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a b s t r a c t

VANET has attracted a good deal of attention owing to its wide range of important applications. VANET

is a special kind of mobile ad hoc network, in which most of the nodes are spatio-temporally volatile

fast-moving vehicles. Hence, it is extremely difficult to provide resilient end-to-end communications in

VANET, although it is a cornerstone for the wider deployment of VANET applications. In VANET, the net-

work and upper layers often fail due to frequent link disruptions caused by the highly dynamic envi-

ronment. In view of this, we propose MOCA, a Mechanism for cOnnectivity management in Cognitive

vehiculAr networks, which make use of cognitive radio (CR) technology, to overcome frequent link dis-

ruptions and achieve greater resilience for end-to-end data delivery. MOCA benefits from the flexibility

and adaptability of CR, which opportunistically accesses the best available licensed channel frequencies.

The selection of the best available links is determined by values from observable parameters related to

channels and nearby vehicles, such as bit error rate (BER), node speed and driving direction, as well as

on the unique application requirements. As the VANET environment can be highly dynamic, MOCA car-

ries out a periodic re-evaluation of the quality of the available channels. Our simulation results show that

MOCA outperforms all the other representative alternatives in the literature in terms of throughput and

jitter. To the best of our knowledge, MOCA is the first application-independent strategy to provide VANET

with resilient end-to-end communications.

© 2016 Published by Elsevier B.V.

1. Introduction1

Vehicular ad hoc networks (VANETs) have attracted consid-2

erable attention as their deployment will significantly enhance3

our daily experience of driving. VANET consists of on-board units4

(OBUs) installed in vehicles and roadside units (RSUs) deployed5

alongside urban roads/highways, which is a means of facilitat-6

ing both vehicle-to-vehicle (V2V) communications and vehicle-to-7

infrastructure (V2I) communications [1]. For instance, with this8

new networking technology, drivers on a highway will be able9

to find out about the traffic situation ahead, take precautionary10

measures, and avoid serious accidents which would otherwise be11

unforeseen.12

In the literature, there are many important applications of13

VANETs, which are related to safety, mobile healthcare and14
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entertainment, and require end-to-end communication channels 15

with a high degree of resilience as a key enabler of safety [2]. 16

Unfortunately, VANET is a special kind of mobile ad hoc net- 17

works, since most of the nodes are spatio-temporally in volatile 18

fast-moving vehicles [1]. They are prone to network failures, such 19

as frequent communication link disruptions caused by various 20

factors, such as severe interference, interceptions, hidden termi- 21

nal problems, radio channel fading, selfish behavior, and frequent 22

topology changes caused by highly mobile nodes [3]. Hence, net- 23

work failures have become a rule rather than an exception [4], 24

and a high degree of network resilience is required to support 25

VANET applications and ensure optimum reliability in V2V and V2I 26

communications [2,5]. 27

Over the years, there have been several attempts in the liter- 28

ature to improve the efficiency of data delivery in various kinds 29

of wireless networks, such as wireless sensor networks, mobile 30

ad hoc networks and VANETs [3,6–9]. These approaches have 31

mainly concentrated on the management of resources, mobility, 32

and/or message dissemination to improve network throughput, and 33

this may improve the reliability of VANETs as well. However, as 34
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their main concern is with connectivity management for the sake35

of greater efficiency, generally speaking, these existing schemes36

would not be an effective way of improving resilience (i.e. the abil-37

ity of the network to maintain its total throughput when there38

is node and link disruption [10]); having reliability feature as one39

of its main attributes. These approaches are generally constrained40

by the fact that they can only use unlicensed frequency bands41

(defined by the current IEEE 802.11p protocol specifications) that42

are becoming increasingly overused because of the popularity of43

portable devices. Being restricted to employing only unlicensed44

frequencies has led to the use of programmable technologies, such45

as cognitive radio, so that advantage can be taken from their46

flexibility [11–13].47

Cognitive radio (CR) technology allows unlicensed users (sec-48

ondary users – SUs) to access licensed frequency bands (of pri-49

mary users – PUs) opportunistically. As an emerging technology,50

CR is becoming popular and is now being applied to vehicular net-51

works, largely due to its ability to solve the serious problem of52

wireless network capacity and exhaustion in unlicensed network53

frequency bands, such as WiFi [11]. When employing this strategy,54

CR evaluates the available channels on the basis of the physical55

characteristics which can affect the reliability of the channels –56

such as received residual signal strength (RSS), interference, and57

bit error rate (BER) – and can thus ensure that the most reliable58

ones are selected. This study investigates the capacity of CR to im-59

prove the resilience of VANET communications. Encouraged by the60

fact that CR has a number of readily-available functionalities for61

dealing with dynamic physical environments, we attempt to use62

CR to improve the resilience of end-to-end V2V and V2I commu-63

nications in VANETs in accordance with the requirements of the64

applications.65

This article proposes MOCA, as a Mechanism for cOnnectivity66

management in Cognitive vehiculAr networks. MOCA is able to ex-67

ploit the high degree of flexibility and adaptability which are pro-68

vided by CR and access licensed frequency bands opportunistically69

with the aim of achieving communications resilience. Within the70

framework of MOCA, each node (on board unit – OBU – in the ve-71

hicle or roadside unit – RSU) can individually operate with the list72

of available channels along with the information from nearby ve-73

hicles, such as speed and driving directions. Following this, each74

node periodically evaluates the quality of the available channels as75

well as predicting what it will be in the near future, without any76
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through simulated experiments. Section 6 concludes this article 101

and makes suggestions for future work. 102

2. Related works 103

The problem of network-failure resilience and its correlated 104

concepts (such as survivability and fault-tolerance) have been ad- 105

dressed in a number of studies in the last few years, within the 106

context of wireless ad hoc networks. The causes of these failures 107

include the following: hardware/software faults, operator errors, 108

malicious or selfish attacks, and natural disasters [10,14,15]. In a 109

nutshell, when an attempt is made to tackle the problem of re- 110

silience in wireless ad hoc networks, the main focus is on con- 111

nectivity management restoring a physical topology [14], providing 112

redundancy [16,17] or applying technologies that can opportunis- 113

tically use radio spectrum frequency [15]. Although these previous 114

works have made some improvements, very few of them address 115

resilience in vehicular ad hoc networks [18], but rather, tend to fo- 116

cus on specific types of applications, such as video streaming [1,19] 117

or user authentication [20]. Furthermore, owing to the frequent 118

topology changes in VANETs, network-failures in terms of link dis- 119

ruptions must be considered the rule rather than the exception in 120

the design of protocols for these networks, and for this reason re- 121

quire further study in the literature. 122

Since reliability is an attribute of resilience, many works were 123

found in the literature that investigate this with regard to vehicu- 124

lar ad hoc networks. The required level of communication reliabil- 125

ity depends on the kind of application, which can be classified as 126

either general or driving-safety-related. In the case of the applica- 127

tions in the first category (including cooperative games and video 128

broadcasting), communication reliability is not a critical issue, de- 129

spite the fact that resilience is important for them too in certain 130

applied contexts, - for instance, disaster assistance. In contrast, 131

with regard to applications in the second category, (such as the 132

cooperative forward collision warning, pre-crash sensing/warning, 133

curve speed warning, left-turn assistance and hazardous location 134

notification), communication reliability is a significant issue [3]. 135

In recent years, a number of studies have investigated how to 136

improve the quality of data delivery in VANETs, particularly in 137

terms of throughput and latency, by making use of mobility predic- 138

tion, routing, resource management and channel selection [21–24]. 139

However, most of these approaches have failed to give priority to 140
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d to keep a record of previous states. Thus, it can take swift

ion to prevent a sudden disruption of communication links, and

ablish stable end-to-end communications to meet the particular

uirements of the applications.

MOCA examines deterministic and probabilistic criteria such as

nnel information, vehicle speed, and expected node mobility, to

luate the resilience of the available channels. Since VANETs are

amic, the criteria used in the channel (connectivity) selection

y have different degrees of importance over a period of time.

s, we designed MOCA so that the importance of each crite-

n varied in accordance with the situation, which means that it

ore adaptable, proactive, and suited to a dynamic VANET en-

nment (since this feature is the main value of MOCA). Finally,

carrying out simulations, we were able to compare the average
formance of MOCA with an existing representative alternative

m the literature – the TFRC-CR protocol [8] – in the same con-

ions as in an urban environment. The TFRC-CR protocol is essen-

ly designed to select channels that conform to network condi-

s, and we show that MOCA outperforms it in terms of through-

and jitter.

This paper proceeds as follows. Section 2 describes related

rks. Section 3 outlines the system model. Section 4 presents

new mechanism for connectivity management in vehicular

works (MOCA). Section 5 evaluates the performance of MOCA
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-to-end communication reliability, or consider how it can sup- 1

t resilience. 1

The work in [6] takes as its criterion the average length of 1

e in which a pair of nodes is within communication range of 1

h other and employs this to select the best next hop node to 1

vide Quality of Service (QoS). However, the approach is cen- 1

lized and lacks a timely mechanism for regular updates or a 1

evaluation of channel quality which are necessary in a highly 1

amic VANET environment to ensure reliable end-to-end com- 1

nications. In seeking to provide QoS and network stability, the 1

ting protocol based on QoS-OLSR [7] carries out a clustering of 1

NET nodes on the basis of their mobility. The protocol employed 1

ant-inspired model for this purpose. However, as VANETs are 1

hly sensitive to the mobility and density of nodes, the proto- 1

incurs a very high network overhead to maintain the groups of 1

es, which adversely affects the reliability of the data delivery. 1

CR technology has been introduced as a promising means of 1

ving the problem of capacity exhaustion resulting from highly 1

gested unlicensed frequencies such as those allocated to WiFi 1
]. It allows unlicensed users (SUs) to opportunistically access li- 160

sed frequency bands (e.g. those allocated to cellular networks) 161

en licensed users (PUs) are not transmitting data [5]. CR em- 162

ys mechanisms to detect the absence of primary users nearby, 163

well as select the best available licensed frequencies [5]. One 164

vity management for resilient end-to-end communications in
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representative work, the TFRC-CR protocol [8], uses the activity i

formation of the PUs to allow the SUs to randomly select availab

channels and then use the channels they prefer. However, TFR

CR is only designed to operate within a predetermined area as

uses the records of a limited number of primary users. As a resu

TFRC-CR is not suited to the highly dynamic VANET environme

where the nodes often change their location.

The SURF protocol [9] selects channels based on their degree

quality. This value is calculated for each channel by taking into a

count the activities of the associated primary users and the dens

of the nodes competing for the channel. In situations where th

value suggests that an erroneous estimate has been made, SU

relies on future decisions. SURF achieves this by choosing a be

ter channel which has a greater number of nodes. However, as t

number of nodes that use a channel increases, the competition f

the channel becomes more fierce and as a result, those applic

tions which are sensitive to delay may not be satisfied with th

approach. The traffic prediction shows the likely conditions in t

near future. In the context of VANETs, predicting traffic helps

the selection of channels. Thus, the reliability prediction procedu

assists in managing the channel selection since it satisfies the d

ferent requirements and purposes of the nodes [22,25]. Howev

until now, prediction has not been employed to help in chann

selection by seeking to improve reliability in data delivery.

The concept of spectral efficiency which establishes a relatio

ship between the service charge and the channel bandwidth, w

outlined in [26]. The algorithm makes it possible to predict the se

vice charge at a future time based on the information of the use

requirements and is thus able to ensure compliance with QoS r

quirements. The authors employed an optimization technique f

access control and restricted the channel bandwidth. However, t

algorithm does not allow a reliable channel decision to be ma

that is acceptable to dynamic environments. Moreover, it does n

use any metric that satisfies the conditions of dynamic enviro

ments, such as node density and mobility in the channel.

Generally speaking, a decision based on insufficient informati

leads to a lack of confidence. This also applies to the channel sele

tion mechanism that concerns us here. In view of this, it is high

desirable to obtain as much relevant information as possible

make a better choice. Information about the performance of t

channels and the users’ requirements is important when selecti

the best channels. However, other representative information c

assist in addressing questions such as mobility and the dynam

of nodes, in particular, information about the behavior of nodes f

connectivity and the channel selection mechanism.

Thus, this system allows greater connectivity assurance a

reliability-based decision-making. Unlike existing approach

MOCA is able to provide a dynamic prediction of channel quali

by advising what changes are required when the current chann

is in a poor position to meet the QoS requirements of each no

application. Hence, MOCA considers the features of node mob

ity, together with the efficient management of drivers and cha

nels. Owing to the dynamic nature of the environment, these c

teria have independent values at every moment. As a result, MOC

has learning parameters and considers their importance at eve

moment.

3. System model

It is defined a vehicular network consisting of a set �

{1, 2, 3, . . . ,n} of nodes/secondary users (On Board Units – OB

in the vehicles, or Roadside Units – RSU), with cognitive rad

(CR) capabilities, i.e. equipped with pairs of cognitive transm

ters/receivers that can make use of one of these channels wh

it is not occupied with a primary user. Each vehicle is provid

with its own position in a local urban road (by GPS). � is t
Please cite this article as: C. Silva et al., Cognitive radio based con

VANETs, Computer Communications (2016), http://dx.doi.org/10.1016
set of node identities in the network. Each node i can sense a

operate within its own set of orthogonal frequency channels d

noted by �i, in which Ni = |�i| < ∞ is called its sensible chann

number. We do not assume there is a universal channel set for

the nodes since their sensible frequency channels are mapped

a set of channel indices in the same way. Each node i has its ow

channel labeling function then it can assign each frequency cha

nel in �i, a channel index chosen from its channel label set NNi{0, 1, 2, 3, . . . , Ni − 1}. The elements of the label set are called N

channel indices.

Each given channel c ∈ �i has a maximum capacity of BW

Moreover, each channel displays different physical characterist

depending on various factors, such as interference, signal-to-noi

(SNR) and the bit error rate (BER), that are involved when tran

mitting data. Furthermore, these characteristics affect the perfo

mance of the channel. In VANETs, the characteristics of each cha

nel may change significantly over a period of time [5] as a resu

of node mobility. Hence, these factors should be noted when s

lecting a suitable channel that can satisfy the requirements of

application, especially one that requires end-to-end reliability.

This work adopts the popular setting in which the RSUs a

fixed, whereas each OBU follows the mobility pattern of the spe

of the vehicle, which is represented by a continuous state stocha

tic model S(t). Each pair of nodes (i and j ∈ �) is kept distant fro

each other by Dij(t), in a continuous stochastic process, and the d

tance between the same nodes in the future instant of observati

t + 1 can be estimated by the formula Di j(t + 1). We assume th

there is no distinction between Dij(t) and Dji(t). Moreover, it c

be assumed that the neighbor nodes periodically exchange beac

messages to inform others about their position and speed.

The network supports different kinds of applications, whi

means that these applications can be classified as safety driv

(e.g. able to give warnings of accidents and issue emergency aler

and non-safety driven (e.g. they depend on cooperative games a

multimedia sharing). However, within each group, the applicatio

may have different requirements, particularly in terms of ban

width, throughput and delay. The idea is kept generic in this wo

by categorizing the applications into a fixed classes each of whi

has its own requirements with regard to reliability in data delive

We assume that these classes can be defined offline, which mea

that on the basis of the requirements of the applications, it is po

sible to select the best channels for each of them.

4. Mechanism of connectivity management for resilient

cognitive vehicular networks

In this section, we provide a detailed description of MOCA, t

mechanism designed for channel selection. This is undertaken by

typical OBU (a SU - node i) by making a prediction of the chann

state for t + 1 and attempting to meet the application requiremen

to achieve a high degree of reliability in data delivery.

MOCA proactively and periodically assesses the quality of t

near-future channel based on observable parameters related

mobility, channel performance, and the relative driving directio

These three kinds of parameters are representative of VANETxv

characteristics, i.e. mobility is related to network dynamism; cha

nel performance depends on the features of the wireless links; a

the driving direction supplements the estimates of changes in t

network topology. We also consider the use of parameters relat

to mobility, for example vehicular speed, to support a mechanis

where the dynamic features in the vehicular network can be us

as input; driving direction parameters, such as distance and vehic

lar speed, assist in estimating the new distance between two nod

There are also parameters related to channel performance, for i

stance SNR and BER. These provide information to the cogniti

radio and enable it to determine the quality of the channel a
nectivity management for resilient end-to-end communications in

/j.comcom.2015.12.009
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Fig. 1. Steps for chann

ke decisions about whether to tune in to another channel, if the

lity of the channel is not sufficient to support a certain class of

lication. Due to the dynamic nature of VANETs, the parameters

y have a different degree of importance over time. Hence, MOCA

amically adapts the weights of each parameter periodically. In

ctice, this is made possible through the flexibility provided by

technology.

As shown in Fig. 1, MOCA follows five key stages : (a) send-

spectrum information, (b) prediction, (c) classification, (d)

ptation (positive and negative), and (e) selection. The network

ervations and channel sensing are carried out just before the

inning of each cycle. Hence, before each employed parameter

elected, the question is raised about whether it is viable to col-

t its value at the beginning of each cycle without delaying the

ole process. The time period between an observation made at

nd the next observation made at t + 1, is a �. Hence, all the

CA stages must be completed when the window of duration is

al to �. In the following subsections, we discuss the details of

h step and how the collected values of the parameters are em-

yed. First of all, MOCA receives information about the spectrum

racteristics. On the basis of these, it is possible to predict the

els of channel quality and compare them. After that, an adapta-

procedure is triggered and the best channel is defined.

Spectrum sensing

All the Ni channels are sensed during the Tsense � � to ob-

a full awareness of spectrum usage and the existence of pri-

ry users in a geographical area. The aim is to ensure that the

nnel sensing is as passive as possible, and thus prevent it from

sing interference or collisions between the nodes. There are

erent types of spectrum sensing methods such as geolocation

database, the use of beacons, and local spectrum sensing for

nitive radios. A survey of spectrum sensing methods is con-

ted by Yucek and Arslan [27]. This work adopts the multidi-

nsional spectrum sensing approach, similar to [15]. Although

ctrum sensing is generally understood as measuring the spec-

l content of a signal or measuring the radio frequency energy

], the multidimensional spectrum sensing approach obtains dif-

nt features in multiple dimensions. This is achieved by col-

ting signals that can provide information regarding modulation,

veform, bandwidth, carrier frequency, and other factors. In this

dy, we believe that there are no sensing errors and plan to ad-

ss this question in a future work.

The parameters related to mobility, channel performance and

tive driving direction are also observed in this stage and their

ues are collected. With regard to mobility, MOCA makes use of

rmation about the position and speed obtained from the vehi-

. On the question of the channel performance, each node re-

ver measures the SNR and BER. In the case of the relative

ving direction, MOCA makes use of information regarding the

tionship between speed and distance of travel between two
ease cite this article as: C. Silva et al., Cognitive radio based connecti

NETs, Computer Communications (2016), http://dx.doi.org/10.1016/j.com
ction in MOCA.

es. The SNR parameter compares the level of a desired sig- 3

with the amount of background noise, i.e. signals in a com- 3

nication channel that are unrelated to the information being 3

nsmitted and can reduce the throughput of the channel. The 3

nal-to-noise ratio, bandwidth, and channel capacity of a com- 3

nication channel are connected by the Shannon–Hartley theo- 3

[28]. The basic method employed for measuring SNR entails 3

paring the received signal and noise levels for a known sig- 3

level [29]. The BER parameter is calculated by comparing the 3

nsmitted sequence of bits with the received bits and counting 3

number of errors [30,31]. BER can be defined as the ratio of 3

number of bits received in error to the number of total bits re- 3

ved. This measured ratio is affected by many factors including: 3

nal-to-noise, distortion, and jitter [30]. 3

. Prediction 3

In VANETs, the prediction of channel quality helps in selecting 3

channel. This procedure shows which channels have enough 3

ources to meet the application requirements in a future instant 3

1 and at the same time, issues a warning about the quality 3

the channel at the current instant t. The prediction anticipates 3

sible problems regarding connectivity and allows changes to 3

made in the channel with best quality. The prediction aims 3

forecast future situations on the basis of current or histori- 3

information, i.e. from (t − 1) [32]. Owing to the uncertainty 3

the VANETs, connectivity may be unavailable when the chan- 3

quality is degraded. MOCA avoids this issue by using the pre- 3

tion of channel quality estimated based on previously sensed 3

rmation. 3

The prediction requires consistent information to ensure that 3

s efficient. Hence, MOCA uses local node information related 3

mobility, channel performance, and relative driving direction to 3

culate the quality of the channel. MOCA avoids using the chan- 3

when it tends to be of a low quality or is unable to meet the 3

ure expectations of the applications. Thus, MOCA suggests alter- 3

ive channels for the near future (instant t + 1), which can assist 3

meeting the requirements of the applications. 3

The quality of a channel c is calculated separately by each node, 3

means of the Eq. (1), where c means the channel being evalu- 3

d and t is the instant of the observation. Qc(t + 1) indicates the 3

diction in the quality of the channel that is a function of nor- 3

lized values Mob(t)′, Chc(t)′, and Dir(t), respectively, the current 3

bility (Eq. (2)), the capacity of the channel (Eq. (7)), and rel- 3

e node direction (Eq. (9)). These criteria have been chosen to 3

ess the quality of the channel because they have a direct in- 3

nce on connectivity. Their values are normalized in the interval 3

m 0 to 1 and no attempt is made to predefine which normaliza- 3

method should be employed. An example of a normalization 3

thod that can be employed is outlined by Nasser et al. [33] and 3

et al. [34]. Note that each of these components is pondered by 3

ights α, β , and γ , (as will be explained in the next sections), 3
vity management for resilient end-to-end communications in
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namely, α + β + γ = 1.393

Qc(t + 1) = α × Mob(t)′ + β × Chc(t)′ + γ × Dir(t)′ (1)

To obtain Qc(t + 1), MOCA first calculates the predictions of394

mobility (Mob(t)), channel performance (Chc(t)), and relative direc-395

tion (Dir(t)) by Eqs. (2), (7), and (9), respectively. Eq. (2) predicts396

the mobility of the nodes at the observed instant t. Mob(t) has as397

input the value of the present average distance between a node398

i and its neighbors j, Di j(t) and the future expected average dis-399

tance Di j(t + 1) between i and its neighbors j. In this way, Mob(t)400

uses the ratio between Di j(t) and Di j(t + 1).401

Initially, the distance Dij(t) is calculated by Eq. (3) between a402

node i and each neighbor j individually. Then the average of these403
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distances is calculated. Although the general idea involves follow

ing a radio propagation model as an aid in calculating the distan

between two antennas, MOCA employs the Friis equation [35]

estimate Dij(t), since it is one of the fundamental equations in a

tenna theory. With regard to the Friis equation, it should be not

that owing to the dynamic characteristics of VANETs, this must

modified since the antenna polarization may not match. This mo

ification involves multiplying the basic Friis equation by a Polariz

tion Loss Factor (PLF). The distance Dij(t) is calculated by a deriv

tion of the modified equation.

Mob(t) = Di j(t)/Di j(t + 1) (

Di j(t) = Friis(t) (

The calculation of Di j(t + 1), Eq. (4) is based on the equati

for rectilinear motion with uniform acceleration [36]. It consi

ers as input the average speed Si(t) and acceleration Ai(t) of t

node i. By means of Eq. (5), the average speed Si(t) is calculat

by measuring the average between the current speed Si(t) a

speed experienced in the previous moment Si(t − 1). Owing to t

highly dynamic nature of VANET topologies, longstanding histo

cal information about the speed and acceleration of nodes is n

necessary.

Di j(t + 1) = Si(t) + 1/2 × Ai(t) × t2 (

Si(t) = (Si(t) + Si(t − 1))/2 (

Si(t − 1) = Si(t) (

Chc(t) = BWc × log2(1 + SNR(t + 1)) (

SNR(t + 1) = Friss(Di j(t)) (

Dir(t) = ψ × S(t)′ + φ × Di j(t)
′

(

Eq. (7) predicts the channel quality and is based on Shannon

equation. It employs as input the results of Eq. (8), which indicat

the prediction of the future t + 1 channel capacity. Eq. (8) is calc

lated by a variation of the Friis equation. The BWc variable is t

maximum capacity of the channel. Moreover, Eq. (9) makes an a

curate prediction by employing metrics such as current speed a

the current distance between the vehicles (Eq. (3)). The value

S(t) is obtained from information about the GPS location and th

S(t)′ is its normalized value. In the same way, Di j(t)
′

is the no

malized value of Di j(t) in the range between 0 and 1. The weigh

ψ and φ in Eq. (9) control, respectively, the influence of speed a

distance during time. This means that these weights can be a

justed to aid drivers to maintain reliable connectivity with oth

nodes, and give greater emphasis to vehicle control.
Please cite this article as: C. Silva et al., Cognitive radio based con
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4.3. Adaptation

Owing to the dynamic nature of VANETs, the parameters r

lated to mobility, channel performance and relative driving dire

tion can have different levels of importance over a period of tim

Fig. 2 shows that the adaptation feature uses the values of the

parameters as input for the prediction of the quality of the chann

Qc(t + 1). Thus, MOCA controls the weights of these parameters

predict the channel quality at each moment.

It is assumed that each parameter has a significance level

β , and γ as expressed in Eq. (1). Initially, all the criteria ha

the same importance value, which is approximately 33%. Howev

later, this degree of significance can change because of the netwo

conditions calculated by Eqs. (2), (7), and (9). Thus, this equati

analyzes how far the predictions of current and previous states c

be attained when a possible dynamic performance is expected

the channel.

At the moment, it is necessary to know the most influential p

rameters. This can make it possible to calculate δs for each of t

parameters related to the following: mobility, channel performan

and relative driving direction. The driving-force behind this is t

approach adopted in neural networks [37]. These δs are the resu

of the difference between the current state (at t) and the previo

state (at t − 1). Hence there is a need to keep a historical record

the states, and not just the immediately preceding one. After th

these δs are normalized between [0, 1]. During the normalizatio

each δs is divided by the sum of all the δs which means that t

highest normalized value indicates what is currently the most i

fluential parameter.

The node evaluates the δs values and, on this basis, it is ab

to decide whether or not to update the weight parameters. If t

highest normalized δs is positive, the weight of the most infl

ential parameter is increased by the difference between the no

malized value of the highest δ and the second highest param

ter. However, if this δs is negative, it reduces the weight of t

most influential parameter by the difference between the norm

ized value of the highest δ and the second highest parameter. T

other parameters have a uniform weight redistribution of 1 m

nus the sum of the weights employed in the two most influent

parameters.

4.4. Selection

Since the i node knows the available channels, MOCA ran

them in relation to their Qc(t + 1). The highest is the Qc(t +
value, and the best is the channel quality. Once the channels ha

been arranged in descending order, MOCA maps the best chann

for the application class data request transmission. Once a chann

has been selected, the node continually assesses the quality of t

channel and predicts its status in the near future.
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Table 1

Simulation parameters.

Parameters Value

Area 1000 x 1000 m

Grid of streets and avenues 10, 10

Number of vehicles 100, 300, 500

Area of the vehicle transmission 250 m

Number of transmitters in the vehicle 1

Velocity 2, 12 m/s

Probability of velocity change 0.2

Stopping probability 0.5

Maximum probability to be stopped 0.5

Numbers of PUs 11

Sensing and transmission time 0.5 s

Prediction time of MOCA 1 s

PUs activity (Poisson distribution) 0.5

TFR 53

uat 54

to 55

Fur 56

is 57

num 58

num 59

of 60

net 61

sul 62

of 63

Pl

VA
Evaluation

This section conducts a performance evaluation of MOCA

ough simulations in NS-2.31. The results from MOCA were com-

ed with the results from TFRC-CR [8]. Before comparing the re-

ts, the implementation of the TFRC-CR protocol was validated

er the same conditions employed by the authors in [8]. TFRC-

is a representative spectrum management proposal that aims

provide end-to-end communication. It was selected so that its

formance could be compared with that of MOCA, because they

re some of the most significant features addressed in this work,

h as its ability to adapt to the use of the spectrum, which could

be found in related works. In addition, there are related works

t address the question of reliability and even resilience; how-

r, these only concern certain kinds of applications, and this is

one of the objectives of MOCA.

The evaluation scenarios varied and the parameters number of

des in the network ranged between 100, 300, and 500. This vari-

n in the number of nodes is evidence of the network density,

ich is a significant feature of vehicular ad hoc networks since

an characterize the environment in which the network is em-

ded - such as high density for urban areas and low density for

-urban areas. The nodes follow the pattern in the Manhattan

d mobility model [38], including the source and destination of

h connection, within an area of 1000 m × 1000 m. The Manhat-

Grid mobility model was employed to simulate realistic VANET

narios [39,40]. The scenario comprises interconnecting streets

avenues designated as 10m × 10m.

Each node is equipped with a radio interface and has an omni-

ectional antenna with a transmission range of 250 m. The speed

the nodes can vary between 2 and 12 m/s with a probability of

ocity change of 20%, and probable pause in movement of 50%.

th regard to PUs, their activities follow a Poisson distribution of

(whether active or inactive). The coverage range of the PUs is

m. The SUs are not allowed to operate in the coverage range

an active PU.

A number of 100 simulations was carried out, with a duration

600 s each, in order to demonstrate the benefits of MOCA. The

ults showed a confidence interval of 95%. MOCA was evaluated

metrics related to data delivery reliability, connectivity, and en-

y costs. The metrics for data delivery are the Packet Delivery

io (PDR) and jitter. PDR is calculated as the average number

packets received at the destination node times the total number

packets sent from the source node. Jitter is the variation of de-

in delivering packets end-to-end. Connectivity related metrics

connectivity duration and the number of channel changes.

nectivity duration is the total amount of time when the node

onnected, whereas the number of channel changes represents

many times the node needed to select and use a new channel.

ergy costs represent the percentage of consumed energy, and is

culated by the ratio between the average of the final amount of

rgy consumed in the nodes at the end of the simulation pe-

d and the average of the initial energy in the nodes at the be-

ning of the simulation. Although VANETs do not have energy

straints, energy costs are an important indicator of the over-

d resulting from MOCA and how much of the vehicle resource

used, and gives an idea of the trade-off between the number

observable parameters used and the consumption of node re-

rces. Table 1 summarizes the simulation parameters.

Results

Fig. 3 shows the effects of increasing the number of nodes in

network (as represented by the network density) for the num-

of channel changes carried out. It should be noted that MOCA

a number of channel changes, on average, 60 times more than
ease cite this article as: C. Silva et al., Cognitive radio based connecti

NETs, Computer Communications (2016), http://dx.doi.org/10.1016/j.com
Fig. 3. Number of channel changes.

Fig. 4. Connectivity time.

C-CR. This large number of changes occurs because MOCA eval- 5

es the current conditions of the channels, while also attempting 5

predict their conditions for the next cycle of the mechanism. 5

thermore, by observing the increase in the network density, it 5

also possible to confirm a higher statistical dispersion in the 5

ber of changes of the selected channel. In parallel with the 5

ber of changes in the selected channel, there was an analysis 5

the connectivity time (or connectivity duration). The higher the 5

work density, the greater the competition for channel use re- 5

ting from an increase in statistical dispersion for the duration 5

the connectivity , (as shown in Fig. 4). In all the cases, MOCA 5
vity management for resilient end-to-end communications in
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Fig. 7. Computational cost in terms of energy consumption.

to the channel with better quality and the number of parameters 587

considered in the mechanism. The larger the number of nodes, the 588

greater is the competition for using the channels. As a result, the 589

channel quality varies as the uncertain conditions of the network 590

during the channel selection procedure. Thus, MOCA increases the 591

amount of channel switching required to establish which chan- 592

nels have a higher quality and are able to improve resilience in 593

connectivity. However, despite using a larger number of parame- 594

ters than TFRC-CR, the energy costs for both mechanisms are very 595

similar. The reason for this is that the nodes in MOCA employ lo- 596

cal values for the parameters, that they would normally have al- 597

ready to evaluate the channel quality. Moreover, this requires ‘extra 598

work’ in contrast with TFRC-CR which only involves the calcu- 599

lation of the quality of the channel and the new values for the 600

weights. 601

6. Conclusion 602

This article has examined MOCA, a mechanism for cOnnectiv- 603

ity management in cognitive vehiculAr networks. MOCA manages 604

the connectivity between pairs of nodes in vehicular networks, and 605

is able to benefit from the flexibility provided by cognitive radio 606

technology to make an improvement in the reliability of data de- 607

livery. Moreover, MOCA makes use of information from vehicles, 608

such as speed and driving direction, as well as that obtained from 609

application requirements to manage connectivity. The mechanism 610

was compared with a representative approach from the literature 611

carried out in urban scenarios. The evaluation results demonstrated 612

that MOCA can significantly enhance connectivity in vehicular cog- 613

nitive networks and outperformed the other approach in terms of 614

throughput and jitter. In future work, our intention is to examine 615

an advanced approach to correlate the channels and the QoS and 616

QoE requirements from the application and the influence of other 617

an 618

on 619

620

621

a- Q5622

ed 623

ng 624

ão 625

626
Fig. 5. Jitter (s).

Fig. 6. PDR (%).

resulted in a longer connectivity. This factor also benefits PD

and jitter, since they tend to have better results when MOCA

employed.

For a better analysis of these two metrics, a discussion has be

included which compares them with the results for PDR and jitt

Fig. 5 shows jitter in terms of a variation in network density (num

ber of nodes). In the scenario with 300 nodes, MOCA shows jitt

as 12% lower than when jitter is produced by TFRC-CR. Denser sc

narios involve a high competition for channel usage. This mea

that these scenarios may have greater signal noise, adding unce

tainty about channel conditions. MOCA reduced the time needed

change the channel because of the selections and predictions pr

cedures. TFRC-CR shows a high standard deviation value, becau

the channel selection is carried out in a random manner.

Fig. 6 shows the results obtained from correlating PDR and ne

work density (represented by the number of nodes). In the sc

nario with 300 nodes, MOCA achieves a 12% higher PDR than TFR

CR. By increasing the network density, MOCA showed that t

channel selection avoids a degradation of channel quality and r

duces competition between those who use them.

Fig. 7 shows the analysis of energy costs. MOCA reduced in 3

on in average, energy costs when it was employed. This is a resu

of the lower number of channel changes needed to give prior
Please cite this article as: C. Silva et al., Cognitive radio based con

VANETs, Computer Communications (2016), http://dx.doi.org/10.1016
parameters in predicting the behavior of channels. In addition,

attempt will be made to employ an advanced radio propagati

model, including a model for urban areas.
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