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a b s t r a c t 

The performance of protocols and architectures for upcoming vehicular networks is commonly investigated 

by means of computer simulations, due to the excessive cost and complexity of large-scale experiments. 

Dependable and reproducible simulations are thus paramount to a proper evaluation of vehicular networking 

solutions. Yet, we lack today a reference dataset of vehicular mobility scenarios that are realistic, publicly 

available, heterogeneous, and that can be used for networking simulations straightaway. In this paper, we 

contribute to the endeavor of developing such a reference dataset, and present original synthetic traces that 

are generated from high-resolution real-world traffic counts. They describe road traffic in quasi-stationary 

state on three highways near Madrid, Spain, for different time-spans of several working days. To assess the 

potential impact of the traces on networking studies, we carry out a comprehensive analysis of the vehicular 

network topology they yield. Our results highlight the significant variability of the vehicular connectivity 

over time and space, and its invariant correlation with the vehicular density. We also underpin the dramatic 

influence of the communication range on the network fragmentation, availability, and stability, in all of the 

scenarios we consider. 

© 2015 Elsevier B.V. All rights reserved. 
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1. Introduction 

A key enabling technology of future Intelligent Transportation

Systems (ITS), vehicle-to-vehicle (V2V) communication is envisioned

to interconnect vehicles into distributed, self-organized networks.

The latter are expected to complement today’s mobile access archi-

tecture, and support services such as cooperative awareness, collision

avoidance, or data dissemination. 

The emergence of large-scale vehicular networks requires that a

large fraction of vehicles is equipped with dedicated radio interfaces.

Such a pervasive deployment of V2V communication is closer than

one would imagine: standards for V2V communication, such as IEEE

802.11–2012 [1] , IEEE 1609 [2] ,OSI CALM-M5 [3] and ETSI ITS-G5 [4]

are now finalized, and regulators in the USA plan to enforce V2V radio

interfaces on all new vehicles by 2017 [5] . Early large-scale field tests
∗ Corresponding author at: Marco Gramaglia, IMDEA Networks Institute Avenida 

Mar Mediterraneo 22, 28918, Leganes, Madrid, Spain. 

E-mail address: marco.gramaglia@imdea.org , mgramagl@it.uc3m.es (M. Gra- 
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re also in progress, e.g., within the sim 

TD project in Germany, or the

nn Arbor Safety Pilot in Michigan, USA. 

These notwithstanding, experimental trials of vehicular network-

ng solutions remain an exception, due to their costs and complexity.

he vast majority of applications, protocols and architectures for up-

oming vehicular networks is evaluated via computer simulation. The

ependability of results is then conditional on the level of realism of

he models assumed, and the representation of the mobility of indi-

idual vehicles is often the single feature that introduces the largest

ias [6] . 

For that reason, during the past decade, significant effort s have

een made to gather real-world road traffic data [7,8] , develop effec-

ive tools for the simulation of vehicular movement [9–12] , and gen-

rate realistic synthetic mobility traces [13–15] . Still, a reference set

f realistic, publicly shared, heterogeneous road traffic scenarios for

etworking simulation is not yet available. This situation, originated

y a manifest scarcity of mobility traces featuring the required level

f realism and spatiotemporal granularity, is raising questions on

he dependability and reproducibility of research results [16] . Within

uch a context, this paper puts forward several major contributions,

s follows. 

http://dx.doi.org/10.1016/j.comcom.2015.10.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.10.014&domain=pdf
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Fig. 1. (a) Geographical location of the measurement points on the three highways considered in our study, near Madrid, Spain: M30 (A), M40 (B) and A6 (C). (b),(c),(d) Close-by 

views of measurement points on M30, M40 and A6. 
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1 As an example, Dirección General de Tráfico provides elaborations of the traffic 

count data via the Infocar web service at http://infocar.dgt.es , with visualizations of 

the historical aggregate data at the observation points. 
First, we take a step forward in the direction of dependable

nd reproducible vehicular networking research, by providing to the

ommunity multiple novel realistic highway traffic traces for network

imulation. The traces are based on real-world traffic count measure-

ents that feature an unprecedented level of detail, and are repre-

entative of heterogeneous motorway segments and road traffic con-

itions, as discussed in Section 2 . 

Second, we outline a detailed methodology to generate synthetic

obility traces of unidirectional highway traffic starting from road

raffic counts. The traces model road traffic in quasi-stationary condi-

ions, where macroscopic features such as the average vehicular den-

ity, speed, and out-flow observed on each highway lane are invari-

nt over the full span of the simulated road segment. To that end,

e leverage inherent properties of the real-world data for the per-

ehicle calibration of well-known car-following and lane-changing

icroscopic models. Details are provided in Section 3 . 

Third, we characterize the vehicular network connectivity result-

ng from the proposed synthetic traces. To that end, we perform a

etwork protocol-independent study, by adopting an instantaneous

opology model, as discussed in Section 4 . We investigate the impact

f a wide range of parameters, including time (i.e., hour of the day,

ay of the week), highway settings (i.e., number of lanes, speed lim-

ts), road traffic conditions (i.e., free flow or synchronized traffic), and

2V communication range. Our results, presented in Section 5, under-

core, in all of the scenarios we considered, the following properties:

i) the dramatic impact that relatively small communication range

ariations have on the network structure; (ii) the prevalent role of the

ehicular density in driving network connectivity via three-phase dy-

amics; (iii) the limited availability and stability of long-range multi-

op vehicular networks, (iv) the fact that the highway vehicular net-

ork is difficult to navigate. 

Finally, a comparative review of the related literature is provided

n Section 6 , before we draw conclusions in Section 7 . 

. Source measurement data 

The synthetic traces we present in this paper are based on em-

irical data that comes from real-world measurements carried out in

he region of Madrid, Spain. The data, kindly provided to us by the

panish office for the traffic management (Dirección General de Trá-

co, DGT) and the Madrid City Council, details the vehicular traffic

onditions on the following three arterial highways. 

M30 . With an average distance of 5.17 km from the city center,

30 is the inner part of the Madrid city beltway system, which also

omprises the outermost M40 and M50. The data employed in this

tudy comes from measurements along the northbound direction,

lose to the junction with the A-2 Motorway and marked as A in

ig. 1 a. There, M30 features 4 lanes in the main carriageway, as it can

e observed in the aerial view of Fig. 1 b. The speed limit along M30

s 90 km/h. 

M40 . Motorway M40 is a part of the intermediate layer of the

adrid city beltway system. It has an average distance of 10.7 km

rom the city center, and traverses both the most peripheral areas
f the municipality and several surrounding minor cities. The mea-

urement point, marked as B in Fig. 1 a, is at the 12.7-km milepost,

here M40 traverses the suburb of San Blas and the town of Coslada.

he measures cover the southbound carriageway, in Fig. 1 c, which in-

ludes 3 lanes with a speed limit of 100 km/h. 

A6 . Autovía A6 is a motorway that connects the city of A Coruña to

he city of Madrid. A6 enters the urban area from the northwest, col-

ecting the traffic demand of the conurbation built along it. The data

ollection point is placed around the 11-km milepost in the Madrid

irection, depicted with a C in Fig. 1 a, where A6 features 3 lanes, as

er Fig. 1 d. The speed limit is 120 km/h. 

.1. Collecting fine-grained traffic count data 

The sensors deployed on the three highways are induction loops,

.e., loops of wires buried under the concrete layer and creating a

agnetic field. When a vehicle transits on the vertical axis of the loop,

t induces a variation in the magnetic field. If two loops are placed

lose to each other, other metrics, e.g., the vehicle speed and length,

an be also determined. 

Usually, these devices are programmed to supply coarse-grained

ata, since public transportation authorities are generally interested

n aggregate measures on, e.g., the number of vehicles transiting on

 road, their average speed, or the percentage of heavy vehicles 1 , so

s to detect major alterations of traffic conditions [17,18] . The loops

sed in this paper are normally configured to supply data averaged

ver 60 s, but their setup was changed specifically for our study, so as

o provide fine-grained information on each transiting vehicle. 

Not only the level of detail, but also the timing and duration

f the measurements are critical aspects of the data collection. In-

eed, vehicular traffic presents significant daily variability, and rush

ours yield diverse traffic conditions than off-peak hours, especially

n main arterial roads like those we consider. In order to capture

uch temporal heterogeneity, and compatibly with the limitations

mposed by the dedicated setup needed at the induction loops, we

ollected the following datasets. 

One day-long dataset , collected on M30 during 24 h of a typical

eekday in May 2010. This dataset features variable conditions, from

ery sparse traffic at night to heavy congestion during the morning

ush hours. It thus provides a rather complete view of the possible

raffic scenarios met on a real-world highway. 

Sixteen 30-min datasets , collected on M40 and A6. These datasets

ere recorded on multiple weekdays of May 2010, during the morn-

ng traffic peak (from 8:30 a.m. to 9 a.m.), and during off-peak hours

from 11.30 a.m. to 12 p.m.). The rationale for these shorter datasets

s that they allow us to generalize our study, by investigating the ef-

ects induced by different roads (e.g., number of lanes, speed limits

nd proximity to the city center) and different weekdays. 

http://infocar.dgt.es
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Overall, these traffic count datasets provide a comprehensive view

of heterogeneous traffic conditions, and they do so at a high level

of detail. Their unprecedented combination of precision and com-

pleteness makes them an ideal input to the microscopic simulation

of highway traffic, enabling the generation of realistic mobility traces

that are representative of many and varied traffic situations. 

2.2. Understanding the data 

Each traffic count dataset entry records one vehicle transiting at

the measurement point, and includes: 

• Timestamp : the time at which the vehicle transit was recorded by

the induction loop. The precision of the time reference is 100 ms. 

• Speed : the vehicle speed, in km/h. 

• Lane : the lane on which the vehicle transited. 

An overview of the traffic count data is provided in Fig. 2 . The day-

long time series of the vehicular speed and in-flow on M30 are por-

trayed separately for each lane in Fig. 2 a and d, respectively. The in-

flow is the number of vehicles transiting by the measurement point

per minute, and us typically used as a measure of road traffic inten-

sity. We remark the very low in-flow at night, i.e., from midnight to

around 7.30 a.m., where speeds also tend to be the highest. Early

morning, from 7.30 a.m. to 10 a.m. is characterized by a significant

increase of in-flow and reduction of speeds – a clear symptom of

congestion. Once the morning rush hours have passed, the traffic is

quite regular over the rest of the day, with the notable exception of

some flow reduction at around 2 p.m., i.e., lunch time in Spain. On a

per-lane basis, the speed of the rightmost lane is typically the low-

est, while that of the leftmost lane is normally the highest: this is

expected, since overtaking is only allowed to the left in Spain, which

pushes faster vehicles to travel on left lanes. Also, we observe that

traffic tends to be the thickest in the central lanes, at least in stan-

dard, non-congested situations: again, this is the common behavior

in Spain, with the rightmost lane left to heavy trucks and the leftmost

one used for overtaking only. 

From a traffic flow theoretical standpoint, the diverse combina-

tions of speed and in-flow present in the M30 dataset fall into two

different road traffic states. The so-called free flow traffic [19] , char-
Fig. 2. Traffic count data overview. Per-lane speed (a) and in-flow (d) recorded during a full

day-long plots) on M40 (b), (e) and A6 (c),(f). 

Fig. 3. Inter-arrival time CDF measured on May 12, 2010. Each plot refers a lane on M40 at 8

epresent the mixture model for each distribution. 
cterized by neatly separated speeds on different lanes, dominates

ost of the dataset. This is especially evident from 10 a.m. onward,

s beforehand the traffic is either too sparse to be statistically sig-

ificant, or too thick to be in free flow. The latter situation, i.e., thick

raffic leading to congestion, is observed during the early morning,

etween 8 a.m. and 10 a.m. During this period, the traffic is in the so-

alled synchronized state [19] , where the density is such that all lanes

re equally jammed: indeed, we can remark the distinctive slower,

omogeneous speeds on all lanes. 

As far as the 30-min datasets collected on M40 and A6 are con-

erned, the speed and in-flow yielded by two sample excerpts are

hown in the remaining plots of Fig. 2 . Their time-spans are high-

ighted in the day-long M30 plots as gray-shaded intervals, so as to

ive a better perception of how their duration compares to that of the

30 data. Throughout all these datasets, road traffic is mostly in a

ree flow state, but for rare and episodic spontaneous local perturba-

ions that rapidly disappear. 

.3. Interarrival times analysis 

The analysis of vehicle inter-arrival times in the traffic count

atasets we collected on M30, M40 and A6 shows that a mixture

aussian-exponential model yields an excellent approximation of the

mpirical data. Fig. 3 shows the match between the mixture model

nd the experimental data on multiple combinations of highway,

ane, day and hour. 

The mixture model also provides valuable information on drivers’

ehavior. On the one hand, the Gaussian part of the distribution cap-

ures bursty arrivals of vehicles that travel close to each other at sim-

lar speeds, a behavior typical of congested road traffic. On the other

and, the exponential part of the distribution models isolated vehi-

les whose movement is less constrained by that of other cars, which

s normally observed in pure free flow traffic conditions. 

An intuitive representation of the mixture of the two road traffic

ehaviors is depicted in Fig. 4 . There, we portray the percentage of

oad traffic measured on M30 during the whole day that exhibits ex-

onential inter-arrivals. The value on the y -axis is expressed as the

ercentage of vehicles that show an isolated behavior (i.e., exponen-

ial inter-arrivals); clearly, the residual percentage is made of vehi-
 day on M30, and during two sample 30-min intervals (highlighted as gray-shaded in 

:30 a.m. (a), (b), A6 at 11:30 a.m. (c), (d), and M30 at 11:30 a.m. (e),(f). Solid black lines 
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Fig. 4. Time series of the percentage of road traffic entering M30 with exponential 

inter-arrivals. Curves refer to different lanes of the highway. 
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les traveling in bursts (i.e., with Gaussian inter-arrivals). Results are

ivided by lane. 

We observe that inter-arrivals are never purely exponential. In

act, the Poisson arrival assumption may be a somehow decent ap-

roximation at night, between 11 p.m. and 6 a.m. However, through-

ut the rest of the day, all lanes are characterized by an even mixture

f bursty and isolated arrivals. In fact, we even remark the promi-

ence of the first type of arrivals on the leftmost lanes (i.e., lanes 3

nd 4) between 8 a.m. and 9 a.m., i.e., during the morning traffic peak.

Some differences also emerge among lanes. Inter-arrivals on the

eftmost lane, denoted as lane 4 in the plot, tend to have a more ex-

onential behavior in the general case: as shown in Fig. 2 d, this lane

s typically less trafficked than the others, and vehicles traveling on

t are more isolated. However, during the morning rush hours, traf-

c on the leftmost lanes increases significantly, and the high speed

f vehicles traveling on such lanes forces drivers to keep very similar

afety distances: ultimately, this results in very homogeneous traffic

nd low-variance Gaussian inter-arrivals. 

Interestingly, all the results above invalidate, in the case of our

arget scenarios, the common assumption of exponential or even uni-

orm distribution of the time headway between subsequent vehicles

n each lane. 

For additional details on the modeling of inter-arrival times in our

atasets, we refer the reader to the discussions in [20,21] . 

. Vehicular mobility traces 

Our objective is to generate road traffic traces that are the rep-

esentative of unidirectional highway traffic in quasi-stationary state,

.e., such that traffic conditions are comparable between the in-flow

nd out-flow boundaries of the simulated road segments. Quasi-

tationarity is a common assumption in vehicular networking re-

earch, see, e.g., [17,22–28] . It provides a controlled environment

here ungoverned road traffic phenomena (e.g., continuous road

raffic variations due to in- and out-ramps, unpredictable drivers’ be-

aviors, or accidents) do not bias the evaluation of network solutions.

lthough it does not model macroscopic perturbations induced by

he aforementioned phenomena, quasi-stationarity still allows a full-

edged representation of the microscopic dynamics of real-world

oad traffic (including, e.g., varying vehicle speed due to acceleration

r deceleration, lane changes, overtakes). 

In this section, we feed the real-world traffic count data presented

n Section 2 to a microscopic vehicular mobility simulator 2 , based on

tate-of-the-art car-following and lane-changing models ( Section 3.1 )

hat are purposely calibrated ( Section 3.2 ) so as to derive our trace

 Section 3.3 ). 
2 Available at http://www.it.uc3m.es/madrid-traces . 

p  

t  

t  
.1. Microscopic models 

The car-following and lane-changing microscopic mobility mod-

ls implemented by our simulator are IDM and MOBIL. Both models

ave been validated by the transportation research community and

re widely adopted for the simulation of vehicular networks. 

The Intelligent Driver Model (IDM) [29] characterizes the behav-

or of the driver of a vehicle i through the instantaneous acceleration

 v i (t) /d t, calculated as 

dv i (t) 

dt 
= a 

[ 

1 −
(

v i (t) 

v max 
i 

)4 

−
(

�x des 
i 

(t) 

�x i (t) 

)2 
] 

, (1) 

x des 
i (t) = �x sa fe + 

[
v i (t )�t sa fe 

i 
− v i (t )�v i (t ) 

2 

√ 

ab 

]
. (2)

n (1) , v i (t) is the current speed of vehicle i , v max 
i 

is the maximum

peed its driver would like to travel at, and �x des 
i 

(t) is the so-called

esired dynamical distance , representing the distance that the driver

hould keep from the leading vehicle. The latter is computed in (2) as

 function of several measures taken with respect to the car in front

f vehicle i : the minimum bumper-to-bumper distance �x safe , the

peed difference �v i (t) , and the minimum safe time headway, i.e.,

he time the driver needs in order to react to sudden braking by the

ront vehicle and avoid an accident, denoted as �t 
sa fe 
i 

. In both equa-

ions, a and b denote the maximum absolute acceleration and decel-

ration, respectively. When combined, these formulae return the in-

tantaneous acceleration of the car, as a combination of the desired

cceleration on an empty road, i.e., the term [1 −
(
v i (t) / v max 

i 

)4 
] , and

he braking deceleration induced by the preceding vehicle, i.e., the

erm (�x des 
i 

(t) / �x i (t)) 2 . 

The Minimizing Overall Braking Induced by Lane-changes (MO-

IL) model [30] builds on a game theoretical approach, and lets the

river of a vehicle i move to an adjacent lane if the advantage in do-

ng so is greater than the disadvantage of the trailing car j in the new

ane. The (dis)advantage is measured in terms of acceleration, which

ranslates into the inequality 

dv i (t) 

dt 

∣∣∣∣
L 

− dv i (t) 

dt 
+ a L ≥ p 

(
dv j (t) 

dt 
−

∣∣∣∣dv j (t) 

dt 

∣∣∣∣
L 

)
+ k · a, (3)

here the notation | · | L denotes accelerations computed as if vehi-

le i were traveling on the lane to its left rather than in the current

ne. In (3) , p ∈ (0, 1] is a politeness factor that models the selfish-

ess of the driver with respect to the new back vehicle j , k · a is a

ysteresis threshold that prevents lane hopping, and a L is a bias ac-

eleration that can be used to favor or limit movements to left. An

dentical formulation can be used for right-hand-side lane changes,

nd the respective advantages can be compared to determine the fi-

al lane movement, if any. Note that, in Spain, road traffic regulations

nforce drivers to travel on the rightmost lane whenever possible:

e thus expect a R > a L and a R > 0, i.e., right-hand-side movements

o be favored over left or no movement, if equivalent conditions are

resent on all lanes. 

.2. Model parameter calibration 

In order to obtain quasi-stationary traffic conditions over the sim-

lated highway segment, some calibrations of the IDM and MOBIL pa-

ameters are necessary. Specifically, for the acceleration a , decelera-

ion b , politeness factor p and minimum bumper-to-bumper distance

x safe the default values suggested in [29,30] work well. The other

arameters have instead to be adapted to the specificities of the road

raffic scenarios we considered, as summarized in Table 1 . We remark

hat ours is the first work integrating fine-grained traffic counts in a

http://www.it.uc3m.es/madrid-traces
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Fig. 5. Calculation of the maximum desired speed v max 
i 

. (a),(b),(c) Empirical and fitted distributions of the free flow speed on each lane of M30, M40 and A6, respectively. (d) 

Example of per-vehicle truncation and normalization of the fitted distribution, so that only values larger than the initial speed v 0 
i 

are considered for v max 
i 

, ∀ i . 

Table 1 

IDM and MOBIL parameter settings. 

Model Parameter Meaning Value 

IDM a Maximum acceleration 1 m/s 2 

IDM b Maximum (absolute) deceleration 2.5 m/s 2 

IDM v max 
i 

Maximum desired speed ∼ f V (v ) 
IDM �x safe Minimum distance 1 m 

IDM �t sa fe 
i 

Minimum safe time headway ∼ f T ( �t ) 

MOBIL p Politeness factor 0.5 

MOBIL a L Bias acceleration (left) 0 m/s 2 

MOBIL a R Bias acceleration (right) 0.2 m/s 2 

MOBIL k Hysteresis threshold factor 0.3 
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t

microscopic vehicular mobility generator; in this context, the calibra-

tion presented below is mandatory in order to avoid instability in the

synthetic road traffic 3 . 

Maximum desired speed . Vehicles are introduced in the simulation

at the time and with the speed defined by the real-world traffic count

dataset. However, we need to determine the maximum desired speed

v max 
i 

of each vehicle i , i.e., the cruise velocity that its driver would

keep if alone on the highway [29] . We proceed as follows. 

First, we recall that, according to traffic flow theory, vehicles in a

free flow state have limited interactions, which allows them to travel

at velocities close to their maximum desired speed. We thus assume

that real-world ingress speeds in the free flow zone can be used as
3 Specifically, we recorded a significant amount of dangerous driving behaviors in 

the real-world traffic count data, leading to inter-distances that are incompatible (i.e., 

too small) with the speed difference (too high) among subsequent vehicles. In such 

a scenario, letting vehicles move at a constant speed, or choosing desired speeds and 

safe time headway from non-calibrated distributions, leads to continuous accidents 

or extremely slow traffic. Also, removing misbehaving vehicles is not an option, since 

their number is not negligible, and discarding them would limit data realism. Our 

parametrization can accommodate such dangerous but realistic situations in a syn- 

thetic mobility trace. 

 

T  

b  

v  

v  

a  
 baseline for the derivation of the desired speeds. We identify the

ree flow zone in each traffic count dataset: in the M30 dataset, as

iscussed in Section 2.2 , free flow characterizes the hours from the

tart of the day and 6 a.m. (when synchronized traffic first appears),

nd from 10 a.m. (once synchronized traffic dissolves) to midnight; in

he M40 and A6 datasets, we can safely consider that road traffic is

onsistently in free flow. 

Second, we extract the free flow speed distributions for each road,

n a per-lane basis. The corresponding Probability Density Functions

PDF) are shown in Fig. 5 a– c, for M30, M40 and A6, respectively. In

he latter two cases, the empirical distributions overlap for all combi-

ations of day and hour, and are thus aggregated. The PDFs are sepa-

ated by lane, as drivers traveling on different lanes tend to have dis-

imilar maximum desired speeds. Interestingly, all distributions have

aussian shapes, which let us model the maximum desired speeds as

 Gaussian-distributed random variables, whose fitted PDFs are por-

rayed as solid lines in Fig. 5 . Clearly, the mean μh , l and standard de-

iation σ h , l of the fitted distributions vary depending on the highway

 and lane l considered: there is a neat trend for lanes towards the left

o yield higher velocities than those towards the right, in all scenar-

os. 

As a third step, we adapt the final lane-dependent v max 
i 

distribu-

ion on a per-vehicle basis, as 

f V (v ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , v < v 0 
i √ 

2 exp(−(v − μh,l ) 
2 / 2 σ 2 

h,l 
) 

σh,l 

√ 

π
[
1 + er f ((v 0 

i 
− μh,l ) /σh,l 

√ 

2 ) 
] , v ≥ v 0 

i 
. 

(4)

he expression in (4) truncates and re-normalizes the Gaussian distri-

ution at the speed v 0 
i 

recorded in the real-world traffic count data for

ehicle i . This is graphically explained in Fig. 5 d. This way, the initial

elocity of i , i.e., v 0 
i 
, becomes the lower bound to v max 

i 
, which guar-

ntees that the maximum desired speed of a vehicle i is never lower
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Fig. 6. Calculation of the minimum safe time headway �t sa fe 
i 

. (a) Reference distributions of the typical safe time headway on each lane of M30, as inferred by the experimental 

flow, speed, and inter-arrival information contained in the traffic count dataset. (b) Example of per-vehicle truncation and normalization of the reference distribution, so that only 

values smaller than the initial inter-arrival time �t 0 
i 

are considered for �t sa fe 
i 

, ∀ i . 
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4 An equivalent analysis is not possible for M40 and A6, since the associated traces 

do not feature congestion periods. We assume that drivers on M40 and A6 have mini- 

mum safe time headway values comparable to those computed for M30, and reuse the 

same distributions. 
han v 0 
i 
. The opposite would be unrealistic, for two reasons: first, it

ould imply that i enters the simulation at a speed higher than the

aximum velocity it targets, which hardly makes sense; second, it

ould force an immediate braking according to the IDM model in (1) ,

lowing down the following vehicles and introducing an unrealistic

ueuing perturbation in the highway traffic. 

Minimum safe time. The minimum safe time headway �t 
sa fe 
i 

is

nown to vary across real-world scenarios. In [29] , the default value is

.5 s. However, drivers in different countries prefer diverse safe times,

rom 0.9 s in Germany [31] to 3 s in some States of USA [32] . 

In order to determine the correct per-vehicle �t 
sa fe 
i 

for our sce-

ario, we follow a similar approach as that taken for the calculation

f the maximum desired speed. In this case, however, extracting the

aseline empirical distributions is less straightforward, and we opt

or a mixed analytical–empirical approach, as follows. 

From the dataset, we can measure the inter-arrival times between

ehicles, which can be directly related to the �t 
sa fe 
i 

values. However,

s discussed in Section 2.3 , the mixture Gaussian-exponential shape

f inter-arrivals is known to aggregate bursty as well as isolated ar-

ivals [20] . The latter are generated by vehicles that travel far away

rom each other: in this case, drivers are not influenced by the behav-

or of nearby vehicles, and thus isolated arrivals are not representa-

ive of actual safety distances. As a result, we need to exclude them

rom the �t 
sa fe 
i 

estimation, and preserve bursty arrivals that refer to

hick traffic, where drivers actually keep a minimum safe time head-

ay with respect to their front vehicle. 

We resort to traffic flow theory to perform the operation above,

n a per-lane basis. On a highway h , the vehicular density ρ on lane l

an be expressed as 

h,l = 

1 

L + �t sa fe 

h,l 
v h,l 

(5) 

here L is the average length of the vehicles, v h,l is the average speed,

nd �t 
sa fe 

h,l 
is the average safe time headway [33] . From density ρh , l ,

e can compute the vehicular flow q h,l = ρh,l · v h,l , which results in 

t sa fe 

h,l 
= 

1 

q h,l 

− L 

v h,l 

. (6) 

xpression (6) directly relates �t 
sa fe 

h,l 
to the maximum value of the

ow q h , l and average speed v h,l . The maximum flow q h , l can be in-

erred by identifying in the M30 dataset the time interval at which

he speed breakdown occurs on each lane in Fig. 2 . The average speed

 h,l is easily computed as the average velocity of vehicles in free flow
onditions. Considering L = 4 m as the vehicle length, we obtain typi-

al values of �t 
sa fe 

h,l 
on each lane of every highway. In the M30 dataset,

e have 2.11, 1.93, 1.66 and 1.52 s for lanes from the rightmost to

he leftmost, respectively. Interestingly, these values are well aligned

ith those found in the literature [29 , 31,32] . 

The reference Gaussian distribution of safe time headway is then

ssigned a mean �t 
sa fe 

h,l 
. The standard deviation σ h , l is set such that

he minimum inter-arrival time recorded in the real-world traffic

ount dataset, i.e., 0.3 s, represents the 0.99 quantile of the distribu-

ion, i.e., three standard deviations. Formally, σh,l = (�t 
sa fe 

h,l 
− 0 . 3) / 3 .

he resulting per-lane distributions are plotted in Fig. 6 a for the M30

ase 4 . 

As a final step, similar to what done for the maximum desired

peed, a per-vehicle distribution is to be determined from the lane-

ependent reference ones. In this case, the final �t 
sa fe 
i 

distribution is

f T (�t) = 

⎧ ⎨ 

⎩ 

√ 

2 exp(−(�t − �t sa fe 

h,l 
) 2 / 2 σ 2 

h,l 
) 

σh,l 

√ 

π
[
1 + er f ((�t 0 

i 
−�t sa fe 

h,l 
) /σh,l 

√ 

2 ) 
] , t ≤ �t 0 

i 

0 , t > �t 0 
i 
, 

(7) 

here �t 0 
i 

is the initial inter-arrival time of vehicle i recorded in the

raffic count dataset. Again, (7) yields transformations that truncate

nd re-normalize the reference distribution, as graphically shown in

ig. 6 b. In this case, �t 0 
i 

becomes the upper bound to �t 
sa fe 
i 

, ensuring

hat no vehicle enters the simulation with an inter-arrival time that is

ower than its minimum safe time headway. Such a situation would

n fact lead to sudden braking, and possibly to accidents. 

Lane change bias and hysteresis threshold. In our highway scenarios,

he default MOBIL settings result in a traffic that is highly skewed to-

ards the left lane, which thus suffers from unrealistic congestion.

e ran a comprehensive campaign to identify the combination of

ight ( a R ) and left ( a L ) lane change bias, and lane change hysteresis

hreshold factor ( k ) that grants quasi-stationary traffic over the dif-

erent lanes. Such consistent ingress and egress per-lane properties

ere obtained for a R = 0.2 m/s 2 , a L = 0 m/s 2 , and k = 0.3. Interest-

ngly, the lane change bias favor movements to the right in absence
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Fig. 7. Vehicular density heatmap, day-long M30 trace. Plots refer to lanes from right 

to left (bottom to top). Figure best viewed in color. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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of a clear preference among lanes, which is in compliance with road

regulation in Spain. 

3.3. Synthetic mobility traces 

The final synthetic traces are composed of one day-long trace de-

scribing road traffic over the four lanes of M30, and sixteen 30-min

traces of vehicular mobility along M40 and A6, for different day and

hour combinations 5 . The traces record the position of each vehicle at

every 500 ms, over a 10-km road stretch 

6 . 

As mentioned earlier, all traces are representative of quasi-

stationary road traffic. This clearly emerges in Fig. 7 , which shows

heatmaps of the vehicular density on each lane of M30 over 24 h:

density variations at the beginning of the trace (i.e., at distance equal

to 0 km) reflect throughout the whole length of the road, up to the

end of the simulated segment (i.e., at distance equal to 10 km). The

slight slope is normal, and due to the time required for vehicles to

traverse the highway segment. White stripes in the bottom plot indi-

cate occasional absence of traffic on the leftmost lane at night. 

The unprecedented combination of source data granularity, tem-

poral duration, and road heterogeneity makes these traces the cur-

rent state-of-the-art for vehicular networking studies in highway

environment. This is supported by the comparative analysis of our

datasets with respect to synthetic mobility traces used in the net-

working literature, as discussed in Section 6 . 

Finally, we underscore that the original methodology presented in

Section 3.2 can be used to calibrate any model of microscopic vehicu-
5 Available at http://www.it.uc3m.es/madrid-traces . 
6 The road segment span is a configurable parameter in our simulator. We opted for 

a 10-km distance since it is a common choice in the literature that allows evaluating 

the performance of most networking solutions. 

c  

6  

t  
ar mobility. Thus, it is fully compatible with the models implemented

y popular road traffic simulators used by the networking research

ommunity, such as SUMO [9] or VanetMobiSim [10] . 

. Vehicular network model 

We consider the mobility traces presented in Section 3 , and ana-

yze them from a vehicular networking perspective. Specifically, we

re interested in investigating the connectivity properties of spon-

aneous vehicular networks that emerge from the mobility traces.

he rationale for such an approach is that network connectivity is

he base upon which solutions at all network layers are built. Thus, a

onnectivity study is, by its own nature, protocol-independent. More-

ver, connectivity analyses have been shown to unveil the availabil-

ty, stability and internal structure of the network – all of which are

aramount notions to the sensible design of vehicular networking so-

utions [34] . 

As a preliminary step to our analysis, we present in this section the

etwork model that we assume ( Section 4.1 ). We then leverage this

odel to formally define the connectivity metrics used in our study

 Section 4.2 ). 

.1. Instantaneous connectivity graph 

Our analysis focuses on the instantaneous connectivity of spon-

aneous vehicular networks. Therefore, at each time instant t , we

epresent the network as an undirected graph G (V (t) , E (t)) , where

 (t) = { v i (t) } is a set of vertices 7 v i (t) , each mapping to a vehicle i

n the network at that time. E (t) = { e i j (t) } is the set of edges e ij ( t ),

onnecting v i (t) and v j (t) if a direct V2V communication link exists,

t time t , between vehicles i and j . 

We adopt a unit disc model to represent the radio-frequency sig-

al propagation. Hence, an edge e ij ( t ) exists if vehicles i and j are sep-

rated by a distance of at most R meters at time t , where R is the com-

unication range. We employ this simple model due to the fact that

eterministic (based on, e.g., ray tracing techniques) and stochastic

based on, e.g., statistical approaches) propagation models do not

cale to the large mobile scenarios we consider, composed of tens

f thousands instantaneous graphs, each including hundreds of ve-

icles. Instead, the unit disc model is computationally inexpensive,

nd fully captures the connectivity dynamics induced by vehicular

obility, which occur at timescales in the order of seconds. 

In order to make our study as general as possible, we repeat all of

ur analyzes for several significant values of R . Despite physical layer

tandards for vehicle-to-vehicle Dedicated Short-Range Communica-

ion (DSRC) claiming up to 1-km ranges [35] , independent experi-

ental studies demonstrated that acceptable packet delivery ratios

re constrained to much lower distances [36–39] . Extensive experi-

ental analyses in [37] show that a distance of 100 m allows around

0% of the packets to be correctly received in urban environments,

hen using common power levels (15–20 dBm) and robust modu-

ations (3-Mbps BPSK and 6-Mbps QPSK). Under similar settings, R

 50 m is experimentally identified as the largest distance at which

ehicle-to-vehicle communication attains packet delivery ratios close

o one [36,37] . Conversely, R = 200 m is the maximum distance grant-

ng a reception ratio above 0.5 [37] . The propagation conditions ap-

ear to be even worse in pure highway environments, where R = 50 m

s found to be the threshold beyond which the packet delivery ratio

rops, on average, below 50% [38] . This occurs even when transmis-

ions are performed at 21 dBm, i.e., the maximum power allowed

n Europe (where the tests were performed), and using the lowest

oding rate with BPSK modulation, corresponding to a data rate of

 Mbps with standardized 20-MHz channel bandwidth. Finally, ex-

ensive field trials on 35 highways in the United States, Germany,
7 Or nodes – the two terms will be used interchangeably. 

http://www.it.uc3m.es/madrid-traces
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Table 2 

Notation employed in the vehicular network connectivity analysis. All met- 

rics refer to the instantaneous topology of the vehicular network. 

Parameter Meaning 

R Vehicle-to-vehicle radio-frequency communication range 

N Number of network nodes 

C Number of network components 

S a v g Average size of a (generic) component 

S max Size of the largest component 

l Average shortest path within a (generic) component 

k Degree of a (generic) node 
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ustria, Italy, and Australia confirmed that reliable vehicle-to-vehicle

ommunication is achieved, in the vast majority of cases, at distances

anging from 46 to 229 m [39] . In the light of all these results, in our

nalysis we will consider R ∈ [50,200]. 

.2. Connectivity metrics 

We use the graph model to define the metrics of interest to our

onnectivity study. First of all, we denote the number of nodes in the

raph (i.e., the number of vehicles in the road scenario) at time t as

 (t) = ‖ V (t) ‖ . 
We name a component C m 

(t) = G (V m 

(t) , E m 

(t)) a subgraph of

 (V (t) , E (t)) , such that V m 

(t) is a subset of V (t) including all and

nly the vertices mapping to vehicles that can communicate via di-

ect or multi-hop V2V links at time t . Similarly, E m 

(t) ⊆ E (t) includes

ll edges mapping to communication links among vehicles whose

orresponding vertices are in V m 

(t) . We denote as S m 

(t) = ‖ V m 

(t) ‖
he size of the component C m 

( t ). 

By definition, components are disjoint, i.e., a vertex belongs to one

nd only one component at each time instant. We thus use C (t) =
 C m 

(t) } to refer to the set of components appearing in the network at

ime t , and C(t) = ‖ C (t) ‖ to indicate the number of components . As a

esult, the average size of components appearing at time t is referred

o as S a v g (t) = N (t ) / C(t ) . 

We denote C max (t) = C m 

(t) , s.t. m = arg n max S n (t) , as the largest

omponent appearing in the network at time t . As C max (t) =
 (V max (t) , E max (t)) , we also use S max (t) = ‖ V max (t) ‖ to represent

he size of the largest component at the same time instant. 

With reference to the internal structure of a given component,

e can identify, for each pair of vertices v i (t) and v j (t) belong-

ng to a same component C m 

( t ) at time t , a shortest path of length

 ij ( t ), which corresponds to the sequence of vertices in C m 

( t ) that

onnect vehicles i and j at minimum communication hop cost. We

an thus define the average shortest path of the component C m 

( t ) as

 m 

(t) = 

∑ 

(i, j) ,i � = j p i j (t ) / (S m 

(t ) · (S m 

(t) − 1)) . 

Finally, we name vertex degree the number of nodes directly

onnected to a given vertex v i (t) at time t , formally k i (t) =
{ v j (t ) s.t . ∃ e i j (t ) } ∥∥. The degree of vertex v i (t) thus maps to the

umber of direct V2V communication neighbors of vehicle i . 

For the sake of simplicity, we drop the time notation in the rest

f the paper, and we refer to all metrics at a generic time instant.

imilarly, we consider generic clusters or nodes, and drop the clus-

er and node indices. Then, N represents the number of vertices in

he network, C the number of components, S a v g the average size of

 component, and S max the largest component size. Equivalently, l is

he average shortest path of a component, and k is the node degree of

 generic vertex. Table 2 summarizes the notation introduced above

nd used throughout Section 5 below. 

. Vehicular network connectivity 

Our study of the connectivity of vehicular networks considers a

ariety of highway scenarios (M30, M40, A6) and road traffic con-
Fig. 8. The distribution of the number of components, C, for
itions (sparse overnight traffic, daytime free flow traffic, congested

raffic during rush hours). It is organized by focuses. We will first

ddress network-wide connectivity features ( Section 5.1 ), and then

tudy how they depend on the vehicular density and communication

ange ( Section 5.2 ). The availability and stability of the network are

hen discussed ( Section 5.3 ). Finally, we investigate the internal struc-

ure of the highway vehicular network, so as to assess its navigability

 Section 5.4 ). We summarize our discussion by providing networking

nsights ( Section 5.5 ). 

.1. Network-wide connectivity 

We start by studying the global connectivity properties of the net-

ork at each time instant. Thus, we focus on the distributions of the

umber of components C and of the size of the largest component

 max . Indeed, C is a measure of how fragmented the network is, while

 max is the maximum number of nodes that can be reached via multi-

op communication at a given time instant. Therefore, the lower C
nd the larger S max , the better connected the vehicular network. 

In Figs. 8 and 9 , we present the distributions of C and S max , respec-

ively. In both figures, each plot refers to a different value of the com-

unication range R . Within every plot, each candlestick summarizes

he distribution for one (subset of) mobility trace, and is obtained

y aggregating the C or S max metrics computed in all instantaneous

raphs observed at every 500 ms during a 30-min timespan. In the

40 and A6 cases, 30 min match the whole duration of each trace,

hereas in the M30 scenario we selected four representative 30-min

ubsets of the day-long trace, i.e., at 7.30 a.m. (traffic peak time), 11.30

.m. and 5 p.m. (free flow traffic comparable to that encountered in

he M40 and A6 cases), and 11 p.m. (very sparse traffic). 

Each box extends from the lower to the upper quartile of the dis-

ribution, with a line at the median. The whiskers pinpoint the min-

mum and maximum values. Also, the step function in the plots of

ig. 9 is the maximum value N max of N observed throughout the

hole 30-min interval. It thus represents the upper bound, and an

mportant benchmark value, to S max : the closer S max to N max , the

earer the vehicular network to a fully connected single component. 

Communication range. When observing the plots, the most striking

esult is the dramatic impact of the communication range R , whose

alue can dramatically improve or disrupt the network-wide connec-
 different mobility traces, and under varying R values. 
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Fig. 9. The distribution of the largest component size, S max , for different mobility traces, and varying R values. 

Fig. 10. C and S max versus the number of nodes N for the M30, M40 and A6 datasets, for different R values. Blue points represent the average C with the 5th and 95th percentile 

when M30, M40 and A6 have valid N values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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tivity. For R = 50 m, there are, on average, between 20 and 50 discon-

nected components throughout all datasets – excluding a few outly-

ing situations that we will discuss later in detail. As R grows, how-

ever, the network fragmentation is reduced, and more nodes join the

largest component: e.g., when R = 100 m, C typically drops below 10;

when R = 200 m, almost all vehicles belong all the time to one sin-

gle component. We conclude that the communication range is the first

and foremost parameter controlling the vehicular network connectivity ,

as it can induce variations in C and S max that are typically much larger

than those imputable to the many and varied road traffic conditions

encountered throughout the 20 datasets in Fig. 8 and Fig. 9 . 

Vehicular density. Still, some diversity is noted across the different

traces, and, in a couple of cases, the impact of the road traffic sce-

nario attains levels comparable to those induced by communication

range variations. Although the relative performance of each 30-min

(sub-)trace tends to be consistent throughout all values of R , such di-

versity is perhaps best observed for R = 50 m, in Figs. 8 a and a. There,

both C and S max show three major behaviors. The first is that of traces

referring to free flow traffic conditions, i.e., all M40 and A6 traces,

plus M30 traces at 11.30 a.m. and 5 p.m.: these present a comparable

fragmentation, as the network is separated into 20–50 small compo-

nents. The second and third behaviors correspond instead to outliers.

On the one hand, the M30 trace at 7.30 a.m. yields a vehicular net-

work that consists of a single connected component, as C ∼ 1 and

S max ∼ N max . On the other hand, the M30 trace at 11 p.m.results in

extremely poor connectivity, with 70 or more components of a few

nodes each. As these outlying behaviors correspond to rush hours

and sparse overnight traffic, respectively, we speculate that the vehic-

ular density is the second key parameter that drives vehicle-to-vehicle

network-wide connectivity . 

 

.2. Laws of vehicular connectivity 

We investigate whether some general law exists that can explain

he fluctuations of vehicular network connectivity as a function of

he different system parameters. To that end, we model the network-

ide connectivity metrics, i.e., C and S max , as functions of the factors

hat appear to influence them the most in the analysis of Section 5.1 ,

.e., R and the vehicular density. We map the latter to the number of

odes N , following a common practice in network science analyses

40] . 

Three-phase connectivity in N . Fig. 10 portrays the evolution of C
nd S max versus N . As the latter is a proxy for the vehicular density,

e also report that measure, expressed in vehicles/km, on the top x -

xis. For the sake of clarity, at this time we limit our analysis to the

ean behavior recorded in the day-long M30 trace, denoted by solid

lack lines in all plots of Fig. 10 . We will introduce the other elements

f the plots in due time. 

The dynamics of both C and S max are strongly dependent on N .

he largest component size, in the bottom plots, features a clear pos-

tive correlation with N . The number of components, in the top plots,

isplays instead a skewed bell shape. Comparing the plots, the in-

tantaneous vehicular connectivity appears to be characterized by three

hases, or behavioral regions, as a function of N , under any R . 

I. Initially, for low N , S max ∼ 1 and C grows linearly with N .

This means that the network is very sparse, and increasing the

number of vehicles N just means to introduce additional iso-

lated nodes: as these nodes are not connected with each other,

they become new components (of one node each). 

II. Once a first critical N threshold is reached (denoted by the

leftmost red dotted vertical line “A” in the plots), a second
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Fig. 11. Number of nodes N , for different values of R . Critical thresholds are marked with A and B. 
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behavior ensues. Namely, S max grows super-linearly with N ,

and C decreases sub-linearly with N . Beyond this first critical

vehicular density, new cars are not isolated anymore, but tend

to be connected to each other. Thus, they either join existing

components or even bridge them into larger ones. 

III. The third region is attained after a second N threshold (de-

noted by the rightmost red dotted vertical line “B” in the plots)

is surpassed. There, S max ∼ N and C ∼ 1 , i.e., the vehicular net-

work becomes fully connected into a single component whose

size matches the number of vehicles on the highway segment.

Additional vehicles necessarily end up in the giant component

and increase its size. 

The qualitative three-phase behavior above is invariant across dif-

erent values of the communication range R . The impact of R is on the

ritical N thresholds that trigger phase changes: the “A” and “B” crit-

cal densities are shifted to the left (i.e., intervene at lower vehicular

ensity) for larger values of R . This naturally induces better connec-

ivity for higher values of R , for a fixed N . 

Some interesting considerations emerge from the mapping of the

ritical density thresholds above to the time series, shown in Fig. 11 .

e remark that when R = 50 m, the vehicular network never reaches

he third phase. Indeed, it remains in the first phase at night, and in

he second phase for the rest of the day, i.e., 7 a.m.–11 p.m. The second

hase also dominates when R = 100 m, as the network spends just a

ew hours in the first (2 a.m.–6 a.m.) and third (7 a.m.–8 a.m.) phases.

he network behavior changes radically for R = 200 m, where the

hird phase spans over most of the day (7 a.m.–10 p.m.), and the rest

f the time is spent in the second phase. 

These results let us comment that attaining the third phase, i.e., per-

istent full connectivity, in highway vehicular networks cannot be taken

or granted , as it requires either elevate communication ranges, or sig-

ificant traffic congestion conditions. In all cases, common values of

ighway V2V communication range, e.g., 50–100 m [38,39] , seldom

llow reaching this phase. 

Impact of other road traffic parameters. In all plots of Fig. 10 , the

ight gray region around the mean shows how the 0.05–0.95 quantile

ange of the C and S max metrics varies as a function of N . We observe

hat such a range is fairly small throughout all plots, which means

hat the network-wide connectivity dynamics we discussed above are

tatistically consistent, i.e., yield a moderate variability. This is an im-

ortant remark, since it implies that other parameters characteriz-

ng the road traffic do not have a significant impact on the vehicu-

ar network connectivity. In other words, factors such as the specific

aytime or day of the week, the number of lanes of the highway, or

he speed limits are only responsible for minor variability around the

onnectivity dynamics dictated by R and N . Another way to read the

ame conclusion is that considering one single road traffic parameter,

.e., N , is enough to properly characterize the vehicular connectivity in

ll situations encountered during a typical working day . 

On a related point, the precise conditions of road traffic do not

ppear to be directly related to the connectivity of the vehicular net-

ork. In all plots of Fig. 10 , black vertical dashed lines separate the

ifferent regions (in the N space) characterized by diverse traffic con-

itions. Specifically, these thresholds roughly identify N ranges cor-
esponding to sparse overnight traffic (left region), typical daytime

ree flow traffic (middle region), and synchronized congested traffic

right region). By confronting these N thresholds with those that de-

ote connectivity phase changes (“A” and “B”), we do not observe any

ignificant overlap. Thus, no direct correspondence can be established

etween the sole road traffic state and the vehicular network connectiv-

ty . 

Comparison across different traces. The plots in Fig. 10 also include

and S max recorded for the sixteen M40 and A6 traces. These are rep-

esented as filled circles in the plots, where dots represent the mean

alues recorded for different values of N , and are obtained by aggre-

ating all traces showing a similar vehicular density. Error-bars rep-

esent the 0.05 and 0.95 quantiles. These dots do not cover the whole

 range, since the M40 and A6 traces only capture 30 min of traffic,

ostly in free flow conditions, and thus only provide a partial view

f the connectivity dynamics. Still, the majority of M40 and A6 fall

ery close to the mean behavior observed in the M30 case, and their

.05–0.95 quantile ranges tend to correspond to those of M30. There-

ore, we conclude that the same three-phase connectivity dynamics in N 

olds for all of the highway scenarios we consider. Moreover, the impact

f R on the network connectivity is equivalent in all such scenarios. 

.3. Availability and stability 

As prominent connectivity factors, R and N control two key net-

ork properties, i.e., availability and stability. We now quantify these

ery features, and investigate how they depend on the communica-

ion range and vehicular density. 

Network availability . The availability maps to the probability that

ehicle-to-vehicle communications build a network that can be actu-

lly exploited for basic services such as multi-hop cooperative aware-

ess, content dissemination, or data aggregation. Formally, we say

hat the system has a level of availability γ if a component of size

t least equal to γN is present in the network. 

Fig. 12 portrays the level of availability one can expect from the

ehicular networks in our reference mobility scenarios, as a function

f the chief factors R and N . The three plots refer to different commu-

ication ranges, and each plot illustrates the average probability that

 level of availability γ is attained at a given vehicular density. For

nstance, the leftmost curve in Fig. 12 a shows that, for R = 50 m and

 = 400, the network is 0.1-available (i.e., there exists a component

hat includes 10% of the nodes or more) with a probability of 30%.

he same probability grows to 80% by considering a slightly denser

etwork with N = 500. These numbers imply that the network is un-

vailable 70% of the time in the first case, and 20% in the second. 

In addition, a comparative analysis of the plots in Fig. 12 yields the

ollowing remarks. First, the results confirm the dramatic impact of R .

f vehicles that are 200 m apart can communicate, 1.0-availability (i.e.,

ull network connectivity) is around as probable as 0.1-availability

ith R = 50 m, and 0.25-availability with R = 100 m. Conversely, the

etwork is never 1.0-available with a probability higher than 80% if

 = 50 m. Second, most curves are quite steep as a function of N ,

ndicating that percolation thresholds in N often characterize the net-

ork availability : if the system operates around the threshold, small
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Fig. 12. Vehicular network average γ -availability versus the number of nodes N , for different values of R . 

Fig. 13. Correlogram heatmap for S max . Figure best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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variations of vehicular density (in the order of a a few vehicles/km)

can drastically change the probability that the network is γ -available,

for a given γ . A notable, persistent exception to the percolation be-

havior is visible in the longer tail of high-availability curves (i.e., γ
≥ 0.75): this implies that ensuring with certainty that the vehicular

network is highly available demands a significant additional effort, f or

any R . 

Network stability . The notion of stability concerns the amount of

time for which the vehicular network maintains the same connectiv-

ity properties. We investigate stability by focusing on the largest net-

work component, as it represents the portion of the network that can

best support practical services based on multi-hop vehicle-to-vehicle

communication. More precisely, we map the stability of such a com-

ponent to the temporal autocorrelation of its size, S max . The rationale

is that if S max is strongly autocorrelated over long time periods, then

we can expect that the most significant portion of the network con-

serves stable topological properties. 

An intuitive explanation of the analysis we carry out is provided

in Fig. 13 . There, we show heatmaps of the correlograms of time se-

ries of S max . To derive the plots, time series are divided into 10-min

windows, and, for each window, the temporal autocorrelation at dif-

ferent lags is calculated. Values in the heatmap hence represent the

autocorrelation value for each window (along the horizontal axis) and

lag (along the vertical axis) pair. The heatmaps provide complete in-

formation on the level of stability of the vehicular network over time.

In particular, it proves how stability can be highly time-varying: as

an example, we can remark that, for R = 100 m, a strong S max auto-
Fig. 14. Vehicular network average temporal stability vers
orrelation peak, denoting a network much more stable than usual,

ppears just before 8 a.m. 

The heatmap representation allows introducing a more formal

efinition of stability: we say the vehicular network to be stable if

he size of its largest component yields a temporal autocorrelation

igher than 0.7 [41] . Fixing this autocorrelation threshold allows pin-

ointing a precise lag time at each instant in time and for each R ,

.e., for each point in the (R, N ) space. The result is portrayed in

ig. 14 , which provides a neat representation of the stability one can

xpect from the vehicular networks in the highway scenarios we

onsider. 

We remark that, when R = 50 m, in Fig. 14 a, the network is very

nstable, as the low threshold lag implies that the largest component

ndergoes significant size variations every 2–3 s on average. This be-

avior is independent of N . As the communication range grows to

00 m, the stability only slightly improves over the R = 50 m case,

aising to 3–5 s. This time, however, N starts having some impact,

ven if only at rather high vehicular densities around 80 vehicles/km

hat already denote road traffic at the boundary between free flow

nd congestion. In such traffic conditions, increasing N favors stabil-

ty, and large components that persist over intervals of 10–25 s can be

bserved. For R = 200 m, as soon as N grows beyond sparse overnight

raffic, at around 50 vehicles/km, a more stable behavior emerges,

ith large components that typically endure 20–25 s. By looking at

he absolute values of the network stability that we identify, we note

hat, under all system parametrizations, the stability of the vehicular

etwork is in the order of a few tens of seconds at most. 
us the number of nodes N , for different values of R . 
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Fig. 15. Scaling properties of the average shortest path ̃  l measured in the largest component C max of the vehicular network, for different values of R . The result is compared to an 

Erdös–Rényi random graph of equivalent size S max . 

Fig. 16. CCDFs of the node degree k , for different values of R , separated according to S max ranges. 
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.4. Internal structure 

Having assessed that the spontaneous vehicular network yields

oor availability and stability, we study its level of navigability , i.e.,

ts predisposition to support multi-hop communication [40] . To that

nd, we analyze internal structural properties of the largest network

omponent, where multi-hop V2V transfers can actually occur. Also

elevant to the network navigability is the duration of V2V contacts:

ndeed, it determines the amount of time during which two vehicles

an communicate, and thus the usability of contact opportunities. 

Small-world property. A network is said to be a small-world if the

istance among its vertices stays small as the network size grows.

ore rigorously, a typical example of small-world network is the

rdös–Rényi random graph, whose average shortest path length, i.e.,
˜ 
 , scales logarithmically in the number of vertices N . In fact, in a

rdös–Rényi network, ̃  l ∼ l og(N ) /l og( ̃ k ) , where ̃  k = 

∑ N 
i =1 k i / N is the

verage vertex degree. 

We compare the instantaneous vehicular networks in our refer-

nce highway scenarios to the Erdös–Rényi random graph, in Fig. 15 .

he plots show the average shortest path times the logarithm of the

verage node degree, versus S max , along log-linear axes. Therefore,

he Erdös-Rényi model portrays as a line of unit slope. 

By observing how the same measure scales with the component

ize in our case study, we conclude that instantaneous vehicular net-

orks in the highway scenarios we consider are not small-world : the

mpirical curves lay well above the logarithmic scaling of a typical

mall-world graph. The effect of R is again evident, as the average

ulti-hop distance among vehicles is reduced threefold for signifi-

ant component sizes, i.e., S max ≥ 100 , when R grows from 50 m to

00 m. However, the super-logarithmic trend of the mean for any R

mplies that adding nodes to the network pushes the largest com-

onent farther away from a small-world behavior, making it harder

o navigate. From a networking perspective, this implies that increas-

ng the vehicular density leads to larger components where multi-hop

ommunication among node pairs becomes much more challenging and

elay-prone. 

Scale-free property. A scale-free network retains the same func-

ional form of its vertex degree distribution at all scales. In other

ords, the probability distribution of the degree obeys a power law

 (k ) ∼ k −α, with the exponent α typically lying between 2 and 3 [40] .

his property is known to result in an easily navigable network, with
 backbone of high-degree hub nodes that interconnect that majority

f low-degree leaf nodes. 

This is, however, not the case in the vehicular networks we con-

ider, as shown in Fig. 16 . There, Complementary Cumulative Distri-

ution Functions (CCDFs) of the vertex degree, separated for differ-

nt S max ranges (0–40 0, 40 0–80 0, and 80 0–120 0, respectively) are

lotted for each value of R . It is evident that the distributions are not

ower laws, and thus the highway vehicular networks we consider in

ur study are not scale-free . Instead, they are characterized by a re-

arkably small range over the node degree k : vehicles traveling on

ighways have one-hop communication neighborhoods of rather con-

tant size over time , with a variability in the order of a few units at

ost. We remark that this is very different from what is observed in

rban scenarios [34] . 

Contact duration distributions. As anticipated, the duration of com-

unication links established by vehicles is an important metric that

haracterizes how easy (or difficult) it is to exploit the data trans-

er opportunities created by vehicular mobility. Indeed, experimen-

al works showed that, in presence of short-lived V2V contacts, even

imple signalization procedures induce a significant overhead and

aste precious communication time [36,37] . 

Fig. 17 a b shows the PDF and CDF of the V2V contact duration.

ach curve refers to a different value of the communication range R .

e observe that also in our large-scale scenarios, contacts typically

ast from a few tens of seconds to a few minutes, and are thus quite

hort, as one could expect in a highly dynamic environment such as

he vehicular one. 

The communication range has a significant impact on the contact

uration, which can be expected again. In order to highlight the dra-

atic effect of R , we can, e.g., underscore that 10% of contacts last

ore than 2 min when R = 50 m, while the same percentage grows

o 90% when R = 200 m. Similarly, the median contact duration grows

rom 30 s to 3 min when R increases from 50 m to 200 m. 

These results are aggregated over a full day of measurements on

30. An interesting question is then if the different road traffic con-

itions we observed to occur on the highway throughout the day

ffect the duration of V2V contacts. Fig. 17 c portrays time series of

he median contact duration over 24 hours, under different commu-

ication ranges. The results highlight once more the critical impor-

ance of R , but also the minor variability of contact durations through-

ut the day. Except for slightly shorter contacts at night, between



40 M. Gramaglia et al. / Computer Communications 78 (2016) 28–44 

Fig. 17. Vehicle-to-vehicle contact duration on M30, under different values of the communication range R . (a) Time-aggregate PDF. (b) Time-aggregate CDF. (c) Time series, 

over 24 h. 

Table 3 

Impact of system parameters on vehicular connectivity properties, and implications for the design of networking solutions. 

Connectivity properties Networking insights 

Network-wide Three-phase network connectivity model in Fig. 10 . The model 

is a function of N (determines the overall shape) and R 

(introduces a scaling factor). • R ≥ 200 m induces a fully connected network, but connectivity 

rapidly deteriorates for lower R , until complete fragmentation is 

reached for R ≤ 50 m. 

• Vehicular connectivity is easily modeled and predicted given N , R . 

• Employ store-carry-and-forward for delay-tolerant data 

dissemination. 

• Resort to cellular networks for long-range or QoS data transfers. 

Components 

• Large connected components are typically unavailable , and 

100% availability is extremely difficult to obtain under 

any system settings. 

• Large connected components remain s table for a few 

tens of seconds at most. 

• Reference chart of component availability as a function of N , R in 

Fig. 12 . 

• Network- and transport-layer protocols need to be highly reactive to 

topology changes. 

Within components 

• N o small-world property observed in highway vehicular 

networks. 

• N o scale-free property observed in highway vehicular 

networks. 

• S hort-lived links established among vehicles traveling on 

highways. 

• S table one-hop neighborhood as far as size is concerned. 

• Use effective (geographical) routing. 

• Need for extremely rapid V2V link establishment (across the whole 

protocol stack). 

• MAC-layer solution design: 

– Data rate adaptation must operate on fast (order of 100 ms) 

dynamics, while channel contention and power control can be 

less reactive. 

– Different MAC-layer algorithm are needed for highway and 

urban environments. 

– Reference chart of expected contention as a function of N , R in 

Fig. 16 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

t  

t

 

t  

u  

i  

d  

o  

e  

h  

m  

i  

t

 

i  

[  

s  

t  

c  

t  
midnight and 6 a.m., and slightly longer contacts during the morning

traffic peak, contacts tend to have the same duration. The reaction to

different road traffic conditions is intuitive, since the higher (respec-

tively, lower) speed recorded at night (respectively, during conges-

tion) leads to shorter (respectively, longer) lived V2V communication

links. However, even the maximum variability due to different traffic

conditions is not dramatic, especially when compared to that induced

by different values of R . 

Overall, the results above underscore that vehicular network com-

ponents are not small-world nor scale-free, and that they are in fact

the result of fairly short-lived V2V contacts, in the order of a few tens

of seconds at most. All these aspects together let us conclude that ve-

hicular networks in highway environments have poor navigability prop-

erties. We remark that, in this regard, highway vehicular networks are

comparable to urban ones [34] . 

5.5. Discussion and networking insights 

The results presented in Section 5.1 –5.4 have significant implica-

tions in terms of viability of communication paradigms and design

of network architectures and protocols in vehicular environments.
elow, we summarize our findings and discuss how they are useful

o the networking community. Table 3 provides a useful reference in

hat sense. 

The limitations of the network connectivity may be even more severe

han expected. The positive impact of factors such as R and the vehic-

lar density on the instantaneous connectivity of vehicles is a quite

ntuitive result that has already been observed in the past, as also in-

icated in Section 6 . However, in addition to confirming the findings

f previous works, our study allows unveiling for the first time the

xact proportions of the phenomenon on a fairly large set of realistic

ighway mobility traces. The results we obtain indicate that a com-

unication range above 200 m guarantees a well-connected network

ndependently of the traffic conditions, but reducing that value causes

he topology to break apart dramatically fast . 

This is a troubling observation at the light of experimental stud-

es that found 50 m to be a credible value of R in highway scenarios

38,39] . With such a communication range, the network is normally

o fragmented that it is barely exploitable, and traffic jams represent

he only hope for V2V connectivity. On the one hand, this lets us advo-

ate in favor of store-carry-and-forward approaches to data dissemina-

ion in spontaneous highway vehicular networks . On the other hand,
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(  
 more controversial conclusion is that, given the coverage of the

iverse radio interfaces envisioned to be embedded in cars, vehicle-

o-vehicle communication may just be unfit to long-range (e.g., order of

m) delay-bounded (e.g., order of seconds) transfers in highway environ-

ents, and, in such cases, vehicles may have to resort to cellular transfers

or reliable and time-bounded data delivery . In other words, the vehicu-

ar network may not support some services it is envisioned to enable,

uch as those based on the decentralized floating car data paradigm

upported by ETSI [42] . 

Network-wide vehicular connectivity is easily predictable. We unveil

he three-phase relationship that drives the network-wide instanta-

eous connectivity of a spontaneous highway vehicular network. This

elationship captures well the full diversity in connectivity dynam-

cs, and relies on two factors only: (i) the communication range, R ,

nd (ii) the vehicular density, N . All other settings have small im-

act on the network topology, and one can safely neglect information

n the daytime, day of the week, number of lanes, and speed limits

hen estimating the level of connectivity of the network. Similarly,

he fact that we find consistent dynamics throughout a variety of

ighway scenarios (M30, M40, A6) and road traffic conditions (sparse

vernight traffic, daytime freeflow traffic, congested traffic during

ush hours) is a promising result with respect to the generality of our

tudy. Indeed, it suggests that our conclusions may hold for a vast

ange of highways, different than those modeled by our road traffic

atasets. 

Overall, these considerations imply that network-wide vehicular

onnectivity is especially simple to model and anticipate, as the knowl-

dge of two parameters is sufficient to comprehensively describe the sys-

em . 

Vehicular multi-hop clusters are not stable. The communication

ange R has a paramount importance to both the availability and sta-

ility of connected components in the vehicular network. Indeed, a

lightly larger R makes such a well connected network emerge much

ore frequently and sustain for a longer timespan. Our evaluation

uggests that when the communication range shifts from 50 to 200 m,

he network becomes roughly 10 times more available and stable. 

Still, the stability of the vehicular network never exceeds a few

ens of seconds, which imposes strict requirements on protocols op-

rating at the network layer and above, in terms of reactivity to very

requent topology changes . 

Finally, our analysis includes figures that pinpoint the level of

vailability of spontaneous highway vehicular networks in the (R, N )

pace. In this sense, Fig. 12 represents a useful reference chart for net-

orking practitioners to understand the network availability they can

xpect, given their specific R and N settings. 

MAC-layer requirements are heterogeneous. Unlike multi-hop clus-

ers, we observed one-hop neighborhoods to be relatively stable: at

east the size of the neighborhood of a vehicle tends to remain the

ame for fairly long time periods. This means that, from a MAC-layer

rotocol perspective, the requirements, in terms of reactivity, of wire-

ess channel contention and power control algorithms are not especially

tringent as long as vehicles stay on highways . 

Since this result is very different from what happens in urban sce-

arios [34] , diverse, dedicated MAC solutions shall be adopted for high-

ay and urban environments, for optimal operation. In the highway

ase, Fig. 16 can be leveraged as a reference chart to estimate MAC-layer

hannel contention and power control settings, based on the current op-

rational point in the (R, N ) space . 

However, we also found that pairwise links in the network are

hort-lived no matter the traffic conditions. This corroborates the re-

ults obtained in small-scale field tests [36,37] , and confirms that

AC- and network-layer protocols have to rapidly establish V2V links,

o that the time available for data transfer is maximized . The latter con-

traint also applies to MAC-layer solutions, stressing how vehicular

etworks require effective and highly adaptive data rate adaptation al-

orithms. 
The limited duration of V2V links adds to the fact that the ve-

icular network is not small-world nor scale-free: all these undesir-

ble features determine the poor navigability of the network. From

his viewpoint, and despite their simpler quasi-unidimensional road

ayout, highway vehicular networks resemble urban ones [34] : thus,

imilar considerations apply, i.e., effective geographical routing tech-

iques are highly recommended to move data throughout the intrinsi-

ally complex vehicular network topology. 

. Related work 

Our work relates to two main research directions in vehicular net-

orking, i.e., mobility modeling and connectivity analysis. Below, we

eparately discuss the relevant literature, and how our study com-

ares to it. 

.1. Vehicular mobility modeling 

The impact of realistic mobility modeling in the simulation of

ommunication protocols tailored for vehicular networks has been

mphasized in many works [6,14,16,17] . As a result, in the last decade,

he research community has devoted significant effort to the quest

or ever-increasing realism of road traffic traces used in network sim-

lators. A first approach consists in directly recording real-world mo-

ility traces, by logging the position of vehicles during their move-

ents. Unfortunately, these traces are currently limited to subsets of

he overall traffic, i.e., fleets of specific vehicles such as buses [8] or

axis [7] , which prevents the analysis of full-fledged vehicular net-

orks; moreover, none of such datasets is specific to the highway en-

ironment we target. 

Other works have focused on the generation of synthetic vehicular

races by feeding real-world road topologies of different cities to mi-

roscopic traffic simulators such as SUMO [9] or VanetMobiSim [10] .

n order to characterize the number, origin, destination and time of

rips, these works usually make use of macroscopic data (e.g., origin-

estination matrices) collected from user surveys [13,14] or from

oadside detectors [15] . However, all the works above deal with syn-

hetic traces of road traffic in cities like Zurich [13] , Cologne [14] or

uxembourg [15] . Yet, the dynamics of traffic over urban regions are

ot comparable to those of highways: the former are characterized by

ehicles traveling at low or medium speed, and often crossing inter-

ections regulated by traffic lights or roundabouts; the latter feature

nstead high speeds and frequent overtaking. Moreover, none of the

forementioned works considers fine-tuning of microscopic mobility

odels, as we do in this study. 

The work in [17] is closer to our approach, as it uses two empiri-

al datasets are used to generate synthetic highway mobility traces.

he first dataset was collected on the I-80 highway near Berkeley,

A , USA , using dual-loop detectors that log information on individ-

al vehicles; the second dataset contains 20-s aggregated traffic on

he Gardiner expressway, near Toronto, Canada, recorded using metal

etectors. The authors assume vehicle inter-spacing and car speed

o be exponential and Gaussian random variables, respectively, and

se the empirical data to derive the distribution parameters. Then, a

obility generator implementing these probabilistic models is used

o create synthetic traces of road traffic. Our study improves that in

17] from several viewpoints: (i) the traffic-count datasets we employ 

re more detailed and heterogeneous, and do not accommodate the

xponential inter-arrival assumption, as detailed in Section 2.3 . (ii)

e use validated microscopic car-following and lane-changing mod-

ls to describe the behavior of drivers, instead of simple stochastic

epresentations; (iii) the synthetic mobility traces we generated are

ublicly available. 

Highway scenarios are also considered in [18] , where empirical

ggregated data from the Freeway Performance Measurement System

PeMS) is fed to the SUMO simulator to generate synthetic highway
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Table 4 

Highway road traffic datasets in the vehicular networking literature. 

Study Macroscopic features Microscopic features Measurements Availability 

Stationarity Road heterogeneity Traffic heterogeneity Speed adjustment Overtaking 

[22] perfect no no no no no –

[23] perfect no no no no no –

[24] perfect no 3 × 2 h no no high-detail no 

[25] perfect no no no no no –

[26] perfect no no no no no –

[43] perfect no no no no no –

[44] perfect no no no no no –

[45] perfect no no no no no –

[46] perfect no no no no no –

[47] perfect no no no no no –

[17] perfect two US highways 48 hours no no high-detail no 

[27] quasi no no no Nagel–Schreckenberg no no 

[18] non two US highways 14 × 30 min Krauss Krajzewicz low-detail yes 

Ours quasi three Spanish 1 × 24 h IDM MOBIL high-detail yes 

highways 16 × 30 min 
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traces. More precisely, the real-world data, from road sensors on the

I5 and I880 highways, CA, USA, is used to determine the assignment

of the vehicular traffic flow and the average speed values over the

road. However, the traffic count dataset features a coarse time gran-

ularity, with a sampling interval of the flow and speed from 30 s to 5

min. 

Although those in [17,18] are the only previous works that employ

real-world traffic count data, other attempts at modeling highway

traffic have been also made. We summarize in Table 4 the features

of the mobility traces considered in a representative set of afore-

mentioned works that study vehicular networks in highway environ-

ments. In the table, columns are read as follows. 

• Stationarity refers to whether the considered vehicular mobility is

quasi-stationary (i.e., macroscopic traffic conditions are compara-

ble in between the in-flow and out-flow boundaries of the simu-

lated road segments, but microscopic dynamics are modeled), or

in perfect stationarity (i.e., not only macroscopic traffic conditions

are uniform, but vehicles all travel at constant speed and main-

tain a constant inter-vehicle distance, e.g., distributed according

to some random variable). Non-stationarity refers to the presence

of in- and out-ramps that induce variations in the vehicular den-

sity along the simulated road segment. 

• Macroscopic heterogeneity is further expressed in terms of

whether different highways and traffic conditions (i.e., time pe-

riods featuring diverse traffic levels) are considered. 

• Speed adjustment and overtaking are at the base of microscopic dy-

namics of road traffic. The former allows vehicles to accelerate and

decelerate depending on the surrounding traffic, while the latter

enables lane changes towards the left and right lanes. 

• Measurements can be at the origin of the mobility traces. If so, we

tell apart high-detail measurement data, which records informa-

tion on each vehicle separately, and low-detail data, which pro-

vides aggregate information at some periodicity (typically in the

order of tens of seconds). 

• Availability refers to whether the datasets are publicly available. 

A vast majority of works consider road traffic in perfect sta-

tionarity, thus neglecting microscopic-level dynamics determined

by individual drivers’ behavior. In fact, most of such works pro-

pose analytical models of highway traffic, which build on simplifying

assumptions that make problems analytically tractable. Common as-

sumptions include randomly distributed speeds and inter-arrivals of

vehicles, which are then kept constant: thus most of the works deal-

ing with perfect stationary conditions also consider one single road

type, and no microscopic-level models of acceleration/deceleration

or lane changing. A few works dealing with perfect-stationary
obility build on measurement data, and account for heterogeneous

eal-world traffic conditions, at different time periods. However, the

elevant datasets do not consider detailed microscopic modeling, nor

hey are publicly available. 

Only a pair of previous works in Table 4 consider quasi- or non-

tationarity, i.e., account for the microscopic dynamics of highway

raffic. However, the work in [27] does not build on real- world data,

ut on assumptions about stochastic features of traffic. The work in

18] is that closest to ours, however it employs coarse-grained mea-

urement data that does not allow reproducing the arrivals and ve-

ocity of vehicles with the same level of detail as in our dataset. In

ddition, the vehicular mobility traces in [18] are representative of

0-min time intervals, whereas our M30 dataset covers one full day

nd thus enables a larger variety of networking studies (e.g., those

argeting scalability, adaptability and reactiveness of network solu-

ions to temporal variations of road traffic conditions). 

In the light of the considerations above, we summarize the advan-

ages of our proposed methodology for the generation of vehicular

obility (detailed in Section 4 ) as follows. 

• With respect to other attempts at generating synthetic mobility

traces in quasi- or non-stationary conditions (i.e., through ve-

hicular mobility simulators that capture microscopic dynamics),

ours is the first work that employs fine-grained traffic counts (i.e.,

containing per-vehicle statistics) collected through real-world

measurements. Accounting for the actual inter-arrivals yields a

higher accuracy than considering deterministic or random inter-

arrivals, derived from measurements of road traffic flow with

order-of-minute precision. We underscore that integrating such

fine-grained traffic counts in a microscopic mobility generator is

not a trivial task, and requires an original, dedicated parametriza-

tion as that presented in Section 3.2 of the main document. 

• When considering perfect-stationary mobility (employed in semi-

analytical or analytical models) the works in [17,24] are the only

using fine-grained traffic counts comparable to those we employ.

However, synthetic traces are, by their own nature, more accu-

rate than measurement-based semi-analytical or analytical mod-

els. Specifically, synthetic traces such as those we generate are

based on validated representations of drivers’ acceleration, decel-

eration, and lane change behaviors (see Section 3.1 of the main

document). They thus convey a richness of microscopic dynamics

in vehicular movement (e.g., different drivers’ target speeds and

safe time headway, left- and right-lane movements, overtakes,

etc.) that mathematical representations of highway traffic pro-

posed in the networking literature (based on, e.g., constant speed,

fixed vehicle inter-distance, no lane changes, etc.) cannot capture.
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We also point out that the methodology proposed in this paper

dvances that appeared in an earlier version [48] . Specifically, the

onference version of the work only considered the short 30-min

races, while we base the analysis in this manuscript on the 24-h M30

ataset, Moreover, the calibration of the microscopic mobility mod-

ls in [48] operated on a per-lane basis in the conference version – an

ppoach that could not accommodate the more demanding road traf-

c conditions present in the new traffic dataset. Thus, the calibration

roposed in this paper is different for each vehicle, and much more

exible. 

.2. Vehicular network connectivity 

As far as vehicular network connectivity studies are concerned,

ome seminal works have considered urban areas [34,49] . However,

heir findings do not necessarily apply to the highway scenarios we

re interested in, due to the significant differences between urban

nd highway road traffic. Concerning the latter environment, a large

umber of studies have addressed the problem from an analytical

erspective [22–24] , characterizing features such as the mean com-

onent size [25] , the probability of attaining a single connected com-

onent [26] , or the impact of a dedicated roadside infrastructure [43] .

Far fewer analyses have instead employed realistic traces to inves-

igate the instantaneous connectivity of highway vehicular networks.

ioneering results on the connectivity of free flow highway traffic are

rovided in [27] : the authors use synthetic data generated by a simple

icroscopic simulator to prove that higher vehicular densities help

onnectivity. Subsequent studies confirmed this conclusion, observ-

ng that the communication range is another primary factor affecting

he network connectivity [23,25] . However, these works are based on

ess detailed mobility traces, and only provide a basic assessment of

he structural properties of the network topology. 

More recently, the focus has shifted towards the internal struc-

ure of highway vehicular networks. In [18] , the authors characterize

istributions of the centrality, clustering coefficient, and vertex de-

ree in the Alameda County road traffic traces presented above. In

28] , the aforementioned I-80 mobility trace is leveraged to investi-

ate the small-word and scale-free properties of vehicular networks.

ur study confirms the findings of these statistical analyses on more

etailed and comprehensive mobility traces. In addition, we take a

tep forward in the topological analysis, and unveil previously un-

nown properties, such as the invariant three-phase dependence of

he connectivity on the network size, or the actual availability and

tability of highway vehicular networks. These findings are new even

ith respect to those in the earlier version of the work in [48] . 

. Conclusions and open issues 

In this paper, we employed fine-grained road traffic counts col-

ected on real- world highways in proximity of Madrid, Spain, to

enerate synthetic traces of vehicular mobility along those road seg-

ents. An original approach to the parameterization of well-known

icroscopic vehicular mobility models allowed us to obtain realis-

ic descriptions of quasi-stationary unidirectional traffic in heteroge-

eous conditions, including different highways, weekdays and mea-

urement hours. These traces are publicly available and, to the best

f our knowledge, represent the current state of the art in highway

raffic datasets for networking studies. 

We carried out a comprehensive topological analysis on the mo-

ility traces, confirming that: (i) the communication range and the

ehicular density are the factors that primarily control the connec-

ivity of highway vehicular networks; (ii) vehicular networks are

ot small-world or scale-free in nature. In addition, we unveiled the

hree-phase dependence of connectivity on network size, and its po-

ential general validity across highway scenarios. We also quantified

or the first time the actual availability and stability of the system. 
Our study also has limitations that open the way for future re-

earch activities. First, our analysis is based on data collected on three

ighways, and all results are thus specific to those scenarios. Some

romising results on the potential generality of our conclusions come

rom the invariance of the connectivity dynamics in all such different

atasets, in Section 5 . Still, a much larger set of measurements is re-

uired to generalize our findings. 

Second, our connectivity analysis builds on a unit-disc represen-

ation of the radio signal propagation. Considering some model of

ignal fading would add the rapid variability induced by radio signal

uctuations on top of the mobility-dependent dynamics we observe

n our study. Ultimately, that would lead to an even finer-grained de-

cription of the vehicular connectivity. 

Third, in this paper we only investigate the instantaneous connec-

ivity of highway vehicular networks. The temporal analysis of ve-

icular connectivity, aimed at the characterization of delay-tolerant

etwork properties, would require a completely different approach

based, e.g., on time-expanded representations), and it is an interest-

ng extension of our work. 
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