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a b s t r a c t 

Many applications in wireless sensor networks (WSNs) ( e.g. , traffic monitoring, environment surveillance and 

intruder tracking) rely heavily on the availability and accuracy of targets’ locations. Compressive sensing (CS) 

has been widely applied to localization as it asserts that a small number of samples will suffice for sparse 

or compressible signal recovery. Despite much progress in CS-based localization, existing solutions mainly 

consider static targets and often perform poorly for mobile targets. 

In this paper, we develop a novel two-dimensional localization (TDL) framework for mobile targets us- 

ing compressive sensing. TDL is composed of two modules: (i) spatial localization module (SLM) that first 

achieves localization at sampling times by exploiting the sparse nature of Received Signal Strength (RSS) 

vector in space domain, and (ii) temporal localization module (TLM) that then achieves localization at all 

times by exploiting the compressible nature of location vector in time domain. Furthermore, two practica- 

ble measurement matrices are constructed to conduct linear measurements. We analyze the flexibility and 

effectiveness of TDL in theory. Extensive numerical evaluations with real mobility traces further confirm the 

superior performance of our localization framework. 

© 2015 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

Wireless sensor networks (WSNs) attract much attention as they

romise an ability to monitor the physical world via a lot of small and

nexpensive sensors. Location awareness is highly critical to many ap-

lications in WSNs, such as geographic routing [1] , disaster response

2] , environment surveillance [3] , and vehicle tracking [4] . The Global

ositioning System (GPS) [5] is widely used to obtain location infor-

ation in WSNs. However, there are several situations ( e.g. , indoors,

nder the ground, or in urban environments) where GPS does not

ork well due to the lack of line of sight to multiple satellites. More-

ver, due to the constraints on hardware cost, it is undesirable and

nfeasible to equip each target with a GPS. 

The limitations of GPS have motivated researchers to develop a

arge body of literatures on localization. However, most of these lo-

alization schemes fail to localize mobile targets as they are designed

or static targets. For static targets, it is not a problem because their
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ositions are unlikely to change once determined. However, for mo-

ile targets, it is a significant challenge since they may change their

ositions at any time. 

As a matter of fact, most targets in WSNs are mobile. For example,

escuers move in a disaster area, soldiers move in a battlefield, ani-

als move in a habitat, and vehicles move in a city. There are only

 limited number of researches that consider the problem of mobile

arget localization. Moreover, these researches only use a maximum

peed to constrain the distance between a target’s positions during

wo consecutive time intervals while they do not fully exploit the

idden compressible nature of the target’s positions during all time

ntervals. 

Another simple approach to mobile target localization is to divide

ime into several time intervals. In each interval, a target can be con-

idered static and localized using static localization methods. How-

ver, the localization accuracy of this approach depends heavily on

he resolution of time division. To achieve accurate localization, high

esolution of time division is needed, posing great challenges to hard-

are equipments in terms of sampling, storage and calculation. 

Compressive sensing (CS) technique [6,7] provides a new solution

o the problem of mobile target localization. As a novel signal sam-

ling paradigm, CS asserts that a small number of samples will suf-

ce for original signal recovery. To achieve this, CS relies on two key

omponents: sparsity and incoherence. 

http://dx.doi.org/10.1016/j.comcom.2015.10.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.10.006&domain=pdf
mailto:baomings1988@sina.com
mailto:guoyan_2000@sina.com
http://dx.doi.org/10.1016/j.comcom.2015.10.006
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• Sparsity expresses the idea that many real-world signals are

sparse or compressible in the sense that they have concise rep-

resentations when expressed in some representation basis. 

• Incoherence expresses the idea that the sparse signals in some rep-

resentation basis must be spread out in another domain where

they are sampled. In other words, incoherence indicates that un-

like the signals of interest, the sampling waveforms should have

extremely dense representations in the representation basis. 

We observe that the spatial signal ( e.g. , RSS vector) and the

temporal signal ( e.g. , location vector) are sparse or compressible

in appropriate representation bases. Motivated by the observation,

we investigate the solution to mobile target localization using

compressive sensing. 

1.2. Our work and contributions 

There are two key challenges in applying CS technique to our prob-

lem. (1) How to find proper representation bases in which the original

signals can be sparsely represented. (2) The measurement matrix in

our context is restricted by physical constraints. In primal literature,

the measurement matrix is usually specified by a dense matrix, e.g. ,

Gaussian matrix, as it exhibits very low coherence with any represen-

tation basis. However, it should be noted that the dense measurement

matrix is not feasible in practice. As a matter of fact, each measure-

ment is a linear combination of multiple samples of the underlying

signal [8] . It almost requires all samples of the signal since there are

nearly no empty columns in the dense measurement matrix. This ob-

viously goes against compressive sensing theory. 

In this paper, we leverage compressive sensing to develop a

two-dimensional localization framework for mobile targets. The lo-

calization framework takes full advantage of the sparse or com-

pressible nature of signals to highly reduce the data collection

needed for accurate localization in both space and time domains.

The main contributions of this paper can be summarized as

follows. 

• We propose a novel two-dimensional localization framework for

mobile targets. The framework is composed of a spatial localiza-

tion module (SLM) and a temporal localization module (TLM). 

• We design appropriate representation bases by exploiting the

sparse or compressive nature of signals in both space and time

domains. It is validated that these representation bases can suffi-

ciently sparsify the underlying signals. 

• We develop two simple and practical measurement matrices to

conduct linear measurements. We demonstrate that they are

highly incoherent with designed representation bases. 

• We perform extensive simulations to evaluate the performance of

TDL with various parameter settings. The superiority of TDL com-

pared with other approaches is validated by the simulation re-

sults. 

The remainder of this paper is organized as follows. A brief review

of related work is presented in Section 2 . We introduce background

of compressive sensing and mathematically formulate the problem in

Section 3 . Section 4 provides detailed descriptions on our localization

framework. The matrix design and performance analysis are given in

Section 5 . Section 6 demonstrates the performance of our localization

framework through extensive numerical evaluations. Section 7 gives

a discussion about the localization framework. Finally, we conclude

the paper in Section 8 . 

Notations: we use bold uppercase (lowercase) letters to denote

matrices (vectors). ( · ) T denotes the transpose, (·)−1 denotes the in-

verse, ‖ · ‖ p denotes the p -normal, 〈 · 〉 denotes the inner product,

min ( · ) denotes the minimization operator, and max ( · ) denotes the

maximization operator. 
. Related work 

In this section, we first review the applications of CS in WSNs, and

hen summarize the existing researches on target localization. 

.1. CS applications in WSNs 

Compressive sensing has been widely applied to data collection in

SNs because of its ability to reduce signal samplings significantly

nd balance energy consumption across sensors [9] . In single-hop

SNs, Compressive Wireless Sensing (CWS) [10] considers the spa-

ial correlation among sensor readings and reduces the latency of

ata gathering by delivering the linear projections of sensor read-

ngs. Distributed Compressive Sensing (DCS) [11] extends CWS to

ime domain by considering both spatial and temporal correlations

mong sensor readings. DCS studies joint sparsity models and joint

ata recovery algorithms without considering multi-hop communi-

ation and in-network data processing. Compressive Data Gathering

CDG) [12,13] addresses the large-scale data gathering problem in

ulti-hop WSNs. CDG uses dense measurement matrices for CS pro-

ections, not achieving as much energy reduction as sparse matrices.

ahmudimanesh et al. [14] significantly enhance CDG by balancing

omputation and communication loads over all sensors. There are

undamental differences between the aforementioned applications

nd the application in this paper. On one hand, we are interested

n using a few sensor readings to estimate mobile targets’ locations

hile the aforementioned applications aim at reconstructing all sen-

or readings. On the other hand, the aforementioned applications

onsider the spatial or temporal correlation of the same signal while

e explore the spatial or temporal correlation of different signals, i.e.

he spatial correlation of RSS readings and temporal correlation of

argets’ locations. 

.2. Target localization 

We classify existing target localization researches into four cate-

ories: (i) non-CS based static target localization, (ii) CS based static

arget localization, (iii) non-CS based mobile target localization, and

iv) CS based mobile target localization. 

(i) Non-CS based static target localization: These methods are ei-

her range-based or range-free. Range-based methods [15–18] first

se Received Signal Strength (RSS), Time of Arrival (ToA), Time Differ-

nce of Arrival (TDoA), or Angle of Arrival (AoA) to measure the dis-

ances or angles between unknown nodes and anchors with known

ositions, and then use trilateration, triangulation, or maximum like-

ihood to determine the positions of unknown nodes. These methods

re simple but have two significant drawbacks: (1) they are sensitive

o fading, noise and non-line of sight, and (2) it is often not affordable

o equip all nodes with ranging capability. On the contrary, range-free

ethods [19–21] do not require the hardware support for measuring

istances or angles. Instead, they exploit the network connectivity or

roximity relationship between nodes. Range-free methods are easy

o implement in WSNs, but they only achieve a low level of accuracy

n most situations. 

(ii) CS based static target localization: Localization Via Spatial Spar-

ity (LVSS) [22] is the first work to apply compressive sensing to lo-

alization problem. LVSS discretizes the area of interest into a grid so

hat the localization problem is formulated as a sparse signal recov-

ry problem. The authors also propose a Bayesian framework [23] for

he localization problem and provide sparse approximation to its op-

imal solution. The drawback of these methods is that a localization

ictionary is needed at each sensor. By formulating multiple targets’

ocations as a sparse matrix, Feng et al. [24] propose a CS based indoor

ocalization approach. The approach is only able to localize single tar-

et though it is designed for multiple targets. A clustering method
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s further introduced to reduce computational complexity in [25,26] .

he localization accuracy greatly depends on the clustering perfor-

ance and online cluster matching algorithms. However, it is usually

hallenging to determine the number of clusters and choose an effec-

ive cluster matching algorithm. Zhang et al. [27] formulate multiple

argets’ locations as a sparse vector and leverage compressive sens-

ng for localization. Guyen et al. [28] propose a RSS-based WLAN in-

oor positioning system where K-SVD is used to decompose the radio

ap into a dictionary and a sparse representation matrix. The sup-

ort of sparse representation of real-time RSS vector is matched with

he supports of sparse representation matrix to determine which ref-

rence point is closest to the target. Liu et al. [29] propose a range-

ree multiple target localization algorithm using compressive sens-

ng. Instead of measuring RSSs, the information whether targets are

etected by sensors are used to achieve localization. Nguyen et al.

30] propose a multiple target localization algorithm based on com-

ressive sensing, where deterministic sensing matrices rather than

andom sensing matrices are used to take RSS measurements. How-

ver, the aforementioned localization methods are only designed for

tatic targets and not suitable for mobile targets. 

(iii) Non-CS based mobile target localization: Monte Carlo Local-

zation (MCL) [31] is the first localization scheme for mobile targets.

n MCL, a target uses its previous positions and maximum speed

o generate possible current positions, then filters out infeasible

ositions using the current connectivity information from neighbor

nchors. Mobile and Static Localization (MSL) [32] improves MCL

y using the information from not only neighbor anchors but also

eighbor unknown-nodes. This modification results in faster con-

ergence speed and better location estimation. However, a common

isadvantage for both MCL and MSL is that a lot of communication

ost is needed to achieve accurate localization in high mobility

nvironment. 

(iv) CS based mobile target localization: A CS-based positioning sys-

em for single mobile target is introduced in [33] , which consists of

 coarse localization step and a fine localization step. The coarse lo-

alization step is executed to estimate the approximate position of

he target, and then the accurate location is estimated using CS in the

ne localization step. Deng et al. [34] propose a location-fingerprint

ased indoor positioning approach, which includes an offline stage

nd an online stage. At the offline stage, RSS measurements are taken

o establish a fingerprint database. During the online stage, the re-

ltime RSSs are collected and compared with the RSSs stored in the

ngerprint database for location estimation. However, building the

ngerprint database is tedious and time-consuming. By exploiting its

idden structure, a new fingerprint database building approach [35]

ased on compressive sensing is provided to recover absent finger-

rints using a few fingerprints. However, all of these approaches only

tilize the sparse nature of signals in space domain and neglect the

ompressible nature of signals in time domain. 

. Compressive sensing and problem formulation 

In this section, we first provide a brief background on compressive

ensing, and then focus on the problem formulation. 

.1. Compressive sensing 

Consider a discrete signal given by vector x ∈ R 

N . It is referred to

s a sparse vector if x has only a few non-zero elements, i.e. , ‖ x ‖ 0 � N .

ore generally, x is called compressible in the sense that it has many

mall entries, and only a few large entries carrying most of its infor-

ation. Results in CS have shown that if x is sparse or compressible,

hen it is possible to reconstruct x from M measurements produced

y a proper linear transform �: 

y = �x , (1) 
here M � N . The matrix � ∈ R 

M×N is usually termed as measure-

ent matrix . It should be noted that most signals in practice are not

ruly sparse or compressible. However, they can be sparsely repre-

ented in an alternative domain. Specifically, x may be linearly rep-

esented as x = �s , for some matrix � ∈ R 

N×N , where s is the sparse

r compressible coefficient vector in �-domain. The matrix � is re-

erred to as representation basis . Therefore the measurement vector

an be expressed as: 

y = ��s . (2) 

Obviously, it is an under-determined linear system in that the

umber of measurements M is much smaller than the number of un-

nowns N . This ill-conditioned system can be solved by minimizing

he � 0 norm: 

� 0 : ˆ s = arg min 

s ∈ R N 
‖ 

s ‖ 0 s .t . y = ��s . (3) 

Directly solving the problem is NP-hard. However, it is feasible

hen �� satisfies the restricted isometric property (RIP) [36] : 

efinition 1. A matrix A satisfies the restricted isometry property

RIP) of order k if there exists a δk ∈ (0, 1) such that 

(1 − δk )‖ 

s ‖ 

2 
2 ≤ ‖ 

As ‖ 

≤ (1 + δk )‖ 

s ‖ 

2 
2 

(4) 

or all k -sparse vectors s ∈ R 

N . 

When �� satisfies the RIP, the solution can be obtained by solving

he following � 1 -minimization problem: 

� 1 : ˆ s = arg min 

s ∈ R N 
‖ 

s ‖ 1 s .t . y = ��s . (5) 

The problem can be easily solved using existing recovery algo-

ithms (also named as solvers later), such as Basis Pursuit (BP) [36]

nd Orthogonal Matching Pursuit (OMP) [37] . Once the coefficient

ector ˆ s is determined, the original signal can be reconstructed as

ˆ  = �ˆ s . 

No matter which solver is used, the measurement number M

hould satisfy the following condition [38] : 

M � C μ2 (�, �)k log N, (6) 

here C is some positive constant, μ( �, �) is the coherence between

easurement matrix � and representation basis �. The coherence

( �, �), for a given pair ( �, �) in R 

N , can be defined as 

μ(�, �) = 

√ 

N max 
1 � i, j� N 

| 〈 ϕ i , ψ j 〉 | ∈ [ 1 , 
√ 

N ] , (7) 

here ϕ i is the i th row of � and ψ j is the j th column of �. Therefore

iven x , the matrix pair ( �, �) should be chosen carefully: it is desir-

ble to represent x in �-domain sparsely at the same time to make

( �, �) as small as possible. 

.2. Problem formulation 

We consider a wireless sensor network with k mobile targets as

een in Fig. 1 . Each target is equipped with an emitter which broad-

asts beacons periodically. Some sensors are deployed in the moni-

ored area to measure the RSSs. Then these RSSs are transmitted to

 distant Fusion Center (FC) according to the compressive data gath-

ring method introduced in [39] . Finally, a recovery algorithm is exe-

uted to estimate these targets’ locations in the FC. In this manner, we

ransfer computing load from sensors to the FC, significantly reduc-

ng the energy cost of sensors. Our objective is to determine where to

eploy sensors and when these sensors collect RSSs. 

For the sake of simplicity, we suppose that these mobile targets’

ocations are discrete in both space and time domains. Space dis-

retization can be realized by dividing the monitored area into a grid

ith N cells while time discretization can be realized by dividing

he time scale into T time intervals. It is obviously not true, but
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Fig. 1. Network scenario. 
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a quite good representation of actual targets’ locations if the cell

size and time interval are small enough with respect to the grid

size and time scale. More importantly, it is worth noting that since

RSSs are measured discretely no matter how high the frequency is,

the measurements are inevitably discrete in both space and time

domains. Therefore adopting a discrete model allows us to precisely

evaluate the performance of our approach. 

4. Two-dimensional localization framework 

In this section, we first present the overview of two-dimensional

localization (TDL)framework, and then give the detailed description

of its two modules: spatial localization module (SLM) and temporal

localization module (TLM). 

4.1. Overview of TDL 

An overview of proposed two-dimensional localization frame-

work is illustrated in Fig. 2 . 

In spatial localization module, at sampling times specified by

temporal measurement matrix, RSSs are collected at sampling cells

specified by spatial measurement matrix, and then these RSSs are

transmitted to the FC; at last the sparse representation of RSS vector

is estimated by solving a � 1 -norm minimization problem. After this,

the locations of all targets at all sampling times are known. 

In temporal localization module, for each target, the sparse rep-

resentation of its position vector is estimated with its locations at

sampling times by solving a � 1 -norm minimization problem. Then

the location vector can be recovered by multiplying the sparse rep-

resentation with temporal representation basis. 

4.2. Spatial localization module 

In space domain, we consider a case where k targets exist in

a monitored area, which is divided into a grid with N cells. The

positions of these cells and target number k are known a priori.

Since a target’s location is unique in the discrete space at a cer-

tain time, by assuming that a cell only holds one target [24] , we

can represent these targets’ positions as an ideal k -sparse vector

c = [ c 1 , c 2 , · · · , c N ] 
T . The support of c encodes the locations of mul-

tiple targets, one nonzero element represents a target and its index

represents the location of the target. At a certain time, we denote the

RSSs at N cells by a vector r = [ r , r , · · · , r ] 
T . Then the vector r can
1 2 N 
e expressed as: 

r = �D c , (8)

here �D is a N × N energy decay matrix, whose element �D (i, j ) =
SS(d i j ) denotes the RSS reading at cell i from the target at cell j . 

To localize these targets, a traditional approach is to place one sen-

or at each cell to take RSS measurements, and then obtain the sparse

ector c according to Eq. (8) . However, in this approach, a large num-

er of sensors are needed to take RSS measurements, bringing high

ost. it should be noted that the problem has a sparse nature as the

SS vector r is fully sparse in the representation basis �D . The sparse

ature motivates us to reconstruct the sparse vector c by collecting a

ew RSS samples. 

.3. Temporal localization module 

As for time domain, without loss of generality, we only consider

ingle mobile target in one-dimensional Euclidean space, as the same

ethod can be applied to multiple targets and two-dimensional Eu-

lidean space. To discretize the mobile target’s locations, we divide

ime into T intervals. In each interval, the target can be considered

tatic. 

We denote by x = [ x 1 , x 2 , · · · , x T ] 
T an actual realization of a mo-

ile target’s locations during T time intervals. x i represents the tar-

et’s location at the i -th time interval. After SLM, the target’s locations

t sampling times are known. CS provides us a solution to recovering

he location vector x with the locations at sampling times as long as

 is sparse or compressible. An important point is that the location

ector in practice is not truly sparse or compressible. However, it can

e sparsely represented in an alternative representation basis. 

. Matrix design and performance analysis 

The performance of signal recovery is determined by two key

omponents: measurement matrix � and representation basis �.

he matrix � directly corresponds to a measurement policy, whereas

is used not only to sparsify the original signal but also to recover

t once its coefficient vector is determined. In this section, we first

resent how to design � and �, and then check the performance of

esigned matrices in terms of sparsity and coherence. 

.1. Representation basis design 

(1) Spatial representation basis: As we pointed out early, the RSS

ector r can be fully sparsely represented in basis �D . Therefore we

onstruct spatial representation basis as �D produced by the radio

ropagation model [40] , which follows: 

RSS(d) = P t + K e − 10 ηlog 10 

(
d 

d 0 

)
+ X σ , (9)

here P t denotes the transmitting power; K e is a constant that de-

ends on the environment; d is the target-sensor distance, and d 0 is

 reference distance; η is the path loss coefficient; X σ is a random

ariable that follows the Gaussian distribution with zero mean and

ariance of σ 2 . 

(2) Temporal representation basis: In fact, a mobile target’s location

ector x is not sparse or compressible itself. However, we observe that

he target changes its speed slowly. Motivated by this observation, we

parsely represent the location vector with a speed-difference matrix

 S = Toeplitz (0 , 1 , −2 , 1 ), which denotes the matrix with central di-

gonal given by “1”, the first upper diagonal given by “−2”, and the
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Fig. 2. Block diagram of proposed mobile target localization framework. 
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econd upper diagonal given by “1”, i.e. , 

M S = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 −2 1 0 · · ·
0 1 −2 1 

. . . 

0 0 1 −2 

. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (10) 

We project x onto M S and obtain the coefficient vector, where

ach term (x i +1 − x i ) − (x i − x i −1 ) represents the difference between

peeds of the target during two consecutive time intervals. The more

lowly the target changes its speed, the smaller the terms are, i.e. , the

ore compressible the coefficient vector is. Therefore we define the

epresentation basis as �S = M 

−1 
S 

. 

For the sake of comparison, we also consider a location-difference

atrix M L = Toeplitz (0 , 1 , −1 , 0 ) introduced in [41] that captures the

emporal smoothness of the soil moisture process. M L denotes the

atrix with central diagonal given by “1”, the first upper diagonal

iven by “−1”, i.e. , 

M L = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 −1 0 0 · · ·
0 1 −1 0 

. . . 

0 0 1 −1 

. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (11) 

Similarly, we project x onto M L and get the coefficient vector,

here each term (x i − x i −1 ) represents the difference between loca-

ions of the target during two consecutive time intervals. If the tar-

et’s trace is smooth enough, the coefficient vector is compressible.

herefore we define the representation basis as �L = M 

−1 
L 

. 
.2. Measurement matrix design 

(1) Spatial measurement matrix: The spatial measurement matrix

specifies a measurement policy: its entry �(m, n ) = 1 if the m th

SS measurement is taken at the n th cell; otherwise �(m, n ) = 0 . It is

bvious that at most one measurement can be conducted at any cell.

his implies, regardless of the measurement policy, � contains one

nd only one “1” in any row, at most one “1” in any column, and “0”

verywhere else. As a result, the measurement matrix � will be ex-

remely sparse. This is quite different from existing literatures where

he measurement matrices are usually dense. To address this prob-

em, we consider the following two measurement policies. 

• Uniform measurement policy: measurements are taken periodi-

cally. The corresponding measurement matrix is referred to as �U .

• Random measurement policy: measurements are taken randomly.

The corresponding measurement matrix is referred to as �R . 

Note that since N is not always an integral multiple of M , in uni-

orm measurement policy, the first measurement point is randomly

elected within [1, 
 N / M � ], and subsequence measurements are taken

very 
 N / M � time intervals till N is exhausted. 

(2) Temporal measurement matrix: Similar to spatial measurement

atrix, temporal measurement matrix is also confronted with physi-

al constraints. Namely, at most one measurement can be conducted

t any time interval. It contains one and only one “1” in any row,

t most one “1” in any column, and “0” everywhere else. Its entry

(s, t ) = 1 implies that the s th measurement is taken at the t th time

nterval. Therefore, in temporal localization module, we consider the

ame measurement matrices: � and � . 
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Table 1 

Real traces used in mobility characterization. 

Trace name Description Time interval (s) 

KAIST Trace 20 students’ movement in KAIST 10 

NCSU Trace 32 students’ movement in NCSU 10 

NewYork Trace 12 volunteers’ movement in NewYork 10 

Orlando Trace 8 volunteers’ movement in Orlando 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Sparsity levels of traces in different temporal representation bases. 

Table 2 

Incoherence between � and �. 

N I ( �L , �U ) I ( �S , �U ) I ( �L , �R ) I ( �S , �R ) 

200 188 199 184 199 

400 386 399 385 400 

600 555 599 561 600 

800 764 800 765 800 

10 0 0 973 999 979 10 0 0 
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5.3. Performance analysis 

As we discussed early, there are two main criteria in selecting rep-

resentation basis � and measurement matrix �: (1) the coefficient

vector obtained by representing the original signal in � should be as

sparse or compressible as possible, and (2) the coherence between �
and � should be as low as possible. In this section, we first evalu-

ate the capabilities of designed representation bases to sparsify sig-

nals, and then check the coherence between representation bases and

measurement matrices. 

(1) Sparsity: We first evaluate the capabilities of temporal repre-

sentation bases to sparsify signals. The reason why we ignore spatial

representation basis lies in the fact that it can sparsify the RSS vector

fully and the sparsity level equals the number of targets. It turns out

that the coefficient vectors yielded by temporal representation bases

are not precisely sparse but compressible, i.e. , most of the elements

are non-zero but small enough. Accordingly, we can approximate

these coefficient vectors by neglecting the small coefficients. We in-

troduce a metric to evaluate the capabilities of the representation

bases to sparsify signals. The metric is defined as the fraction of to-

tal energy captured by the top K coefficients, i.e. , (
∑ K 

i =1 s 
2 
i 
)/ (

∑ N 
i =1 s 

2 
i 
),

where s i is the i th largest coefficient and 

∑ N 
i =1 s 

2 
i 

denotes total energy

of the coefficient vector. The larger the metric is, the better the repre-

sentation bases sparsify signals. 

The data sets we use are obtained from CRAWDAD [42] , includ-

ing a number of publicly available traces as listed in Table 1 . The

KAIST (Korea Advanced Institute of Science and Technology) traces

were collected by 20 students who carried the GPS receivers in

the computer science department. The NCSU (North Carolina State

University) traces were taken by 32 students who lived in a campus

dormitory. The New York traces were obtained from 12 volunteers

living in Manhattan or its vicinity. The Orlando traces were col-

lected from 8 volunteers who visited a local state fair. In addition,

it is worth mentioning that all of these traces are obtained from a

two-dimensional Euclidean space. However, for the sake of space, we

abstract and only consider x -coordinates as the same method can be

applied to y -coordinates. 

Fig. 3 plots the capabilities of �S and �L to sparsify these mo-

bility traces. As we can see, most energy is captured by the top few

coefficients in all traces. For example, the top 20 coefficients capture

62 . 5 –85 . 2% energy when �S is used. These results clearly suggest that

these mobility traces can be sparsely approximated well. Another im-

portant observation is that �S is much more effective than �L at spar-

sifying these traces as we can expect. 

(2) Coherence: Now we check the coherence between temporal

representation bases and measurement matrices. Since the concept

of coherence is not defined for non-orthogonal matrices, we will use

its dual-incoherence [43] to indirectly evaluate coherence. The inco-

herence between � and � is calculated as follows: 

I (�, �) = min 

1 ≤i ≤M 

‖ 

ζi ‖ 0 , (12)

where ζi is the coefficient vector by projecting the i th row of � onto

the space spanned by the columns of �: 

ζi = (�T �)−1 �T ϕ 

T 
i 
. (13)

The larger this metric is, the more incoherent the two matrices

are. 
Table 2 lists the incoherence of four combinations of temporal

epresentation bases and measurement matrices at different scales.

s we can see, when the measurement matrix is fixed, �S performs

uch better than �L . However, when the representation basis is

xed, �U and �R show nearly same incoherence. In the next section

e will conduct evaluations to validate these results. 

. Numerical evaluations 

.1. Performance of SLM 

In this section, we examine the performance of spatial localization

odule. In our simulation, the energy decay matrix is produced ac-

ording to the empirical model defined by the IEEE 802.15.4 standard

44] : 

SS(d) = 

{
P t − 40 . 2 − 20 log d, d � 8 

P t − 58 . 5 − 33 log d, d > 8 

(14)

here P t denotes transmitting power, and is set to be 30 dBm. 

We randomly deploy k = 10 targets in a two-dimensional region

ith the size of 20 m × 20 m . The region is uniformly divided into a

rid with 20 × 20 cells. M = 80 sensors are deployed to collect RSSs.

ll localization results are averaged over 100 random trials. Once

parse vector c is determined, we choose indexes of the top k ele-

ents in c as the numbers of cells which contain targets. The targets’

ocations are estimated as the positions of these cells. Spatial localiza-

ion error ( SpaLocError ) is used to evaluate localization performance,

SpaLocError = 

1 

k 

k ∑ 

i =1 

√ 

(x i − ˆ x i )
2 + (y i − ˆ y i )

2 
(15)

here ( x i , y i ) and ( ˆ x i , ̂  y i ) are true and estimated locations of the i th

arget, respectively. 
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Fig. 4. Spatial localization results of different recovery algorithms. 

Fig. 5. Running times over 100 random trials of different recovery algorithms. 
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Fig. 6. Spatial localization errors with different measurement policies. 

Fig. 7. Spatial localization errors with different measurement numbers. 
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We first investigate which solver works better when spatial mea-

urement matrix is chosen as �U . The solvers we consider include

P and OMP. The Matlab codes of two solvers can be obtained from

parse Lab [42] . 

The results in Fig. 4 show that BP performs better than OMP. BP

chieves accurate localizations for all targets while OMP only local-

zes partial targets. The reason lies in the fact that BP applies lin-

ar programming to the optimization problem while OMP iteratively

dentifies a cell which contributes most to the measurements. 

The running times over 100 random trials of two solvers with dif-

erent sparsity levels (target numbers) are shown in Fig. 5 . As we can

xpect, for both solvers, running times increase with the increasing

f sparsity levels. Another observation is that the running time of BP

s higher than OMP while BP achieves higher localization accuracy. 

The effect of measurement policy on localization performance

s shown in Fig. 6 . In the figure, BPU means BP solver with uniform
easurement policy, and the others are similar. As we can see, when

he same solver is used, the localization errors with uniform mea-

urement policy are smaller than those with random measurement

olicy. Therefore, unless otherwise specified, we adopt uniform

easurement policy in the later simulation. Furthermore, for both

olvers, the localization errors increase with the increasing of spar-

ity level. The results further confirm the superior performance of BP

ver OMP. For the sake of space, we will limit our attention to BP in

he rest of our numerical evaluations. 

Fig. 7 reports the localization errors when measurement number

aries from 60 to 90 at a step of 10 under different sparsity levels.

he localization error increases as sparsity level increases and de-

reases with the increasing of measurement number. This is reason-

ble as higher sampling rate leads to higher accuracy in sparse signal

ecovery. Specially, when k = 30 and M = 60 , a maximum localiza-

ion error of 0.74m is observed, which is smaller than the resolution

f grid. Therefore, we conclude that SLM is an effective localization

lgorithm. 

It is inevitable for measurements to be corrupted with environ-

ental noise. In order to check the robustness of spatial localization
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Fig. 8. Spatial localization errors with different noise levels. 
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module, we intentionally add Gaussian white noise N (0, σ 2 ) to

each measurement. We define Signal Noise Ratio (SNR) as SNR =
20 log (|| r || 2 /σ ), which is set to be 10 dB, 20 dB and 30 dB respec-

tively in our simulations. Fig. 8 reports the localization results under

different noise levels when M = 80 and k varies from 5 to 30 at a step

size of 5. The main observations are as follows. 

Firstly, Fig. 8 presents a trend that SpaLocError increases when

measurement noise increases. This is reasonable as signal recovery

error is proportional to measurement noise. 

Secondly, SLM can tolerate a certain level of measurement noise.

In the case of SNR = 20 dB , as the sparsity level increase up to 30, the

localization error is less than 0.8 m. Therefore SLM is robust to slight

measurement noise. 

Thirdly, when SNR = 10 dB , the error first increases and then de-

creases with the increasing of sparsity level. The reason might be that

we localize targets as the positions of cells corresponding to the top

k largest elements in c . When sparsity level is small, signal recovery

error increases with the increasing of sparsity level, leading to the

increasing of SpaLocError . However, when sparsity level is too large,

though signal recovery error increases, it is possible that more tar-

gets are localized successfully, resulting in the decrease of SpaLocEr-

ror which is averaged over all targets in our paper. 

6.2. Performance of TLM 

In this section we conduct simulations to evaluate effectiveness of

temporal localization module using the matrices designed in previ-

ous section. 

We consider the real mobility traces listed in Table 1 . To keep con-

sistent with the size of grid in spatial localization module, we scale

down the real area to be a square of length 20 m. In addition, for the

sake of simplicity, we fix the signal length as 10 0 0 by preprocessing

these traces as follows: (1) remove the traces with length less than

10 0 0; (2) abstract and only regard the first 10 0 0 samples as original

signals. Temporal localization error ( TemLocError ) is used to evaluate

the performance of temporal localization module. 

TemLocError = 

1 

k · T 

T ∑ 

i =1 

k ∑ 

j=1 

√ (
x i j − ˆ x i j 

)2 + 

(
y i j − ˆ y i j 

)2 
(16)

where k is the number of targets; T is the number of time intervals;

( x ij , y ij ) and ( ˆ x i j , ̂  y i j ) are the true and estimated locations of the j th

target at the i -th time interval, respectively. 
We first study the localization performance of BP solver with dif-

erent combinations of representation basis and measurement ma-

rix. Fig. 9 summarizes the results with four real mobility traces. In

he figure, LU means the localization approach where �L is chosen as

epresentation basis and �U is chosen as measurement matrix, the

thers are similar. The main observations are as follows. 

Firstly, as we can see, the localization errors of all traces are ac-

eptable compared to the area which is scaled down to be a square

f length 20 m. Among these traces, NewYork traces achieve mini-

um localization error. The main reason for the performance differ-

nce lies in the fact that the coefficient vectors of NewYork traces are

he sparsest among all traces as can be seen in Fig. 3 . For the sake of

pace, we will only consider NewYork traces when mentioning real

obility traces in the rest of our numerical evaluations. 

Secondly, when measurement matrix is fixed, representation ba-

is �S shows a slight advantage over �L regardless of the traces used.

he reason for this is twofold. On one hand, compared with �L , �S 

erforms better in sparsifying the traces as shown in Fig. 2 . On the

ther hand, �S shows much higher incoherence with measurement

atrix than �L as shown in Table 2 . 

Thirdly, when representation basis is fixed, measurement matrix

U outperforms �R regardless of the traces used. This seems very

urprising since they have almost same incoherence with represen-

ation basis as shown in Table 2 . It is possibly due to the fact that the

ampling points in uniform measurement policy spread fully around

he signals and nearly capture all information of the signals while the

ampling points in random measurement policy may focus on one

egment and only capture partial information of the signals. 

Then, we investigate the performance of temporal localization

odule for single target. Fig. 10 illustrates a comparison between true

race and estimated trace of a randomly chosen target. In this simu-

ation, representation basis is chosen as �S and measurement matrix

s chosen as �U . The temporal measurement number S = 100 . As we

an see form Fig. 10 , temporal localization module reconstructs the

arget’s trace to very high accuracy. 

In order to check the robustness of temporal localization module,

e intentionally add Gaussian white noise N (0, σ 2 ) to each measure-

ent. The SNR is set to be 10 dB, 20 dB and 30 dB respectively. Fig. 11

eports the localization errors of BP solver under different measure-

ent noise levels. Representation basis is chosen as �S and measure-

ent matrix is chosen as �U . The measurement number varies from

0 to 200 at a step size of 20. The main observations are as follows. 

Firstly, Fig. 11 presents a trend that the SpaLocError increases as

easurement noise increases. This is reasonable as the signal recov-

ry error is proportional to measurement noise. 

Secondly, when noise is slight or free, the SpaLocError decreases as

easurement number increases. However, it goes against the trend

hen noise is high, for example when SNR = 10 dB. The reason ac-

ounting for this phenomenon is that the measurements are quite

naccurate when noise level is high. 

Thirdly, we can see that TLM can tolerate a certain level of mea-

urement noise. When SNR is more than 20 dB, the localization errors

re less than 0.1 m. The localization errors are less than 0.5m even

hen SNR = 10 dB. Therefore TLM is very robust to measurement

oise. 

.3. Performance of TDL 

In this section, we conduct simulations to demonstrate the effec-

iveness of our two dimensional localization framework. The metric

o evaluate its performance is average localization error ( AvgLocError )

hich is the localization error averaged over all time intervals and all

argets. 

We first investigate the effect of spatial measurement number

 and temporal measurement number S on the localization per-

ormance of TDL. As we can see from Fig. 12 , AvgLocError sharply
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Fig. 9. Temporal localization errors with different matrix combines. 

Fig. 10. Comparison between true and estimated traces. 

d  

s  

b  

Fig. 11. Temporal localization errors with different noise level. 
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ecreases with the increasing of spatial measurement number and

lowly decreases with the increasing of temporal measurement num-

er. Thus, to achieve high localization accuracy at low cost, we should
ppropriately increase spatial measurement number and decrease

emporal measurement number as far as possible. 

To further validate the effectiveness of TDL, we compare its

erformance with the performance yielded by spline interpolation
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Fig. 12. Average localization errors with different measurement number. 

Fig. 13. Average localization error comparison between TDL and SP. 
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(referred to as SP later), a simple mathematic tool to reconstruct orig-

inal signals using a small set of samples. 

Fig. 13 demonstrates the performance gap between TDL and SP

when the spatial measurement number is fixed as 80. The temporal

representation basis is chosen as �S . In the figure, SPR means spline

interpolation with random measurement policy, and the others are

similar. The key observation is that TDL performs significantly better

than SP for small temporal measurement number S . When S is large,

the performance of TDL is slightly better than SP. The reason for the

performance difference lies in the fact that TDL exploits the sparse

nature of original signals while SP does not. 

7. Discussion 

Improvements on existing work: Energy is an important consider-

ation for wireless sensor networks. We improve on existing work on

mobile target localization by reducing energy cost. Signal recovery

could consume a significant amount of energy, therefore our local-

ization framework transfers it to the FC. Furthermore, spatial localiza-

tion module effectively reduces the number of sensors that need to be
eployed while temporal localization module extremely reduces the

requency of signal sampling for each sensor, significantly prolonging

he lifetime of WSNs. 

Limitations of our work: On one hand, our approach is limited by

npredictable environments because RSSs are used for location esti-

ation. For example, in highly dynamic environments, our approach

erforms poorly as the radio propagation model used to produce spa-

ial representation basis cannot accurately describe the radio envi-

onments any longer. On the other hand, our evaluations are based on

uman traces. How does TDL perform with fast moving targets, such

s buses or taxi? The bad compressible nature of traces may lead TDL

o perform poorly with fast moving targets. To address this problem,

n the future, we will attempt to design better temporal representa-

ion bases to explore the compressible natures of the traces. 

. Conclusion 

In this paper, we consider the problem of mobile target localiza-

ion and develop a novel two-dimensional localization framework

sing compressive sensing. We design representation bases by

xploiting the sparse or compressible nature hidden in the spatial

ignal ( e.g. , RSS vector) and the temporal signal ( e.g. , location vector).

e investigate what types of measurement matrices are consis-

ent with the physical constraints and sufficiently incoherent with

he representation bases. TDL can significantly reduce spatial and

emporal measurement numbers at the cost of small localization

rror. The effectiveness and robustness of TDL are confirmed through

xtensive numerical evaluations. 
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