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a b s t r a c t

The normalized Laplacian spectrum (NLS) is a powerful tool for comparing graphs with different sizes. Re-

cently, we showed that two NLS features, namely the weighted spectral distribution (WSD) and the multi-

plicity of the eigenvalue 1 (ME1), are particularly relevant to the Internet topology at the inter-domain level.

In this paper, we examine the physical meaning of the two metrics for the Internet. We show that the WSD

reflects the transformation from single-homed nodes to multi-homed nodes for better fault-tolerance and

that the ME1 quantifies the initial star-based structure associated with node classification, both of which

are critical to the robustness of the Internet structure. We then investigate the relation between the metrics

and graph perturbations (i.e., small changes in a graph). We show that these two NLS metrics can be a good

choice for study on the Internet optimization. Our work reveals novel insights into the Internet structure and

provides useful knowledge for statistical analysis on complex networks.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Graph spectra (i.e., eigenvalue sets of several matrices, includ-

ng adjacency, Laplacian and normalized Laplacian matrices) contain

large amount of information on graph structure [1,2]. In contrast

o the spectral radii (i.e., maximum eigenvalues) of adjacency and

aplacian matrices, Cetinkaya et al. demonstrated that the normal-

zed Laplacian spectral radius is a good indicator of the connectiv-

ty when comparing networks with different sizes [3,4]. The Internet

opology evolves over time [5–7]; i.e., metrics weakly related to net-

ork size are more important.

The Positive-Feedback Preference (PFP) model [8] is an Inter-

et topology generator based on the Interactive growth mechanism

hose inputs are not related to network size and only correspond to

echanisms for the addition of nodes and links. Through compar-

sons with other commonly used metrics, Jiao et al. [9] found that

nly the WSD and the ME1 of the NLS are independent of network

ize and provide sensitive discriminations for each input of the gen-

rator PFP; i.e., the two metrics are suitable for capturing evolving

eatures of Internet topologies. Therefore, it is of value to study the

elation between graph perturbations in Internet topologies and cor-

esponding changes of the two spectral metrics.
∗ Corresponding author. Tel. +86 15138758790.
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The eigenvectors associated with the largest eigenvalues of the ad-

acency spectrum can be used to analyze clustering features of the

nternet [10], and the eigenvalue power law of the spectrum in the

nternet is a direct consequence of the degree distribution of a star-

ased structure [11]. A metric based on the adjacency spectrum is

he natural connectivity [12], which represents the weighted sum of

losed walks of all lengths. The second smallest eigenvalue of the

aplacian spectrum, also known as the algebraic connectivity [13],

eflects how well connected the overall graph is. Compared with the

etrics based on the adjacency and Laplacian spectra, the metrics

ased on the NLS are more suitable for the comparative analysis of

etworks with different sizes [3,4,9]. The WSD (i.e., a metric of the

LS) counts the number of N-cycles normalized by the degree of each

ode in the cycle, which is strongly associated with the distribution

f random walk cycles in a network [14]. Fay et al. used the WSD to

istinguish different types of graphs, e.g., graphs from network topol-

gy generators, Internet application graphs and dK-random graphs

15]. Additionally, Jiao et al. designed an algorithm using the 4-cycle

raph structure to calculate the WSD [16]. The NLS eigenvalues lie

n the range of zero to two [14] and are quasi-symmetrical about 1

3,4], while the ranges of the adjacency and Laplacian eigenvalues

re not limited [17]. The largest NLS eigenvalues obey a power law

18], and the ME1 of the NLS remains stable over time in spite of the

xplosive growth of the Internet [19,20]. AS graphs simulated by the

nternet topology generator Inet [21] and real topologies were com-

ared and analyzed by Vukadinovic et al. [19,20]. Additionally, they

bserved that there is a significant difference in the ME1 of the NLS

http://dx.doi.org/10.1016/j.comcom.2015.11.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
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and related the lower bound of the ME1 to a structural classification

of nodes in AS graphs [19,20]. Haddadi et al. [22] used the WSD to

tune input parameters of Internet topology generators. However, the

relation between graph perturbations in AS-level Internet topologies

and corresponding changes of the NLS has not been further investi-

gated.

The existing Internet topology generators (e.g., Waxman [23], BA

[24], GLP [25], Inet-3.0 [26] and PFP [8]) were compared using the

metrics of degree distribution, average neighbor connectivity, clus-

tering coefficient, rich club connectivity, shortest path distribution

and WSD [27]. Based on the work of Haddadi et al. [27], Inet-3.0 and

PFP outperform other generators because Waxman and BA are too

simplistic in the assumptions they make about the connectivity of

graphs and only Inet-3.0 and PFP generate topologies with a suffi-

ciently dense core. Additionally, the existing topology generators fail

to capture local connectivity, and the metrics such as clustering and

WSD should be focused on for tuning and optimizing the topology

generators [27].

In this paper, our contributions focus on the relation between

graph perturbations in AS-level Internet topologies and correspond-

ing changes of the WSD and the ME1 of the NLS. According to the

relation, we can further understand structural characteristics of the

Internet topology, and the spectral features of synthetic Internet AS

graphs can be tuned and optimized.

2. Normalized Laplacian spectrum

Denote by G = (V, E) an undirected and simple graph, where V is

the node set and E is the edge set. Let ‖V‖ = n, ‖E‖ = m, and dv be

the degree of node v in graph G. The normalized Laplacian of graph G

is the matrix L(G) defined as follows:

L(G)(u, v) =

⎧⎨
⎩

1 if u = v and dv �= 0

− 1√
du ·dv

if u and v are adjacent

0 otherwise

. (1)

If A is the adjacency matrix of graph G (where ai j = 1 if there is

an edge between vi and v j and ai j = 0 otherwise) and D is a diag-

onal matrix with dii = dvi
, L(G) = D−1/2(D − A)D−1/2. The NLS is the

eigenvalue set of L(G): 0 = λ1 ≤ · · · ≤ λn ≤ 2. To find a lower bound

for the ME1, Vukadinovic et al. classified nodes in AS graphs into

P(G) = {v ∈ V |dv = 1} called “pendants”, Q(G) = {v ∈ V |∃w, (v, w) ∈
E, w ∈ P(G)} called “quasi-pendants” and R(G) = V\(Q(G) ∪ P(G))

called “inners” [19,20]. Let p, q, r respectively be the cardinalities of

the sets P(G), Q(G) and R(G). Denote by Inner(G) the subgraph of G

induced by R(G). Let inn be the number of isolated nodes in Inner(G).

Then, Vukadinovic et al. demonstrated the lower bound of the ME1

[19,20]:

ME1 ≥ p − q + inn. (2)

Let Inner(G) = (VI, EI) and dI(v) be the degree of node v in sub-

graph Inner(G). Jiao et al. [9] further divided Inner(G) into PI =
{v ∈ VI|dI(v) = 1 ∧ ∀(v, w) ∈ EI, dI(w) > 1} called “inner pendants”,

QI = {v ∈ VI|∃w, (v, w) ∈ EI, w ∈ PI} called “inner quasi-pendants”,

RI = {v ∈ VI|dI(v) ≥ 2 ∧ ∀(v, w) ∈ EI, w ∈ QI} called “inner restricted

nodes”, BI = {v ∈ VI|dI(v) = 1∧ ∀(v, w) ∈ EI, dI(w) = 1} called “inner

binate nodes”, II = {v ∈ VI|dI(v) = 0} called “inner isolated nodes”

and OI = VI\SI called “inner other nodes” where SI = PI ∪ QI ∪ RI ∪
BI ∪ II called “inner summation nodes”. Let pi, qi, ri, bi, ii, si, oi respec-

tively be the cardinalities of the sets PI, QI, RI, BI, II, SI and OI. Then,

Jiao et al. confirmed the following approximate equation relationship

[9]:

r ≈ si, (3)

ME1 ≈ p − q + pi + ri − qi + ii. (4)
To find a collective metric of the NLS, Fay and Haddadi et al. de-

ned the WSD as the sum over all N-cycles C = u1u2 . . . uN in graph G

14,15,22,27]:

(G, N) =
∑

i=1,2,··· ,n (1 − λi)
N =

∑
C

1

du1
du2

. . . duN

. (5)

Calculating the eigenvalues of a large (even sparse) matrix is com-

utationally expensive. Therefore, Fay and Haddadi et al. [14,15,22,27]

stimated the distribution of eigenvalues f (λ = θ ) using Sylvester’s

aw of Inertia [28] to calculate the percentage of eigenvalues that fall

n a given interval, and the WSD can be transformed into:

(G, N) ≈
∑

θ∈�
(1 − θ )

N · f (λ = θ ). (6)

here � denotes equally spaced bins in [0, 2]. According to Eqs. (5)

nd (6), the WSD is weakly related to the ME1. In general, the sum

f 4-cycles with the normalization of node degrees represents the

uasi-randomness of a graph in the non-regular case [15]. Thus, Fay

nd Haddadi et al. [14,15] considered four to be the suitable value of

arameter N.

. Geographical decomposition of the large-scale topology

An intuitive application of the relation studied in this paper is to

ptimize the NLS features in synthetic Internet AS graphs. The core

roblem of the optimization is to select an appropriate cost function

e.g., spectral radius [29], algebraic connectivity [30] and weighted

pectrum [22]) that reflects those aspects of the graph that are im-

ortant to the user. Such a selection process is inherently subjective;

.e., there is no "best" cost function in general [22]. Once a suitable

ost function is selected, the real meaning of “network optimization”

s to tune synthetic graphs to produce output that optimally matches

aid cost function with minimum changes.

To verify the correctness of our contributions, we consider the

SD and the ME1 of the NLS as the cost function to optimize syn-

hetic AS graphs. Please note that the main theme of this paper is to

tudy the graph perturbation properties of the WSD and the ME1. The

network optimization" is one example for the application of our con-

ributions. Our observed real topology dataset comes from the ITDK

f CAIDA Skitter project [31,32], which is obtained by running tracer-

utes over a large range of IP addresses and mapping the prefixes

o AS numbers using RouteViews BGP data. Because the Skitter data

epresents paths that have actually been traversed by packets to their

estinations, rather than paths calculated and propagated by the BGP

ystem, it is more likely to faithfully represent the AS topology than

he BGP data alone.

To compare two AS graphs, the WSD and the ME1 only need to be

alculated two times, while they have to be calculated many times

o lead the optimization of the NLS. The ITDK provides mappings

rom routers to regions and mappings from routers to AS nodes. Thus,

he AS subgraphs of different regions can be constructed where the

onnection relationships between AS nodes are built by the links be-

ween routers located in a certain region. AS nodes may span across

egions; i.e., some AS nodes may be allocated into different AS sub-

raphs. The Chinese AS subgraph with 84 nodes has been obtained by

hou et al. [33], who compared the small-scale graph with the global

opology and found that the Chinese AS-level topology preserves well

tructural characteristics of the global Internet. The connection pat-

erns between routers are strongly related to geographical distance,

nd all AS nodes exceeding a certain threshold in size are maximally

ispersed geographically [34], which is an important evidence for the

tudy of Zhou et al. [33]. Additionally, the Chinese AS graph with 84

odes has been utilized for comparisons between the existing topol-

gy generators [27]. Therefore, the geographical decomposition of the

lobal Internet topology is an effective method to decrease the time

or calculating the WSD and the ME1.
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Table 1

Some AS subgraphs obtained by ITDK201110–ITDK201304.

Geographic location Month/year Node number Edge number WSD WSDt

USA (US) Oct. 2011 6331 13147 0.02812 0.01424

USA (US) Jul. 2012 10552 20023 0.02585 0.01310

USA (US) Apr. 2013 10918 20730 0.02502 0.01270

USA region (US. 6765) Apr. 2013 2511 6689 0.01779 0.00890

USA region (US. 4242) Apr. 2013 2412 6127 0.00953 0.00456

Russian (RU) Apr. 2013 3110 5225 0.06617 0.03403

Deutschland (DE) Apr. 2013 1469 2321 0.04619 0.02343

Brazil (BR) Apr. 2013 1282 2340 0.05080 0.02605

Ukraine (UA) Apr. 2013 1200 1637 0.09888 0.05037

Fig. 1. Effects of adding an edge in the real AS subgraph of RU in the snapshot of April 2013. (a) W t(u,v) with decreasing order of MC1. (b) W t(u,v) with increasing order of MC2.
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The NLS eigenvalues are quasi-symmetrical about 1 [3,4] and

(1 − θ )N tends to zero with θ close to 1 and increasing N. Thus, the

SD is strongly related to the WSDt derived from Eq. (6), where

∈ {(2(i − 1)/k,2i/k]}t
i=1

, θ = (2i − 1)/k and t < k/2. The parame-

er k represents the number of equally spaced bins in [0, 2], which

epends on the granularity required.

Table 1 lists some subgraphs with the largest number of nodes

nd shows that the graph of the US in the snapshot of April 2013 can

e further decomposed into various US regions. If k = 30 and t = 10,

he WSD is approximately equal to 2WSDt, as shown in Table 1. Thus,

he WSD can be replaced by WSDt for faster calculation [9]. According

o the quasi-symmetry of eigenvalues about 1 [3,4], the eigenvalues

rom 0 to 1 are sufficient for the description of the WSD [14,22,27],

nd we can determine that ME1 ≈ n − 2 · (1 − eps)− [9] where eps =
0−6 and (1 − eps)− is the number of eigenvalues smaller than 1 −
ps calculated by Sylvester’s Law of Inertia [28].

. Graph perturbations with WSDt

The WSD is weakly related to the ME1; i.e., graph perturbations

ith WSDt should be under the constraint that the ME1 is unaltered.

ased on Eq. (4), the constraint means that stavalue = p − q + pi +
i − qi + ii should be constant. Let di and d j be the degrees of nodes

and j, respectively, and f (di) and f (d j) be the frequencies of those

egrees. Winick [26] defined the weighted value of d j with respect to

i as

(i, j) = max

⎛
⎝1,

√(
log

di

d j

)2

+
(

log
f (di)

f (d f )

)2

⎞
⎠ · dj. (7)

hich has been used for calculating the probability linking node i to

ode j in the topology generator Inet-3.0 [26]. In subgraph Inner(G),

et Nr(v) be the set of nodes attached to node v. According to the

otations defined in Section 2, we divide PI into PI1 = {v ∈ PI|∃w ∈
I, v = argumaxu∈Nr(w)∩PIM(u, w)} and PI2 = PI\PI1; i.e., Card(PI1) =
i (denote by Card(·) the cardinality of a set). In subgraph Inner(G) =
(VI, EI), QI will not be altered if the connection relationships of nodes

n PI1 have not been changed.

heorem 1. For an Internet AS graph G = (V, E), stavalue = p − q +
pi + ri − qi + ii is constant when (see Appendix A for the proof)

(i) Add an edge (u, v) /∈ E, where u �= v, u ∈ Q(G) and v ∈ Q(G) ∪
VI .

(ii) Delete an edge (u, v) ∈ E, where u �= v, u ∈ Q(G), du > 2, v ∈
Q(G) ∪ VI , dv > 2 if v ∈ Q(G), Card({(w, v) ∈ E|w ∈ Q(G)}) > 1

if v ∈ PI, and Card({(w, v) ∈ E|w ∈ Q(G)}) > 2 if v ∈ II.

(iii) Add an edge (u, v) /∈ E, where u �= v, u ∈ QI and v ∈ PI2 ∪ RI ∪ II.

(iv) Delete an edge (u, v) ∈ E, where u �= v, u ∈ QI, dI(u) > 2,

v ∈ PI2 ∪ RI, Card({(w, v) ∈ E|w ∈ Q(G)}) > 1 if v ∈ PI2, and

Card({(w, v)|w ∈ Q(G)}) > 0 if v ∈ RI ∧ Card({(w, v) ∈ E|w ∈
QI}) = 2 (denote by dI(u) the degree of node u in Inner(G)). �

Denote by AddSet the edge set to be added associated with the

bove operators (i) and (iii) and by DelSet the edge set to be deleted

ssociated with the above operators (ii) and (iv). Based on Eq. (4),

he ME1 can be controlled if graph perturbations with WSDt are re-

tricted in AddSet and DelSet . The real AS subgraph of RU listed in

able 1 is used for the following illustration.

Let Wt (u, v) be the WSDt of a graph induced by adding or deleting

n edge (u, v) ∈ AddSet ∪DelSet for AS graph G. We sort edges (u, v) ∈
ddSet using two metrics, MC1 = |du − dv| and MC2 = max(du, dv).

he Wt (u, v) curves of the two metrics are shown in Fig. 1.

Edges with top largest MC1 link two nodes with high-small de-

rees, and edges with top smallest MC2 link two nodes with small-

mall degrees. According to Table 1 and Fig. 1, connecting two nodes

ith high-small degrees can steadily decrease WSDt. Because k-

egree node u corresponds to at least k2 4-cycles (i.e., u–vi–u–vj–

with i,j = 1,2,…,k) where v1,v2,…,vk are all nodes attached to

ode u, the 4-cycle number of a high-degree node is extremely large

ompared to that of a small-degree node. Based on Eq. (5), WSDt is
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Fig. 2. 4-cycle number ratio and edge deletion effect. (a) Ratio of the number of newly increased 4-cycles induced by adding an edge to the original 4-cycle number of the two

connected nodes. (b) Effect of deleting an edge: W t(u,v) of all edges in DelSet with decreasing order of MC1.

Fig. 3. W̄A(s) and W̄D(s) curves in the real AS subgraph of RU in the snapshot of April 2013. (a) W̄A(s) with the consecutive addition of edges. (b) W̄D(s) with the consecutive deletion

of edges.
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decided by the 4-cycle number and node degrees. For a high-degree

node, the degree increasing by 1 extremely decreases the sum over

all 4-cycles (normalized by the node degrees) of that node. For edges

with high-small degrees, Fig. 2(a) shows the ratio of the number of

newly increased 4-cycles induced by adding an edge to the original 4-

cycle number of the two connected nodes. The very small ratio shown

in Fig. 2(a) provides the evidence for Fig. 1(a). For an edge with small-

small degrees, both the number of newly increased 4-cycles induced

by adding the edge and the original 4-cycle number of the two con-

nected nodes are small, which induces the uncertainty of WSDt, as

shown in Fig. 1(b).

Deleting an edge is an inverse process of adding an edge; i.e.,

shearing an edge with high-small degrees tends to increase WSDt.

The number of edges with small-small degrees in DelSet is small be-

cause small-degree nodes tend to link high-degree nodes based on

the attachment models of Internet topologies [26]. Thus, all edges in

DelSet are included in Fig. 2(b).

Denote by AddSet(TA) the top TA edges in AddSet with decreasing

order of MC1. Sort the edges with increasing order of Wt (u, v), and

let AddSet(TA) = {ea
i
}TA

i=1
where Wt (ea

1
) ≤ Wt (ea

2
) ≤ · · · ≤ Wt (ea

TA
). Si-

multaneously, denote by DelSet(TD) the top TD edges in DelSet with

decreasing order of MC1. Let DelSet(TD) = {ed
i
}TD

i=1
where Wt (ed

1
) ≥

t (ed
2
) ≥ · · · ≥ Wt (ed

TD
). Denote by W̄A(s) the WSDt of a graph in-

duced by adding a series of edges {ea
i
}s

i=1
to AS graph G and by W̄D(s)

the WSDt of a graph induced by deleting a series of edges {ed
i
}s

i=1
from

AS graph G. Please note that the consecutive deletion should not alter

nodes in sets P(G) and QI; otherwise, the stavalue value may not be

constant. If the deletion of edge ed
s alters nodes in P(G) and QI, add

the edge to AS graph G again and let W̄D(s) = W̄D(s − 1). The W̄A(s)

and W̄D(s) curves in Fig. 3 show that WSDt monotonically decreases
or increases. a
Denote by M̄A(sA) the ME1 of a graph induced by adding a

eries of edges {ea
i
}sA

i=1
and by M̄D(sD) the ME1 of a graph in-

uced by deleting a series of edges {ed
i
}sD

i=1
. The consecutive dele-

ion should not alter nodes in sets P(G) and QI. The statistical val-

es of M̄A(sA) and M̄D(sD), where sA ∈ {1, 2, . . . ,Card(AddSet)} and

D ∈ {1, 2, . . . ,Card(DelSet)}, are listed in Table 2, which verifies the

nvariability of the ME1.

In general, it is not necessary to decrease the WSDt of an AS

raph by an extreme amount; i.e., the parameter TA may be obviously

maller compared to the scenario in Fig. 3(a). According to the anal-

ses of Fig. 4, a lower bound Tlow (e.g., 5000 for RU and 1000 for DE)

hould be given for the TA value; i.e., with a smaller value of TA(≥ Tlow),

he W̄A(s) curve corresponds to a faster descent speed (because edges

ith large values of MC1 are sorted ahead in the edge set {ea
i
}TA

i=1
). A

aster descent speed of the curve implies that graph perturbations of

S graph G may be much smaller with a given WSDt.

. An algorithm of graph perturbations with a given WSDt

Inputs: An AS graph G = (V, E), a given WSDt (Wob j) and two given

hresholds (Tlow, Tupper).

Step 1. Let Worg be the WSDt value of AS graph G. If Wob j > Worg,

alculate the edge set DelSet(TD) = {ed
i
}TD

i=1
, where Wt (ed

1
) ≥ · · · ≥

t (ed
TD

) and TD = Card(DelSet), and use the bisection method (be-

ause W̄D(s) monotonically increases) to calculate

ob j = args min
s=1,··· ,TD

|W̄D(s) − Wob j|. (8)

Then, delete the edges {ed
i
}sob j

i=1
from AS graph G and conclude the

lgorithm.
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Table 2

Statistical values of the ME1 with the consecutive addition (deletion) of edges in AddSet (DelSet).

Geographic location Card(AddSet) Mean value Variance Card(DelSet) Mean value Variance

RU 586015 1908 0 2098 1908 0.2

US. 6765 344873 1805 0 4044 1805 5.9

DE 88153 1029 0 791 1029 0.1

Table 3

Statistical analyses for graph perturbations in the real AS subgraph of RU, where Wobj corresponds to 9 given WSDt . Denote

by Wper the WSDt of the perturbed graph, by RWSD the ratio of | Wper−Worg | to Worg , and by REdges the ratio of malter to morg ,

where malter is the number of added (or deleted) edges, and Worg and morg are the WSDt and the edge number of the real AS

subgraph of RU, respectively.

Wobj × 102 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0

Wper × 102 1.0003 1.5001 2.0014 2.4982 3.0002 3.9981 5.0007 5.9998 7.0024

RWSD 0.7061 0.5592 0.4119 0.2659 0.1184 0.1749 0.4695 0.7631 1.0577

REdges 0.7474 0.3411 0.1667 0.0789 0.0260 0.0147 0.0731 0.1340 0.2193

TA(TD) 5000 5000 5000 5000 5000 2098(TD) 2098(TD) 2098(TD) 2098(TD)

ME1 1908 1908 1908 1908 1908 1908 1908 1908 1913

Fig. 4. W̄A(s) curves with different values of TA . (a) RU in April 2013. (b) DE in April 2013.

t

W

m

s

r

2

p

t

r

o

t

T

t

W

t

v

F

a

W

6

F

I

n

s

c

b

i

f

m

W

n

b

h

n

c

T

n

P

f

t

f

o

If Wob j < Worg, calculate the edge set AddSet , let TA := Tlow, and go

o Step 2.

Step 2. Calculate AddSet(TA) = {ea
i
}TA

i=1
, where Wt (ea

1
) ≤ · · · ≤

t (ea
TA

). If W̄A(TA) < Wob j , use the bisection method (because W̄A(s)

onotonically decreases) to calculate

ob j = args min
s=1,...,TA

|W̄A(s) − Wob j|. (9)

Then, add the edges {ea
i
}sob j

i=1
to AS graph G, and conclude the algo-

ithm.

If W̄A(TA) ≥ Wob j and TA ≤ Tupper , let TA := TA + 1000 and go to Step

. If TA > Tupper , conclude the algorithm and AS graph G cannot be

erturbed with Wob j . �
The time complexity of the algorithm depends on the calcula-

ion of {Wt (ea
i
)}TA

i=1
(or {Wt (ed

i
)}TD

i=1
),which is proportional to the pa-

ameter TA(or TD). The bisection methods used in Eqs. (8) and (9)

nly correspond to W̄D(s) and W̄A(s) calculated log2(TD) and log2(TA)

imes.

The statistical values of the real AS subgraph RU are listed in

able 3, which implies that there is an extremely small influence on

he ME1 for the above algorithm, and the perturbations with a given

SDt are effective and can control the alteration of connection rela-

ionships between nodes.

Perturbation effects of four other metrics with different Wobj

alues are shown in Fig. 5: with descending Wobj, the curves in

ig. 5(a)–(c) ascend and the curve in Fig. 5(d) moves toward the y-

xis. The phenomena are induced by the increase of edges to decrease

obj.
. Physical interpretation of the spectral metrics

To explain the eigenvalue power law of Internet AS graphs,

rancesc et al. [11] constructed a deterministic star-based model of

nternet topologies, as shown in Fig. 6(a). The model has two compo-

ents: the tree component that contains all nodes that belong exclu-

ively to trees having a depth of one (i.e., star subgraphs) and the core

omponent that contains all roots of the trees [36].

Francesc’s model is closer to Internet AS topologies before 1999

ecause most of the tree-nodes have a degree of one [36]. However,

ncreasingly more single-homed nodes want to become multi-homed

or better fault-tolerance [37]. Based on the extension of Francesc’s

odel shown in Fig. 6(b), we illustrate the physical meaning of the

SD and the ME1.

In Fig. 6(b), dotted lines connect various single-homed nodes to

odes in the core component, which provides better fault-tolerance

ecause of the increased number of multi-homed nodes. More multi-

omed nodes means that more edges linking high-small degree

odes are added into the AS graph. According to Sections 4 and 5, the

onsecutive addition of these edges can steadily decrease the WSD.

hus, the WSD plausibly represents the occupancy of multi-homed

odes in AS graphs.

The ME1 shows the classification of nodes in

(G), Q(G), PI, QI, RI, BI and II defined in Section 2. In Fig. 6(b),

or a root node in the core component, if all of its child nodes in the

ree component are transformed into multi-homed nodes, it tends to

all in QI and BI, such as nodes 18, 19 and 20 in QI and node 17 in BI;

therwise, it tends to fall in Q(G), such as nodes 14, 15 and 16. Thus,
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Fig. 5. Perturbation effects with different Wobj values. (a) Complementary cumulative distribution function (CCDF) of the node degree [26]: in the log–log scale, the x-axis represents

the node degree d, and the y-axis represents the ratio of the number of nodes with degree larger than d to the number of all nodes. (b) Rich club connectivity [8]: in the log–log

scale, the x-axis represents the node rank i with decreasing order of degree and the y-axis represents the ratio of the number of edges in the subgraph induced by the top i largest-

degree nodes to the maximum possible edges i(i−1)/2. (c) Clustering coefficients [35]: in the log-log scale, the x-axis represents the node degree d, and the y-axis represents C(d) =
2m(d)/(d 2−d), where m(d) is the average number of edges between the neighbors of d-degree nodes. (d) Shortest path length [35]: the x-axis represents the shortest path length l

between two nodes, and the y-axis represents the distribution probability of node pairs with distance l.

Fig. 6. Star-based model and its extension. (a) Francesc’s Internet topology model: deleting the connection relationships between nodes in the core component results in a non-

connected graph constituted by the union of star subgraphs. (b) Extension of Francesc’s model with single-homed nodes becoming multi-homed nodes.
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the core of an Internet AS graph is composed of nodes in Q(G) ∪ QI

and part of the nodes in BI. In Fig. 6(b), nodes 9, 10, 11 and 13 fall in

PI because they are attached to nodes in Q(G) by dotted lines, while

node 12 falls in RI because it is attached to a node in QI by a dotted

line. In the real RU AS subgraph in the snapshot of April 2013, there

are 155 nodes in PI, which is an extremely larger amount than the 4

nodes in RI because the highest-degree nodes of AS graphs mainly

fall in Q(G) and these nodes can attract more nodes to connect with

them. In Fig. 6(b), nodes 2 and 4 are attached to nodes in Q(G) by

dotted lines, so they fall in II(node 5 falls in PI). The highest-degree

nodes in Q(G) induce the number of nodes in II to be large; for

example, 599 nodes of the real RU AS subgraph (April 2013) fall in II.

According to the above analyses, the structural classification of the

ME1 plausibly reflects the initial star-based structure of the Internet
nd the tendency that increasingly more single-homed nodes want

o become multi-homed for better fault-tolerance.

Additionally, we use the stochastic model PFP [8] to illustrate

he structural classification. PFP has three inputs, where p∗ and q∗

re probabilities for selecting mechanisms to add 1-degree nodes,

− p∗ − q∗ is a probability for selecting one mechanism to add 2-

egree nodes, and δ is used to calculate the nonlinear preferential

ttachment probability. In the evolving Internet topology, most of the

ewly added small-degree nodes are linked by other nodes with a

ery small probability. Thus, the newly added 1-degree nodes are the

ain source of P(G), and the newly added 2-degree nodes are the

ain source of subgraph Inner(G). The newly added 2-degree nodes

end to link two (or one) quasi-pendants (with high degree and linked

y pendants in P(G)); i.e., after removing nodes in P(G) and Q(G), the
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Table 4

Statistical analyses of six real Internet topologies and the corresponding 6-by-100 synthetic and optimized graphs. The index ratio is defined by Card((EInet\
EOur)∪(EOur\ EInet))/Card(EInet), where EInet is the edge set of a synthetic graph generated by Inet-3.0 and EOur is the edge set of the graph with optimized NLS.

Both mean value (upper) and variance (bottom) are used to illustrate each statistical value associated with graphs generated by Inet-3.0 and graphs with

optimized NLS.

Region US Oct 2011 US.6765 Apr 2013 RU Apr 2013 DE Apr 2013 BR Apr 2013 UA Apr 2013

Real topologies Node number 6331 2511 3110 1469 1282 1200

Edge number 13147 6689 5225 2321 2340 1637

mG(1) 4497 1805 1908 1029 836 722

Graphs generated by Inet-3.0 Edge number 12103 6218 5352 2296 2293 1683

6049 2011 2311 549.36 167.62 32.150

mG(1) 4715 1789 1941 1082 863.08 757.62

3706 1095 414.354 240.098 221.634 83.0156

Dt(G, N) × 103 2.8340 3.6558 10.1860 4.6443 7.5557 12.7620

0.2365 0.2924 0.6594 1.9197 1.3243 2.1121

Graphs with optimized NLS Edge number 12218 6229 5167 2318 2272 1679

9083 1958 9135 795.94 1322 618.32

mG(1) 4497 1805 1908 1029 836 722

0 0 0 0 0 0

Dt(G, N) × 103 1.5680 2.2189 5.6256 2.8133 5.1026 9.2711

0.1823 0.2668 1.3106 1.4194 1.6862 2.6282

Ratio 0.0127 0.0067 0.0605 0.0160 0.0223 0.0255

0.00003 0.00003 0.0015 0.0001 0.0006 0.0004
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egree of nodes in subgraph Inner(G) corresponds to zero or one with

very high probability, which can explain the structural classification

f the ME1.

. Graph perturbations with the ME1

Based on deterministic and stochastic models of the Internet

opology, we have explained the generation process of the struc-

ural classification of the ME1. The right-hand side of Eq. (4), i.e.,

tavalue = p − q + pi + ri − qi + ii, can be adjusted using the alter-

tion of connection relationships. Thus, the left-hand side of Eq. (4),

.e., the ME1, can be perturbed in a controllable way. In general, pa-

ameters p and q depend on the fraction of 1-degree nodes and the

referential attachment model, which have been paid more attention

y existing topology generators, e.g., PFP and Inet-3.0. Therefore, we

nly consider the adjustment in subgraph Inner(G).

In subgraph Inner(G), divide OI into OI1 =
v ∈ OI|Card(Nr(v)\QI) = 1} and OI2 = OI\OI1, where Nr(v) in-

ludes all nodes attached to node v.

The notations used in this section are defined in Sections 2 and 4.

heorem 2. stavalue := stavalue − 2 if adding an edge (v1, v2),

here v1, v2 ∈ II.

heorem 3. stavalue := stavalue − 2 if adding an edge (v1, v2),

here v1 ∈ II, v2 ∈ PI2.

heorem 4. stavalue := stavalue + l − 1 if adding an edge (v1, v2),

here v1 ∈ II and v2 ∈ {v ∈ OI|Card(Nr(v) ∩ OI1) = l}.

heorem 5. stavalue := stavalue − 1 if adding an edge (v1, v2),

here v1 ∈ PI2, v2 ∈ OI.

heorem 6. stavalue := stavalue + 2 induced by the following three

perators: (i) delete an edge (v1, v2) where v1, v2 ∈ BI and v2 =
r(v1); (ii) if Card({(v1, w) ∈ E|w ∈ Q(G)}) = 1, add an edge (v1, w1)

here (v1, w1) /∈ E and w1 ∈ Q(G); and (iii) if Card({(v2, w) ∈ E|w ∈
(G)}) = 1, add an edge (v2, w2) where (v2, w2) /∈ E and w2 ∈ Q(G).

heorem 7. stavalue :≥ stavalue + 1 induced by the following four

perators: i) let v1 ∈ OI and delete all edges {(v1, v2)}, where

2 ∈ Nr(v1)\QI; ii) if v1 is transformed into PI induced by i)

nd Card({(v1, w) ∈ E|w ∈ Q(G)}) = 0, add an edge (v1, w1) where

(v1, w1) /∈ E and w1 ∈ Q(G); iii) if v1 is transformed into II induced

y i) and Card({(v1, w) ∈ E|w ∈ Q(G)}) < 2, add one or two edges to

nsure Card({(v , w) ∈ E|w ∈ Q(G)}) = 2; and iv) if v is transformed
1 2
nto PI ∪ BI induced by i) and Card({(v2, w) ∈ E|w ∈ Q(G)}) = 0, add

n edge (v2, w2) where (v2, w2) /∈ E and w2 ∈ Q(G). (see Appendix A

or the proofs)

According to the analyses of Section 6, nodes in Q(G), QI and

art of the nodes in BI generate the core of Internet AS graphs;

.e., in Francesc’s deterministic model shown in Fig. 6, the periph-

ry of AS graphs is composed of nodes in P(G), PI, RI, II and the

est of the nodes in BI. In Fig. 6, the nodes in BI originate from the

tar subgraph having only two nodes (one root and one leaf), e.g.,

odes 17 and 8. Thus, the core and peripheral nodes plausibly rep-

esent equal portions in BI; i.e., the number of core and peripheral

odes are q + qi + bi/2 and p + pi + ri + ii + bi/2, respectively. There-

ore, p − q + pi + ri − qi + ii can be considered as the peripheral node

umber minus the core node number, which is a further explanation

or the physical meaning of the ME1. Theorems 2–7 exhibit some in-

uitive methods to adjust the core and peripheral node percentages,

hich effectively perturbs the ME1 according to our requirement.

. An application of graph perturbations in the NLS

In this section, our contributions are used for the optimization of

ynthetic Internet AS graphs generated by Inet-3.0. The core problem

f "optimization" is to select a cost function that reflects those aspects

f the graph that are important to the user [22,29,30]. We consider

he WSD and the ME1 of the NLS as the cost function. Then, the real

eaning of "network optimization" is to tune synthetic AS graphs to

ptimally match the cost function with minimum changes. We use

he generator Inet-3.0 because its inputs (i.e., node degree distribu-

ion and fraction of 1-degree nodes) are easy to evaluate according to

eal Internet AS subgraphs obtained in Section 3.

The WSD is a collective metric of the NLS, but Eq. (6) provides a

wo-dimensional display of the eigenvalue distribution with different

eights (1 − θ )N . To compare two AS graphs G1 and G2, based on

q. (6), Fay et al. [14] defined a new metric as follows:

(G, N) =
∑

θ∈�
(1 − θ )

N · | f1(λ = θ ) − f2(λ = θ )| (10)

here f1 and f2 are the eigenvalue distributions of G1 and G2, respec-

ively, and � denotes equally spaced bins in [0, 2]. Based on the fact

hat the WSD can be replaced by WSDt for faster calculation, D(G, N)

an be replaced by Dt (G, N), where � ∈ {(2(i − 1)/k,2i/k]}t
i=1

, θ =
(2i − 1)/k, k = 30 and t = 10. Specifically, D(G, N) ≈ 2 · Dt (G, N).

In contrast to WSDt, Dt (G, N) contains more information. Thus, the
t (G, N) metric, which measures the difference between a synthetic
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graph and the corresponding real Internet AS subgraph, can be used

for more accurate optimization of the WSD.

According to the studies of Sections 4–7, we can design the ME1

optimization algorithm (see Appendix B) and the WSD optimization

algorithm (see Appendix C). To verify the correctness of our contri-

butions, we use the algorithms to optimize 6-by-100 synthetic AS

graphs generated by Inet-3.0 according to the NLS features of six real

Internet AS subgraphs. The experimental results of these graphs are

shown in Table 4 and Fig. 7, which verify that the optimization of

the NLS is effective and that the corresponding perturbations on AS

graphs are very small.

The WSD represents the local connectivity of AS graphs [27],

which is potentially critical when studying properties of routing pro-

tocols. Additionally, based on Sections 6 and 7, we have further

explained the physical meaning of the WSD and the ME1: the WSD

measures the fault-tolerance of AS graphs because the consecu-

tive addition of edges with high-small degrees increases the multi-

homed node percentage and steadily decreases the WSD; the ME1

reflects the decomposition of core and peripheral nodes that is gen-

erated by the initial star-based structure of the Internet and the ten-

dency that increasingly more single-homed nodes want to become

multi-homed.

Moreover, the WSD and the ME1 of the NLS remain stable in spite

of the explosive growth of the Internet [9]. Thus, it is worth select-

ing the two spectral metrics as the cost function to tune synthetic

AS graphs. There is no "best" cost function in general [22,29,30]; i.e.,

other features of the Internet may not be optimized by the work of

this paper. However, our contributions are useful explorations for the

study of complex features embedded in the Internet AS topology.

Research to date has analyzed the Internet AS-level topology at a

worldwide level of detail, which is useful when the Internet is an-

alyzed at a very coarse level. However, it may be misleading if the

analysis is more focused on a specific geographical region [38]. Cur-

rently, increasingly more literature has focused on region-level In-

ternet topologies [39,40] because the region competitiveness is re-

flected in the AS growth pattern. The structural similarities between

region graphs and the global AS-level topology have been analyzed in

Section 3. Therefore, the subgraphs based on geographical decompo-

sition are sufficient for the research of graph perturbations with the

NLS. Additionally, the average time to optimize synthetic AS graphs

of the US (Oct 2011 with 6331 AS nodes) is restricted to seven hours,

which is tolerable for our computers.

9. Conclusion

This paper focuses on the relation between graph perturbations

and corresponding changes in the WSD and the ME1, and analyzes the

physical meaning of the two spectral metrics embedded in Internet

AS graphs, e.g., node classification, initial star-based structure, multi-

homed transformation and core-periphery decomposition. The two

metrics reflect the NLS features with eigenvalues not only toward 0

(and 2) but also restricted to 1; i.e., they can be considered as the cost

function representing the NLS. Additionally, they are independent of

the network size of evolving AS graphs. Therefore, our contributions

are useful for understanding the Internet structure and leading future

applications of the NLS in AS graphs.
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ppendix A. The proofs

roof of Theorem 1. Operations (i), (ii), (iii) and (iv) cannot alter the

-degree node number and the connection relationships of nodes in

(G). Thus, p and q are unaltered. Operators (i) and (ii) are unrelated

o subgraph Inner(G), which means that pi, qi, ri, ii are unaltered. Op-

rators (iii) and (iv) cannot alter nodes in QI. Thus, the alterations in-

uced by operator (iii) are restricted to two possible scenarios: either

odes in PI2 are transformed into RI or nodes in II are transformed

nto PI2; i.e., pi + ri + ii is unaltered. The alterations induced by op-

rator iv) are restricted to two possible scenarios: either nodes in PI2
re transformed into II or nodes in RI are transformed into PI2; i.e.,

pi + ri + ii is unaltered. Therefore, stavalue = p − q + pi+ ri − qi + ii

s constant. �

roof of Theorem 2. The addition of the edge induces the state that

i := ii − 2 and p, q, pi, qi, ri are unaltered; i.e., stavalue = p − q + pi +
i − qi + ii decreases by 2. �

roof of Theorem 3. The addition of the edge induces the state that

i := ii − 1, qi := qi + 1 and p, q, pi, ri are unaltered; i.e., stavalue =
p − q + pi + ri − qi + ii decreases by 2. �

roof of Theorem 4. The addition of the edge induces the state that

i := ii − 1, pi := pi + 1, qi := qi + 1, ri := ri + l and p, q are unaltered;

.e., stavalue = p − q + pi + ri − qi + ii decreases by 1 if l = 0 and in-

reases by l − 1 if l ≥ 2. �

roof of Theorem 5. The addition of the edge induces the state that

pi := pi − 1 and p, q, qi, ri, ii are unaltered; i.e., stavalue = p − q +
pi + ri − qi + ii decreases by 1. �

roof of Theorem 6. Nodes v1 and v2 cannot be transformed into

endants based on the operators (ii) and (iii); i.e., p and q are unal-

ered. Operator (i) induces the state that ii := ii + 2 and pi, qi, ri are

naltered; i.e., stavalue = p − q + pi + ri − qi + ii increases by 2. �

roof of Theorem 7. The structural classification of nodes belong-

ng to PI, RI, II, BI and QI cannot be altered by operator (i) due to

1, v2 ∈ OI. Nodes v1 and v2 cannot be transformed into pendants

ased on the operators (ii)–iv); i.e., p and q are unaltered. Node v2

annot be transformed into II. If node v2 is transformed into PI, the

umber of newly increased nodes in QI is no more than the num-

er of newly increased nodes in PI; i.e., pi − qi does not decrease.

ode v1 must be transformed into II, PI or RI according to differ-

nt Card(Nr(v1) ∩ QI) values; i.e., stavalue = p − q + pi + ri − qi + ii

ncreases and stavalue :≥ stavalue + 1. �

ppendix B. ME1 optimization algorithm

Based on the ME1 stabilization [19], the eigenvalue power law

18] and the quasi-symmetry of the NLS about 1 [3,4], objective

arameters for the optimization can be evaluated [9], e.g., the

E1 mob j(1) and the distribution of eigenvalues falling in intervals

(2(i − 1)/k,2i/k]}t
i=1

(i.e., {wi
ob j

}t
i=1

).

According to Theorems 2–7, we can design the optimization algo-

ithm for synthetic Internet AS subgraphs generated by Inet-3.0. The

lgorithm is designed as follows:

Inputs: A synthetic Internet AS subgraph G, three objective values

ob j(1), {wi
ob j

}t
i=1

and Wob j = ∑t
l=1 (1 − 2l−1

k
)

N · wl
ob j

(i.e., the WSDt

f the real AS subgraph) and a threshold T .

Step 1. Estimate ME1 ≈ n − 2 · (1 − eps)− and the WSDt of graph

. Divide graph G into P(G), Q(G) and R(G), and divide subgraph

nner(G) into PI(PI1 ∪ PI2), QI, RI, II, BI and OI(OI1 ∪ OI2). If ME1 >

ob j(1) + 2, go to Step 2. If ME1 < mob j(1) − 2, go to Step 3. Other-

ise, conclude the optimization.
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Fig. 7. Two-dimensional displays of the WSD between real topologies and corresponding graphs with optimized NLS. Based on the quasi-symmetry of the NLS about 1, only

eigenvalues from 0 to 1 are shown in this figure. The x-axis represents the midpoints of equally spaced bins in [0, 1], and the y-axis represents the distribution of eigenvalues falling

in the bins. With different weighting values for the eigenvalue distribution, we find that eigenvalues moving toward 0 are more important.

Fig. 8. W̄A(s) and D̄A(s) curves of a synthetic AS graph with optimized ME1. The Inet-3.0 inputs are evaluated according to the real US Internet AS subgraph in the snapshot of

October 2011. Wobj is the WSDt of the real AS subgraph. (a) W̄A(s) curves with different TA values. (b) D̄A(s) curve with TA = 3000.
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Step 2. Let AltSet = {(v1, v2)|v1 ∈ OI, v2 ∈ PI2} ∪
(v1, v2)|v1 �= v2, v1 ∈ II ∪ PI2∪Set, v2 ∈ II}, where

et = {v̄ ∈ OI|Card(Nr(v̄) ∩ OI1) = 0}. If Card(AltSet) = 0, conclude

he optimization. If Card(AltSet) > 0, do the following:

Denote by AltSet(T ) = {ei}T
i=1

the top T edges in AltSet with de-

reasing order of MC1 = |du − dv| if WSDt ≥ Wob j and by AltSet(T ) =
ei}T

i=1
the top T edges in AltSet with increasing order of MC2 =

ax(du, dv) if WSDt < Wob j .

Denote by Gi the graph induced by adding the edge ei into graph

. Let

t (Gi, N) =
∑t

l=1

(
1 − 2l−1

k

)N ·
∣∣wl

Gi
− wl

ob j

∣∣ (B.1)

here {wl
Gi
}t

l=1
denotes the distribution of eigenvalues falling in

(2(l − 1)/k,2l/k]}t
l=1

(k = 30 and t = 10 are selected in this paper).
e calculate

∗ = argi min
i=1,··· ,T

Dt (Gi, N) (B.2)

nd add edge ei∗ to graph G. Go to Step 1.

Step 3. Let AltSet1 = {(v1, v2)|v1 ∈ II, v2 ∈ Set}, where Set =
v̄ ∈ OI|Card(Nr(v̄)∩ OI1) ≥ 2}. If Card(AltSet1) > 0, calculate i∗ simi-

ar to Eq. (B.2) and add edge ei∗ ∈ AltSet1 to graph G. If Card(AltSet1) =
, go to Step 4.

Step 4. Let AltSet2 = {(v1, v2)|v1, v2 ∈ BI, v2 ∈ Nr(v1)}.

If Card(AltSet2) > 0, do the following: denote by AltSet2(T ) =
ei}T

i=1
the top T edges in AltSet2 with decreasing order of MC1 if

SDt ≤ Wob j and by AltSet2(T ) = {ei}T
i=1

the top T edges in AltSet2

ith increasing order of MC2 if WSDt > Wob j . Denote by Gi the graph

nduced by deleting edge ei from graph G. We calculate

∗ = argi min
i=1,··· ,T

Dt (Gi, N). (B.3)
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and delete edge ei∗ from graph G. Additionally, some edges (zero, one

or two) from the operators (ii) and (iii) in Theorem 6 are added to

graph G (please note that a method similar to Eq. (B.2) is used for the

addition of edges). If Card(AltSet2) = 0, go to Step 5.

Step 5. Select a node v1 = argvminv∈OI(Card(Nr(v)\QI)) and

delete all edges (v1, v2), where v2 ∈ Nr(v1)\QI. Additionally, some

edges from the operators (ii)– iv) in Theorem 7 are added to graph

G. If node v1 cannot be found, conclude the optimization. Otherwise,

go to Step 1. �
The threshold T can be small for fast calculation of the algorithm

(e.g., we select T = 5 in this paper) because the WSD optimization is

another important task.

Appendix C. WSD optimization algorithm

Based on Sections 4 and 5, the WSD optimization can keep the

ME1 unaltered. Hence, this algorithm should be run after the ME1

optimization. To optimize the synthetic Internet AS graph G with op-

timized ME1, we should pay more attention to the Dt (G, N) metric,

which measures the difference between a synthetic graph G and the

corresponding real AS subgraph.

Denote by Dist (ei) the Dt (G, N) of a graph induced by adding

or deleting an edge ei for AS graph G and by AddSet(TA) the top

TA edges in AddSet (see Section 4) with decreasing order of MC1 =
|du − dv|. Let AddSet(TA) = {ea

i
}TA

i=1
, where Dist (ea

1
) ≤ Dist (ea

2
) ≤ · · · ≤

Dist (ea
TA

). Simultaneously, denote by DelSet(TD) the top TD edges in

DelSet (see Section 4) with decreasing order of MC1. Let DelSet(TD) =
{ed

i
}TD

i=1
, where Dist (ed

1
) ≤ Dist (ed

2
) ≤ · · · ≤ Dist (ed

TD
). Denote by W̄A(s)

and D̄A(s), respectively, the WSDt and Dt (G, N) of a graph induced by

adding a series of edges {ea
i
}s

i=1
to AS graph G and by W̄D(s) and D̄D(s),

respectively, the WSDt and Dt (G, N) of a graph induced by deleting a

series of edges {ed
i
}s

i=1
from AS graph G. If the deletion of edge ed

s al-

ters the nodes in sets P(G) and QI, add the edge to AS graph G again

and let W̄D(s) = W̄D(s − 1) and D̄D(s) = D̄D(s − 1).

According to the analyses of Fig. 8, we can obtain that i) there are

some relationships between W̄A(s) and D̄A(s) that are induced by dif-

ferent weighting values (1 − θ )N(θ ∈ (2(i − 1)/k, 2i/k]) of the eigen-

value distribution and ii) TA (or TD) can be smaller compared to the

study of Section 4. To optimize the Dt (G, N) metric, the algorithm of

Section 5 should be improved as follows:

(i) The thresholds TA and TD are set as constant and smaller values,

e.g., TA = TD = 3000 for US (Oct 2011) and TD = 2000 for RU

(Apr 2013).

(ii) The Wt (ei) metric is replaced by Dist (ei), and the Dist (ei) met-

ric is used to sort the edges in AddSet(TA) and DelSet(TD).

(iii) When sob j in Eq. (8) or Eq. (9) is calculated, we calculate

s∗
ob j = args min

s∈Set
D̄A(s) (C.1)

or

s∗
ob j = args min

s∈Set
D̄D(s) (C.2)

where Set = {s|s = sob j − i · T ∗; i = 1, 2, . . . ; s ≥ 1} and T ∗ is 1, 2 or 3.

Then, add (or delete) the edges {ea
i
}s∗

ob j

i=1
(or {ed

i
}s∗

ob j

i=1
) for AS graph G and

conclude the algorithm. �
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