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a b s t r a c t

An integrated routing risk model is constructed, which takes into account the effects of unicast routing on

DiffServ network risk consisting of the impacts of interrupted services on network users and path availability.

With the objective of minimizing integrated routing risk, a novel controllable chaotic immune routing algo-

rithm (CCIRA) is proposed. Due to the inefficiency of traditional path generation methods, a path generation

method based on chaotic search and dynamic adjacency matrix is proposed, improving the generation effi-

ciency of available solutions of routing optimization algorithms. An evolutionary strategy which combines

dynamic vaccination and free mutation is used in order to ensure the population diversity and the global

convergence of CCIRA. Chaotic search is introduced to population initialization, vaccination and free muta-

tion in order to overcome the uncertainty of the optimization process and optimization results in traditional

evolutionary algorithms due to the crossover and mutation strategies being based on random numbers. Sim-

ulation results prove that CCIRA is highly efficient and practical. Combining the integrated routing risk model

and CCIRA, the risk control performance of our risk-aware routing algorithm is also proved to be superior by

the comparison with other algorithms.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

No matter how ingenious new techniques are, network unit fail-

res will always happen [1] naturally or artificially, causing different

egrees of impact on network users. Network risk can be character-

zed by failure probability and the network loss (i.e., the impacts of

nterrupted services on network users) caused by failures. In Diff-

erv networks, traffic entering a network is classified and possibly

onditioned at the boundaries of the network, and assigned to dif-

erent behavior aggregates in terms of service level agreement (SLA)

2]. The interruption of a service with high service level will cause

reater impact on the network users then the interruption of a service

ith low service level. Therefore, in addition to service bandwidth,

new metric called service importance, is introduced in this paper

o characterize the distinction between traffic with different service

evels. The higher the service level, the larger the service importance

alue. It is worth noting that service with high service importance

ay have a small bandwidth. In other words, service importance and

andwidth have no direct relationship, which leads us to measure the
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etwork loss by different metrics. In this paper, a DiffServ network is

bstracted as different logical layers based on different metrics of net-

ork risk. We defined three network logical layers: the service layer,

ransport layer and physical topology layer, and the risk of a link in

hese three layers is depicted by the service importance metric, ser-

ice bandwidth metric and path availability metric, respectively. The

oal of our research is finding a unicast routing which can minimize

he network risk in the three logical layers.

From different perspectives, network risk is studied based on dif-

erent metrics. Focusing on the business aspect, a risk-aware design

nd management of resilient networks is proposed in [3], which mea-

ured network risk by Value-of-Risk, the maximum penalty to a sin-

le service or a whole network with a given confidence interval, due

o SLA violation, and presented five risk mitigation strategies con-

idering different trade-offs between budget for risk mitigation and

alue-of-Risk. In addition to considering penalty defined in SLA, liter-

ture [4] characterized network risk by the product of the penalty per

nit time and the probability of network-element failures caused by

isasters, and proposed a heuristic algorithm based on finding short-

st paths by transforming the penalty, probability of link failures, and

ree wavelength number into link cost. Penalty is usually determined

ased on service importance and service bandwidth respectively cor-

esponding to the risk metrics of service layer and transport layer in

ur research.
rithm for risk-aware routing in DiffServ networks, Computer Com-
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Path availability is also a common network risk metric. In order to

find the maximum available path under multiple link failures, a series

of algorithms are proposed in [5] based on shared risk link groups

(SRLGs), which transforms a link belonging to multiple SRLGs into

multiple links each belonging to one SRLG and finds a shortest path

covered by a SRLG set with the maximum availability using polyno-

mial algorithms or heuristic algorithms. In [6], a risk-aware routing

method in optical mesh networks was proposed, which characterizes

the quality of a network’s optical-layer routing by SLA violation risk

instead of statistical path availability because of the inefficiency of

path availability alone as the routing metric, and transforms the risk

into the failure arrival rate of reference links for calculating the low-

risk paths by Dijkstra algorithm. Path availability corresponds to the

risk metric of physical topology layer in our research if link availabil-

ities are similar to each other.

Other than metric-based network risk research, a dynamic risk-

aware routing for OSPF resilient networks is proposed in [7], which

takes advantage of existing failure prediction technologies to antici-

pate failures and prompt traffic flow to avoid the failures by assigning

a high weight to the links related to these failures. Network avail-

ability and routing oscillations using this routing mechanism are es-

timated based on an analytical model, and the results show that the

gain is proportional to the ratio of correctly identified failures to the

number of all predictions. Jeon et al. [8] proposed a fully distributed

algorithm for minimum delay routing under heavy traffic based on

Dijkstra algorithm, which is essentially the use of all or part of the

link information to achieve network load balancing and minimize the

network risk. In [9,10], power communication network routing algo-

rithms were proposed, which can reduce data transmission risk by

considering two indexes: ‘service risk degree’ and ‘service risk bal-

ance degree’. NSGAII [11] in [9] and an improved Dijkstra algorithm in

[10] are used to optimize routing so as to minimize the two indexes.

Network risk should include two factors: failure probability and

network loss caused by failures, so risk-aware routing algorithms

considering only one factor are one-sided. The approaches taking

penalty as network loss are not always optimal due to service pro-

visioning being led by business rather than technological conditions

[3]. Additionally, in some special DiffServ networks (e.g., power com-

munication networks), network loss can’t be measured by penalty

but by actual impacts on users. Therefore, we depict the impact by

service importance in the service layer and occupied bandwidth in

the transport layer, while depicting the probability by path availabil-

ity in the physical topology layer, and present a cross-layer integrated

routing risk model.

The routing problem considering integrated network risk can be

thought of as a multi-constrained routing problem which is a NP-

complete problem [12]. Many researchers have used evolutionary al-

gorithms to solve the multi-constrained routing problem such as hy-

brid genetic algorithm (GA) [13], quantum GA [14,15], chaotic GA [16],

immune GA [17] and NSGAII [18,19]. One of the problems with us-

ing evolutionary algorithms in routing is the efficiency of generating

available solutions (paths). If fixed length binary or natural number

encoding mode is used to generate solutions randomly, a large num-

ber of unavailable solutions will be generated because most network

topology graphs are not complete graph, which reduce the efficiency

of evolutionary algorithms seriously. Some scholars have to research

routing algorithms based on complete graphs [18]. In [16] and [17]

respectively, methods based on tabu and chaotic search using vari-

able length natural number encoding are proposed to generate so-

lutions. However, both methods require removing loops once paths

are found, which reduces the available path generating efficiency to

some extent.

Another problem with the use of evolutionary algorithms in rout-

ing is the uncertainty of output solutions due to the existing of

crossover and mutation probabilities. In traditional evolutionary al-

gorithms, the execution of crossover and mutation operations on an
Please cite this article as: B. Fan et al., A controllable chaotic immune algo

munications (2015), http://dx.doi.org/10.1016/j.comcom.2015.11.003
ntibody depends on whether a random number is within the proba-

ility interval. This causes uncertain results, which may be most ideal,

ess than ideal or even poor, from a single run even if population

ize and iterations are known. As a result, many scholars resort to

sing the mean of many runs to prove the superiority of the algo-

ithm [18,20–22]. However, this level of uncertainty is not acceptable

n some practical applications such as electric power system commu-

ication.

In order to improve the efficiency of generating available path so-

utions of routing optimization problem, a path generation algorithm

ased on chaotic search and dynamic adjacency matrix (CDPGA) is

resented which can directly calculate an available path without

oops. Utilizing the pseudo-randomness and ergodicity of chaotic

earch and the rapid convergence of artificial immune algorithms,

novel algorithm which integrates dynamic vaccination and free

utation is proposed in the form of the controllable chaotic im-

une routing algorithm (CCIRA), which is able to increase the con-

ergence speed and guarantee the global optimization capability. Be-

ause chaotic search is used in each stage of CCIRA, the ergodicity of

he optimization and the determinacy of obtaining optimal solutions

s guaranteed, which increases the controllability and practicality of

he algorithm.

The rest of this paper is organized as follows. Section 2 introduces

he integrated routing risk model. In Section 3, CDPGA and related

roof, the dynamic vaccination method, and the overall description

f CCIRA are presented. The performance simulation and analysis of

CIRA is given in Section 4. Finally, the conclusions are discussed in

ection 5.

. Integrated routing risk model

.1. Service layer risk

Service importance can be used to describe the degree of impact

n network users due to the interruption of data streams with dif-

erent service levels in a DiffServ network. For example, a service

or a real-time production data stream in power communication net-

orks is more important than a service for a non-real-time office data

tream [23]. If the data streams with large service importance values

re concentrated on a small number of links in a network, then the

etwork risk is high because a failure in these links will cause a lot of

etwork loss (i.e., make a significant impact on network users). Con-

ersely, if the service importance values of the data streams are dis-

ributed uniformly on all links, failures on a link will cause relatively

ess network loss. In this paper, we use the distribution of service im-

ortance value on links to describe the service layer risk.

In the information field, for a ε-ary source, the information en-

ropy is given by

= −
ε∑

e=1

pelog2 pe, 0 ≤ H ≤ log2ε (1)

here
∑

pe = 1, and when pe = 1
ε the entropy H = Hmax = log2ε

24]. If pe represents a certain distribution or denotes the proportion

f the eth part of an entirety, the more uniform the distribution, the

arger the entropy value. This conclusion has been applied to assess-

ng and optimizing portfolio risk [25,26]. In this paper, we use this

onclusion to measure the equilibrium degree of the distribution of

ervice importance values on links.

A service layer network model is denoted as G = (V,E,I), where V

s the node set, E is the link set, I is the distribution of service im-

ortance values on the links in set E, and Ie is the service importance

alue on link e. The service layer risk is defined as

X = 1 − −∑
e∈E (Īe · log2(Īe))

log2(|E|) , RX ∈ (0, 1), (2)
rithm for risk-aware routing in DiffServ networks, Computer Com-

http://dx.doi.org/10.1016/j.comcom.2015.11.003


B. Fan et al. / Computer Communications 000 (2015) 1–10 3

ARTICLE IN PRESS
JID: COMCOM [m5G;December 10, 2015;10:57]

w

I

c

r

m

t

t

m

t

2

l

u

t

G

t

b

R

w

F

i

t

2

p

a

t

p

s

s

n

n

t

r

w

B

s

t

p

R

s

t

2

o

t

l

o

e

s

t

u

a

r

p

w

R

⎧⎪⎨
⎪⎩
w

a

s

E

t

c

m

w

o

i

a

e

r

i

3

3

n

t

T

b

c

a

B

f

i

t

r

a

o

b

i

u

i

j

A

w

a

here

ē = Ie∑
e′∈E

Ie′
(3)

orresponding to the pe in Eq. 1 is the normalized value of Ie, |E| cor-

esponding to the ε in Eq. 1 is the cardinality of set E. In Eq. 2, the

ore uniform the distribution of service importance values on links,

he larger the value of the entropy − ∑
e∈E

(Ie · log2(Ie)). In order to in-

egrate the service layer risk with other layer risk and convert the

onotonicity, the entropy is normalized by Eq. 2 in which the smaller

he value of RX, the lower the network service layer risk.

.2. Transport layer risk

Within the network transport layer, the index to measure network

oss is occupied bandwidth. Similar to the service layer risk model, we

se the distribution of occupied bandwidth on links to describe the

ransport layer risk. A transport layer network model is denoted as

= (V,E,F), where V and E are the same as in 2.1, F is the distribu-

ion of occupied bandwidth within link set E, and Fe is the occupied

andwidth of link e. The transport layer risk is defined as

Y = 1 − −∑
e∈E (Fe · log2(Fe))

log2(|E|) , RY ∈ (0, 1), (4)

here

e = Fe∑
e′∈E

Fe′
(5)

s the normalized value of Fe. The smaller the value of RY, the lower

he network transport layer risk.

.3. Physical topology layer risk

In the research on network risk based on network topology, some

hysical link features, such as distance between the nodes joined by

link, link failure probability, link betweenness and so on, can be

ransformed into a link weight. If the link weights are additive or ap-

roximately additive, the problem of minimizing network risk can be

olved by searching the shortest paths (i.e., all paths with the smallest

um of link weights) in a weighted network. Therefore, in a weighted

etwork, the smaller the sum of service path length, the lower the

etwork risk within physical topology layer. For this reason, we use

he sum of service path length to describe the physical topology layer

isk.

A physical topology layer network model is denoted as G=(V,E,B),

here G is a weighted network, V and E are the same as in 2.1, and

is the network service set. The actual path of service b is p(b), the

hortest path on the physical topology layer of service b is p∗(b), and

he path length of p(b) and p∗(b) are Dp(b) and Dp∗(b), respectively. The

hysical topology layer risk is defined as

Z = 1 −
∑

b∈B Dp∗(b)∑
b∈B Dp(b)

, RZ ∈ (0, 1). (6)

In Eq. 6, the closer the sum of actual service path length is to the

um of shortest service path length, the smaller the value of RZ, i.e.,

he lower the physical topology layer risk.

.4. Integrated routing risk model

In a DiffServ network, service importance is the most direct metric

f the impacts on users when there is a service outage. Therefore, if

he difference between the importance of different services is rather

arge, routing should first consider the network’s service layer risk in

rder to minimize the damage from attacks or natural failures. How-

ver, if network services have same or similar importance, routing
Please cite this article as: B. Fan et al., A controllable chaotic immune algo
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hould primarily consider the network’s transport layer risk in order

o minimize the loss of network traffic from attacks or natural fail-

res. Finally, if network services have a similar degree of importance

nd bandwidth, routing should consider the physical topology layer

isk in order to find the paths with higher availability and reduce the

robability of service paths being attacked.

Taking the above into account, an integrated routing risk model

ith adaptive parameters is defined as

= αRX + βRY + γ RZ, R ∈ (0, 1). (7)

The values of α, β and γ are

α = 1 − e(
ηmin−ηmax

ηmax
)

β = (1 − α)(1 − e(
θmin−θmax

θmax
)),

γ = (1 − α)e(
θmin−θmax

θmax
)

(8)

here α + β + γ = 1, ηmin and ηmax are respectively the minimum

nd maximum importance value of services, θmin and θmax are re-

pectively the minimum and maximum bandwidth of services. In

q. 8, if ηmax is far away from ηmin, α will be close to 1, which means

he network risk is mainly decided by the service layer risk. On the

ontrary, if ηmin and ηmax are very close, α will be close to 0, which

eans the services have the same or similar importance, so the net-

ork risk is mainly decided by other factors. Similar to the meaning

f α, β is the coefficient of transport layer risk. When α is close to 0,

f θmin and θmax are far away from each other, the value of β is large

nd the network risk is mainly decided by transport layer risk. Oth-

rwise, the network risk is mainly decided by physical topology layer

isk. On the whole, the smaller the value of R, the lower the network’s

ntegrated routing risk.

. Controllable chaotic immune routing algorithm

.1. Path generation

The traditional binary path generation method encodes a network

ode with a binary string and then uses random binary combinations

o generate random nodes in order to obtain a random path [27,28].

his method is very inefficient because it will generate a large num-

er of invalid path solutions for incomplete graphs. The decimal en-

oding path generation methods mostly use hop-by-hop searching

nd are more efficient for incomplete graphs than binary encoding.

ut in order to avoid loops in paths, the visited nodes are removed

rom the topology during the search process [29], which may result

n no path being found. To ensure the methods can find the destina-

ion node, others scholars allows the appearance of loops in search

esults [16,17], which attaches a removing loop step to the methods

nd decreases the efficiency. In order to further increase the efficiency

f path generation, this paper proposes a path generation algorithm

ased on CDPGA, which we called the CDPGA algorithm.

Assuming that s is the source node, d is the destination node, vx

s the current node in the path generation process, v−
x and v+

x are the

pstream and downstream nodes of vx respectively, network G=(V,E)

s a simple, connected, undirected graph, and the initial network ad-

acency matrix is

0 =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .

an1 an2 . . . ann

⎤
⎥⎥⎥⎦, (9)

here

i j = aji =
{

1, link(vi, v j) ∈ E

0, others
, (10)
rithm for risk-aware routing in DiffServ networks, Computer Com-
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Algorithm 1

Path generation algorithm based on chaotic search and dynamic adjacency matrix

(CDPGA)

1: Input: G=(V,E), s, d, A0.

2: Output: p(s,d).

3:

4: Let p(s,d)={s}, A=A0, vx = s, ϕi = {v j|ai j = 1, ai j ∈ A,∀ j};

5: while vx �= d do

6: ϕi = ϕi − {vx},∀i;

7: A=update(A);

8: If in A, ϕx �= φ then

9: Use chaotic search to find the downstream node v+
x ;

10: Add v+
x to p(s,d);

11: Let vx = v+
x ;

12: else if vx = s then

13: return FAILURE;

14: Else

15: Remove node vx from p(s,d);

16: Let vx = v−
x (the upstream node of vx in p(s,d));

17: end if

18: end while

19: return p(s,d);
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n = |V |, the path generation algorithm is as follows:

Initially, let the current adjacency matrix A = A0, the current

node vx = s, the current path node set p(s,d)={s}, and the neigh-

bor node set of node vi in the current adjacency matrix A be ϕi =
{v j|ai j = 1, ai j ∈ A,∀ j}. Then, perform ϕi = ϕi − {vx}, i = 1, 2, . . . , n,

i.e., make all elements of the xth column of A be ‘0’. The new adja-

cency matrix is denoted by A’, and let A=A’. If in A, ϕx �= φ, find the

downstream node v+
x using chaotic search and add node v+

x to the

path node set p(s,d). Let vx = v+
x , and iterate above process exclud-

ing the initial part until finding the destination node d. In order to

avoid generating loops, all nodes in p(s,d) will be removed from the

neighbor node sets of all nodes in the network before searching a new

path node. In the iteration, if the number of a node’s neighbor is zero,

it is indicated that the algorithm cannot find the destination node

through this node, so this node will be removed from the network

and the algorithm will return to the upstream node to continue to

search the path. The pseudo-code of CDPGA is shown in Algorithm 1.

The chaotic search method uses a pseudo-random number δ
within an interval (0,1) generated by a chaotic system to calculate

m = ceil(δ · h) (11)

in which h is a search object-related parameter and here h = |ϕx|, the

function of ceil(.) is rounding up, and the mth element of ϕx is the

downstream node v+
x .

The effectiveness of the algorithm is proved below:

Proposition 1. The algorithm is able to find path p(s,d) in connected

graph G.

Proof. Since G is a connected graph, path p(s,d) must exist and so its

node set can be denoted as p(s, d) = {v1, v2, v3, . . . , vL−1, vL} where

v1 = s, vL = d and d ∈ ϕL−1 ⇒ ϕL−1 �= φ. If Proposition 1 is not true

and the algorithm terminates without finding a valid path, accord-

ing to the termination conditions in step 5 it can be deduced that

ϕ1 = φ. Denoting the neighbor node set of v1 in A0 by ϕ0
1

, then

v2 ∈ ϕ0
1

⇒ ϕ2 = φ, otherwise the algorithm will search for the down-

stream node of v2 in ϕ2and will not terminate. Similarly, ϕ2 = φ ⇒
ϕ3 = φ ⇒ · · · ⇒ ϕL−1 = φ. ϕL−1 = φ and ϕL−1 �= φ conflict, so the hy-

pothesis cannot be established and Proposition 1 is confirmed.

Proposition 2. Paths obtained by the algorithm do not contain loops.

Proof. If Proposition 2 is not true and the algorithm obtains a path

with loops, p(s, d) = {s, v2, v3, . . . , vL′−1, vL′ , . . . , d}can be assumed

where vL′ = v3. According to steps 4 and 2, after v3 is added to p(s, d)

as the downstream node of v2, v3 /∈ ϕi(i = 1, 2, ..., n) ⇒ v3 /∈ ϕL′−1.

When the algorithm reaches vx = vL′−1, v+
x = vL′ = v3 ⇒ v3 ∈ ϕL′−1.
Please cite this article as: B. Fan et al., A controllable chaotic immune algo

munications (2015), http://dx.doi.org/10.1016/j.comcom.2015.11.003
3 ∈ ϕL′−1 and v3 /∈ ϕL′−1 conflict, so the hypothesis cannot be estab-

ished and Proposition 2 is confirmed.

.2. Dynamic vaccination

To ensure that good genes can be preserved during evolution pro-

ess, artificial immune algorithms use the vaccination strategy which

s that some of the antibody genes are assigned values directly based

n prior knowledge [30], and do not mutate during the mutation pro-

edure. However, multi-constrained routing problems have no prior

nowledge, and the antibody length changes randomly. Therefore,

t is impossible to use traditional vaccination methods which select

onstant genetic positions to assign values. This paper suggests a dy-

amic vaccination method based on chaotic search, which is able to

argely retain the outstanding genes and increase the convergence

peed of CCIRA.

Assuming an outstanding antibody asp(s0, d0) =
s0, v2, v3, . . . , vL−1, d0}, where L = |p(s0, d0)|, substitute h = L

nto Eq. 11, so that

=
{

L − l − 1, mod(m, L − l − 1) = 0

mod(m, L − l − 1), mod(m, L − l − 1) �= 0
, (12)

here l is the dynamic vaccination parameter that denotes the num-

er of mutating genes in the antibody; L − l is the length of the vac-

ine, which actively changes according to the length of the antibody;

od(.) is the remainder function; and the genes preserved by vacci-

ation are denoted by p′(s0, d0) = {s0, v2, . . . , vy} ∪ {vy+l+1, . . . , d0}.

et s = vy, d = vy+l+1, and search for a new path p(vy, vy+l+1) using

he CDPGA algorithm. Then a new antibody p′′(s0, d0) = p′(s0, d0) ∪
p(vy, vy+l+1) is generated after vaccination. In order to avoid the ap-

earance of loops during mutation, ϕi = ϕi − p′(s0, d0), i = 1, 2, ..., n,

eeds to be performed before running the CDPGA algorithm.

In the antibody selection step of CCIRA, the paths generated af-

er dynamic vaccination are compared to the original paths. The out-

tanding antibodies will be preserved and the others will freely mu-

ate or be discarded. In reality, the dynamic vaccination method uses

he ergodicity of chaotic search to compensate for the lack of prior

nowledge in order to find genuine outstanding genes and to retain

hem.

.3. Overall algorithm realization

In order to minimize the integrated network routing risk, Eq. 7

s selected as the affinity function of CCIRA. The smaller the affin-

ty function value, the more outstanding the antibody. Assuming that

ervice b is assigned to a newly arrived service request, s0 is the

ource node, d0 is the destination node, bim is the importance value,

f is the needed bandwidth, the steps of the algorithm are as follows:

Step 1: Population initialization

Let N be the population size, G be the maximum iterations, and the

urrent generation number g = 1. Using chaotic equation to obtain

matrix C = [δi, j] where δi, j is in interval (0,1) and is the required

haotic value of the jth search for the downstream node of the ith

ode, the CDPGA algorithm is used to generate N valid paths to form

he initial population P0(g) = {p0
1
(g), p0

2
(g), . . . , p0

N
(g)}.

Step 2: Affinity calculation and antibody selection

Assigning each antibody (path) in P0(g) to service b, the network

ntegrated routing risk after adding service b is calculated by Eq. 7.

ssuming the qth antibody in P0(g) is p0
q(g), Ie in Eq. 3 and Fe in Eq. 5

re calculated as follows:

e =
{

I0
e + bim, e ∈ p0

q(g)

I0
e , e /∈ p0

q(g)
, (13)
rithm for risk-aware routing in DiffServ networks, Computer Com-
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Algorithm 2

Controllable chaotic immune routing algorithm (CCIRA)

1: Input: s0, d0, bim , bf , N, G, C, λ, μ.

2: Output: the optimal path p(s0, d0).

3:

4: Let g=1;

5: Generate N paths from s0 to d0 using CDPGA to constitute population

P0(g) = {p0
1(g), p0

2(g), . . . , p0
N(g)};

6: while g ≤ G do

7: for q=1 to N;

8: Compute R in Eq. 7 when the path of service b is p0
q(g);

9: Let the affinity of Antibody q be R(q)=R;

10: end for

11: Sort the antibodies in P0(g) in ascending order according to their

affinities, resulting in P1(g) = {p1
1(g), p1

2(g), . . . , p1
N(g)};

12: Let S =ceil(λ · N);

13: Select the first S antibodies from P1(g) to form current memory

population M(g);

14: if g =G then

15: Return the best antibody in M(g);

16: end if

17: Let P2(g) = φ;

18: for q=1 to S

19: Clone the antibody q in M(g) with the scale

cq = round(μ · 1−R(q)
S∑

q=1

(1−R(q))

);

20: P2(g) = P2(g)∪{cloned antibodies};

21: end for

22: Perform Dynamic Vaccination on P2(g), resulting in P3(g);

23: Let P4(g) = {p1
S+1(g), p1

S+2(g), . . . , p1
N−H (g)}, where H = |p3

q(g)| s.t.

S + H < N;

24: Perform Free Mutation on P4(g), resulting in P5(g);

25: Let P0(g + 1) = M(g) ∪ P3(g) ∪ P5(g), g=g+1;

26: end while

Fig. 1. LATAX network topology, and background service importance value.
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e =
{

F 0
e + b f , e ∈ p0

q(g)

F 0
e , e /∈ p0

q(g)
, (14)

here I0
e and F 0

e denote the service importance value and occupied

andwidth respectively of link e in the network before adding service

. The antibodies are then sorted in ascending order of affinity, and
0(g) is changed to P1(g) = {p1

1
(g), p1

2
(g), . . . , p1

N
(g)}.

Select the first S antibodies from P1(g) to form current memory

opulation M(g), where S =ceil(λ · N) and λ ∈ (0, 1) is the M(g) scal-

ng factor.

If g = G, the best antibody in M(g) is selected to output and the

lgorithm terminates. Otherwise, go to step 3.

Step 3: Dynamic vaccination

In order to increase the probability of preserving the excellent

enes, the antibodies in M(g) are cloned and the clone number of the

th antibody is

q = round

⎛
⎜⎜⎝μ · 1 − R(q)

S∑
q=1

(1 − R(q))

⎞
⎟⎟⎠, (15)

here R(q) is the integrated routing risk of antibody q, and μ is the

lone scaling factor. The cloned antibodies constitute the clone popu-

ation P2(g) = {p2
1(g), p2

2(g), . . . , p2
H(g)}, where H =

S∑
q=1

cq. In accor-

ance with the dynamic vaccination method described in Section

.2, the antibodies in P2(g) are vaccinated and mutated in or-

er to generate the vaccinated clone mutation population P3(g) =
p3

1
(g), p3

2
(g), . . . , p3

H
(g)}.

Step 4: Free mutation

Free mutation is used to prevent the algorithm from stop-

ing at a local optimum and improve the global search abil-

ty. In order to simplify the algorithm, the values of λ and μ
an be appropriately assigned so that S + H < N. Then the an-

ibodies in the population P4(g) = {p4
1
(g), p4

2
(g), . . . , p4

N−S−H
(g)} =

p1
S+1

(g), p1
S+2

(g), . . . , p1
N−H

(g)} are freely mutated. Assuming the qth

ntibody of P4(g) is p4
q(g) = {s0, v2, v3, . . . , vL−1, d0}, L = |p4

q(g)|, sub-

tituting h = L into Eq. 11, if m �= L, use the CDPGA algorithm to search

new path p(vm, d0) for obtaining the freely mutated antibody

p5
q(g) = {s0, v2, . . . , vm−1} ∪ p(vm, d0). If m = L, repeat chaotic search

nd free mutation. The post-free mutation population is P5(g) =
p5

1
(g), p5

2
(g), . . . , p5

N−H−S
(g)}.

Step 5: Population updating

The new population generation is P0(g + 1) = M(g) ∪ P3(g) ∪
5(g). Let g=g+1, and return to step 2.

The pseudo-code of CCIRA is shown in Algorithm 2.

. Optimization performance of CCIRA

.1. Simulation environment and parameters

Evolutionary algorithms are most suitable for relatively large net-

orks. Therefore, this paper selected the LATAX network (shown in

ig. 1) with 24 nodes and 46 links and the Italian national network

ITNA network) (shown in Fig. 2) with 33 nodes and 68 links [31] as

imulation networks.

Referring to [23], there are 5 types of services in the network

nd their importance value vector is (0.99,0.94,0.62,0.29,0.13). Ac-

ording to the traffic data in [32] and the classification method

roposed in [23], the unitized service bandwidth vector is

2.048,2.048,0.133,1.387,3.547).The numbers of existing services

n the two networks are bLATAX = 50 and bITNA = 200 respectively.

he type and source/destination nodes of existing services are

andomly allocated, and the existing service paths are the shortest
Please cite this article as: B. Fan et al., A controllable chaotic immune algo

munications (2015), http://dx.doi.org/10.1016/j.comcom.2015.11.003
aths. In Fig. 1, the number on top of each link indicates the unitized

ink length, and the numbers in brackets next to each link indicate

he importance value and the occupied bandwidth of the link respec-

ively. Because there are a large number of nodes and links, only the

ink lengths are shown in Fig. 2.

The simulation parameters are as follows: the new service b is a

ype two service; bim = 0.94; b f = 2.048; the source and destination

odes in the LATAX and ITNA networks are (v1, v25) and (v1, v29) re-

pectively; the population size N=30; the iterations G=50; the M(g)

caling factor λ = 0.2; the clone scaling factor μ = 0.4; and the dy-

amic vaccination parameter l = 2. According to Eq. 8, the affinity

unction R = 0.58RX + 0.26RY + 0.16RZ .

Because chaotic search is used in three stages – path generation,

ynamic vaccination and free mutation, chaotic sequences with a
rithm for risk-aware routing in DiffServ networks, Computer Com-

http://dx.doi.org/10.1016/j.comcom.2015.11.003


6 B. Fan et al. / Computer Communications 000 (2015) 1–10

ARTICLE IN PRESS
JID: COMCOM [m5G;December 10, 2015;10:57]

Fig. 2. ITNA network topology and occupied bandwidth distribution.

Table 1

Optimal paths and R(g)min of the three algorithms.

Algorithm R(g)min Optimal path p(v1,v25)

CCIRA 0.0644 p={1,3,7,10,14,15,11,12,20,19,28,27,26,17,16,21,22,24,25}

QCGA 0.0648 p={1,3,4,8,12,20,19,28,27,26,17,16,21,22,24,25}

IGRA 0.0648 p={1,3,4,8,12,20,19,28,27,26,17,16,21,22,24,25}
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single state variable (e.g. Logistic chaotic sequences) may correlate

between different stages. To avoid the correlations, this paper uses

the hyper-chaotic system and mapping method in [33] to generate

five chaotic sequences within interval (0,1), in which the sequence

of state variable x1, x2 and x3 are used for path generation, dynamic

vaccination, and free mutation, respectively.

4.2. Simulation results and analysis

In this section, as our main goal is to prove the outstanding per-

formance of CCIRA in solving routing problems, we select the QoS

chaotic GA (QCGA) in [16] and the immune genetic routing algorithm

(IGRA) in [17] to compare with CCIRA. During the simulation, the

crossover and mutation probabilities in QCGA are pc=0.7 and pm=0.1

respectively, while in IGRA pc=0.5 and pm=0.1, as shown in [16] and

[17]. It is worth noting that our integrated routing risk model is an

open model, which means if service importance is measured by ser-

vice penalty and path length is calculated based on link availability,

our integrated routing risk model can contain the risk factors men-

tioned in [3-6].

The minimum integrated routing risk of the gth generation and

the entire optimization process is denoted by R(g) and R(g)min, re-

spectively. When there are no constraints, the optimization processes

of all three algorithms on the LATAX network are shown in Fig. 3. The

optimal paths and their R(g)min values obtained by the three algo-

rithms are shown in Table 1.

From Fig. 3, it can be seen that the optimization process of CCIRA

is stationary and produces the best output of all three algorithms;

QCGA falls into local optimum at g = 24; IGRA is good at maintaining

population diversity due to the introduction of antibody concentra-

tion, but in [17] an elite preservation strategy is not utilized resulting

in the emergence of an oscillatory state. However, at g = 42 the local

optimal solution of IGRA is the same as QCGA. In Table 1, the three
Please cite this article as: B. Fan et al., A controllable chaotic immune algo

munications (2015), http://dx.doi.org/10.1016/j.comcom.2015.11.003
lgorithms obtained similar optimal paths with the same path seg-

ents {1,3} and {12,20,19,28,27,26,17,16,21,22,24,25}. The similarity

ercentage is above 60%, which confirms the existence of a vaccine

uring the antibody evolution and that vaccination can be used to

ccelerate the convergence rate.

The three algorithms attempt to traverse all links with the small-

st service importance value and occupied bandwidth in order to

inimize the integrated routing risk. This causes long paths that can

e seen in Fig. 1, which may not meet the delay requirements of some

ervices in practice because there are no constraints on the algo-

ithms and the difference of service importance values and occupied

andwidth between the different types of services in the network is

elatively large. Taking this into consideration, a delay constraint –

maximum number of path nodes denoted by Hpmax (the service

elay in this paper is mostly generated by node forwarding) – can

e added to the algorithms according to the service requirements. In

his paper, Hpmax(LATAX)=10, Hpmax(ITNA)=15. In order to maintain

he efficiency of the algorithms under the constraint, during the op-

imization, if an antibody is unable to meet the constraint, its R value

ill be set to ‘1’ instead of being re-generated.

Under the constraint, two simulations were performed on the

ATAX and ITNA networks respectively and the results are shown in

igs. 4 and 5.

It is obvious that the optimization processes and results of QCGA

nd IGRA are stochastic because the crossover and mutation strate-

ies are based on probability. In Fig. 4(a), QCGA finds a local optimal

olution at g=32 when R(g)min=R(32)=0.0709; while in Fig. 4(b) it

nds a local optimal solution at g = 41 when R(g)min=R(41)=0.0727,

howing distinct differences both in the optimization process and re-

ults. In Fig. 4(a), IGRA finds a local optimal solution at g=44 when

(g)min=R(44)=0.0722; while in Fig. 4(b), a local optimal solution is

ound at g = 40 when R(g)min=R(40)=0.0731 which is inferior to the

ptimal solution found in Fig. 4(a). The simulation results described

bove indicate that the uncertainty of the optimization process and

olutions is a common problem of evolutionary algorithms based on

rossover or mutation probability. In a practical application, the un-

ertainty will cause problems when it comes to setting parameters

uch as population size and iterations, and possibly outputting a poor

olution after a single run.

On the contrary, the processes and results of CCIRA are entirely

onsistent during the two simulations as shown in Fig. 4. The

ptimal solutions of both simulations are similar at g = 19 when

(g)min=R(19) = 0.0702 and are superior to the solutions of both

CGA and IGRA. The dynamic vaccination ensures that CCIRA is

ighly efficient at local optimization, while the free mutation is

tilized for breaking out of the local optimum and ensuring global

ptimization. These two procedures enable CCIRA to quickly con-

erge to a new optimal solution once it breaks out of local optimum.

CIRA takes full advantage of the pseudo-randomness and ergodicity

f chaotic search to achieve antibody mutation and dynamic vaccina-

ion instead of stochastic strategies based on probability in order to

se the determinacy of chaotic trajectory in phase space to overcome

he uncertainty of traditional algorithms. From the simulation results

t can be seen that the novel mutation and dynamic vaccination

trategies not only ensure the determinacy but also improve the

erformance of evolutionary algorithms. In CCIRA, chaotic search is

sed in each of the three important stages: path generation, dynamic
rithm for risk-aware routing in DiffServ networks, Computer Com-
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Fig. 3. Optimization processes of the three algorithms with no constraints.
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Fig. 4. Results of two random simulations on the LATAX network.
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accination, and free mutation, giving the algorithm a degree of con-

rollability compared to other evolutionary algorithms. For example,

e can change the chaotic trajectory by setting the initial value or

arameters of the chaotic system to improve the performance of

CIRA.

Similar results are shown in Figs. 4 and 5, but the performance

f IGRA declined compared to both QCGA and CCIRA with the opti-

al solution being noticeably inferior to both algorithms. Since the

TNA network has a larger number of nodes and links compared to

he LATAX network, the solution space becomes larger, which causes

CIRA to be only able to find the optimal solution at g = 40. Because

GRA introduces antibody concentration and the differences between

ntibodies will increase in a larger solution space, the effect of anti-

ody concentration rather than affinity on the optimization orienta-

ion increases, reducing the performance of IGRA.
Please cite this article as: B. Fan et al., A controllable chaotic immune algo

munications (2015), http://dx.doi.org/10.1016/j.comcom.2015.11.003
To demonstrate that the superior overall performance of CCIRA

ompared to QCGA and IGRA is not limited to only two random sim-

lations, we compared the means of 50 simulation results for both

CGA and IGRA with the results of CCIRA on the LATAX and ITNA net-

orks. As shown in Fig. 6(a), on the LATAX network, QCGA and IGRA

onverged slowly and CCIRA is distinctly superior to QCGA and IGRA

oth in terms of convergence rate and output solution performance.

n Fig. 6(b), on the ITNA network, QCGA and IGRA converge fast, but

hen g > 10, they both fall into local optimum and converge very

lowly. When g ≤ 20, QCGA is superior to CCIRA both in terms of con-

ergence rate and solution performance. However, when g > 20, its

erformance is inferior to CCIRA because of prematurity. Similar to

he results of a single simulation, the performance gap between IGRA

nd the other two algorithms is more evident in Fig. 6(b) due to the

arger solution space.
rithm for risk-aware routing in DiffServ networks, Computer Com-
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Fig. 5. Results of two random simulations on the ITNA network.
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Fig. 6. Overall performance comparison of the three algorithms on the two networks.
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5. Risk control performance analysis

5.1. Simulation parameters

In this section, the risk control performance of our risk-aware

routing algorithm (RARA), which is the combination of the integrated

routing risk model and CCIRA, is simulated and analyzed. The risk-

aware provisioning algorithm (RAPA) in [4] is selected as the com-

parison algorithm. Literature [4] takes into account two risk factors

which are SLA violation penalty per unit time and link failure prob-

ability under different types of disasters, and defines network risk

as the sum of all connection (path) risk, which is the product of the

penalty and the path failure probability, under all disasters. RAPA

weights a link with the penalty and the link failure probability if the

link has enough free capacity and finds the shortest path as the rout-

ing of a service.

In order to compare RARA with RAPA, the service importance in

our integrated routing risk model is measured by service penalty,

i.e., the service importance value vector (0.99, 0.94, 0.62, 0.29, 0.13)

in Section 4.1 is taken as service penalty vector in this section, and

the path length is the path failure probability which is approximately
 d

Please cite this article as: B. Fan et al., A controllable chaotic immune algo

munications (2015), http://dx.doi.org/10.1016/j.comcom.2015.11.003
qual to the sum of the failure probability of all links on this path [6],

o the link weight is converted into link failure probability through

ultiplying the original link length by a basic probability pbase= 0.01.

nder the premise of not affecting the performance comparison be-

ween RARA and RAPA, we assume that one link can only be affected

y one type of disaster, and different link failure probabilities corre-

pond to different types of disasters. Because the service bandwidth

n [4] is equal to each other, the service bandwidth vector in this sec-

ion is (1,1,1,1,1). The LATAX network (shown in Fig. 1) is selected as

he simulation network and the delay constraint Hpmax(LATAX)=10

f CCIRA is similar to Section 4.2.

.2. Simulation and analysis

In the simulation, different numbers (20, 40, 60, 80, 100 and 120)

f services are routed in descending order with regard to their penalty

alues, as with RAPA in [4], and the source-destination node pairs of

ervices are randomly assigned in every run. The average network

isk of 50 runs is shown in Fig. 7 where Fig. 7(a) shows the network

isk defined in our paper by Eq. 7 and Fig. 7(b) shows the network risk

efined in [4]. As the network risk defined in this paper emphasizes
rithm for risk-aware routing in DiffServ networks, Computer Com-
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(a) Network risk defined in this paper                  (b) Network risk defined in literature [4]
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Fig. 7. Risk control performance comparison between RARA and RAPA on LATAX network.
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Fig. 8. Distribution of link risk on LATAX network under RARA and RAPA.
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he equilibrium of the load on different layers, the risk values reflect

he relative risk level of the network with current load, and the risk

urves are not monotonic with the number of services, as shown in

ig. 7(a). On the other side, the risk curves in Fig. 7(b) are monoton-

cally increasing with the number of services because the network

isk defined in [4] reflects the absolute risk level. From Fig. 7, it can be

een that the relative risk control performance of RARA is evidently

uperior to RAPA and the absolute risk control performance of RARA

s marginally inferior to RAPA, which demonstrates that the overall

isk control performance of RARA is superior to RAPA.

Because the service bandwidths are equal to each other in the sim-

lation, according to the basic definition of risk, that risk is the ef-

ect of uncertainty on objectives [34], the link risk can be defined as

link = Ie × Pe, where Ie is the penalty sum of all services on this link

nd Pe is the link failure probability. In order to compare the risk con-

rol performance between RARA and RAPA fairly, the distribution of

he link risk is observed by the average of 50 runs of the two algo-

ithms and the results are shown in Fig. 8, where Fig. 8(a) shows the

eans of link risk and Fig. 8(b) shows the variances of link risk. In

ig. 8, the link risk mean of RARA is marginally superior to RAPA

ut the link risk variance of RARA is evidently superior to RAPA. The
Please cite this article as: B. Fan et al., A controllable chaotic immune algo

munications (2015), http://dx.doi.org/10.1016/j.comcom.2015.11.003
urves in Fig. 8 imply that under the two algorithms the average ef-

ects of single-link failure on the network are similar but the distri-

ution of link risk under RARA is more balanced than the distribution

nder RAPA. In Fig. 8(b), the gap between the two curves increases

ith the increase of service number, which implies that the advan-

age of RARA will become more evident in the case of heavy network

oad.

. Conclusions

In this paper, taking into consideration the effect of service routing

n network service layer, transport layer, and physical topology layer

isk, we created an integrated routing risk model, after which we pro-

osed a controllable chaotic immune routing algorithm (CCIRA) in or-

er to reduce the routing risk. Due to the inefficiency of traditional

ath generation methods, we proposed a path generation method

ased on chaotic search and dynamic adjacency matrix. This method

an efficiently generate feasible solutions, improving the efficiency of

outing optimization algorithms. In CCIRA, the use of a method that

ombines dynamic vaccination and free mutation ensures the con-

ergence rate and global optimization capability. The use of chaotic
rithm for risk-aware routing in DiffServ networks, Computer Com-
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[

search strategy instead of probability-based strategy during the path

generation, vaccination, and free mutation stages improves the con-

trollability and practicability of the algorithm because of the pseudo-

randomness, ergodicity and determinacy of chaotic sequences. On

the LATAX and ITNA networks, the outstanding optimization perfor-

mance of CCIRA is proved by the simulation results. The risk control

performance of the combination of the integrated routing risk model

and CCIRA is also proved to be superior by the comparison results

with the other risk-aware routing algorithm. This paper conducted

an exploratory study on the feasibility of using chaotic search strat-

egy instead of probability-based strategy in evolutionary algorithms

for routing problems, and can be used as a reference for future re-

search on improving the controllability of evolutionary algorithms for

routing problems.
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