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a b s t r a c t

In the media production process a substrate network can be shared by many users simultaneously when

different media actors are geographically distributed. This allows sophisticated media productions involv-

ing numerous producers to be concurrently created and transferred. Due to the predictable nature of media

transfers, the collaboration among different actors could be significantly improved by deploying an efficient

advance reservation system. In this paper, we propose a model for the advance bandwidth reservation prob-

lem, which takes the specific characteristics of media production networks into account. Flexible and time

variable bandwidth reservations, meeting delivery deadlines, supporting splittable flows and interdependent

transfers and all types of advance reservation requests imposed by the media production transfers are incor-

porated into this model. In addition to the optimal scheduling algorithms, which are presented based on this

model, near optimal alternatives are also proposed. The experimental results show that the proposed algo-

rithms are scalable in terms of physical topology and granularity of time intervals and obtain a satisfactory

performance, executing significantly faster than an optimal algorithm and within 8.78% of the optimal results.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

In the media production industry, a team of artists, editors, re-

orters and producers works simultaneously at geographically dis-

ributed locations producing and processing content, music, com-

entary, special effects, etc. Various producers and actors could then

ccess these individual elements over a shared network to integrate

hem and thereby produce a complete product. In the media creation

rocess, reliability of the transport is of crucial importance.

Predictability is a key feature of traffic in media production net-

orks. Traffic characteristics in terms of bandwidth requirements, the

ime when the contents are ready, and the deadline for the data to

e completely transferred to the destinations, are mostly known sev-

ral hours ahead of time. The predictable nature of these transfers

akes it possible to use resource reservation techniques. Therefore, a

anagement system can efficiently manage the transmission. In gen-

ral, two types of resource reservation can be distinguished [1]: Im-

ediate Reservation (IR) and Advance Reservation (AR). While just-

n-time reservation is applied in IR, the principle behind AR relies

n the resource reservation times before the actual time when the

esource is used. Assuming prior knowledge of the network struc-
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ures and different requests, advance reservation makes it possible to

chedule network requests optimally.

In computer networks, bandwidth is a valuable resource. Particu-

arly for multimedia transfers, where large amounts of content, such

s video files, have to be transmitted, efficient bandwidth manage-

ent is an important factor [2]. In bandwidth-limited networks, an

fficient bandwidth reservation mechanism needs to be defined to

eet the QoS requirements and deadlines. The next generations of

edia production networks are expected to efficiently support ad-

ance reservation systems for different delivery services, so the de-

ired QoS requirement and resource utilization could be ensured.

In this paper, we propose a set of novel AR scheduling algorithms,

ptimized for media production networks. Such networks impose

equirements not supported by existing AR scheduling techniques.

irst, the start time of requests is generally flexible, the deadline

s fixed, and the reserved bandwidth may vary over the lifetime of

he reservation. This combination of flexible start times and elastic

andwidth allocation has not received much attention in research

o date [3]. Second, in media production networks, multiple requests

ay depend on each other. Until now to the authors’ knowledge, this

spect has remained unexplored. Third, it should be possible to split

equests over multiple paths, in order to further optimize bandwidth

tilization.

We propose a centralized advance reservation system which

ased on our evaluation scales to the size of realistic media
servation scheduling algorithms for media production networks,
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production networks and demand patterns. We present a model

to solve this variant of the AR scheduling problem, and propose

various advance reservation algorithms based on our designed

model. This model is an instance of time variable scheduling which

is known as multicommodity over time problem. In this context,

commodity corresponds to a telecommunication traffic demand

between two media actors. It has been proven that the complexity

of multicommodity flow over time without caching is strongly NP-

hard [4]. Therefore, we also came up with efficient and near-optimal

heuristic solutions which are more practical. In both optimal and

heuristic approaches the main goal is threefold: (1) delivery of

the requests before their deadline; (2) maximizing the number of

admitted requests; (3) processing requests as quickly as possible.

Both approaches can be used in static and dynamic settings. The

Static Advance Reservation Algorithm (SARA) assumes all requests

are known at the start of the reservation period. By contrast, the Dy-

namic Advance Reservation Algorithm (DARA) supports rescheduling

in order to incorporate new requests at runtime. The dynamic ad-

vance reservation system tries to admit new arrival requests while

rescheduling the previously admitted requests is a must. We provide

a thorough analysis of the algorithms based on in-depth simulation

results. They are compared and the impact of their parameters on the

solution quality is evaluated.

The remainder of this paper is organized as follows. Section 2,

reviews the related work. Section 3 describes the scenarios as well

as architecture and components of the proposed media production

network. Section 4 explains the concepts, assumptions and AR

scheduling formulation for media production networks. The pro-

posed algorithms are explained in Section 5. A comparison of optimal

and near-optimal algorithms and a performance evaluation of offline

and online settings are provided in Section 6. Finally, Section 7

concludes the paper.

2. Related work

There has been a large number of theoretical as well as practical

experimental work [5–8] related to the advance reservation problem.

Here we study some of the most relevant work. The authors in [9]

and [10] focus on re-routing in advance reservation networks. Our

formal model is inspired by their ILP-based solutions called GILP and

DILP [9]. The GILP assumes that the entire set of requests is known be-

forehand and the DILP is designed to work in an online setting. How-

ever our approach is different as their models assume only streaming

requests with fixed time intervals and dedicated bandwidth remains

fixed and equal to the demand during the entire reservation. Depen-

dencies among the requests are also ignored. [10] is the extension

of [9] in realistic multi-domain networks which addresses the imple-

mentation challenges related to advance reservation solutions.

Charbonneau and Vokkarane [3] survey the literature on advance

reservation routing and scheduling algorithms, specifically focused

on WDM networks. It has defined four types of advance reservation

requests based on whether their start time and their duration are

specified or not. All these classifications, which will be discussed in

detail later, are supported in our approach. In addition, our approach

is elastic which means that the allocated bandwidth is variable over

time. According to this reference only two AR scheduling algorithms

have been proposed that support elastic reservations [11,12]. How-

ever, they both assume a fixed start time. Sharma et al. [13] present

an algorithm called RRPC which addresses multiple flexible requests

for bandwidth reservation between two end points. RRPC is deadline-

aware in which any reservation that meets the deadline is acceptable.

However all the requests have a same source and destination, flow

splitting is not allowed and a single path is chosen for all the requests.

Another work [14] focuses on dynamically transporting of large vol-

ume of data in e-science networks. The optimization consists of two

steps admission control and scheduling. Periodically the central con-
Please cite this article as: M. Barshan et al., Deadline-aware advance re
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roller gathers all the new requests, runs admission control, and then

chedules new and unfinished jobs.

Furthermore, the problem addressed in this work is related to the

ulticommodity flow problem (MCFP). The multicommodity flow

roblem can be described as follows: a set of individual flows have to

e transferred in a dimensioned network without violating the capac-

ty limits [15]. The resource allocation algorithm should find an opti-

al routing path to transfer the flows through the network. In [16],

nsplittable flow and single path MCFPs are studied. Comprehensive

urveys on the approaches to solve multicommodity flow problems

MCFP) and their variants are provided in [17,18]. Our approach fur-

her deals with the problem of flow variation over time and solves

n MCFP as a subproblem. In network flow problems, having variable

ows over time is crucial. Dynamic flows or flow variation over time

re primarily introduced by Ford and Fulkerson [19,20]. They intro-

uced variable flows over time as equal as static flow problem, build-

ng another temporal dimension over the network. This makes use of

ime-expanded networks. A time-expanded network is a copy of net-

ork in each discrete time step. Also, Fleischer and Skutella [21] have

entioned that in literature hardly any results on multicommodity

ver time are noted.

Chen et al. in [22] have stated that the single-path approach on

hich the Internet routing protocols is based, could not meet the

elay requirements when the video streams are transferred over

andwidth-limited networks. They proposed a multipath routing of

ideo contents over bandwidth limited network. However the main

ocus of their work is on delay and over the Internet, and therefore no

eservation is considered.

Balman et al. [23] have focused on advance bandwidth reservation

or on-demand data transfer in scientific applications. However, their

ork differs from our approach as they purely focus on data transfers,

ot video streaming sessions, and the routing mechanism is based

n single-path in contrary to our multi-path approach. In addition,

ur approach considers dependencies among requests. To the best

f our knowledge, dependencies among requests which is explicitly

ncorporated in our algorithms, have not received adequate attention

n the literature by state of the art approaches.

This work is an extension of our previous work [24], in which

nly the static and dynamic ILP-based models are introduced. The

ain focus of this previous work was to investigate the viability of

R mechanisms in media production networks and to find the opti-

al solutions, determining the most appropriate objective function

n our optimal models. We defined two objective functions and com-

ared their performance. We found that the so called ASAP objec-

ive function, which in addition to maximizing the number of admit-

ed requests also tries to schedule requests in earlier time slots leads

o better results. In this article several new heuristic approaches are

roposed which are near-optimal and computationally less-complex

ompared to ILP-based approaches. In our evaluation, their perfor-

ance is compared with the highest quality optimal algorithms (i.e.,

lgorithms based on the ASAP objective function).

. Media production network architecture

The envisioned media production network is depicted in Fig. 1.

he different actors and locations involved in the media production

rocess, such as for example recording studios, on-site filming crews,

roadcasters, and storage datacenters, are connected to a shared

ide-area network, consisting of interconnected switches. The net-

ork supports the exchange of raw and encoded multimedia content

etween an arbitrary set of actors, both in the form of file transfers

nd streaming. The management layer provides a reservation inter-

ace that allows the users of the network to reserve bandwidth over

ertain time periods in the future. The AR scheduling algorithms

re responsible for reserving the required amount of bandwidth

esources for all requests. With each request, they associate one or
servation scheduling algorithms for media production networks,
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Fig. 1. Media production network architecture and components.
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Table 1

Media production video request taxonomy.

Request

types

Specified

start time

Specified

duration

Dependent Independent

VS FB VS FB

STSD Yes Yes X

STUD Yes No X

UTSD No Yes X

UTUD No No X
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ultiple paths from source to sink with a specific amount of reserved

andwidth. In case the deadline of a transfer cannot be guaranteed,

he reservation interface rejects it. When multiple transfers depend

n each other, either all or none of them are admitted.

The output of the scheduling algorithms takes the form of a set

f temporal routing policies (i.e., the paths associated with all re-

uests over time) and bandwidth reservations (i.e., the amount of

andwidth resources to associate with each flow over time). This in-

ormation can be transferred to the network controllers that use it

o configure the switches in the media production network. The con-

rollers keep track of the temporal aspects of the policies, adjusting

onfigurations when necessary.

In the media production industry multiple actors, which are in-

olved in one production project, are interacting and transferring

edia content. If one of those transfers is not successfully done the

hole project can be affected. This forms dependencies among dif-

erent transfers. We refer to the set of all transfers of a project as a

cenario. The scenario consists of several interdependent video trans-

ers. We refer to each single transfer as a request. A request can have

fixed start time, end time and/or duration, or may depend on the

ther requests.

The video transfer types which are supported in this work are of

wo types which can either be video streams (VS) or file based videos

FB). We assume that for FB requests, volume and for VS requests du-

ation is always known. As stated by [3,25,26] advance reservation

equests are classified into four individual categories.

• STSD: Start time of the request is specified, its duration is also

specified.

• STUD: Start time of the request is specified, but its duration is un-

specified.

• UTSD: Start time of the request is unspecified, but its duration is

specified.

• UTUD: Start time of the request is unspecified, its duration is also

unspecified.

In this article all four classes are taken into account. As for VS re-

uests the duration is always specified, if the start time of a VS request

epends on other requests, this stream belongs to the UTSD class. The

lass of independent VS requests is STSD. In case of file transfers, the

eserved resources for a request may vary over time, as long as the

elivery deadline is satisfied. Moreover, even if the start time of FB

equest is specified, it refers to the time when the file is ready to be

ransferred. The time when the file transfer starts could be in future

ime slots. Since for file transfers duration and start time might be

ndefined and fluid, independent and dependent file based requests

re classified as flexible UTUD and flexible STUD, respectively. This is

llustrated in Table 1.
Please cite this article as: M. Barshan et al., Deadline-aware advance re
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During the scheduling process, four statuses are defined for each

cenario: (1) Submitted: When a scenario entered to the system, but

he admission process has not been started yet. (2) Pending: When

scenario is being processed and it is waiting for the admission de-

ision. (3) Admitted: When all the requests of the scenario could be

cheduled and transferred. This status implies the transmission guar-

ntee. (4) Rejected: When the scheduler is not able to respond to any

f the scenario requests’ demands.

The remainder of this paper focuses on the AR scheduling

lgorithms.

. Advance reservation scheduling model

We first present a formal model for the advance reservation

cheduling of network bandwidth. The model can be used to schedule

ollections of requests that consist of multiple interdependent and

eadline-constrained network transfers. The network is represented

s a graph with network nodes N and edges E.

Requests are grouped into scenarios, contained in the set S, that

epresent a complex workflow. These workflows must be executed in

heir entirety, so when a scenario is admitted, all requests must be

xecuted. The model only admits those scenarios for which sufficient

andwidth can be guaranteed during the reservation period. When

scenario is rejected, none of its requests are executed. The various

equests within a scenario may depend on each other, meaning that

ne request can only start when other requests have been finished.

The requests of all scenarios are stored in R. The model supports

wo types of network transfers: video streaming and large file trans-

ers. Consequently R consists of both types. To make distinction be-

ween two types Rf which refers to file-based flows and Rs which

efers to the streaming requests are defined.

In this model the nth request is denoted by rn =
sn, dn, tn

s , tn
e , in, bn) comprising of the source of the request sn,

he destination node dn, the time when the data for file-based

equest is ready to transfer tn
s (or fixed start time for video streaming

equest), the deadline for the transmission of the data of file-based

equest tn
e (or fixed end time for video streaming request), the
servation scheduling algorithms for media production networks,
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Table 2

Symbols and notations used in the formal models.

Variable Description

N Set of network nodes.

E Set of network links.

S Set of all scenarios (s ∈ S).

Rf Set of file-based video requests.

rn
f

The nth request of set Rf .

Rs Set of video streaming requests.

rn
s The nth request of set Rs .

R Set of all requests (Rf ∪ Rs).

Ro Set of all old requests.

rn The nth request of set R, denoted by rn = (sn, dn, tn
s , tn

e , in, bn).

sn Source node of request rn .

dn Destination node of request rn .

tn
s Start time for the request rn . Decision variable when not specified.

tn
e Deadline for the request rn . Decision variable when not specified.

in Duration of request rn .

bn Required bandwidth of rn .

vn Volume of rn
f

for file-based requests (in bit).

βn, e, k Decision variable. Dedicated bandwidth over link e, request rn and time interval k.

SUn, k Binary decision variable. 1 iff in time slot k any reservation is done for request n, 0 otherwise.

An Binary decision variable. 1 iff request rn is admitted, 0 otherwise.

As Binary decision variable. 1 iff scenario s is admitted, 0 otherwise.

I Duration of each time interval (in seconds).

tmin
s Minimum start time of all reservations.

tmax
e Maximum end time of all reservations.

Be Bandwidth capacity of link e.

Eout
v This collection contains all edges starting from node v (egress).

Ein
v This collection contains all edges ending in node v (ingress).

t

t

t

4

n

s

t

u
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t
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duration of each request in and finally the bandwidth demand

of the request bn. In particular, rn
f

and rn
s refers to file-based and

video streaming requests, respectively. Moreover, the volume of the

files are denoted by vn and the time slot size by I. Table 2 lists the

notations which have been used to define the model.

4.1. Decision variables

The goal of the model is to determine when and how requests are

transferred over the network. Binary decision variables As and An are

used to represent whether or not scenario s or request n are admit-

ted. When the scenario is admitted, a collection of decision variables

βn, e, k determines the amount of bandwidth for a request n that is

sent over edge e during time slot k.

An ∈ [0, 1] ∀rn ∈ R

As ∈ [0, 1] ∀s ∈ S

βn,e,k ∈ R
+ ∀rn ∈ R,∀e ∈ E, k ∈ [tmin

s , tmax
e ]

For some requests their start and end times are not specified and

depend on the start or end time of other requests. In this case, the
n
s , tn

e or both of a request n may become decision variables of which

the value is determined during the optimization process. To support

these kinds of scenarios additional decision variables and constraints

need to indicate whether a request is active during a given time slot.

Therefore, we define the binary time slot use decision variable SUn, k

that takes on value 0 when a request n is inactive during time slot k.

These variables are defined for all requests where tn
s , tn

e or both are

decision variables, but not for requests of which start and end time

are known.

SUn,k ∈ [0, 1] ∀rn ∈ R, k ∈ [tmin
s , tmax

e ]
n
s ∈ R

+ ∀rn ∈ R if start time is variable
n
e ∈ R

+ ∀rn ∈ R if end time is variable
Please cite this article as: M. Barshan et al., Deadline-aware advance re

Computer Communications (2015), http://dx.doi.org/10.1016/j.comcom.2
.2. Objective function

The objective function, shown in Expression 1, maximizes the

umber of admitted requests, but also tries to schedule requests as

oon as possible. This is done by adding a second factor to the objec-

ive function that achieves higher values when requests are sched-

led in earlier timeslots. This second term is normalized to ensure it

ill not interfere with the primary objective of maximizing the num-

er of accepted requests.

ax
∑

rn∈R

An +
∑

rn∈R

∑
e∈Eout

sn

∑
k∈[tn

s ,tn
e ]

βn,e,k

k
∑

rn∈R

∑
e∈Eout

sn

∑
k∈[tn

s ,tn
e ]

Be

k

(1)

.3. Flow constraints

Requests are scheduled over a network, which means they are

ubject to capacity and network flow constraints. The capacity

onstraint, shown in Expression 2, ensures that the cumulative

andwidth reservation over each link does not exceed its bandwidth

apacity. This constraint is specified for every edge, and for every

ime slot.
∑

n∈R

βn,e,k ≤ Be ∀e ∈ E,∀k ∈ [tmin
s , tmax

e ] (2)

All network nodes that are not source or sink of a flow are

ubject to a flow conservation constraint, shown in Expression 3,

o ensures the incoming flow equals outgoing flow. The network

ntering and leaving the source and sink of the flow is dependent

n the type of request. For a file transfer request, an entire volume
n must be transferred between the start and end times, shown in

xpression 4. For these requests, the amount of data transferred

an vary between timeslots. Video streaming requests are handled

ifferently, as they require a constant amount of resources during all

ime intervals between the start and end time of the request. This is

hown in Expression 5. To minimize the occurrence of loops within

he network, constraints preventing incoming flow in the source

ode and outgoing flow in the sink node are added. These constraints
servation scheduling algorithms for media production networks,
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re shown in Expressions 6 and 7.
∑

∈Eout
v

βn,e,k =
∑

e∈Ein
v

βn,e,k

∀rn ∈ R,∀k ∈ [tmin
s , tmax

e ], {∀v ∈ N|v /∈ {sn, dn}} (3)

∑

k∈[tmin
s ,tmax

e ]

∑

e∈Eout
sn

βn,e,k × I = vn × An ∀rn
f ∈ R f (4)

∑

e∈Eout
sn

βn,e,k = bn × An ∀rn
s ∈ Rs,∀k ∈ [tmin

s , tmax
e ] (5)

∑

e∈Ein
sn

βn,e,k = 0 ∀rn ∈ R,∀k ∈ [tmin
s , tmax

e ] (6)

∑

e∈Eout
dn

βn,e,k = 0 ∀rn ∈ R,∀k ∈ [tmin
s , tmax

e ] (7)

.4. Interdependent requests

Start and end times of requests may either be input variables or

ecision variables. Dependencies between different requests are han-

led by Expressions 8–14. First, Expression 8 ensures either all or

one of the requests of a scenario get admitted.

n = As ∀rn ∈ R (8)

Expression 9 is defined to connect βn, e, k and SUn, k values, which

s needed if either the start or end time of a request is a decision

ariable. This constraint ensures that SUn, k can only become zero if
n,e,k = 0.

n,e,k ≤ SUn,k × Be ∀e ∈ E,∀k ∈ [tmin
s , tmax

e ],∀rn ∈ R (9)

If the start time is known and predefined as an input variable, then

xpression 10 ensures that no bandwidth is dedicated to request rn

efore tn
s .

n,e,k = 0 ∀e ∈ E,∀rn ∈ R,∀k ∈ [tmin
s , tn

s ) (10)

If the start time is not specified and depends on other requests,

hen tn
s is a decision variable. In that case, the constraint shown in

xpression 11 is used to ensure SUn, k becomes 0 for values of k < tn
s ,

nsuring nothing is transferred. Dependencies between time vari-

bles can then be added as shown in Expression 12, which ensures

hat the request n is started only when all the requests on which re-

uest n depends are finished.

n
s ≤ k + (1 − SUn,k) × tmax

e ∀rn ∈ R,∀k ∈ [tmin
s , tmax

e ] (11)

n
s ≥ tn

′
e + 1 {∀rn ∈ R|rn depends on rn

′ } (12)

When the end time is an input variable, then Expression 13 en-

ures that no bandwidth is dedicated to request n after tn
e .

n,e,k = 0 ∀e ∈ E,∀rn ∈ R,∀k ∈ (tn
e , tmax

e ] (13)

If the end time is not specified, tn
e is a decision variable. In this

ase, a constraint is added to ensure SUn, k becomes 0 for values of k >
n
e , ensuring nothing is transferred after the end time. This constraint

s shown in Expression 14.

n
e ≥ k − (1 − SUn,k) × tmax

e ∀rn ∈ R,∀k ∈ [tmin
s , tmax

e ] (14)

.5. On-line model

The model described in the previous section can be used to stati-

ally compute a schedule for the execution of a collection of scenar-

os, provided all scenarios are known beforehand. In practical me-

ia production networks, the requests however arrive on-line over

ime. Therefore, a dynamic, on-line approach is needed that adapts
Please cite this article as: M. Barshan et al., Deadline-aware advance re
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he schedule at runtime. We present this on-line model as an ex-

ension of the previously discussed static model, meaning is imple-

ented with the previously defined decision variables and objective

unctions.

The on-line model assumes that a previous schedule exists, and

hat one or more requests are added that must be scheduled. This

esults in a new schedule that contains both the original requests,

nd the new requests. We assume that a request may not be can-

eled once it has been accepted, meaning that while old requests

ay be rescheduled, they may not fail. Besides the constraints of the

riginal model, one additional constraint (shown in Expression 15) is

herefore added to ensure that previously admitted requests remain

ccepted.

s = 1 ∀rn ∈ Ro (15)

. Advance reservation algorithms

This section, first describes the static and dynamic reservation

chemes. The second part implements the models which have been

efined in the previous section. In the third part the heuristic al-

orithms, which in general we refer to as Sequential Priority Based

SPB), are proposed to resolve the high computational complexity and

calability issue of the ILP solutions.

.1. Static & dynamic reservation

The algorithms provided in this section are either static or dy-

amic, which can be used “offline” or “online”. The static algorithms,

hich we refer to as Static Advance Reservation Algorithm (SARA),

an be used to generate a schedule when all requests are known in

dvance. However, in practice, some requests may not be known from

he start of the scheduling, making it impractical to use the SARA.

herefore, a dynamic version of the resource reservation algorithm

s needed. When not all requests are known from the start, and new

nes are added throughout the day, the Dynamic Advance Reserva-

ion Algorithm (DARA) can be used. When new scenarios enter to

he reservation system, the DARA re-optimize the reservation by re-

outing existing reservations in order to accommodate new scenar-

os’ requests. This re-optimization is performed for the entire sched-

le starting from the next time slot. In DARA, we assume that new

ncoming scenarios have lower priority as the previous requests are

lready admitted and rejecting them violates the agreed SLA. There-

ore, in DARA requests are divided in three categories based on their

rogress:

• Scheduled: When a request is scheduled, it will start to execute

during some time slot in the future. As the request is not yet

running during the trigger point, no special considerations are

needed.

• Finished: A request is considered finished when it has finished

executing at the time of the trigger point. The request itself can

therefore be removed from the on-line model input. If the start

or end times of other requests depend on the end time of this re-

quest, the final end time can be added as an input to the model.

• In progress: A request is in progress when it has started, but

has not finished yet at the time of the trigger point. These re-

quests must still be considered in the on-line model input, but

the amount of data that was already transferred must be removed

from the total request demand.

.2. ILP based Advance Reservation Algorithms (ILP)

In this section we define two algorithms based on the model

resented in the previous section. The first algorithm is based on

he static model. In an “online” setting the second approach, which

akes use of the on-line version of the model, can be used.
servation scheduling algorithms for media production networks,
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Algorithm 1: The SARA Sequential Priority Based (SPB) algo-

rithm.

input: scenarios’ requests, network infrastructure

sortedQueue ← AverageStartSort(all scenarios);

for (scenario ∈ sortedQueue) do

Set scenario status as Pending;

currentstate ← Save the current system state;

Prioritization(scenario’s requests);

sysReqList.Add(scenario’s requests);

feasible ← TimeSlot(sysReqList);

if (feasible) then

Update the scheduling;

Set scenario status as Admitted;

else

Set current system state to CurrentState;

Set scenario status as Rejected;

end

end
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5.2.1. ILP based Static Advance Reservation Algorithm (SARAILP)

This algorithm is based on the static formal model which assumes

that all the scenario arrivals are known beforehand, which results in

an optimal schedule.

Using the previously defined constraints, the multi-path model is

likely to result in feasible but undesirable solution, as cycles may po-

tentially occur in intermediate network nodes. As the model is imple-

mented using an ILP, these cycles will never impact the optimality of

the result as specified by the objective function. There are two possi-

ble approaches to address these cycles. (1) First, it would be possible

to modify the model by changing the objective function, adding an

additional factor that minimizes the edge use. This would however

increase the complexity of the model and consequently lead to an in-

crease in execution duration. Furthermore, this would make it more

difficult to balance the different optimization objectives. (2) Alterna-

tively, the results of the algorithm can be post-processed by remov-

ing the cycles after the ILP has been solved. This approach has the

advantage of limiting the complexity of the ILP model, and as stated

previously has no impact on its optimality.

Because of these considerations, we use a post processing algo-

rithm after the ILP optimization. During this post-processing phase,

we look for cycles in each reserved path and remove them.

5.2.2. ILP-based Dynamic Advance Reservation Algorithm (DARAILP)

The DARAILP invokes the Integer Linear Programming (ILP) formu-

lation of the model multiple times whenever new scenarios arrive. In

this algorithm, an initial schedule is generated using the static model,

which is then iteratively updated using the on-line model as new sce-

narios arrive. The input of the on-line model must however be mod-

ified at every trigger point to take into account the work that has

already been executed. The demands of previously admitted, unfin-

ished and in progress requests are updated based on the data that

has already been transferred. Then new requests as well as modified

requests are scheduled together.

5.3. Sequential Priority Based advance reservation algorithms (SPB)

In general, the ILP-based algorithms have a high computational

overhead, particularly with fine-grained time slot sizes and large

physical networks. The Sequential Priority Based (SPB) advance reser-

vation algorithm is a heuristic approach which is proposed to resolve

the scalability limitations of the ILP solutions. The admission control

process is also integrated into the algorithm and once a scenario is

admitted, it will never be denied by the scheduler in future. In this

approach, the scenarios are sequentially admitted and scheduled.

Different components of the SPB advance reservation algorithm

are illustrated in Fig. 2. As can be observed from this figure, the new

scenarios enter to the reservation system through an API. Then any

transformation can be applied. For example in dynamic approach be-

fore the scheduling algorithm invocation, the previously admitted

scenarios’ demand needs to be updated. In the next step the scenario

requests are prioritized and in each time slot the algorithm sequen-

tially calls the network allocation algorithm for each scenario request.

If this process is successfully terminated the new scenario is admit-

ted, and the schedule is updated. Otherwise, the previous schedul-

ing and network state remain untouched and the scenario is rejected.

Again we discern two algorithm variants: SARASPB and DARASPB.

5.3.1. Sequential Priority Based Static Advance Reservation

Algorithm (SARASPB)

In this algorithm, first the scenarios are sorted and then se-

quentially processed. This sorting is based on the earliest average

start time of the scenario’s requests. If two scenarios have the same

value, the one requiring more resources is chosen. As can be seen in

Algorithm 1, the network resource usage, the requests information

and the current scheduling are saved for each scenario.
Please cite this article as: M. Barshan et al., Deadline-aware advance re
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Then each scenario in the sorted list is processed as follows. The

rioritization algorithm is another component which assigns priori-

ies to the scenario’s requests. In the prioritization step two factors

lay a role: the estimated hard deadline and the volume. Since the

eadline may not be specified for all the requests, the hard deadline

i.e., the latest possible deadline) for those with no specific deadline

hould be estimated. This time is calculated by assuming that all re-

uests on which the request depends use the entire network at once.

his gives the latest possible deadline for the request. In the prior-

tization algorithm, the main factor is the estimated hard deadline:

he sooner the deadline, the higher the priority. The second factor,

olume, comes into consideration only when the hard deadlines are

qual, the higher the demand, the higher the priority.

Then the scenario’s requests are added to the list of system re-

uests and this list is given to the TimeSlot algorithm. Based on the

esult of TimeSlot algorithm, SPB decides to admit or reject the sce-

ario. If the TimeSlot algorithm achieves a feasible schedule, the pre-

ious reschedule is updated, otherwise the algorithm has to back-

rack to the previous feasible situation.

Algorithm 2: The TimeSlot algorithm.

input: sysReqList, timeSlotGraphs

for (t ∈ Time Intervals) do

currentRequests←TimeSlotRequests(t,sysReqList);

if (currentRequests 
=∅) then

Limit(currentRequests);

sortedList ← Sort(currentRequests);

reservation ← BWallocation(sortedList);

if (!UpdateAndCheckFeasibility(reservation)) then
return false;

end

end

end

return true;

The TimeSlot algorithm, which is shown in Algorithm 2, iterates

ver the time slots and consists of 5 sub-algorithms for each time

nterval.

1. TimeSlotRequests: First, the algorithm has to determine which

unserved requests can be served in the current time slot. For in-

dependent requests the algorithm looks at the start time. If the

current interval is greater or equal the request start time, these

requests are eligible to be added to the list of current requests.
servation scheduling algorithms for media production networks,
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Fig. 2. Different components of the Sequential Priority Based Advance Reservation Algorithm (SPB).

Algorithm 3: The BWallocation algorithm.

input: sortedReqList

costAllocation(Links);

for (req ∈ sortedReqList) do

if (req is FB) then

reservation ← BWallocationFB(req);

else

reservation ← BWallocationVS(req);

end

end

return reservation;
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Algorithm 4: The BWallocationFB algorithm for file based re-

quests.

input: an FB request

maxFlow ← EdmondsKarp.getMaxFlow(graph);

if (maxFlow = 0) then

Return;

else if (maxFlow ≤ Limit(req)) then

reservation(req, maxFlowPath);

else

graph(maxFlowPath);

path ← LeastCostPath(graph);

while (path 
= ∅) do

minBW ← minBandwidth(path);

flow ← flow+minBW;

if (flow ≥ Limit(req)) then

minBW ← minBW−(flow−Limit(req));

reservation(req, path, minBW);

update the residual graph(minBW, path);

feasibility ← true;

return reservation;

else

reservation(req, path, minBW);

update the residual graph(minBW, path);

end

path ← LeastCostPath(graph);

end

end
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For requests with start time dependencies, the algorithm checks

whether the requests on which this request depends are finished

or not. If all the requests on which the request depends are ful-

filled, this request can be started. Then it will be added to the list

of current requests.

2. Limit: In order to avoid the extra reservation for the requests, a

limitation needs to be defined for each request. The limit for the

video streams is their required demand, because their demand

is fixed and non-variable. The limit of file-based requests is their

residual demand which is modified whenever a part of video file

is transferred.

3. Sorting: In this step the requests of different scenarios selected in

the previous step are sorted based on their priorities.

4. BWallocation: The most important sub-algorithm in TimeSlot is

the bandwidth allocation algorithm. We have defined two differ-

ent bandwidth allocation algorithms for video streams and video

files. These algorithms are presented later in detail.

5. UpdateAndCheckFeasibility: Based on the provided result of the

previous step, BWallocation, and by calculating the residual de-

mands, the requests requirements are updated and the feasibil-

ity of the results is checked. If the hard deadline of a request is

reached, but part of the request has not been transferred yet and

the residual demand is not zero, the hard deadline has not been

met. In this step rescheduling is infeasible and the TimeSlot algo-

rithm returns false.

The BWallocation algorithm, which is shown in Algorithm 4, de-

ermines the maximum possible bitrate and associated paths for the

equests. This algorithm first assigns cost to the network links using

he CostAllocation algorithm. There are several approaches to find a

ath between source and destination of a flow. Since in advance reser-

ation the other flows and all their specifications are often known, the

ost logical way is to take their preferred deployment into account.

s a result in this step the algorithm tries to find the most desired

aths and give them the highest cost. The cost of each link is the sum

f desirability of this link for all requests. To find how important a

ink is for a request, the maximum flow (maxflow) from source to

ink of each request is determined. Having the maxflow and the uti-

ization per link, the desirability of the link is measured by dividing
Please cite this article as: M. Barshan et al., Deadline-aware advance re
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he link utilization by the maxflow. The maxflow is measured using

he Edmonds-Karp maximum flow approach [27].

Then according to the type of the request either BWallocationFB

r BWallocationVS algorithm, shown in Algorithms 4 and 5, respec-

ively, is invoked. The BWallocationFB algorithm is in charge of the FB

equests and is based on maxflow and least-cost path algorithms. In

rder to transfer the files as soon as possible, first the maxflow is ap-

lied based on the Edmonds–Karp algorithm. If the maxflow is lower

han the request limit, all the maxflow paths are reserved for this re-

uest. Otherwise, the algorithm forms a graph out of the maxflow

aths and the k-shortest path is the second alternative. In this step

nding the least-cost path is repeated till the total bandwidth offered

y the paths is sufficient for the request. The shortest path applied

ere is a modified version of the Dijkstra shortest path algorithm [28]

n which the cost of the links are taken into account instead of path

ength.

The BWallocationVS algorithm deals with video stream requests.

his algorithm is partially similar to the second part of the BWalloca-

ionFB algorithm where the maxFlow is higher than the request limit.

he algorithm iteratively looks for the least cost path on the whole

raph and sums up the minimum available bandwidth of the paths.

n each step the network capacities are modified and the path is re-

erved. These steps are repeated over the residual graph while the
servation scheduling algorithms for media production networks,

15.10.016

http://dx.doi.org/10.1016/j.comcom.2015.10.016


8 M. Barshan et al. / Computer Communications 000 (2015) 1–15

ARTICLE IN PRESS
JID: COMCOM [m5G;November 28, 2015;14:24]

Fig. 3. Interactions between media production actors in the three considered use case scenarios.

Algorithm 5: The BWallocationVS algorithm for video streaming

requests.

input: a VS request

path ← LeastCostPath(graph);

while (path 
= ∅) do

minBW ← minBandwidth(path);

flow ← flow+minBW;

if (flow ≥ Limit(req)) then

minBW ← minBW−(flow−Limit(req));

reservation(req, path, minBW);

update the residual graph(minBW, path);

feasibility ← true;

return reservation;

else

reservation(req, path, minBW);

update the residual graph(minBW, path);

end

path ← LeastCostPath(graph);

end

feasibility ← false;

loc1

Produc�on Studio

Broadcaster loc4

loc3

loc2

Service Provider 

loc5

Fig. 4. The smaller media production network topology used in the evaluation.
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total bandwidth provided by the paths fulfills the request demand. If

no more paths are left, the request could not be served and feasibility

of rescheduling is false.

5.3.2. Sequential Priority Based Dynamic Advance Reservation

Algorithm (DARASPB)

The DARASPB is invoked several times whenever new scenarios are

submitted to the reservation system. The dynamic approach is partly

similar to the SARASPB. However in addition to the static approach and

same as dynamic ILP-based algorithm, it has to update the previously

admitted requests’ demands based on whether the request is sched-

uled, is finished or is in progress.

6. Experimental results

In this section, we first evaluate the SPB static and dynamic algo-

rithms by comparing their performance with the optimal results pro-

vided by the ILP models as a benchmark. Then, we make an extensive

evaluation on the SPB algorithms, determining the influence of the

available bandwidth, the percentage of requests known in advance,

the number of scenarios, and the time granularity.

6.1. Evaluation setup

Based on interviews with several Belgian media production ac-

tors, including a broadcaster, service provider, and recording facility

provider, a set of use case scenarios was defined that serve as a ba-

sis for the evaluation. Fig. 3 depicts the interactions between actors
Please cite this article as: M. Barshan et al., Deadline-aware advance re

Computer Communications (2015), http://dx.doi.org/10.1016/j.comcom.2
n the three defined use cases. Use case 1 represents a soccer after-

ame discussion program and comprises 5 different file transfer re-

uests. Use case 2 is a 30 min infotainment show and consists of 18

le transfer requests. Finally, use case 3 is a news broadcast, consist-

ng of 4 file transfer and 4 video streaming requests. Several instances

f each use case are generated, based on randomized input parame-

ers. A detailed overview of the randomized variables of each use case

nd its requests is shown in Table 3. The variable names used in the

able header are defined in Table 2. #tn
s dep. refers to the number of

equests on which the start time of the request (i.e., tn
s ) depends. If a

equest does not depend on others, tn
s /dep.On is defined as the start

ime of the request, otherwise it points to those interdependent re-

uests. The variables #te
s dep. and te

s /dep.On are similarly defined for

he end time of the request. The variable s used in the table represents

he earliest time on which the file-based request could be started. In

ddition, st, d, and et deal with the streaming requests and refer to the

tart time of the broadcast on television, the deadline of the request

o get started, and the end time of the request, respectively.

Because of the limited scalability of ILP-based algorithms, two dif-

erent topologies are used for the evaluation of media production

etwork reservation system. The smaller size, depicted in Fig. 4, con-

ists of media production actor sites, switches and bidirectional WAN

inks. This topology contains 12 nodes, 8 of which are devoted to dif-

erent media production actors e.g., the production studio, broad-

aster, service provider and recording locations. The 4 remaining

odes are the intermediate switches, connected in a full mesh topol-

gy. The larger test topology, shown in Fig. 5, is only used to evaluate

he performance of the more scalable SPB algorithms. This network

s the well-known ATT North America topology which consists of 25

odes and 56 links [29].

Each simulation run covers a 24 hour period. When using the

ARA algorithm, it is assumed that all scenarios are known in ad-

ance. When using DARA some use case instances are assumed to

e known only throughout the day, at least one hour before tn
s of its

arliest request. Throughout this section, DARAXX%[YY, ZZ] denotes
servation scheduling algorithms for media production networks,
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Table 3

Details of the use case requests.

Use case 1 Type sn dn #tn
s dep. tn

s /dep.on #tn
e dep. tn

e /dep.On in (min) bn

Req1 rf P1 Production studio 0 rand(s + 1 h, s + 5 h) 1 Req3 90 200 Mbps

Req2 rf P1 Production studio 0 rand(s, s + 6 h) 1 Req3 90 200 Mbps

Req3 rf Broadcaster Production studio 2 Req1, 2 1 Req4 90 200 Mbps

Req4 rf Production studio Service provider 3 Req1, 2, 3 0 st 180 15 Mbps

Req5 rf Service provider Broadcaster 0 st + 3 h 0 24 h 180 15 Mbps

P1 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 9) h; st = rand(17, 19) h

Use case 2 Type sn dn #tn
s dep. tn

s /dep.On #tn
e dep. tn

e /dep.On in (min) bn

Req1, 9 rf P1 Production studio, service provider 0 rand(s, 17 h) 1 Req17 (50–60) 200 Mbps

Req2, 10 rf P2 Production studio, service provider 0 rand(s, 17 h) 1 Req17 (50–60) 200 Mbps

Req3, 11 rf P3 Production studio, service provider 0 rand(s, 17 h) 1 Req17 (50–60) 200 Mbps

Req4, 12 rf P1 Production studio, service provider 0 rand(s, 17 h) 1 Req17 (50–60) 200 Mbps

Req5, 13 rf P2 Production studio, service provider 0 rand(s, 17 h) 1 Req17 (50–60) 200 Mbps

Req6, 14 rf P3 Production studio, service provider 0 rand(s, 17 h) 1 Req17 (50–60) 200 Mbps

Req7, 15 rf P1 Production studio, service provider 0 rand(s, 17 h) 1 Req17 (50–60) 200 Mbps

Req8, 16 rf P2 Production studio, service provider 0 rand(s, 17 h) 1 Req17 (50–60) 200 Mbps

Req17 rf Production studio Broadcaster 16 Req1..16 1 Req18 60 200 Mbps

Req18 rf Broadcaster Service provider 1 Req17 0 st 60 15 Mbps

P1, P2, P3 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 15) h; st = rand(18, 22) h

Use case 3 Type sn dn #tn
s dep. tn

s /dep.On #tn
e dep. tn

e /dep.On in (min) bn

Req1 rf P1 P2 0 rand(s, 9 h) 1 Req2 (30–50) 200 Mbps

Req2 rf P2 Broadcaster 1 Req1 0 rand(10, 12)h (30–50) 200 Mbps

Req3 rf Production studio Broadcaster 0 rand(s, 9 h) 0 rand(10, 12)h (30–50) 200 Mbps

Req4 rs P3 Broadcaster 0 rand(st, d) 0 et (8–10) 15 Mbps

Req5 rs P4 Broadcaster 0 rand(st, d) 0 et (8–10) 15 Mbps

Req6 rs P5 Broadcaster 0 rand(st, d) 0 et (8–10) 15 Mbps

Req7 rs Broadcaster Service provider 0 st 0 st+0.5 h 30 15 Mbps

Req8 rf Broadcaster Production studio 0 st+0.5 h 0 24 h 30 15 Mbps

P1, P2, P3, P4, P5 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 7) h; st = rand(12, 16) h; d = (st + 0.5 − in) h; if (in < I) then (et = T n
s +1) else (et = T n

s + in)

Fig. 5. The larger media production network topology used in the evaluation. The ATT

North America topology consists of 25 nodes and 56 links.
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hat XX% of the use case instances are known at the start of the simu-

ated day and the algorithm YY is used (i.e., ILP or SPB). ZZ is optional

nd refers to the time slot size in seconds, if the ZZ is not specified, the

efault time slot size of 3600 s has been used. Furthermore, the num-

er of use case instances equals 20 (in total 209 requests) and 50 (in

otal 519 requests) for all the experiments with the smaller and larger

opologies, respectively. All results are averaged over 50 runs with

ifferent randomized inputs. Error bars denote the standard error.

All algorithms in this section are implemented in Java 7. ILPs are

olved using the IBM ILOG CPLEX 12.6 optimization software package.

.2. Comparing the SPB algorithms to the ILP-based algorithms

Fig. 6 compares the ILP solutions with the SPB algorithms, where

or the latter either 1 h or 10 min time slot sizes are shown. In this

valuation, all or none of the requests are known in advance. First

or the same time slot size of 1 h, this figure shows that the result of

he SPB algorithms is close to the optimal values. The performance

f SARA and DARA are within 8.29% of SARA and 8.78% of
SPB SPB ILP

Please cite this article as: M. Barshan et al., Deadline-aware advance re
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ARAILP, respectively. For a time slot size of 1 h, the SPB algorithms

each to 100% admittance only when 2300 Mbps physical bandwidth

s available. For the 6-times shorter time interval size (i.e., 10 min)

nd 1200 Mbps capacity, both the static and dynamic SPB algorithms

dmit all 20 scenarios, whereas the static ILP-based algorithm only

chieve 96.05% on average.

Figs. 7 and 8 are provided to compare the performance of ILP-

ased and SPB algorithms, respectively, showing the influence of the

ercentage of known requests in advance on the solutions. Knowing

ore requests gives more freedom to schedule them and makes it

asier to determine the subset of requests to reject. Thus, static al-

orithms outperform the dynamic ones. Therefore, to have a clear

istinction, in both figures the result are shown relative to the SARA.

s expected, more known requests significantly increase the perfor-

ance. The results show that when requests are not known at the

tart of the day, SARAILP outperforms DARAILP by up to 5.22% while

hen 90% are known this is reduced to 1.97% at most. For the SPB

lgorithms the same trend can be observed. The percentage of ad-

itted requests in DARASPB is within 5.7% and 1.37% of SARASPB for the

% and 90% of known requests, respectively.

Furthermore, to have a comparison of the execution times Fig. 9

s depicted. This figure compares the execution duration of the static

LP and SPB algorithms. As can be observed from this figure, the ILP is

he most complex and the slowest, and the static SPB algorithm with

he same time interval size is between 128 up to 520 times faster than

he ILP solution.

.3. Evaluation of the SPB algorithms

.3.1. Impact of available bandwidth

We now assess the impact of physical network capacity on the

PB algorithm performance. Fig. 10 compares the percentage of ad-

itted requests of SARA to DARA, where for the latter various ranges

f use case instances are known in advance. The network capacities

ary from 600 up to 2300 Mbps and a time slot size of 1 h is used.
servation scheduling algorithms for media production networks,
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h

9

6

This figure shows that when no request is known in advance, SARA

shows up to 5.7% higher acceptance rate compared with the dynamic

approach.

In Fig. 11 the same results are shown for the larger infrastructure.

The available bandwidth varies from 200 up to 800 Mbps. As can be

observed from this figure, when none of requests are known before-
 a
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and, the admittance ratio in DARA is within 4.1% of SARA and when

0% of requests are known the result is within 1.1%.

.3.2. Impact of time slot granularity

Figs. 12 and 13 study the impact of time slot granularity on SARA

nd DARA for the 12-node and 25-node topology, respectively. For
servation scheduling algorithms for media production networks,
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t
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t

he smaller network the link capacity of 700 Mbps and for the larger

opology the link capacity of 200 Mbps is used. As shown in both

gures, the fine-grained experiment with shortest time slot size re-

ults in the best performance. However, although more granularity

ncreases the performance of the algorithm, the complexity of the al-
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orithm significantly increases as well. In the case of DARA, the algo-

ithm is invoked several times throughout the day.

In Fig. 12, we observe that an interval size of 60 s yields 11.5% bet-

er results than a size of 3600 s for SARA. However, the execution

ime of the algorithm also increases. For DARA, a similar trend is seen.
servation scheduling algorithms for media production networks,
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Moreover, it should be noted that in case fewer requests are known

in advance, the complexity of a single DARA algorithm invocation de-

creases significantly. This can be seen in Figs. 14 and 15 for the smaller

and the larger topologies, respectively. For example in Fig. 14, when

none of requests are known and the size of time slot is 1 min, the ex-

ecution time is on average 18.33 times shorter than when all requests

are known in advance. In the former case, the algorithm needs to be

executed 19.6 times on average, while in the latter only once. Based
 a
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n the results, a time slot size of 600 s optimizes the trade-off be-

ween optimality and complexity. This interval size is not the most

ptimal value for all possible configurations, but is within 1.6% of the

ptimum in all evaluated cases.

.3.3. Impact of network load

Figs. 16–18 compare the influence of number of use case instances

nd percentage of known requests. In Figs. 16 and 17 the smaller
servation scheduling algorithms for media production networks,
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opology with network capacity of 600 Mbps and 1 h time slot size

re used. The number of scenarios varies from 1 to 20. As can be seen

n Fig. 16 by increasing the demands, the percentage of admitted re-

uests decreases. SARA outperforms DARA up to 5% when 0% of re-

uests are known in advance, and up to 3.8% when 50% are known.

s depicted in Fig. 18 the same trend can be observed for the larger
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opology with 200 Mbps capacity. SARA yields up to 5.8% better re-

ults than DARA.

In Fig. 17 the execution times for each algorithm invocation for a

ange of percentage of known requests is assessed. Based on this re-

ult the DARA is up to 7.4 times faster, when the number of scenarios

s 20. However, the algorithm is invoked 9.48 times on average.
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Fig. 18. Impact of network load on request admission rate for 25-node topology.

R
7. Conclusion

In this article, an optimal model and a set of novel scheduling al-

gorithms were presented for advance bandwidth reservation in me-

dia production networks. Specifically the SPB approach is proposed

to resolve the computational complexity associated with the opti-

mal solutions. The bandwidth scheduling algorithms take the specific

characteristics of media production processes into account, for ex-

ample time-variable bandwidth reservation, flexible start times, re-

quest dependencies and splittable flows. In our approaches all four

types of advance reservation requests are supported. Furthermore,

the proposed algorithms operate in both offline and online man-

ners. A detailed performance analysis is conducted to assess the vi-

ability of ILP-based and SPB solutions. The influence of the available

bandwidth, the percentage of requests known in advance, the net-

work load, the time granularity and the execution time have been

evaluated.

Our evaluation showed that the SPB results at least within 8.78%

of the optimal admittance rate. Also, when a significant portion of re-

quests is known in advance, AR significantly increases bandwidth ef-

ficiency and request admittance. Concretely, in case all requests are

known beforehand, request admittance of the optimal and heuris-

tic solutions can be increased up to 5.22% and 5.7%, respectively. In

addition, the results showed that time granularity increases algo-

rithm accuracy and optimality in terms of request admittance. SPB

can achieve higher scalability in terms of the size of physical network

as well as time slot sizes. The size of time intervals can be fine-grained

up to 1 min. Comparing to the ILP-based approaches, the SPB algo-

rithms offer lower operational overhead in terms of problem com-

plexity and execution time.

Future work includes determining the impact on quality and per-

formance of variable time intervals, and adding resilience to improve

the robustness of the schedules generated by the advance reservation

system.
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