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a b s t r a c t 

An important issue in designing multichannel MAC protocols for Opportunistic Spectrum Access (OSA) is 

the synchronization between Secondary Users (SUs). Synchronization can be performed in two phases: 

the initial handshaking, and then the synchronous hopping across available channels. In this paper, we 

address the problem of initial handshaking through the approach called “blind rendezvous”. We first in- 

troduce a role-based solution by constructing two channel hopping sequences. The secondary transmitter 

and receiver jump across channels according to these two sequences. The proposed algorithm guaran- 

tees rendezvous in at most (C + 1) 2 time slots (where C is the number of channels) and two SUs have a 

chance to rendezvous in each successive period of C time slots. We show that this property of constructed 

sequences leads to a lower average time-to-rendezvous (TTR) for the proposed algorithm in comparison 

to other related works. We also devise a solution to ensure rendezvous in the presence of jitter. Next, we 

extend the proposed algorithm to the non-role-based scenario. Simulation results show that it has the 

best performance with respect to existing works in various traffic patterns of primary users. Besides, it is 

the most predictable solution due to its low variance of TTR. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Traditional spectrum management faces with scarcity in spec-

tral resources due to inefficient utilization of operating frequen-

cies. As a solution, DARPA introduced NeXt Generation networks

in which there are some cognitive radios (CRs) who seek “spectral

holes” in time and space domain [1] . This communication tech-

nique is commonly called Opportunistic Spectrum Access (OSA).

In OSA technique, a hierarchical access structure with primary

and secondary users is employed. Secondary users (SUs), equipped

with CRs, can opportunistically utilize the spectrum when it is not

used by primary users (PUs). Since there might be multiple SUs

in a CR network, MAC protocol design has significant implications

on the performance of CR networks. There are many multichan-

nel MAC protocols which have been proposed for OSA approach

in the literature [2,3] . Most of these works use channel hopping

(CH) schemes [3] . The main issue in OSA MAC design through CH

schemes is that two SUs should be synchronized [2] . That means

they should be on the same channel at the same time to exchange

their information. The synchronization can be divided into two
∗ Corresponding author. Tel.: +98 2166165980. 
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hases [2] : the initial handshaking between the transmitter and

he receiver, and then the synchronous hopping across the chan-

els to exchange data. 

In the initial handshaking phase, two SUs should meet each

ther for the first time in a common channel to exchange con-

rol messages and establish a communication link. This process is

eferred to as “rendezvous” [4] . Most of existing works assumed

 common control channel (CCC) to facilitate the rendezvous. Al-

hough the dedicated CCC simplifies the rendezvous process, it

ay become a bottleneck for a CR network because of PUs’ ac-

ivities or jamming attacks [5] . Therefore, we focus on distributed

pproaches which are preferable in practical scenarios and called

blind rendezvous” in the literature [4] . The common approach

n blind rendezvous is based on Channel Hopping (CH) technique

6,7] . In this technique, two SUs hop across PUs’ channels until

hey find each other in a common channel. 

One of the important research directions in blind rendezvous is

o design algorithms that work properly in difficult situations. The

lind rendezvous algorithms are usually evaluated by the following

riteria: 

• Asynchronous condition: As we mentioned before, in CH tech-

nique, two SUs try different channels in each time slot and

jump across them according to CH sequences until they meet

http://dx.doi.org/10.1016/j.comcom.2016.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.01.004&domain=pdf
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http://dx.doi.org/10.1016/j.comcom.2016.01.004
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Table 1 

CH-based blind rendezvous algorithms. 

Algorithms MTTR ETTR 

JS [11] O ( P 3 ) O ( P 3 ) 

CRSEQ [10] O ( P 2 ) O ( P 2 ) 

S-ACH [14] O (log ( n ) C 2 ) O ( C 2 ) 

E-AHW [9] O ( CP ) O ( CP ) 

EJS [12] O ( P 2 ) O ( P 2 ) 

mPJR O ( C 2 ) O ( C 2 ) 

SARCH [16] O ( P 2 ) –

MMC [4] – –
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each other in a common available channel 1 . In real scenarios,

there might be a timing offset between slot boundaries of CH

sequences in two SUs. Therefore, it is desirable to design algo-

rithms which work in the asynchronous condition. 

• Asymmetric model: SUs attempt to rendezvous in the presence

of PUs and they cannot meet each other if the visited channel is

occupied by a PU in either side. In the asymmetric model, SUs

may have different available channels because of their different

location with respect to PUs in a wireless network and a blind

rendezvous solution should facilitate the meeting of two SUs if

they have at least one common available channel. 

• Time-to-Rendezvous: Time-to-Rendezvous (TTR) shows the 

number of time slots that it takes to achieve rendezvous.

The maximum TTR (MTTR) and expected TTR (ETTR) are two

main benchmarks for comparing the performance of blind ren-

dezvous algorithms. Another important criteria is variance of

TTR [8] , i.e. Var(TTR) = E { ( TTR − ETTR ) 2 } , which indicates how

samples of TTRs are close to ETTR. 

• Heterogeneity of roles: In some blind rendezvous solutions, it

is necessary that two SUs play different roles as a transmitter

and receiver to guarantee rendezvous. The benefit of role-based

solution is that they have less MTTR and ETTR than non-role-

based solutions. However, it may be difficult to assign roles to

SUs in some scenarios. For instance, SU A may search for SU B

which it also tries to meet a third SU C. Then, SU B should be

a transmitter and receiver at the same time. 

.1. Previous works 

In the literature, different methods have been proposed in de-

igning blind rendezvous algorithms. A comprehensive summary

f previous works is given in [9] . Despite effort s, there are a few

orks which satisfy all criteria mentioned earlier. Hence, we con-

ider algorithms which fulfill all requirements and they may have

omparable performance in terms of MTTR and ETTR with respect

o our proposed algorithm. The list of these algorithms are given

n Table 1 . 

In [10] , the CRSEQ algorithm has been proposed in which SUs

weep through all channels according to a CH sequence. The MTTR

f this algorithm is P (3 P − 1) time slots where P is the smallest

rime number greater than or equal to the total number of chan-

els, C . Lin et al. [11] suggested the JS algorithm which also sup-

orts multi-hop scenarios for multiuser rendezvous. The MTTR for

his algorithm is equal to 6 CP (P − G ) time slots, where G is the

umber of common available channels between two SUs. Later, au-

hors in [12] improved the JS algorithm to the enhanced JS (EJS)

hich reduces the MTTR by a factor of P . In [13] , the ACH algo-

ithm has been proposed which is a role-based solution. In this al-

orithm, the secondary transmitter and receiver try to rendezvous

ccording to two different sequences. The MTTR for this algorithm
1 In our context, a time slot is defined as a time interval that each SU stays in 

ach channel before next jump. 

a

O

s C 2 . The extended version of it (S-ACH) for non-role-based case

as been proposed in [14] . In this solution, it is assumed that each

U has a unique identifier (UID) and constructs its own CH se-

uence based on its UID. The MTTR of S-ACH algorithm is log ( n ) C 2 

here n is the number of SUs in the network. In [4] , Theis et. al

uggested the MC and MMC algorithms based on the number the-

ry. In these algorithms, CH sequences are constructed by choos-

ng a proper prime number and a rate that is selected randomly

rom numbers less than the chosen prime number. It can be shown

hat the MC algorithm does not guarantee rendezvous when two

Us select the same rate [11] . For the MMC algorithm, a similar

roblem arises when the chosen prime number of two SUs are the

ame [11] . Nevertheless, simulation results show that the MMC al-

orithm has a comparable ETTR to other algorithms in Table 1 and

e consider it in our list. 

Recently, the E-AHW algorithm has been proposed in which

ach SU generates a unique CH sequence based on its UID [9] . The

H sequences is composed of two hopping and waiting modes.

t can be shown that the MTTR of this algorithm is O ( CP ). An-

ther approach in constructing CH sequences is based on ring walk

ethod in which CH sequences are constructed from a base se-

uence and its circular shifts [15,16] . As we will see later, our pro-

osed algorithm is a special case of ring walk-based sequences

hich guarantees periodic attempts to rendezvous in all available

hannels. 

.2. Our contributions 

In this paper, we first develop a blind rendezvous algorithm

or role-based scenario through construction of two CH sequences:

eq tx and Seq rx . In particular, transmitters and receivers hop across

he channels according to Seq tx and Seq rx , respectively. All SUs

hich have no data to send, stay in the receiver mode and jump

hrough channels according to Seq rx . Whenever a SU wants talk to

nother node, it switches to transmitter mode and jumps based on

eq tx . We show that the MTTR for the proposed algorithm is C 2 

ime slots if C is odd and it is equal to (C + 1) 2 if C is even. In

ddition, the secondary transmitter and receiver choose the same

hannel to rendezvous once in each successive period of C time

lots. Due to this property of constructed sequences, we call our

roposed algorithm “Periodic Jump Rendezvous” (PJR). We show

hat this property of the constructed sequences improves the per-

ormance of the PJR algorithm by a linear factor reduction in ETTR

ompared to existing work [13] which may become a large value

hen the number of channels increases. We also study the case

hat there is a mismatch between the duration of a time slot in

wo SUs. This may frequently occur in practical implementations,

ue to presence of jitter 2 in SUs’ clocks used for measuring time

ntervals. Hence, it is crucial to investigate the impact of this un-

esirable effect on blind rendezvous algorithms. We devise a solu-

ion for the PJR algorithm to ensure rendezvous in at most (C + 1) 2 

ime slots in the presence of jitter. 

Next, we extend the PJR algorithm to non-role-based case by

 randomized solution. The modified version of the PJR algorithm

s denoted by modified PJR (mPJR) algorithm. We prove that the

TTR of the mPJR algorithm is O ( C 2 ) similar to the PJR algorithm 

3 .

n addition, simulation results show that the mPJR algorithm has

he lowest ETTR with respect to previous works in various PUs’

raffic patterns. Furthermore, it is also the most predictable solu-

ion due to its very low Var(TTR) compared to other algorithms. 
2 Here, we define the jitter as the difference between a measured clock period 

nd the ideal period. 
3 In Section 2 , we will show that the probability of not achieving rendezvous in 

 ( C 2 ) can be made arbitrarily small. 
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Fig. 1. Rendezvous process: SU A and SU B stay in each channel for a fixed length time slot. Each SU senses the current channel for the presence of PU. If the channel is 

idle, it will try to exchange control messages. In this example, two SUs meet each other on channel 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Two sequences with the correlation of one for any number of circular shifts. 
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4 I(A = B ) is equal to one if A = B, otherwise it is equal to zero. 
5 Since we index the entries from 1 to C , we hold this assumption to coincide 

with our labeling. 
This paper is organized as follows: In Section 2 , we first in-

troduce the PJR algorithm and study some of its properties. Then,

we analyze its performance and give a solution in the presence

of jitter. In Section 3 , we propose the mPJR algorithm for non-

role-based scenario. In Section 4 , we provide the simulation re-

sults for the performance of the PJR and mPJR algorithms and com-

pare them with other related works. Finally, the conclusions are

presented. 

2. The periodic jump-based rendezvous algorithm 

In this section, we first construct two sequences Seq ′ tx and Seq ′ rx 

with some specific features. Then, we explain how to generate

Seq tx and Seq rx using these two sequences. We show that the MTTR

for the PJR algorithm is C 2 time slots if C is odd and it is equal to

(C + 1) 2 if C is even. Afterwards, we obtain a tight upper bound

for the ETTR of the PJR algorithm and compare it to a recent role-

based solution, the ACH algorithm. At the end, we propose a solu-

tion to tolerate jitter of clocks at SUs. 

Fig. 1 illustrates how the rendezvous process is executed sim-

ilar to previous works in [4,11] . Each SU stays in a channel for a

fixed length time slot and it will only change channel between

time slots. SUs sense the medium for the presence of PU at the be-

ginning of a time slot. If the channel is idle, it will try to exchange

control message. A pair of SUs can establish a link successfully if

they stay in a common channel for at least a time t . Note that t

is the minimum time required to establish the link. After initial

handshaking, two SUs decides how and when to exchange data. 

2.1. Constructing channel hopping sequences Seq ′ tx and Seq ′ rx 

Our goal in this part is to construct two CH sequences Seq ′ tx and

Seq ′ rx with the largest achievable correlation between their circular

shifts. Theorem 1 and Theorem 2 as follows, give a solution for

constructing such sequences. First, we need some definitions. 

Definition 1. Sequences Seq ′ tx and Seq ′ rx with length C are permu-

tations of set { 1 , . . . , C} . The value j (1 ≤ j ≤ C ) in the CH sequences
epresents j th channel. We define the correlation between two se-

uences Seq ′ tx and Seq ′ rx as follows: 

or r (Seq ′ tx , Seq ′ rx ) = 

C ∑ 

i =1 

I(Seq ′ tx (i ) = Seq ′ rx (i )) , (1)

here I(A = B ) stands for indicator function 

4 , and Seq ′ tx (i ) and

eq ′ rx (i ) denote the integer value of i th entry in sequence Seq ′ tx and

eq ′ rx , respectively. For instance, in Fig. 2 , we have Seq ′ tx (2) = C − 1

nd Seq ′ rx (2) = 2 . 

efinition 2. A k -time circular shift of Seq ′ tx (with length C ) to the

ight, Circ(Seq ′ tx , k ) , is defined as follows: 

irc(Seq ′ tx , k )(i ) = Seq ′ tx ((i − k ) mod C ) , 1 ≤ i ≤ C, (2)

here ( ) mod C returns the remainder of argument to the integer

alue C . We also define Seq ′ tx (0) � Seq ′ tx (C ) . 
5 C irc(Seq ′ rx , k ) is de-

ned in the same way. 

heorem 1. Consider any two sequences Seq ′ tx and Seq ′ rx . If any k-

ime ( 1 ≤ k ≤ C) circular shift of Seq ′ tx has at least one common value

ith Seq ′ rx : 

or r (Circ(Seq ′ tx , k ) , Seq ′ rx ) ≥ 1 , ∀ k ∈ { 1 , . . . , C} , (3)

hen, 

or r (Circ(Seq ′ tx , k ) , Seq ′ rx ) = 1 , ∀ k ∈ { 1 , . . . , C} . (4)
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roof. Since each value j (1 ≤ j ≤ C ) comes once in each sequence,

his value contributes in correlation for only one of the C circular

hifts. Therefore, for the sum of all C correlations between two se-

uences, we have: 

C 
 

k =1 

Cor r (Circ(Seq ′ tx , k ) , Seq ′ rx ) = C. (5)

rom (3) and (5) , we can derive (4) and the proof is complete. �

According to Theorem 1 , we should seek two sequences Seq ′ tx 

nd Seq ′ rx with Cor r (Circ(Seq ′ tx , k ) , Seq ′ rx ) = 1 for any k -time (1 ≤ k

C ) circular shift. Existence of such sequences for odd values of C

s ensured through the next theorem. 

heorem 2. If C is odd, then there exist two sequences which satisfy

q. (4) . When C is even, such two sequences do not exist. 

roof. First, we prove that there exist two sequences with the

roperty stated in Eq. (4) (when C is odd) by giving an example

see Fig. 2 ). The integer value k occurs in the k th entry of Seq ′ rx and

(C − k + 1) th entry of Seq ′ tx . Therefore, the integer value k in two

equences meet each other after (2 k − 1) mod C -time circular shift

f Seq ′ tx to the right. In addition, the required circular shifts are

ot equal for any different values of k and k ′ . To prove this, sup-

ose that they are equal, then we have: 2 k − 1 ≡ 2 k ′ − 1 mod C.

herefore, 2(k − k ′ ) ≡ 0 mod C. Since C is odd, C| k − k ′ (since C

s odd and two is not factor of C . Hence, C should be a divisor

f k − k ′ ) 6 . Without loss of generality, assume that k > k ′ . We

now that k and k ′ are lower than C . Hence, k − k ′ is not divisi-

le by C . Therefore, there are C different values for (2 k − 1) mod C 

1 ≤ k ≤ C ). In conclusion, the proposed sequences in Fig. 2 have

or r (Circ(Seq ′ tx , k ) , Seq ′ rx ) = 1 for any number of circular shifts. 

Now, we show that there are not such two sequences when C

s even. Consider two sequences Seq ′ tx and Seq ′ rx with length C ( C is

ven). We denote the entry that equals to i (1 ≤ i ≤ C ) in Seq ′ tx by

 i and in Seq ′ rx by y i . Hence, (y i − x i ) mod C -time circular shift to the

ight is needed to match the value i in Seq ′ tx with the one in Seq ′ rx .

f Seq ′ tx and Seq ′ rx satisfy (3) , (y i − x i ) mod C (1 ≤ i ≤ C ) should be

ifferent integers from the set { 0 , . . . , C − 1 } . Therefore, we have: 

C 
 

i =1 

x i −
C ∑ 

i =1 

y i ≡
C ∑ 

i =1 

k i mod C, (6) 

≡ (C − 1) C 

2 

mod C, (7) 

here (y i − x i ) mod C = k i . In addition, we have: 
∑ C 

i =1 x i = 

∑ C 
i =1 y i .

herefore, C| C (C −1) 
2 . Since C and C − 1 are relatively prime to each

ther, we have: C| C 2 which is a contradiction. Thus, there are not

uch two sequences when C is even. �

emark 1. We have for any circular shift of Seq ′ rx in Fig. 2 , i.e.

irc(Seq ′ rx , k ) , 0 ≤ k ≤ C − 1 : 

or r (Circ(Seq ′ tx , k 
′ ) , Circ(Seq ′ rx , k )) = 1 , 

∀ k ′ ∈ { 0 , . . . , C − 1 } . (8) 

hen C is odd. Moreover, each channel contributes exactly one

ime in one of the above correlations. 

roof. One could easily follow the same method in Theorem 2 to

rove the Remark 1 . �
6 For any two integer numbers a and b , we define the relation a | b if there is an 

nteger number k such that b = a × k . 

t  

t

 

r

.2. Constructing sequences Seq tx and Seq rx 

From Theorem 2 , the number of the channels must be odd in

rder to construct Seq ′ tx and Seq ′ rx . If the number of available chan-

els is even, we add a virtual channel. This virtual channel can

e any of the C channels (for instance, the first channel) and it is

nown by all SUs. Therefore, it is assumed that C is odd in the re-

ainder of this section. We construct Seq tx and Seq rx with length

 

2 using this procedure: to generate Seq tx , we use the Circ(Seq ′ tx , k )

 0 ≤ k ≤ C − 1 ) for entries kC + 1 to (k + 1) C, where Seq ′ tx is the se-

uence shown in Fig. 2 . Besides, we copy Seq ′ rx in Fig. 2 , C times

o generate Seq rx . The transmitter and the receiver hop across the

hannels according to Seq tx and Seq rx , respectively. If any of them

eaches at the end of its sequence, it starts hopping from the be-

inning. 

heorem 3. Assume that the available channel sets of transmitter

nd receiver are S 1 and S 2 , respectively. Two SUs performing the PJR

lgorithm achieve rendezvous at most in C 2 time slots if S 1 ∩ S 2 
 = ∅ . 

roof. First, we assume two SUs are slot-synchronized. We re-

ove this assumption later. Two cases can be considered here. In

he first case, the receiver begins hopping i time slots (without

oss of generality, we assume that i < C 2 ) later than the trans-

itter. Therefore, it seems that Seq rx is shifted circularly (i ) mod C 

imes to the right. From another point of view, we can imagine

hat the new CH sequence for the receiver is constructed from

irc(Seq ′ rx , (i ) mod C ) and the receiver starts hopping from i + 1 th

ntry of this sequence. An example of this case is depicted in

ig. 3 (a). If C is 3 and the receiver starts hopping 4 time slots later

han the transmitter, it seems that the receiver uses a sequence

hich is constructed by Circ(Seq ′ rx , 1) and it starts from 5th en-

ry of this sequence. According to Remark 1 , Circ(Seq ′ rx , (i ) mod C )

as the same property as Seq ′ rx and there is a common channel

n two sequences Circ(Seq ′ rx , (i ) mod C ) and Circ(Seq ′ tx , k ) for any

 ≤ k ≤ C − 1 . Besides, this common channel is different for vari-

us values of k . Hence, two SUs achieve rendezvous at most in C 2 

ime slots after the receiver starts hopping (see Fig. 3 (b)). In the

ase that the transmitter begins hopping i time slots later than

he receiver, it seems that the Seq rx is constructed by copies of

irc(Seq ′ rx , (C − i ) mod C ) . According to Remark 1 , this sequence has

 common channel with any circular shift of Seq ′ tx , each one in

 different channel. Therefore, two SUs achieve rendezvous in C 2 

ime slots after the transmitter starts hopping if there is a com-

on available channel between two SUs. 

So far, we proved that the rendezvous can be achieved for any

ffset i between two sequences Seq tx and Seq rx at most in C 2 time

lots. Now, we extend our solution to the asynchronous condition.

ithout slot synchronization, the slot boundaries for two SUs may

ot be aligned. Suppose that t is the minimum time required to

xchange control messages between two SUs. If the time slot du-

ation is doubled to T slot = 2 t as suggested in [18] , then it is guar-

nteed that the two SUs stay in a common channel for at least

ime t . In order to show how the rendezvous is achieved when t

s doubled, suppose that the misalignment difference between the

ransmitter and the receiver is δ = kT slot + σ, where 0 ≤ σ < T slot 

see Fig. 4 ). Then, we have two cases: 

(1) 0 ≤ σ < t : In this case, every slot from the beginning for the

eceiver overlaps for time duration ( T slot − σ ) with the correspond-

ng one for the transmitter which is enough to exchange control

essages. 

(2) t ≤ σ < T slot : In this case, every slot from the beginning for

he receiver overlaps with the next slot for the transmitter for a

ime duration σ which is also enough to establish a link. 

It should be noted that the same argument can be used if the

eceiver starts hopping first and the proof is complete. �
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Fig. 3. Schematic of rendezvous process. 

Fig. 4. Solution for the asynchronous condition by doubling the duration of the time slot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. In the PJR algorithm, sequences Seq tx and Seq rx have a common value in 

each successive period of C time slots. It should be noted that the two first entries 

of Seq rx are shown in dash line. The reason is that the receiver starts hopping after 

these entries and they are just added to complete the first sequence Circ(Seq ′ rx , 2) 

in Seq rx . 
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In [13] , it was shown that the minimum achievable MTTR is

equal to C 2 if two SUs have a common available channel. Hence,

the PJR algorithm can achieve this lower bound when C is odd and

its MTTR is close to this bound when C is even. Next remark as-

serts a specific property of the constructed sequences which help

SUs to achieve rendezvous in lower ETTR with respect to the re-

lated work, the ACH algorithm [13] . 

Remark 2. In PJR algorithm, the transmitter and the receiver

choose the same channel for rendezvous once in each successive

period of C time slots. 

Proof. Without loss of generality, assume that the receiver starts

hopping i time slots later than the transmitter. Therefore, Seq rx 

is constructed by C copies of Circ(Seq ′ rx , (i ) mod C ) . According to

Remark 1 , the correlation of the sequence Circ(Seq ′ rx , (i ) mod C )

with any sequence Circ(Seq ′ tx , k ) ( 0 ≤ k ≤ C − 1 ) is equal to one.

Hence, sequences Seq tx and Seq rx have a common value in each

successive period of C time slots and the proof is complete. �

We explain in details what it means the successive period of C

time slots by an example. Assume that the number of channels is

three and the receiver starts hopping two time slots later than the

transmitter (see Fig. 5 ). As it can be seen, in the block period [4,

6] at time slot 5, in the block period [7, 9] at time slot 7, and in

the block period [10, 12] at time slot 12, the transmitter and the
eceiver meet each other and this pattern repeats in next periods.

herefore, the transmitter and the receiver have a chance to choose

he same channel in each successive period of C time slots. 

.3. Average TTR of the PJR algorithm 

As we stated before, the ACH and PJR algorithms have the mini-

um achievable MTTR. In this part, we compare two algorithms in

erms of ETTR. Average TTR is one of the key performance metrics

n designing a rendezvous algorithm for cognitive radio networks

11,13] . In fact, it is necessary to know how long it takes that two

sers meet each other on average. From an intuitive point of view,

t can be said that the periodic jump property of the PJR algorithm

ay reduce the ETTR with respect to the ACH algorithm. To show
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Fig. 6. Periodic jump feature of the PJR algorithm: the transmitter starts jumping 

8 time slots later than the receiver. As it can be seen, for the sample sequences of 

the ACH algorithm, all attempts occur in the last three time slots in a block of nine 

time slots. However, in the PJR algorithm, the rendezvous attempts are distributed 

in time. This property yields a lower ETTR. 
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his, consider the scenario in Fig. 6 . In fact, there are events that

ll attempts occur in the last C time slots of a block of C 2 time

lots for the ACH algorithm. However, in the PJR algorithm, the

endezvous attempts are distributed in time. On average, the peri-

dic jump property of the PJR gives lower ETTR for this algorithm. 

To compare the ETTR of two algorithms analytically, we obtain

n approximate ETTR for the ACH algorithm, E { TTR ACH } , and an

pper bound for the ETTR of the PJR algorithm, E { TTR PJR } . We con-

ider a simple model for channels occupation states to get closed-

orm formula for average TTRs. In this model, we assume that each

hannel is idle with probability p at the transmitter and the re-

eiver side. Hence, they can exchange control messages in each

hannel with probability p 2 if they choose the same channel for

endezvous. 

We first consider the ACH algorithm. In [13] , it is argued that

he CH pair sequences are constructed in a way that they have C

istinct rendezvous channels in C 2 time slots. Then, they concluded

hat the ETTR for the ACH algorithm has an order of C time slots

o rendezvous. Here, we show that the ETTR for this algorithm

s approximately C / p 2 . Considering the fact that each two CH se-

uences in the ACH algorithm have C distinct rendezvous channel

n C 2 time slots, then the probability of rendezvous in each time

lot is 1/ C . Therefore, the probability of a successful rendezvous in

ach time slot is 1/ C × p 2 and we can approximately model the

robability mass function (pmf) of TTR in the ACH algorithm as a

eometric distribution with mean C / p 2 . Thus, it can be concluded:

 { TTR ACH } � C/p 2 . In the next section, we will see that simulation

esults verify the geometric distribution assumption for the pmf of

TR of the ACH algorithm. 

Now, we derive an upper bound on the ETTR of the PJR al-

orithm. If the receiver starts hopping first, it can be shown by

he property of the proposed sequences stated in Remark 2 that

he probability of achieving rendezvous in k th time slot is ap-

roximately equal to: Pr { TTR = k | The recv. starts hopping first } =
p 2 (1 − p 2 ) i /C, for Ci + 1 ≤ k ≤ C(i + 1) where 0 ≤ i ≤ C − 1 . If the

ransmitter starts hopping first, then the probability of achieving

endezvous in k th time slot is approximately equal to the follow-

ng equation: 

r { TTR = k | The trans. starts hopping first } 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

p 2 (1 − p 2 ) 2 i 

C 
If 2 Ci < k ≤ 2 Ci

1 

2 

(
p 2 (1 − p 2 ) 2 i 

C 
+ 

p 2 (1 − p 2 ) 2 i +1 

C 

)
If 2 Ci + 

C − 1 

2 

<

p 2 (1 − p 2 ) 2 i +1 

C 
If 2 Ci + 

3 C + 1 

2 

here 0 ≤ i ≤ C−1 . The proof is given in Appendix A . 
2 
− 1 

2 

, 

2 Ci + 

3 C + 1 

2 

, 

≤ 2 Ci + 2 C. 

(9) 

Now, we can calculate an upper bound for the ETTR of the PJR

lgorithm: 

 { TTR PJR } ≤ 1 

2 

∞ ∑ 

i =0 

([ 
1 

2 

(
C −1 

2 

)(
C + 1 

2 

)
+ (2 iC) 

C 

2 

] 
× p 2 (1 −p 2 ) 2 i 

C 
+ 

+ 

[(
2 Ci + 

C + 1 

2 

)
C + 

C(C − 1) 

2 

]

×
(

p 2 (1 − p 2 ) 2 i 

2 C 
+ 

p 2 (1 − p 2 ) 2 i +1 

2 C 

)
+ 

+ 

[(
2 Ci + 

3 C + 1 

2 

)
C 

2 

+ 

1 

2 

(C − 1)(C + 1) 

2 

]

× p 2 (1 − p 2 ) 2 i +1 

C 

)

+ 

1 

2 

∞ ∑ 

j=0 

p 2 (1 − p 2 ) j 

C 

(
jC 2 + 

C(C + 1) 

2 

)
. (10)

After some manipulations, we have: 

 { TTR PJR } ≤ C 

(
1 

p 2 
− 16 − 9 p 2 

16(2 − p 2 ) 

)
. (11)

Since the term 

16 −9 p 2 

16(2 −p 2 ) 
is positive for any value of p , the up-

er bound of ETTR for the PJR algorithm is always less than the

TTR for the ACH algorithm. In addition, it can be seen that the

ap between the PJR and ACH algorithm increases at least linearly

ith the number of channels. In the next part, we give a solution

o ensure rendezvous in the presence of jitter. 

.4. Rendezvous in the presence of jitter 

In most existing works, it is assumed that all SUs stay in each

hannel with the same time slot duration [4,6,10,13,17] . However,

he duration of time slots in SUs may have small differences in

ractical networks due to inaccuracy of the SU clocks (clock jitter).

herefore, it is important to present a solution for this problem. In

he next theorem, we present an idea by extending the duration of

ime slot. 

heorem 4. Let ε be the time difference between the duration of one

ime slot in the secondary transmitter and receiver. Suppose that there

s a common available channel at both side. Then, rendezvous occurs

n C 2 time slots if the duration of one time slot, T slot , is greater than

he following term in both SUs: 

 slot ≥ 2(C 2 − 1) ε + 2 t, (12)

here t is the minimum time required to exchange control messages

etween two SUs. 

roof. Without loss of generality, assume that the duration of one

ime slot in the secondary transmitter and the receiver is T slot 

nd T slot + ε, respectively. Furthermore, consider that the receiver

tarts hopping after the transmitter. The other case that the re-

eiver starts hopping first can be analyzed in the same way. Now,

ssume that the time difference between the starting point of the

eceiver and the nearest time slot boundary of the transmitter is δ
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Fig. 7. Time diagram of two sequences Seq tx and Seq rx when the duration of one time slot in the transmitter and receiver is T slot and T slot + ε, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 The mPJR algorithm. 

1: Initialization: REG i ← Seq ′ tx 

2: repeat 

3: Mode ← choose randomly from mode I or mode II with 

probability { P i,I , 1 − P i,I } . 
4: if Mode = mode I then 

5: visit channels according to REG i for the first C time slots. 

6: RE G i ← Circ(RE G i , 1) 

7: visit channels according to REG i for the next C time slots. 

8: RE G i ← Circ(RE G i , 1) 

9: else 

10: visit channels based on Seq ′ rx twice for 2 C time slots. 

11: RE G i ← Circ(RE G i , 2) 

12: end if 

13: until Rendezvous is achieved. 
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f

where − T slot 
2 ≤ δ ≤ T slot 

2 (see Fig. 7 ). In the worst case, assume that

the rendezvous is achieved in the last time slot of Seq rx . Hence,

it is sufficient to guarantee that the transmitter and receiver have

enough time to exchange control messages in this time slot. Since,

by satisfying this condition, they have also enough time to meet

each other in all previous time slots. Therefore, we can write the

following inequalities to guarantee rendezvous according to Fig. 7 :

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

C 2 T slot − [(C 2 − 1)(T slot + ε) + δ] 

≥ t → T slot ≥ 2(C 2 − 1) ε + 2 t for 0 ≤ δ ≤ T slot 

2 

, 

C 2 (T slot + ε) − ((C 2 − 1) T slot − δ) 

≥ t → T slot ≥ 2 t − 2 C 2 ε for −T slot 

2 

≤ δ < 0 . 

(13)

If the duration of a time slot in two SUs is greater than 2(C 2 −
1) ε + 2 t, then they have enough time to exchange control mes-

sages. At last, we should add that if ε � t 
C 2 

, the extension in the

duration of one time slot is negligible and it is reasonable to em-

ploy this solution. �

3. The mPJR algorithm 

In this section, we explain how the PJR algorithm can be ex-

tended to mPJR algorithm for non-role-based scenario. We will

show that rendezvous is achieved after at most 2 kC 2 time slots

with probability greater than 1 − Cq k where 0 < q < 1. Hence, at

least 2log ( C / ε)/log ( q ) C 2 time slots are required to guarantee ren-

dezvous with probability 1 − ε. In the end, we give a simple anal-

ysis for the ETTR of mPJR algorithm. 

3.1. Description of mPJR algorithm 

Consider two SU A and SU B. The idea behind the mPJR algo-

rithm is that each SU switches between two alternative modes I

and II by using both Seq ′ tx and Seq ′ rx sequences. To do so, suppose

each SU has a shift register of length C which represents the chan-

nel indices to be visited in upcoming C time slots. We denote this

register by REG i , i ∈ {A, B}. At the beginning, the REG i is set to se-

quence Seq ′ tx . 

For each 2 C subsequent time slots, SU i ( i ∈ {A, B}) chooses to

be in one of two modes I and II with probability, P i , I and 1 − P i,I ,

respectively. According to selected mode, SU i takes action in two

different ways: 

• Mode I: In this case, it uses REG i for the first C time slots. Then,

it shifts the REG i circularly to the right by one and visits chan-

nels based on the updated REG for the next C time slots. After

these 2 C time slots, it shifts the REG i to the right by one again

and gets ready for the next 2 C time slots. 

• Mode II: In this mode, SU i sweeps through channels according

to Seq ′ rx twice. It also shifts the REG i to the right by two. 

The description of mPJR algorithm for SU i is given in

Algorithm 1 . The next theorem shows that if SUs follow the mPJR

algorithm, they will have a rendezvous within O ( C 2 ) slots with

high probability. 
heorem 5. In mPJR algorithm, the rendezvous is achieved after at

ost 2 kC 2 time slots with probability greater than 1 − Cq k if there

s a common available channel between two SUs ( q = max { P A,I (1 −
 B,I ) , P B,I (1 − P A,I ) } ). 

roof. Suppose that SU A and SU B try to rendezvous by execut-

ng mPJR algorithm. Without loss of generality, assume that SU

 starts to visit channels j (0 ≤ j < C ) time slots later than SU

 (see Fig. 8 ). Consider blocks [2 kC 2 + 2 C j + 1 , 2 kC 2 + 2 C( j + 1)]

f SU A where k = 0 , 1 , 2 , . . . , and j ∈ { 0 , . . . , C − 1 } . We denote

he set of these blocks by B SUA 
j 

. If SU A is in mode I, then it

ses the same sequence in all blocks in the set B SUA 
j 

. Now, con-

ider blocks [2 kC 2 + 2 C j + 1 , 2 kC 2 + 2 C( j + 1)] of SU B where k =
 , 1 , 2 , . . . , and j ∈ { 0 , . . . , C − 1 } (see Fig. 8 ). We represent the set

f these blocks by B SUB 
j 

. If SU B is in mode II in one of the blocks

n the set B SUB 
j 

and SU A chooses to be in mode I in one of blocks

n the set B SUA 
j 

, the rendezvous is achieved if the common chan-

el is available at both side. The mentioned event occurs in the

rst k blocks in the set B SUB 
i 

with probability 1 − (q ′ ) k where q ′ =
 − P A,I (1 − P B,I ) . Thus, the probability of SU A being in mode I and

U B in mode II at least once in the first k blocks of each set B SUB 
i 

,

 ≤ i < C , is greater than 1 − C(q ′ ) k . With the same arguments, it

an be shown that the probability of SU A being in mode II and

U B in mode I at least once in the first k block of each set B SUB 
i 

,

 ≤ i < C , is greater than 1 − C(q ′′ ) k where q ′′ = 1 − P B,I (1 − P A,I ) .

onsequently, the rendezvous is achieved in 2 kC 2 time slots with

robability greater than 1 − Cq k . �

.2. Performance analysis 

Consider two SU A and SU B. There are three possible situations

or initial handshaking between two SUs: 

• SU A → SU B: SU A tries to establish a connection with SU B. 

• SU B → SU A: SU B tries to get in contact with SU A. 

• SU A � SU B: Both SUs attempt to rendezvous. 
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Fig. 8. SU B starts the mPJR algorithm one time slot later than SU A. In this instance of mPJR algorithm, SU A and SU B choose modes I, II, I and modes II, II, I for the first 

three of their blocks, respectively. For each block, the set which it belongs to, is also depicted. 

Fig. 9. ETTR of mPJR algorithm versus P A �B in asymmetric model, C = 11 . 
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Table 2 

The MSE of pmfs of TTR between simulation and analysis. 
Suppose that the third situation occurs with probability P A �B .

e assume that if each SU i does not initiate to rendezvous, it just

tays in mode II, i.e. P i,I = 0 , i ∈ {A, B}. Otherwise, it runs the mPJR

lgorithm by choosing modes I and II with probabilities { P I , 1 − P I } .
n order to simplify the analysis, we assume that ETTR in each sit-

ation, is inversely related to the probability that one of SUs is in

ode I and the other in mode II: ETTR ∝ 1 / (P I,A (1 − P I,B ) + P I,B (1 −
 I,A )) . 

7 Thus, the ETTR can be given as follows: 

TTR ≈ K 

(
P A �B ×

1 

2 P I (1 − P I ) 
+ (1 − P A �B ) ×

1 

P I 

)
(14) 

here K is a scale factor. Furthermore, the optimal P � 
I 

solution

hich minimizes the above equation can be obtained as follows:

 

� 
I = 

(P A �B − 2) + 

√ 

(2 − P A �B ) P A �B 

2(P A �B − 1) 
(15) 

n Fig. 9 , the ETTR of mPJR algorithm for P A �B in the range [0.01,

.3], is depicted. As it can be seen, the mPJR algorithm inherits the

ow ETTR from role-based solutions. In simulation section, we will

how that it has the lowest ETTR in different PU’s traffic patterns. 

In order to obtain an upper bound on P A �B , consider a CR net-

ork with n ≥ 10 number of SUs co-located in the same area. Sup-

ose that incoming traffic of each SU is ON-OFF process [19] . Thus,

ew session is started after a time interval according to Poisson
7 Let E j 
k 

be the event that one of SUs in mode I and the other in mode II for the 

rst time in k th block of the set B SUB 
j 

, j ∈ { 0 , . . . , C − 1 } . This event has a geomet- 

ic distribution, i.e. Pr { E j 
k 
} = r(1 − r) k −1 where r = P I,A (1 − P I,B ) + P I,B (1 − P I,A ) and its 

verage is 1/ r . Hence, the ETTR scales approximately with the parameter 1/ r . 
rocess with rate λ. We assume that the mean inter-event time is

reater than 10 s , i.e. λ ≤ 0.1, and the receiver of each session is

andomly chosen from all SUs in the network. From simulation, it

an be seen that E { T T R } ≤ 5 C in moderate PU’s traffic. If we con-

ider that the duration of a time slot ( T slot ) is equal to T slot = 625 μs

ike in the rendezvous layer protocol of Bluetooth technology [20] ,

hen we have: P A �B = 1 − e −
λE { T T R } T slot 

n −1 ≤ 0 . 01 . In simulation section,

e set P A �B to 0.01. 

. Simulations 

In this section, we evaluate the performance of PJR and mPJR

lgorithms in comparison with other related works. Results are av-

raged over 10,0 0 0 runs. First, we compare ETTR of PJR algorithm

ith the existing role-based solution, i.e. the ACH algorithm, in the

imple model for PUs’ activities described in Section 2 . Let us look

t the pmf of TTR for two algorithms in an example. It can be seen

rom Fig. 10 that the simulation results are close to the pmfs from

nalysis. The lower ETTR for the PJR algorithm can be inferred from

his figure. The reason is that the tail of distribution for the PJR al-

orithm is under the one of the ACH algorithm. Consequently, it is

ess probable for the PJR algorithm to achieve rendezvous in large

TRs. Furthermore, the main reason of stair-shaped form of the

mf for the PJR algorithm is that two SUs have a chance to ren-

ezvous once in each successive period of C time slots according

o Remark 2 . Therefore, if in a C -time slot period, two SUs cannot

eet because the mutually coinciding channel chosen by the two

arties is occupied by PU, then the next opportunity will not be

ithin this C -time slot period. The next chance will surely be in

he next C -time slot period. 

In order to quantify how the pmfs obtained by simulation and

nalysis are close to each other, we compute the Mean Square Er-

or (MSE) as a goodness of fit between the simulation results and

nalysis. The results are given in Table 2 for different number of

hannels and channels’ idle probabilities. It can be observed that

he pmf given for the PJR algorithm is a valid approximation and

t is close to the pmf obtained by simulation. In addition, the two

mfs become close as the number of channels increases. 

Now, we compare the performance of two algorithms for dif-

erent values of p in Fig. 11 . The figure shows that the PJR al-

orithm has a lower ETTR with respect to the ACH algorithm for
p \ C 11 15 19 23 

0.5 6 . 61 × 10 −8 3 . 18 × 10 −9 1 . 74 × 10 −10 4 . 48 × 10 −11 

0.6 1 . 12 × 10 −7 5 . 51 × 10 −9 2 . 15 × 10 −9 9 . 17 × 10 −11 

0.7 3 . 13 × 10 −7 7 . 29 × 10 −9 4 . 28 × 10 −9 2 . 49 × 10 −10 

0.8 7 . 81 × 10 −7 2 . 57 × 10 −8 8 . 49 × 10 −9 4 . 31 × 10 −10 
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Fig. 10. Comparison of the pmf of the ETTR for PJR and ACH algorithms ( C = 25 , p = 0 . 8 ). 

Fig. 11. Comparison of ETTR for PJR and ACH algorithms for different values of p . 
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different values of p . Besides, the difference between the aver-

age TTRs of two algorithms increases linearly with the number

of channels. For instance, when C = 21 and p = 0 . 7 , the gap is 10

and for C = 41 and p = 0 . 7 , the gap is 30. This can be justified by

our analysis of ETTR in previous section where we showed that

E { TTR ACH } − E { TTR PJR } ≥ 16 −9 p 2 

16(2 −p 2 ) 
C. 

In Fig. 12 , the average TTR of the PJR algorithm is plotted versus

number of channels for the jitter ε = 0 . 05 T slot , 0 . 1 T slot . We set the

time slot T slot = 2 t = 2 where t is the minimum time to exchange

control messages. It can be seen that average TTR increases just by

10% percent if we double value of jitter from 0.05 T slot to 0.1 T slot . 

Although the model considered for PUs’ activities in Section 2

is useful to simplify the analysis, it may not remain valid in
ractical scenarios. Therefore, we consider a more realistic model

ased on Markov chains in the rest of simulations. Empirical stud-

es show that PU traffics can be modeled approximately by Markov

or Semi-Markov) chains with two idle and busy states [21,22] . In

arkov chain model, one can set average time duration of idle and

usy periods by adjusting transition probabilities in the model. In

ig. 13 , the relation between average time of idle and busy periods

 T idle and T busy ) of PU traffics and time slot ( T slot ) of SUs, are de-

icted. We denote the sum of T idle and T busy by T . The parameters

and β are the ratio T idle / T , and T slot / T , respectively. 

By increasing the value of α from zero to one, we can model

eavy to light traffic load in PU connections. Besides, we can have

ifferent traffic patterns for running services at PUs by changing
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Fig. 12. Average TTR versus number of channels in the presence of jitter, p = 0 . 5 . 

Fig. 13. Illustration of idle time, busy time, and time slot. 

Fig. 14. Comparison of ETTR for non-role-based solutions. 

Fig. 15. Comparison of variance of TTR for non-role-based solutions. 
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he value of β . For instance, large values of β can be used for voice

raffics which have relatively small idle and busy periods and small

alue of β can model some traffic patterns like web traffics. In each

un of simulation, the value of β for each channel is randomly cho-

en from the set {1/20, 1/100, 1/200, 1/400, 1/600, 1/800, 1/1200,

/1600}. 

Now, we compare the performance of mPJR algorithm with

ther related works in Table 1 . We run simulations in two symmet-

ic and asymmetric model. In each model, we consider four cases:

1) light traffic load: α = 2 / 3 ; (2) moderate traffic load: α = 1 / 2 ;

3) Heavy traffic load: α = 1 / 3 ; (4) Total: in each run, the value

f α is randomly chosen from the set {1/3, 1/2, 2/3} for each

hannel. 

Simulation results for four cases in asymmetric and symmet-

ic models are given in Fig. 14 . As it can be seen, the mPJR algo-

ithm has the lowest ETTR between other algorithms for all cases

n both models. More specifically, we have at least 20% and 25%

mprovement in symmetric and asymmetric models, respectively.

n Fig. 15 , variance of TTR of non-role-based algorithms are given.

rom this figure, it can be inferred that the mPJR algorithm is more

redictable solution compared to other algorithms because of hav-

ng the lowest variance under almost all the cases. 
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Table 3 

The value of Pr { TTR = k | A j } . 
Pr { TTR = k | A j } , 1 ≤ k ≤ 12 

j \ TTR 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 0.4 0.7 0.7 0.2 0.2 0 0 0 0 0 

2 0 0 0.6 0.3 0.3 0.4 0.7 0.9 0.9 0.9 0 0 

3 0 0 0 0 0 0.4 0.1 0.1 0.1 0.1 1 1 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 

Pr { TTR = k | A j } , 13 ≤ k ≤ 25 

j \ TTR 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 1 0.3 0.6 0.9 0.1 0.1 0 0 0 0 0 0 0 

4 0 0.7 0.4 0.1 0.4 0.7 0.8 0.8 0.3 0 0 0 0 

5 0 0 0 0 0.5 0.2 0.2 0.2 0.7 1 1 1 1 
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5. Conclusions 

In this paper, we proposed the PJR algorithm for rendezvous in

CR networks. We first considered a role-based solution and showed

that it ensures rendezvous in at most (C + 1) 2 time slots. Further-

more, the PJR algorithm has better performance than the other ex-

isting work, the ACH algorithm, in terms of ETTR due to the spe-

cific property of constructed sequences. We also studied the case

in which there is a mismatch between the duration of time slots in

two SUs and give a solution to guarantee rendezvous in this con-

dition. Afterwards, we proposed the mPJR algorithm for non-role-

based case. Simulation results showed that the proposed algorithm

has the lowest ETTR in various PUs’ traffic patterns with respect

to other related works. Besides, its variance of TTR is the lowest

among other algorithms under almost all cases which makes it a

promising solution for rendezvous in CR networks. 

Appendix A 

In this appendix, we derive the proposed pmf of TTR PJR which

is stated in Section 2 . We should mention that we do not fol-

low the exact analysis. Actually, obtaining the exact pmf is in-

tractable in analysis due to many possible events yielding the same

TTR. Our aim here is to give reasonable justification for the pro-

posed pmf of TTR. We start by obtaining an approximate pmf

for the case that the receiver starts hopping first. Consider that

the transmitter starts hopping d 0 time slots later than the re-

ceiver. Then, the channel k (1 ≤ k ≤ C ), appears for the j th times

in (C j − (k − j) mod C ) th entry of Seq rx and (C j − (d 0 − k ) mod C ) th

entry of Seq tx due to structure of constructed sequences. By solving

the equation C j − (k − j ) mod C = C j ′ − (d 0 − k ) mod C to find k and

replacing it in C j − (k − j) mod C , we get the following equation: 

A ( j, d 0 ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

C j −
(

d 0 − j 

2 

)
mod C 

If d 0 − j is even, 

C j −
(

C + d 0 − j 

2 

)
mod C 

Otherwise. 

(16)

where A ( j , d 0 ) denotes the time slot which j th attempt for

rendezvous occurs and the transmitter starts hopping d 0 time

slots later than the receiver. Since the range of the function

() is [0 , C − 1] , then the value of A ( j , d ) is between
mod C 0 
( j − 1) + 1 and Cj . Besides, we can get any possible integer

alue for A ( j , d 0 ) in the range [ C( j − 1) + 1 , C j] by changing the

alue of d 0 . Therefore, if the rendezvous is achieved in time slot

( j − 1) + 1 ≤ TTR = k ≤ C j, it would be the j th attempt and the

ransmitter and the receiver have not exchanged control messages

uccessfully in any previous attempts. Now, note that the probabil-

ty of meeting in each time slot is 1 
C on average and the probability

f the rendezvous channel being idle in the transmitter and the re-

eiver’s side is p 2 . Hence, the probability of successfully exchanging

ontrol message is p 2 

C . In addition, the probability of unsuccessful

endezvous in ( j − 1) number of previous attempts is (1 − p 2 ) ( j−1) .

ence, Pr { TTR = k | The recv. starts hopping first } = 

p 2 (1 −p 2 ) j−1 

C for

( j − 1) + 1 ≤ k ≤ C j. For the case that the transmitter starts hop-

ing first, the exact analysis cannot be followed similar to the pre-

ious case. Here, we should first compute the probability Pr { TTR =
 | the current meeting of the transmitter and the receiver is j th

ttempt to exchange control messages } which is intractable in

nalysis as the number of channels increases due to many possible

vents yielding the same TTR. An example of this probability,

r { TTR = k | A j } , when C = 5 is given in Table 3 . Assume that the

ransmitter and receiver meet each other 6 time slots later than

he receiver starts hopping ( TTR = 6 ). From this table, we can state

hat there is a probability of 0.2 that this is their first rendezvous

ttempt and there is a probability of 0.4 that this is their second

r third rendezvous attempt. After observing the value of this

robability for different number of channels, we considered the

ollowing equation as a good approximation of it in terms of

SE: 

Pr { TTR = k | A j } 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 If C( j − 1) < k ≤ C( j − 1) + 

C − 1 

2 

, 

1 

2 

If C( j − 1) + 

C − 1 

2 

< k ≤ C( j − 1) + 

3 C + 1 

2 

, 

1 

2 

If C( j − 2) + 

C − 1 

2 

< k ≤ C( j − 2) + 

3 C + 1 

2 

, 

1 If C( j − 2) + 

3 C + 1 

2 

< k ≤ C( j − 2) + 2 C. 

(17)

Therefore, the probability Pr { TTR = k | the transmitter starts

opping first } is given by Eq. (9) and we have for Pr { TTR = k } : 
r { TTR = k } = 

1 

2 

( Pr { TTR = k | the transmitter starts hopping first }
+ Pr { TTR = k | the receiver starts hopping first } ) . 

(18)
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