimizes the daily average area power con-

umption Et [Pt
area(R)] under the same service requirements. Below,

he objective function is expressed in detail:

t

[
Pt

area(R)
]

= 1

|t|
24∑

t=1

∑M
k=1 ζ Pk ηt

k
+ (1 − δ)P0η

t
k
+ δP0

A(R)
(32)

Here, we choose Pk as the minimum transmit power required to

nsure full coverage, i.e., Pk : gikPk = Pmin. This also represents the op-

imum transmit power for interference limited systems considering

hat energy consumption is strictly increasing with Pk.

Further, we will introduce the key property of the objective func-

ion as follows.

Property (unimodality): based on the given relationships, daily av-

rage area power consumption will have the following dependence

n cell range:

Et [Pt
area(R)]

≈ f1(Rx+c2−2) + f2(Rx−2) + f3(R−2)

Here f1(.), f2(.) and f3(.) denote the relationship between each term

f Et [Pt
area(R)] with R. It is clearly observed that Et [Pt

area(R)] is a uni-

odal function since, while f1(Rx+c2−2) + f2(Rx−2) is monotonically

ncreasing with R, f3(R−2) is monotonically decreasing. Therefore,

here always exists a non-null and finite cell range (REE
opt ) that mini-

izes Et [Pt
area(R)], ∀ δ ∈ [0, 1].

The proof of this property is provided in Appendix B.

.2. CAPEX-optimized network planning

In this section, we will introduce the network planning problem

iming to minimize the initial capital expenditures under certain cov-

rage and QoS constraints. As mentioned earlier, this traditional de-

loyment strategy will be used as the reference scenario in order to

etermine whether or not additional capital investments required for

nergy-minimum design is compensated by reduced energy cost.

Due to the linear relationship between the capital expenditures

nd the total number of BSs in the network introduced in Section 2.1,

he CAPEX minimization problem is exactly equivalent to finding the

aximum cell range R
capex
opt that meets the introduced user QoS and

overage requirement in (31b)–(31c), respectively.

Considering the fact that with full network coverage is verified

y the chosen transmit power, i.e., Pk : gikPk = Pmin, the total capital

xpenditures only depends on the QoS requirement. Therefore we can

implify the problem as

capex
opt = argmax

R ∈ R

[R : Fχ%[c(ηbh)] ≥ rmin] (33)

Here, R indicates the considered cell ranges varies between Rmin

nd Rmax, i.e., R = [Rmin, Rmax], whereas R
capex
opt is the optimum cell

ange ensuring that χ percentile perceived user data rate at busy

our is higher than rmin Mbps.

.3. Solution proposal

We observe that it is difficult to formulate a closed form expres-

ion for the objective functions introduced in (31) and (33) due to the

oupling relationship between cell load ηt
k
(ηt) ∀t ∈ [1, 24] and cell

ange R which directly impacts the perceived user data rate and the
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daily energy consumption. For this reason, we propose a simple al-

gorithm to optimize the cell range enabling minimum annual energy

consumption or minimum capital expenditures. A detail description

of the algorithm used in the numerical evaluations is provided in

Appendix C. Here we provide a short summary as follows.

The algorithm takes as input (1) daily area traffic demand varia-

tion T (t) Mbps/km2, (2) system requirements such as coverage and

QoS constraints i.e., rmin and Pmin, and (3) the set of feasible cell ranges

R = [Rmin, Rmax].

• The algorithm starts with an initial cell range Rmin and defines the

minimum transmit power satisfying the coverage requirement,

i.e., Pk : gikPk = Pmin.

• For each hour t ∈ [1, 24], the algorithm determines the feasible

load vector ηt = (ηt
1
, ηt

2
, ...., ηt

M
) by using Algorithm 1 that solves

(23) and returns hourly energy consumption Et
k
, ∀k ∈ M, and the

CDF of the perceived user data rates Fχ%[c(ηt)].

• The algorithm iterates through the set of feasible cell ranges and

computes area power consumption Et [Pt
area(R)] and perceived

user data rate distribution for busy hour Fχ%[c(ηbh)].

• Finally, the algorithm searches over feasible cell ranges and de-

termines REE
opt and R

capex
opt which minimize the daily average area

power consumption for a given δ and the initial capital expendi-

tures, respectively.

5.4. Viability analysis of energy-optimized network planning

As aforementioned in the previous sections, energy- and CAPEX-

optimized network planning are completed by finding the optimum

cell size by assuming that the number of BSs are constant, M. This

indicates that the proposed solution provides the optimized BS den-

sities, i.e., ρEE
opt = 2 M

3
√

3(REE
opt )

2
and ρcapex

opt = 2 M

3
√

3(R
capex
opt )2

, instead of op-

timum number of BSs for each deployment objective. Therefore, we

update the viability condition for energy efficient deployment pre-

sented in Eq. (10) as below:

N∑
n=1

en Nh ×
(
Et

[
Pt

area(Rcapex
opt )

]
− Et [Pt

area(REE
opt)]

)
(1 + d)n−1

>

[(
ρEE

opt − ρcapex
opt

)
×

(
ccapex + co (1 + d)N − 1

d(1 + d)N

)]
. (34)

Here, Nh is the total number of hours per year, i.e., Nh = 8760. On

the other hand, Et [Pt
area(R

capex
opt )] and Et [Pt

area(REE
opt)] are the daily av-

eraged area power consumption (Watt/km2), for CAPEX- and energy-

optimized deployments, respectively. As a result, the LHS denotes

the total energy cost saving per km2 during N years due to energy-

oriented network planning, whereas the RHS shows the resulted in-

crease in both capital and energy-independent operational expendi-

tures per km2.

It can be observed in Eq. (35) that the economic viability of en-

ergy efficient deployment is highly dependent on unit cost values,

i.e., ccapex, co, en, and the discounting factor, d. Moreover, the annual

energy savings throughout the network lifetime is dependent on the

variation in the utilization of the BSs. In order to incorporate these

aspects, we made several assumptions as summarized in Section 2.2.

Firstly, we assume that the BSs, deployed in the beginning of the first

year based on the chosen network deployment objective, will have a

steady resource utilization throughout the network lifetime despite

the increasing BS density in the network. This can represent a rea-

sonable expectation that the mobile operator will maintain the same

design strategy over the years. As a result, the annual energy savings

through energy efficient deployment will be the same during N years

compared to CAPEX-optimized network deployment.

Moreover, in order to investigate the circumstances under which

energy-oriented network planning is more cost-efficient in the long

run, we identify the break-even cost of electricity for various ccapex
nd co values by means of system level simulations and present the

esults in Section 6.

. Simulation results

In this section, we present the simulation results which consists

f two main parts. First, we focus purely on introduced energy effi-

ient solutions, and present the achievable energy savings for (i) Case

: hardware upgrade enabling DTX in the BSs in a given deployment;

ii) Case 2: energy efficient network deployment for minimum en-

rgy consumption. Note that energy efficient network deployment is

chieved for two sub-cases: (i) Case 2.1: δ ∈ [0, 1) (Cell DTX is incorpo-

ated with clean-slate network deployment); (ii) Case 2.2: δ = 1 (Cell

TX is not in the planning phase, but it is in operation). Second, with

he help of obtained technical results, we will conduct an economic

iability analysis in order to define the circumstances under which

esulted energy savings from considered solutions compensate the

ncrease in capital expenditures.

.1. Simulation scenario

We consider a LTE-like network with a regular hexagonal layout

onsisting of M = 19 sites adopting a wrap around technique where

he cell radius varies between 100 and 800 m. We assume deploy-

ents with macro type BSs with one omni-directional antenna. Users

re randomly distributed over the network area with a density of

u = 1000 (users/km2). It corresponds to a population density of

500 (people/km2) under the assumption that the operator of in-

erest has 30% market share and overall service penetration is 95%.

n order to provide realistic traffic analysis, we consider the scenario

efined as the most relevant for Europe in 2015 with the daily traffic

ariation presented in [3]. In this model, 20% of the users are clas-

ified as heavy users, each consuming 21GB per month whereas an

rdinary user demands for 3.5GB per month.

Here, COST-231 Hata path loss model for an urban area is utilized

ased on 3GPP specifications [21] with 8 dB user noise figure, and

1 = 0.83 and ξ 2 = 1 are considered as the modified LTE capacity pa-

ameters [18]. For the proposed algorithm, we set νmax = 5 bps/Hz,

min = −70 dBm, ηmax = 1, ζ = 4.7, P0 = 130 W. The detailed assump-

ions on system and power consumption parameters are listed in

able 1.

.2. Analysis on achievable energy savings

Firstly we illustrate the relationship between daily average area

ower consumption Et [Pt
area(R)] and the cell range in Fig. 1 for the

onsidered daily traffic variation T (t) for various δ values. Note that

ere increasing cell ranges represent higher average load levels in the

etwork (η̄t = Ek[ηt
k
], k = 1, 2, ..., M = 19) due to the fact the number

f active users in a cell increase with R2. Moreover, with the resulting

igher probability of receiving interference from the neighbor cells,

he average resource utilization further increases. Therefore, for the

onsidered cell ranges, i.e., 100–800 m, the average cell load at busy

our varies between 10−3 and 0.9 resulting in a growth rate of more

han R2.

Based on the given descriptions, the results in Fig. 1 can be in-

erpreted in two aspects. First, it shows that significant energy sav-

ngs are achievable by upgrading the hardware that enables cell DTX

eature in a given deployment (given R) in which the savings are in-

ersely proportional to δ. Also, it is evident that the current situation

f the network, i.e., how loaded the cells are, significantly impacts

he achievable energy savings which reduces as the network becomes

ighly loaded.

In order to indicate the potential energy savings through cell DTX,

e consider a network deployment with R = 600 meters, where the

aily average resource utilization is 11% (busy hour load is 23%). This



S. Tombaz et al. / Computer Communications 75 (2016) 50–61 57

Table 1

Simulation assumptions.

Deployment and traffic specific parameters

Cell range R ∈ [100–800] m

Number of BSs/number of cells M = 19/19

Deployment area A = M 3
√

3/2 R2 km2

User density ρu = 1000 users/km2

Data demand per heavy user per month �heavy = 21 GB/month

Traffic per ordinary user per month �ordinary = 3.5 GB/month

Fraction of heavy users in the system ϱ=20%

Daily traffic profile α(t), t ∈ [1, 24] [3]

Radio link performance specific parameters

Carrier frequency fc = 2 GHz

Bandwidth W=10 MHz

Number of RBs NRB = 50

Antenna gain G = 15 dBi

Thermal noise N0 = −174 dBm/Hz

Antenna height hb = 25 m

Receiver height hm = 1.5 m

Min received power Pmin = −70 dBm

Max spectral efficiency νmax = 5 bps/Hz

Bandwidth efficiency coefficient ξ 1 = 0.83

SINR gap ξ 2 = 1

Power consumption parameters

Power slope ζ = 4.7

Baseline power consumption P0 = 130 W

Cell DTX performance δ ∈ [0,1]

Table 2

Energy savings with hardware upgrade (η̄ = 0.11).

Cell DTX performance δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.8

Daily average area power cons. [W/km2] 68.6 91.5 114.2 148.5

Annual energy cons.per area [KWh/km2] 600.9 801.5 1000.4 1300.9

Annual energy saving [%] 60 46.6 33.3 13.3
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Fig. 1. The relationship between annual energy consumption per area, cell range

and δ.
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cenario represents a good illustration of the existing networks where

he average load of a mature 3G network is shown to be 12.2% in [22].

ased on this assumption, the daily average area power consumption

f the baseline network, i.e., BSs are without cell DTX capability δ = 1,

s defined from Fig. 1 as Et [Pt
area(R)]|δ=1 = 171.3 W/km2. Thus, the an-

ual energy consumption per area can be calculated as Earea = 365
A ×

24
t=1 Et = Nh × Et [Pt

area(R)] = 8760 × 171.3 = 1500.6 kWh/km2. Ac-

ordingly, using the results from Fig. 1, we present the annaul energy

onsumption per area and the achievable energy savings in percent-

ge in Table 2, for various δ values.

The results show that up to 60% energy saving is achievable with

ell DTX when δ = 0.1, representing the case where a significant part

f the BS components can be switched off and be activated upon re-

uest in milliseconds level. However, the achievable energy savings

educes to 13% when the cell DTX performance is insufficient, i.e., the

eduction in baseline power consumption is only 20% when there is

o traffic in the cell, i.e., δ = 0.8.

Secondly, Fig. 1 illustrates what has been mathematically proved

n Section 5.1, that is in the case of greenfield deployment, there

lways exists a non-null and finite cell range minimizing the daily

verage area power consumption regardless of power consumption

arameters. This simply occurs because of the tradeoff between the

educed power consumption in small cells due to lower load levels

nd the additional baseline power consumption due to the increase

n the number of BSs in the network. Furthermore, we observe that

hen cell DTX is incorporated at the planning stage, i.e., δ<1, higher

umber of BSs tend to be preferred which also brings additional en-

rgy savings. This is mainly because network planning with cell DTX

akes into consideration that lower cell load levels creating longer de-

ctivation periods can be efficiently exploited by cell DTX.
Based on the illustrated relationships between the daily average

rea power consumption, the cell range and the cell DTX capabil-

ty, in Fig. 2 we present the optimized network deployment solutions

ased on different objectives, and the obtained annual energy sav-

ngs with energy-optimized network deployment compared to the

APEX-minimum deployment strategy. Fig. 2a depicts the optimum

ell ranges, i.e., REE
opt (for δ = 1 and δ = 0.1) and R

capex
opt , as a function

f various QoS requirements. We observe that the optimum network

lanning significantly depends on the QoS constraint, i.e., busy hour

erceived throughput for the worst 5th percentile of users. Due to the

act that user throughput is monotonically decreasing with the load,

igher requirements for rmin favor for smaller cell sizes in order to

educe the average resource utilization.

It is also shown that if the objective is that of obtaining the min-

mum energy solution, the optimum design requires denser deploy-

ent for all δ values compared to minimum-capex solution, which, as

consequence, increases the installation cost. However, we observe

hat the tradeoff between lower capital investment and the reduced

nergy cost is only valid for low and medium level QoS requirements.

very high QoS constraint inactivates the network planning objective

nd indicates a unique solution for both energy and CAPEX-optimized

lanning.

On the other hand, Fig. 2b illustrates the annual energy savings

hrough energy-optimized greenfield network planning solutions for

moderate QoS target, rmin = 3 Mbps which is defined as the mini-

um requirement to enable consistent user experience in [23]. Note

hat the obtained optimum cell ranges for energy optimized planning

REE
opt(δ)) in this scenario are 440 and 620 m for δ = 0.1 and δ = 1,

espectively. On the other hand, CAPEX-optimized solution indicates
capex
opt = 720 m in order to satisfy the given QoS requirement with

inimum capital expenditures. It should be noted that, for the green-

eld network deployment scenario, we assume that all the BSs have

TX capability regardless of the considered network planning objec-

ive. Consequently, unlike Case 1, i.e., hardware upgrade, δ = 1 repre-

ents the case, where cell DTX is not incorporated into the network

lanning stage, however, it is in operation. Therefore, the savings in

ig. 2b is calculated based on the assumption that all the BSs in the

etwork can reduce their baseline power consumption by 90% when

here is no traffic regardless of the assumptions made at the planning

tage. This ensures that the presented energy savings in Fig. 2b only

riginate from energy-oriented network planning.

The results show that energy efficient network deployment so-

utions bring striking energy savings compared to CAPEX-minimum

eployment. Especially when the network is designed by taking into
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Fig. 2. Optimized network deployments and resulted energy savings.

Table 3

Energy savings through energy-optimized network planning.

Network Planning Objective

Base station

density

(1/km2)

Annual energy

cons. per area

(kWh/km2)

Energy

saving (%)

CAPEX-optimized 0.74 1201 –

Energy-optimized δ = 1 1.00 648.9 37

Energy-optimized δ = 0.1 1.98 380.6 51.4
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account BSs’ fast traffic adaptation capabilities (δ = 0.1), up to 70%

energy savings can be obtained at busy hour by deploying slightly

faster than the actual requirement warrants. It is interesting to ob-

serve that the energy-optimum deployment does not always bring

energy saving throughout a day as shown in Fig. 2b. In the least busy

hours, this approach comes with a higher energy consumption since

the incremental increase in load-independent baseline power con-

sumption due to densification can not be compensated by the energy

savings arising from longer deactivation periods. Table 3 summarizes

the results obtained through energy efficient network deployments

with δ = 0.1 and δ = 1. It clearly shows that energy-optimized de-

ployment can lead to 37 and 51.4% average annual energy savings at

the cost of deploying 35 and 160% more BSs in the network, respec-

tively. We can conclude that with energy efficiency oriented network

planning, the installation costs grow while the total energy consump-

tion decreases.

We would like to note that the presented energy saving results

with hardware upgrade and energy-optimized network planning

would be affected by large number of parameters, such as number

of sites, system bandwidth, carrier frequency, antenna gain, transmit

power, traffic density at busy hour, traffic variation during the day,

etc. However, we focus on few important parameters which charac-

terize each example for clearer illustration of our proposed method-

ology. The impact of various parameters remains as an interesting fur-

ther study.

6.3. Economic viability analysis

Based on the obtained energy savings from the considered so-

lutions solely aiming at energy minimization, in this section we

perform an economic viability analysis based on the methodology

introduced in Sections 4 and 5, in order to answer “Under which cir-

cumstances an operator will get a total cost saving from the considered

energy efficient solutions?”. To this end, we identify the circumstances
nder which Eqs. (30) and (35) are satisfied based on the stated as-

umptions.

For numerical evaluations, we assume that unit installation cost

f a BS is ccapex = 15 K€, whereas annual operational costs excluding

nergy is co = 7.5 K€ [24]. Moreover, the lifetime of the networks is

ssumed to be N = 15 years.

We first present the results for the existing deployment with

n average load of η̄ = 0.11 in which the achievable energy savings

hrough hardware upgrade is given in Table 2. With this respect, Fig. 3

hows the break-even cost of the hardware upgrade enabling cell DTX

ith respect to its unit CAPEX, i.e., �cb/ccapex. Here the break-even

ost is illustrated as a function of two important parameters that im-

act the achievable energy cost saving with cell DTX, i.e., unit elec-

ricity price, en in €/kWh and the cell DTX performance represented

y δ. Results reveal that the break-even cost of hardware upgrade is

n increasing function of the unit energy cost. Thus, upgrading the

xisting BS transceivers’ is increasingly cost effective as the unit en-

rgy cost increases. It may come as no surprise that higher δ values,

esulting in lower energy savings, indicates that hardware upgrade

ight not bring total cost saving for the operators. This is mainly be-

ause the energy cost reduction with cell DTX is insufficient despite

he fact that the network is lightly loaded.
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Considering todays’ electricity prices and highly capable hard-

are (δ = 0.1), we can conclude that the resulted energy cost

aving via hardware upgrade can compensate the incremental in-

rease in CAPEX when the price �c is below the break-even cost of

and 42% (of a BS CAPEX) for the countries in low (en = 0.1 €/kWh)

nd high (en = 0.5 €/kWh) electricity price zones, respectively. If we

ook from a different angle, we can also conclude that for a country

ith 0.2 €/kWh unit electricity cost, and a hardware upgrade cost of

2% of the CAPEX, there is no actual benefit of hardware upgrade if δ
s equal to or higher than 0.3. We believe that the presented viability

esults have a substantial importance for the operators in the process

f investment decisions.

In case of energy efficient deployment, we perform the economic

iability analysis based on the assumptions introduced in Section 5.

he optimum network deployments, achieving minimum energy

onsumption or minimum capital expenditures, are determined for a

iven perceived data rate requirement of rmin = 3 Mbps for the worst

th percentile of the users. Note that, here we consider a constant

APEX per BS despite the fact that small cells with lower capital ex-

enditures, e.g., micro or pico, can be utilized as the cell range is re-

uced. The main reason behind this assumption is that the consid-

red cell ranges are typically covered by the same type of BS. In other

anges (e.g., applicable for rural areas), different parameters should

e considered, which will be analyzed in a future work.

With these assumptions in mind, we first show the discounted

otal cost of investment results for a limited operation time of N =
5 years in Fig. 4. Here we illustrate the achievable energy cost sav-

ngs through energy-oriented deployment for δ = 1 and its conse-

uences in terms of the required increase in CAPEX and OPEX, com-

ared to CAPEX-optimized planning. The results are presented as a

unction of the operation year n ∈ N for various unit electricity cost in

/kWh. As aforementioned, we assume that the capital expenditures

ccur at the beginning of the first year, and thus it is independent

f the network lifetime. Based on this scenario, Fig. 4 shows that the

nergy-oriented design (δ = 1), enabling 37% saving per year, leads

o a significant cost saving over the network lifetime especially for

he countries with higher electricity cost. However, it is observed

hat despite the fact that the energy cost saving possibly can offset

he incremental increase in capital expenditures, i.e., 3882 €/km2,

t is inadequate to compensate the annual increase in OPEX arising

ue to denser network deployment. The compenzation during net-

ork lifetime might only be feasible if there is some hidden bene-

ts of energy saving for the operators, e.g., marketing, spectrum cost

eduction, etc.
Finally Fig. 5 illustrates the break-even electricity costs for energy-

ptimized deployment considering the cases of δ = 1 and δ = 0.1

s a function of unit capital and operational expenditures. The re-

ults indicate how expensive energy must be so that energy-oriented

eployments result in the same net present value as the traditional

inimum-CAPEX solution. We observe that energy-optimized net-

ork planning, which incorporates cell DTX already in the planning

tage, i.e., δ = 0.1, is decreasingly cost effective as the unit CAPEX

nd OPEX increase, despite the fact that the solution enables 51.4%

nnual energy saving compared to CAPEX-optimized solution. This

ainly arises from the fact that the energy-optimized solution with

= 0.1 indicates significant densification, i.e., 160% more BSs, in or-

er to increase the deactivation periods of the BSs that is efficiently

xploited by cell DTX. However, we observe that even though the

nergy-oriented network deployment, ignoring BSs’ capability at the

lanning stage, i.e., δ = 1, results in lower energy saving, it is more

ost effective approach compared to the case of δ = 0.1, due to the

eed for less densification.

We can conclude that energy-optimized network planning, which

avors deploying slightly faster than the actual requirement warrants,

rings significant energy savings. However, if the cost savings are

estricted to the direct saving due to reduced energy consumption,

he achieved savings are not sufficient to compensate the increase in

ther expenditures.

We would like to note that the this economic viability analysis is

alid for the considered scenario and thus the break-even cost will be

ifferent for different setups. We believe that the detailed analysis on

he impact of system parameters threshold point of δ and en would

rovide direct guidance on decision making for the operators, which

ill the scope of our future study.

. Conclusions

In this paper, we presented a novel methodology to assess the eco-

omic viability of the technical solutions for energy efficient wire-

ess access networks. We demonstrated the usability of the proposed

ethodology by performing cost-benefit analysis for two different

nergy efficient solutions applicable to existing and greenfield de-

loyment scenarios.

Regarding the hardware upgrade solution, we considered dynamic

leep mode operation of BSs, namely cell DTX. Based on the load-

ependent performance evaluation, we have quantified the achiev-

ble energy saving of the hardware upgrade with the cell DTX

eature. Then, we derived the break-even cost of the new hardware

elow which the increment in CAPEX is compensated by the reduced
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energy cost. It is shown that up to 60% of cost saving is achievable

with the cell DTX by taking advantage of low resource utilization in

the current networks due to the high data rate requirements. Con-

sequently, the resulted energy cost saving via hardware upgrade can

compensate the required investment, and thus brings the total cost

saving, when the additional hardware cost for each BS is lower than

8% of unit CAPEX in the countries with energy cost of 0.1 €/kWh.

Regarding the greenfield network deployment scenario, we iden-

tified the network planning that enables minimum annual energy

consumption without degrading perceived user QoS by using BSs

with cell DTX capability. To this end, we proposed a simple algorithm

to obtain the optimum BS density considering the average load lev-

els in the network varying with the daily traffic fluctuations. We have

shown that the optimal topology from the deployment cost point of

view does not match with the network density which is optimal for

the energy consumption. Consequently, if the energy-awareness is in-

corporated at the initial deployment phase, a significant energy sav-

ing is feasible over CAPEX-minimized network planning. However, it

comes at the expense of increased BS density. In that respect, our via-

bility analysis illustrates that, unless the operators acquire additional

cost benefits besides the direct electricity consumption, the energy-

optimal deployment strategy is not viable under today’s cost values.
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Appendix A. Defining feasible load levels

In order to define the feasible load levels of the cells for a given

area traffic demand during an observation period t, an iterative time

static simulation approach is adapted in this paper that solves (23).

Algorithm 1 Calculate feasible load vector at time t ηt.

Require: α(t), A, �, ρu, M, δ, ε, η0,

1: Calculate active user at time t , Nt
act

2: Define the set βk = i : bi = k, ∀k ∈ M

3: Initialize load vector, η0

4: repeat

5: Compute ηnew = (ηnew
1

, ηnew
2

, ...., ηnew
M

) from (22)

6: if ηnew − ηt > ε then

7: ηt ← updateLoad(ηnew)
8: else

9: return ηt ← ηnew

10: end if

11: until ηnew − ηt < ε

Appendix B. Proof of unimodality

In order to present the dependence of the objective function on

the cell edge, we first provide the functional relationship between ηt
k

and R in the following corollary.

Corollary 1. The feasible load level of each cell ηt
k
, ∀ k, ∀ t ∈ [1,24] is

increasing with Rx, where x > 2.

Proof of Corollary 1: Under the constant user density assumption,

number of active users in a cell during a given hour t is increasing

with R2. On the other hand, user’s data rate ri(γ i(η)), ∀ i ∈ βk is de-

creasing with R due to higher interference level. Therefore, the fea-

sible load level of each cell ηt
k

= ∑
i∈βk

φk
i

= ∑
i∈βk

�i

Tri(γi(η
t ))

will in-

crease with Rx, x > 2.

Regarding Pk, as mentioned, we we choose its value as the mini-

mum transmit power required to ensure full coverage, i.e., P : g P =
k ik k
min. Therefore, based on the general form of the path loss model, i.e.,
dB
ik

= 10 log10(c1) + 10 c2 log10(dik), the functional relationship be-

ween transmit power and cell range will be Pk(R) = Pmin
c1

Rc2 . Here

1 and c2 denote the model parameters.

Based on the introduced relationships, daily average area power

onsumption will have the following dependence on cell range:

Et [Pt
area(R)]

= 1

|t|
24∑

t=1

∑M
k=1 ζ Pk(R) ηt

k
(R) + (1 − δ)P0ηt

k
(R) + δP0

A(R)

≈ f1(Rx+c2−2) + f2(Rx−2) + f3(R−2). (35)

This proves that under the stated assumptions, the objective func-

ion of energy-optimized network planning problem is a unimodal

unction, and thus there is always non-null and finite cell range that

inimizes annual energy consumption. �

ppendix C. Defining optimal network planning

Algorithm 2 first defines the minimum transmit power that sat-

sfies the coverage requirement for each cell range R ∈ R. Then, for

ach hour t, feasible load vector ηt at time t is determined by using

lgorithm 1 that solves (23). The determined feasible load vector ηt is

hen used to calculate the average area power consumption Pt
area(R)

nd CDF of the perceived user data rates F[c(ηt(R))] during that hour

. We finally determine the daily average area power consumption

t [Pt
area(R)] and χ percentile user data rate at busy hour cχ% for a

iven R ∈ R.

lgorithm 2 Calculate the cell ranges REE
opt and Rcost

opt that optimizes

31) and (33).

equire: α(t), �, ρu, rmin, Pmin, R = [Rmin, Rmax]

1: for all R = Rmin to Rmax do

2: Compute Pk(R) = Pmin
c1

Rc2 for all k

3: Compute A(R) = M × 3
√

(3)/2

4: for all t ∈ [1, 24] do

5: Calculate active user at time t , Nt
act(R)

6: Using Nt
act , find ηt

k
(R) for all k from Algorithm 1

7: Compute ri(γi(η
t(R))) for all i

8: Compute Pt
area(R) and F [c(ηt(R))]

9: end for

10: Compute Et [Pt
area(R)] and Fχ%

[
c(ηbh)

]
11: if Et [Pt

area(R)] < Et [Pt
area(R − �)]

and Fχ%

[
c̄(ηbh)

]
≥ rmin then

12: Update R = R + �
13: else

14: Return REE
opt = R

15: end if

16: if Fχ%

[
c̄(ηbh)

]
≥ rmin then

17: Update R = R + �
18: else

19: Return Rcost
opt = R

0: end if

21: end for

The search over cell ranges aims at finding the optimum cell range
EE
opt that minimizes the daily average area power consumption for a

iven δ. This overall search algorithm increasing R by a step size �
ill be stopped if the objective value are increasing Et [Pt

area(R)] >

t [Pt
area(R − �)] or χ percentile user data rate at busy hour, i.e.,

χ% = Fχ%[c̄(ηbh)], is less than rmin Mbps. This is due to the fact that

hile Et [Pt
area(R)] has a convex relation with R, cχ% is non-increasing

unction of R.
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On the other hand, the search that aims at finding the optimum

ell range Rcost
opt that minimizes the total initial capital investments

ill only consider the defined performance requirement regardless

f the energy consumption and it will stop when cχ%, is less than rmin

bps. This will indicate maximum cell range that satisfies the user

oS requirement.
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