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a b s t r a c t

Only little is publicly known about traffic in non-educational data centers. Recent studies made some knowl-

edge available, which gives us the opportunity to create more realistic traffic models for data-center research.

We used this knowledge to create the first publicly available traffic generator that produces realistic traffic

between hosts in data centers of arbitrary size.

We characterize traffic by using six probability distribution functions and concentrate on the generation of

traffic on flow-level. The distribution functions are easily exchangeable to enable using up-to-date traffic char-

acteristics whenever new data is available from publications or own experiments. Moreover, in data centers,

traffic between hosts in the same rack and hosts in different racks have different properties. We model this

phenomenon, making our generated traffic very realistic. We carefully evaluated our approach and conclude

that it reproduces these characteristics with accuracy.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Traffic traces from data-center networks are very rare. This leads

o problems when evaluating new networking ideas for data centers

ecause it is not possible to find proper input. We propose a method

o generate realistic traffic for arbitrarily sized data centers from only

set of statistical properties of data-center traffic. This enables us

o generate traffic for networks where only limited information is

vailable.

Recent studies [1,2] investigated traffic patterns in today’s data

enters on flow level. They gave a detailed statistical description for

oth the traffic matrices and the flows present on Layer 2 in data cen-

ers. These studies were the first to give a detailed insight into the

ommunication patterns of commercial data centers and reported

hat different parts of the traffic matrix have different statistical prop-

rties. This is due to software tuned for running in data centers (like

adoop [3]). Such software tries to keep as much traffic in the same

ack as possible to achieve a higher throughput and lower latency. We

all this property rack-awareness.

This paper proposes the Data Center TCP Traffic Generator

DCT2Gen) which takes a set of Layer 2 traffic descriptions and uses

hem to generate Layer 4 traffic for data centers. When the gener-

ted Layer 4 traffic is transported using TCP, it results in Layer 2 traf-

c complying with the given descriptions. With the Layer 4 traffic

t hand, TCP dynamics can be included into the evaluation of novel
∗ Corresponding author. Tel.: +49 5251 60 1716.
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etworking ideas for data centers with pre-described properties of

ayer 2 traffic without having to know the exact applications run-

ing in the data center. This allows using realistic TCP traffic patterns

n experiments conducted at testbeds or network emulations where

eal network stacks are used. Our generator is highly realistic; e.g. it

eflects rack-awareness of typical data-center applications, which en-

bles highly realistic evaluation of novel data-center ideas.

The work flow required to generate artificial TCP traffic and to

rove its validity is depicted in Fig. 1. First, Layer 2 traces from the

argeted data-center are collected (1). Then, these traces are analyzed

o obtain a set of probability distributions describing the traffic (2).

hese distributions include the number of communication partners

er host, the flow sizes, the sizes of traffic matrix entries, and oth-

rs. From the observed Layer 2 traffic distributions (2) we infer the

nderlying Layer 4 traffic distributions (3). Using these Layer 4 distri-

utions, we generate a Layer 4 traffic schedule (4). This schedule de-

cribes for each host when to send how much payload to which other

ost in the data center. We claim that by executing our calculated

chedule, the resulting traffic on Layer 2 (5) has the same stochas-

ic properties as the original Layer 2 traffic traces (1). To prove that,

e are using a network emulation to execute the computed Layer 4

chedule. We capture the resulting traffic at Layer 2 (5) from the emu-

ation and analyze its statistical properties (6) to show that these are

he same for both the original Layer 2 traces (1) and the generated

races (5).

To compute the Layer 4 traffic schedule, we do not even need to

now the exact Layer 2 traces (1). As we only work on statistical traffic

roperties, it is sufficient to know the Layer 2 traffic distributions,

henceever they come (e.g., easily estimated from available traces
enerator for data centers, Computer Communications (2015),
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Fig. 1. High-level overview of DCT2Gens work flow.
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or observed online from monitoring tools). Also, even if for a data

center it is possible to directly obtain Layer 4 traffic distributions (3),

DCT2Gen serves as a useful tool to generate Layer 4 schedules (4) from

this data. Because even then, it is still necessary to generate traffic

matrices from the data and create TCP flows complying with the given

distributions.

Finding a Layer 4 traffic schedule (4) is a challenging task because

of the bidirectional nature of TCP. TCP is the most common Layer 4

protocol. For this work, we assume that all Layer 4 traffic is trans-

ported using TCP and that all TCP connections are non-interactive (i.e.,

payload is only transported into one direction). We have to make this

assumption because there is no information about the relationship

between the amount of sent and received bytes in interactive TCP

connections from data centers available to the public. We want to

emphasize that this assumption holds for a lot of applications run-

ning in the data center because most of the communication created

by data-center applications (such as big-data applications) is due to

backlogged data transfers that happen when reading and writing files

to a distributed file system.

In TCP, each flow transferring payload between a source s and a

destination d also creates a flow of acknowledgments (ACKs) from

d to s. The size of this ACK flow is roughly proportional to the size

of transferred payload. Thus, half of all flows in the schedule cannot

be scheduled arbitrarily. The properties of these flows depend on the

other half of flows. This poses a lot of interesting problems that we

solved when creating our traffic generator.

DCT2Gen is open source and available for download from our web-

site1. We supply all necessary inputs required to generate a traffic

schedule complying with the distributions reported in [1,2]. We em-

phasize that DCT2Gen is independent of these two studies and thus

can keep up with the ever changing properties of data-center traf-

fic. Whenever new studies about data-center traffic are published,

their results can be used with DCT2Gen, too. To do so, solely the

probability distributions (which are given as step functions and are

part of the input) have to be replaced. Although we explain, in some

parts of this paper, some of our design choices with the behavior of a

Map-Reduce-style workload (backlogged data transmissions, almost

all TCP connections non-interactive), our assumptions on the traffic

in data centers do not depend on Map Reduce and are also valid for

traffic produced by other data-center applications because applica-

tions in the data center mostly process data which first has to be

fetched over the network. And this operation results in backlogged

and mostly non-interactive TCP connections.

The rest of this paper is structured as follows. In Section 2 we give

a short overview of the landscape of traffic generators. Section 3 dis-

cusses traffic properties of data-center networks. These properties

have to be replicated by our traffic generator whose architecture is
1 https://www.cs.upb.de/?id=dct2gen
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resented in Section 4. Section 5 deals with one of the main chal-

enges of this work: A method is described to find the distribution

f the sizes of Layer 4 traffic matrix entries from the distribution of

he sizes of Layer 2 traffic matrix entries. Section 6 describes the pro-

ess of traffic matrix generation. Section 7 explains how to use these

raffic matrices to create a schedule of Layer 4 traffic. In Section 8 we

valuate our traffic generator and conclude this paper in Section 9.

. Related work

Past research has created a large number of different traffic gener-

tors, all with different aims and techniques. From our point of view,

here are four key characteristics of available traffic generators:

• Flow-level vs. packet-level

• Traffic on one link only vs. traffic on a whole network

• Automatic vs. manual configuration

• Topology awareness vs. non-topology awareness

We give a short overview of each characteristic and afterwards use

hem to categorize existing traffic generators.

.1. Flow-level vs. packet-level generators

There are traffic generators [4–6] that output traffic on packet

evel, formatted due to certain communication protocols. The mix

f these packets follows certain rules and probability distributions

hat are configurable beforehand. However, these traffic generators

o not usually implement flows, i.e. packets that logically belong to-

ether and that share certain properties like source and destination

ddresses. A traffic generator that is flow-aware [7–9] always gener-

tes packets organized in flows. Flow generation is done such that the

ows meet certain statistical properties.

.2. Traffic on one link only vs. traffic on a whole network

The majority of existing traffic generators [4–6] concentrates on

enerating traffic originating from one interface only. For perfor-

ance evaluation of whole network topologies it is required to know

he packet stream that is created by each single device in the net-

ork. As typically these streams are correlated, it is not sufficient to

enerate traffic for each interface separately but a traffic generator

hat creates correlated traffic for a whole network [10] is required.

.3. Automatic vs. manual configuration

Network traffic has various properties depending on the type of

he network. To specify desired traffic properties, traffic generators

an be parameterized by hand [11], automatically by feeding traffic

races from a real network whose traffic has to be mimicked [9,12,13],

r by a combination of both [9,13]. For the automatic case either al-

orithms are used to extract parameters from the given traffic or the

iven traffic itself is part of the generated traffic. In that case it is of-

en used as background traffic that is superimposed by special traffic

hat has properties based on the desired test case.

.4. Topology awareness vs. non topology awareness

Traffic generators can be topology-aware. In that case, the topology

f the target network influences the traffic patterns produced by the

enerator. In the context of data-center networks, the traffic matrices

re typically dense in intra-rack areas and coarse in inter-rack areas.

hus, a traffic generator for data center networks has to account for

he placement of servers in racks.
enerator for data centers, Computer Communications (2015),
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.5. Existing traffic generators

Harpoon [9] is an open-source traffic generator that creates traffic

t flow level. It creates correlated traffic between multiple endpoints

nd automatically derives traffic properties from supplied packet

races. Harpoon is able to generate both TCP and UDP traffic. The

eneral concept of Harpoon is a hierarchical traffic model. Traffic be-

ween any pair of endpoints is exchanged in sessions where each ses-

ion consists of multiple file transfers between that pair of hosts. Ses-

ions can either be TCP or UDP. Harpoon can be parametrized in terms

f inter-arrival and holding times for sessions, flow-sizes, and the ra-

io between UDP and TCP. These parameters are automatically de-

ived from supplied packet traces. As Harpoon is not topology-aware

t cannot be used to replicate the special properties of data-center

raffic.

Ref. [13] proposes a flow-level traffic generator for networks. It

ses a learning algorithm that automatically extracts properties from

acket traces. That work focuses on generation of traffic from differ-

nt applications each with different communication patterns. To this

nd, Traffic Dispersion Graphs are used to model the communication

tructure of applications. The generator reproduces these communi-

ation structures accurately but is less accurate in modeling the prop-

rties of flows. In addition, this traffic generator does not capture any

tructural properties of the traffic matrix.

The Internet Traffic Generator [4] and its distributed variant D-ITG

5] focus on traffic generation on packet-level. Both generate a packet

tream that can be configured in terms of the inter-departure time

nd the packet size. A similar traffic generator is presented in [8]. It

enerates traffic on flow level for a single internet backbone link.

Swing [7] is a closed-loop traffic generator that uses a very simple

odel for generating traffic on packet level. Swing aims at reproduc-

ng the packet inter-arrival rate and its development over time. Pack-

ts are logically organized in flows. However, Swing only generates a

acket trace for a single link.

Up to now, there exists no traffic generator that computes a sched-

le of TCP payload transmissions that can be used to produce Layer 2

raffic that complies with statistical traffic properties given before-

and. DCT2Gen is the first generator to compute such a schedule.

. Traffic properties

To describe and generate traffic, DCT2Gen uses several stochas-

ic traffic properties. Some of these properties are observed from L2

races that are given as input, some of them are properties of inferred

ayer 4 traffic. The traffic description hinges on how flows behave in-

ide the network.

Throughout the paper, the term flow describes a series of packets

n Layer 2 between the same source and destination that logically

elong together. We distinguish two types of flows. A payload flow is

flow which transports payload from source to destination – looking

rom Layer 4, it transports TCP data packets. Since we assume non-

nteractive TCP traffic, a payload flow does not include any acknowl-

dgments. Acknowledgments are sent in separate ACK flows, which

nly include TCP ACK segments but no data. In consequence, each

CP connection results in two flows. The structure of these flows is

aptured by traffic matrices described in the following.

.1. Traffic matrices

A traffic matrix (TM) describes the amount of data in bytes (not

umber of flows) that is transferred between a set of end hosts in a

xed time interval, capturing the pattern of flows in such a time in-

erval. The entry (i, j) of a TM tells how much data is sent from server

to server j.

We distinguish several types of traffic matrices. The primary one is

he traffic matrix describing the observed, actual traffic on Layer 2; we
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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enote this matrix as TM(obs). The next matrix corresponds to the gen-

rated traffic on Layer 2 that is a result of DCT2Gen (compare Box 5 in

ig. 1). Generated L2 traffic is described by the traffic matrix TM(gen).

Layer 2 traffic is juxtaposed to Layer 4 traffic. Layer 4 traffic is usu-

lly not observed (or, at least, not reported in publications) but only

enerated. We have to distinguish between the payload traffic matrix

escribing the actual data flows and the acknowledgement traffic ma-

rix for the flows containing only acknowledgement packets; they are

alled TM(PL) and TM(ACK), respectively. Since the payload flows from

to j give raise to the acknowledgement flows from j to i, these two

atrices are interrelated:

M(ACK)(i, j) = β · TM(PL)( j, i)

or some value β to be discussed in Section 6.

Moreover, a Layer 2 traffic matrix is the sum of a Layer 4 payload

M and a Layer 4 ACK TM plus overhead; Section 5 discusses the over-

eads involved here.

In addition to the layer, traffic matrices also reflect the traffic

tructure inside a data center. Because of rack-aware applications,

raffic inside a rack has different stochastic properties than that be-

ween racks – we reflect these differences by separate stochastic dis-

ribution functions for the intra-rack and the inter-rack parts of a traf-

c matrix.

For either part, we have to describe first the stochastic distribution

f the number of nodes a given node i talks to (either in its own or in

ny other rack). Second, we need a stochastic distribution to describe

he amount of bytes that is transferred from i to j, for each node j that

talks to; the intra- and inter-rack cases will in general have different

istribution functions.

In summary, we need stochastic distributions separately for (a)

he cases of observed and generated Layer 2 traffic and for payload

nd ACK traffic on Layer 4, (b) the distinction between intra- and

nter-rack traffic, and (c) the description of number of communication

artners vs. number of transferred bytes. This results in 4 · 2 · 2 = 16

istribution functions so far.

.2. Flow sizes

The flow size denotes the number of bytes transported by a flow

ncluding all protocol overhead. An entry of a traffic matrix describes

ow much traffic is exchanged in total between a pair of nodes in a

iven time but it specifies neither number nor size of the individual

ows transporting this traffic. The flow-size distribution specifies how

ikely a flow of a certain size occurs on Layer 2.

We distinguish between the flow-size distribution of payload

ows, the flow-size distribution of ACK flows, and the flow-size distri-

ution of both payload and ACK flows combined. Fig. 2 depicts the re-

ationship between payload flows, ACK flows, and all flows on Layer 2.

ach flow transporting payload from node i to node j implies an ACK

ow from node j to node i. The size of the ACK flow depends on the

ize of the corresponding payload flow. Hence, the payload-size dis-

ribution implies a certain ACK-size distribution and the convolution

f both distributions is the flow-size distribution on Layer 2.

To summarize, we distinguish between three different flow-size

istributions.

• The payload-size distribution specifies how likely a flow of a cer-

tain size occurs on Layer 2 which results from a payload flow on

Layer 4.

• The ACK-size distribution specifies how likely a flow of a certain

size occurs on Layer 2 which results from an ACK flow on Layer 4.

• The flow-size distribution specifies how likely a flow of a certain

size occurs on Layer 2.

Looking from Layer 2, we cannot tell if a flow is a payload flow

r an ACK flow. In the process of traffic generation, DCT2Gen takes
enerator for data centers, Computer Communications (2015),
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Fig. 2. Relationship between the observable flow-size distribution function at Layer 2

(top), the distribution function of ACK sizes (bottom left) and causal payload sizes (bot-

tom right).

Table 1

Overview of the distribution functions.

Distributions Observed Generated Inferred at Layer 4

Layer 2 Layer 2 PL ACK

Bytes Intra-rack Bobs
intra

Bgen

intra
BPL

intra
BACK

intra

Inter-rack Bobs
inter

Bgen

inter
BPL

inter
BACK

inter

Number Intra-rack Nobs
intra

Ngen

intra
NPL

intra
NACK

intra

Inter-rack Nobs
inter

Ngen

inter
NPL

inter
NACK

inter

Flow size Sobs Sgen SPL SACK

Flow inter-arrival time IATobs IATgen IATPL IATACK

Fig. 3. Architectural overview of DCT2Gen.
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the flow-size distribution of all flows and computes the correspond-

ing payload-size distribution. To be able to infer flow sizes at Layer 4

(from the flow-size distribution) we need to assume that all TCP ses-

sions in the data center are non-interactive. For data centers running

mostly Map-Reduce workload this assumption is true for most of the

flows.

3.3. Flow inter-arrival time

The flow inter-arrival time distribution describes the time be-

tween two subsequent flows arriving at the network. Together with

the flow-size distribution, the distribution of the flow inter-arrival

time specifies the distribution of the total amount of traffic for a given

time interval. This amount of traffic must match the total traffic spec-

ified by the corresponding TM. Otherwise, not enough (or too many)

flows exist, which means it is not possible to use these flows to create

a TM with the desired properties.

3.4. Nomenclature

We shall indicate the distribution functions (not the random vari-

ables) as follows:

• N represents the number of communication partners per node,

B represents the total bytes exchanged between a pair of nodes,

S represents the flow size and IAT represents flow inter-arrival

times.

• The subscript specifies either the intra- or inter-rack case, if

needed.

• The superscript specifies the case of observed or generated (on

Layer 2) vs. payload or ACK (on Layer 4) traffic.

Table 1 summarizes all the stochastic distribution functions that

we use in the remainder of the paper.
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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. Architecture of DCT2Gen

We generate a schedule of Layer 4 traffic that specifies at which

ime how much payload has to be transmitted from which source

ode to which destination node. When transported using TCP, the

enerated Layer 2 traffic on the network shall have the same prop-

rties as the observed Layer 2 traffic. Many possible schedules with

his property exist. We aim at finding one of these with the following

pproach.

First, a TM(PL) is generated. To this end, we need to infer the distri-

ution of payload bytes exchanged by a pair of nodes for the inter-

ack case (BPL
inter

) from the observed distribution of total bytes ex-

hanged by a pair of nodes for the inter-rack case (Bobs
inter

) and the

istribution of payload bytes exchanged by a pair of nodes for the

ntra-rack case (BPL
intra

) from the observed distribution of total bytes

xchanged by a pair of nodes for the intra-rack case (Bobs
intra

). From

hese distributions, along with the distribution of the number of com-

unication partners per node for the inter-rack case (Nobs
inter

) and the

istribution of the number of communication partners per node for

he intra-rack case (Nobs
intra

), a TM(PL) can be generated (for details, see

ection 6). The next step is to assign flows to all non-zero TM(PL) en-

ries. For this task, we need to infer the distribution of payload-flow

izes (SPL) from the observed distribution of flow sizes on Layer 2

Sobs). The former describes the distribution of the sizes of payload

ows that (together with the implied SACK) generates the given flow-

ize distribution on Layer 2 (Fig. 2). Using SPL, a set of payload flows

s generated which are mapped to the non-zero TM(PL) entries in a

ubsequent step (Section 7).

At the end of this process we know how many payload bytes to

end from which node to which other node in TCP sessions such that

t holds that: B
gen
intra

equals Bobs
intra

, B
gen
inter

equals Bobs
inter

, N
gen
intra

equals Nobs
intra

,
gen
inter

equals Nobs
inter

, Sgen equals Sobs, IATgen equals IATobs

The modular design of our traffic generator can be seen in Fig. 3.

t consists of the five different modules Deconvolver, Payload Extrac-

or, Traffic Matrix Generator, Flowset Creator, and Mapper. This section

ives a short description of each single module. In the subsequent

ections, complex modules (Deconvolver, Traffic Matrix Generator,

apper) are explained in detail.
enerator for data centers, Computer Communications (2015),
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Algorithm 1 Transform Sobs to SPL.

1: Algorithm InferPayloadSize

(
Probs(·)

)
:

2: PrPL(·) ← Probs(·)
3: for each flow size x in decreasing size do

4: PrPL (ACK(x)) ← PrPL (ACK(x)) − PrPL (x)
5: end for

6: PrPL(·) ← PrPL(·)/ ∑
x PrPL(x) {normalize PrPL(·)}

7: return PrPL(·)
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2 Data exchange between two hosts over different TCP connections is of course sup-

ported by DCT2Gen.
.1. Deconvolver

The Deconvolver takes the observed distribution of total bytes ex-

hanged by a pair of nodes for the intra-rack case (Bobs
intra

) and the ob-

erved distribution of total bytes exchanged by a pair of nodes for the

nter-rack case (Bobs
inter

) as inputs. From these, it computes the distribu-

ion of payload bytes exchanged by a pair of nodes for the intra-rack

ase (BPL
intra

) and the distribution of payload bytes exchanged by a pair

f nodes for the inter-rack case (BPL
inter

), which enable us to generate

M(PL). As the name suggests, the Deconvolver uses a deconvolution

echnique which is explained in detail in Section 5.

.2. Payload extractor

We need to compute a set of payload flows that, together with

he implied ACK flows, generate flows on Layer 2 which comply with
obs (Fig. 2). Flows on Layer 2 are the union of payload flows and ACK

ows. As we are only given Sobs we need to infer SPL (which itself

mplies a certain SACK). SPL is computed in the Payload Extractor.

For the Payload Extractor to work, we need to assume that the

atio of payload packets to ACK packets in TCP is fixed at a value r.

e substantiate this assumption in Section 5.2 and use r to calculate

he ratio of payload bytes to ACK bytes β = |ACK|
|PAY| · 1

r , where |ACK| is

he size of an ACK packet and |PAY| is the size of a payload packet.

PAY| is the MTU of the network (which in our case was 1500) plus the

ize of an Ethernet header (14 Bytes). |ACK| = 66 because TCP Cubic,

hich is default in Linux, tends to use the TCP Time Stamp option

esulting in an ACK packet size of 20 Bytes IP header, 32 Bytes TCP

eader and 14 Bytes Ethernet header. Once concrete values r and β
re known, the Payload Extractor transforms Sobs into SPL.

Algorithm 1 is used to infer SPL from Sobs. Let Probs(x) be the prob-

bility (according to Sobs) that the size of a flow is x and PrPL(x) the

robability (according to SPL) that the size of a payload flow is x.

CK (x) = 66 ·
⌈

x
MSS·r

⌉
is the size of an ACK flow acknowledging the

eceipt of x payload bytes. MSS is the maximum segment size which

n our setup was 1448. To convert Sobs into SPL, the algorithm iterates

ver all flow sizes in descending order and removes the correspond-

ng ACK flow from SPL. This works because it always holds that the

CK-flow size is smaller than or equal to the corresponding payload-

ow size.

.3. Traffic Matrix Generator

From the outputs of the Deconvolver (BPL
intra

and BPL
inter

) together

ith the observed distribution of intra-rack communication partners

er node for the intra-rack case (Nobs
intra

) and the observed distribution

f inter-rack communication partners per node for the inter-rack case

Nobs
inter

) , the Traffic Matrix Generator creates a TM(PL). This TM(PL) spec-

fies payloads such that, when exchanged using TCP, this results in a

M(gen) having the same statistical properties as TM(obs). Matrix gen-

ration is explained in detail in Section 6. After the TM(PL) has been

alculated, the payloads exchanged between any pair of hosts are di-

ided into single payload flows.
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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.4. Flowset Creator

Flows are generated by the Flowset Creator. The Flowset Creator

ets SPL from the Payload Extractor, IATobs, and a target traffic volume

which is the sum over all entries of the TM(PL) generated in the pre-

ious step). It outputs a set of flows whose flow sizes sum up to the

arget traffic volume.

To this end, the Flowset Creator creates payload flows with sizes

istributed according to SPL. When the payload flows are transferred

ver the network, the generated Layer 2 flows have to comply with

ATobs. For this task, we need to infer IATPL from IATobs such that IATPL

nd IATACK result in IATobs. However, the resolution of the data pro-

ided by [1] (or any other sources we are aware of) for IATobs is so low

hat we could not draw any conclusions on IATPL. This is why we use

ATobs as an approximation for IATPL; this is a rough approximation,

owever, we do not have any better data at hand.

The generated flows only add up to the target traffic volume if

ATPL and SPL are chosen such that the sum of all generated flow sizes

atches the traffic volume of the generated TM(PL). If this is not the

ase, we scale the inter-arrival times by a linear factor to generate

ore or less flows depending on the situation.

.5. Mapper

In the last step of our traffic generator the flows generated by the

lowset Creator are mapped to the source-destination pairs specified

y the TM(PL) as computed by the Traffic Matrix Creator. This map-

ing is done by the Mapper which uses a newly developed assign-

ent strategy. The Mapper and our mapping strategy are explained

n detail in Section 7.

. Deconvolving traffic matrix entries

.1. Problem description

The outcome of the traffic generation process is a schedule of pay-

oad transmissions specifying when which amount of payload is sent

rom one machine to another. In TCP, whenever a certain amount of

ayload is transferred over the network, this payload flow causes a

econd flow called ACK flow. The ACK flow acknowledges the cor-

ect reception of the payload flow but does not transmit any pay-

oad itself.2 However, it adds traffic to the network. The traffic seen

n Layer 2 is the sum of the payload flows and the ACK flows. We only

ave information from the observed TM(obs) but we want to build the

nferred TM(PL). To this end, we need to compute BPL
intra

from Bobs
intra

nd BPL
inter

from Bobs
inter

. Or, put in other words, we need to infer the

ayer 4 distributions of non-zero TM entry sizes from the correspond-

ng Layer 2 distributions. This section shows how to do that.

The individual non-zero traffic matrix entry sizes of a TM(obs) can

e expressed as random variables Z = X + Y where X and Y specify

he amount of outgoing payload Bytes (X) and the amount of outgoing

CK Bytes (Y). The distribution of Z is given as Bobs
inter

resp. Bobs
intra

and

t is the linear convolution of the distributions of X and Y, which we

either know.

When assuming that the ratio between payload packets and ACK

ackets is a constant r and by ignoring the facts that (a) the TCP pro-

ocol adds overhead to each single packet and (b) TCP uses additional

essages for establishing and terminating sessions (TCP handshake),

e can write Z as

= X + βY

here β = |ACK|
|PAY| · 1

r as before. We treat X and Y as independent and

dentically distributed (iid) random variables although X and Y might
enerator for data centers, Computer Communications (2015),
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Fig. 4. Number of acknowledged payload Bytes per ACK packet plotted over different

flow sizes. Error bars show confidence intervals of level 95%.
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be correlated. However, we assume that this correlation is very low

for the kind of software that runs in a data center.

RFC 1122 [14] states that for TCP it is not required to acknowledge

the correct receipt of every single payload packet. Instead, one ACK

can acknowledge multiple payload packets at once. This is called de-

layed ACK. However, the acknowledgement of payload must not be

arbitrarily delayed. According to RFC 1122, the delay must be less

than 0.5 seconds and there has to be at least one ACK packet for ev-

ery second payload packet. Unfortunately, TCP implementations in

modern Operating Systems do not follow this specification strictly. In

experiments with Linux Kernel 3.11, e.g., the number of outstanding

unacknowledged payload packets ranged up to 16 for a backlogged

1 GByte flow over a 1 Gbit/s link.

In the following, we show that for the TCP connections transfer-

ring most Bytes in a data center, the ratio between payload packets

and ACK packets is on average r ≈ 2.5.

5.2. Estimating payload to ACK ratio

We now show that r is nearly constant in our data-center scenario.

Clearly, the value of r depends on (a) the available link speeds, (b) the

TCP implementation, and (c) the distribution of flow sizes. We want

to calculate r for payload-flow sizes distributed according to SPL. To

determine r, we have to compute a TM(PL) and divide its non-zero

entries into payload flows. Then, this traffic can be emulated using a

network emulator and the resulting r value can be observed. How-

ever, we know neither TM(PL) nor SPL. To compute both we need to

know r first, which means we are stuck in a vicious circle.

A pragmatic way of breaking the circle is to use TM(obs) as an ap-

proximate for TM(PL), divide the non-zero entries into payload flows

distributed according to Sobs and emulate this traffic to determine r.

This of course has a negative influence on the accuracy of the esti-

mated r value. However, since (a) there is no reason why the traffic

matrix should have a large effect on r (as long as the payload sizes

stay the same), and (b) Sobs and SPL are not too way off, the intro-

duced error will be acceptable.

To estimate r we calculate a TM(obs), generate TCP traffic with pay-

load sizes distributed according to Sobs, and emulate this traffic using

a network emulator. In a subsequent step we analyze the generated

ACK packets to approximate r.

We generated 60 s of TCP traffic for a data center consisting of

1440 servers organized in 72 racks of 20 servers each, interconnected

in a Clos-like topology (for details, see Section 8). We emulate this

data center with MaxiNet [15] which is a distributed Mininet ver-

sion. We use a time dilation factor of 300 on a cluster of 12 servers

equipped with Intel Xeon E5506 CPUs running at 2.16 Ghz.

On both emulated core switches we used tcpdump to write a

trace of all packets passing the first interface.3 In a subsequent step

we analyzed all ACK flows in the trace to determine the ratio between

the transferred payload and the number of ACK packets. Fig. 4 plots

the number of payload Bytes (on TCP level) acknowledged by each

ACK packet against the size of the 429,491 identified payload flows.

The two horizontal lines mark 2896 Bytes and 4344 Bytes, which is

one ACK packet for every second resp. every third payload packet (we

used an MTU of 1500 which means the MSS was 1448). It can be seen

that for each flow larger than 216 ≈ 65 KB the ratio between payload

packets and ACKs is between 2 and 3. For larger flows the ratio stabi-

lizes at 2.5.

Note that the observable TCP dynamics depend on various envi-

ronment characteristics. TCP always adapts to the current network

situation by delaying ACKs and by enlarging or decreasing the TCP

window size resulting in different data rates for the single flows.
3 For performance reasons, it was not possible to create traces at all switches or

interfaces. So we decided to use the core switches to be able to see traffic from all parts

of the network.

A

w

T
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hus, the ratio between payload packets and ACKs we found for our

cenario can differ from the ratio in other network setups. In that case

different r value has to be given to DCT2Gen.

.3. Deconvolving TCP traffic

Once we know r, which tells how much overhead is created by the

CK packets, we can easily calculate β as it only depends on the MTU.

sing the results of [16], we are now going to show how to extract the

istribution of X from

= X + βY

hen β and the distribution of Z are known and X and Y are indepen-

ent and identically distributed (iid). This result can then be used to

o infer both BPL
intra

from Bobs
intra

and BPL
inter

from Bobs
inter

.

Let f(t) denote the characteristic function of X which we want to

alculate. Since the characteristic function of the sum of two inde-

endent random variables is the product of both their characteristic

unctions, we can write the characteristic function g(t) of Z/β as

(t) = f(t) f(γ t)

here β = |ACK|
|PAY| · 1

r and 0 < γ = 1
β

< 1. Due to [16], we can write

(t) =
∞∏

k=0

g(γ 2kt)

g(γ 2k+1t)
.

valuating f(t) on each point from the range of g(·) yields an approx-

mation of the characteristic function of X. From the characteristic

unction, the density can be calculated by an inverse Fourier trans-

ormation.

.4. Results

To ascertain that the deconvolution yields reasonable results, we

ow show the results of the deconvolution of Bobs
inter

(as reported in

1]). We set r to 2.5, thus β = 66
MSS · 1

2.5 and compute the deconvolu-

ion to retrieve BPL
inter

.

Then, we compute the implied BACK
inter

based on BPL
inter

(Fig. 2). The

unction ACK(p) is used to compute the size (in bytes) of an ACK flow

orresponding to a payload flow of size p:

CK(p) = 66 ·
⌈

p

MSS · r

⌉
here in our setup MSS was set to 1448. 66 is multiplied because in

CP an ACK packet has a size of 66 bytes. We calculate the resulting
enerator for data centers, Computer Communications (2015),
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Fig. 5. Result of the deconvolution operation. The solid line shows Bobs
inter

which is de-

composed into BPL
inter

and the BACK
inter

. The dotted line depicts the convolution of BPL
inter

and

BACK
inter

.
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4 A simple graph is an undirected graph where no node has an edge to itself and no

more than one edge between the same pair of nodes exists.
gen
inter

as the convolution of BPL
inter

and BACK
inter

and compare it to Bobs
inter

to

scertain that the deconvolution was successful.

Fig. 5 shows the result of the deconvolution operation. It depicts

he following four CDFs: (a) Bobs
inter

as the original CDF, (b) BPL
inter

as the

nferred payload-size distribution, (c) BACK
inter

as the implied ACK-size

istribution, and (d) B
gen
inter

as the convolution of both BPL
inter

and BACK
inter

.

ne can see that the CDFs of the original and the derived Layer 2 dis-

ribution are almost identical which shows that the deconvolution

as successful.

One should note that the deconvolution only yields an approxima-

ion of BPL
intra

and might be noisy depending on the resolution of the

nput data. In our case, we extracted Bobs
inter

from a log-scaled figure

ublished in [1] which has a very bad resolution. The resulting noise

s even more amplified by the transformation from the characteristic

unction to a probability density function. We thus had to perform

ome manual filtering on the density function to retrieve the func-

ion depicted in Fig. 5. This filtering basically removed negative val-

es, smoothed the function, and scaled it to sum up to 1. We suspect

hat with proper data for Bobs
inter

, this manual filtering is not necessary.

. Generating traffic matrices

In this section we present our approach to generate traffic matri-

es. The mix of applications run in a data center has a strong influence

n the resulting communication structure (and thus on the TMs). If

nly one single application were running, its communication pattern

ould be reflected by the resulting traffic matrix. But with more and

ore applications running simultaneously, the impact of any single

pplication on the overall traffic will reduce and the aggregate be-

avior will appear more and more random. Moreover, as we stated

n the introduction, we do not necessarily have the knowledge which

pplications are in fact running from the observed and available data.

herefore, we aim at generating TMs that express such (perhaps only

eemingly) random traffic patterns. We do highlight that with the

echniques developed in [13], DCT2Gen can be extended to include

pplication-specific communication patterns into the TM generation

rocess. [13] analyzes packet traces to construct so-called traffic dis-

ersion graphs modeling the communication structures of different

pplications between a set of end hosts. However, this requires access

o packet traces from the network in question which are not available

o us.

We generate a TM(PL) that specifies the amount of payload ex-

hanged between server pairs within a fixed period. When this pay-

oad is transported using TCP, this generates a traffic matrix TM(gen)

n Layer 2. For this TM it holds that:
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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• B
gen
intra

equals Bobs
intra

• B
gen
inter

equals Bobs
inter

• N
gen
intra

equals Nobs
intra

• N
gen
inter

equals Nobs
inter

To create a TM(PL), we first determine each node’s number of inter-

nd intra-rack communication partners by computing a random vari-

ble from the corresponding distributions. Then, we use the numbers

s node degrees and look for such a undirected simple graph4 G. Find-

ng a graph with a given inter- and intra-rack node degree is the k-

artite Degree Sequence Problem which is a variant of the intensively

tudied Degree Sequence Problem. We give an Integer Linear Program

ILP) to solve the k-Partite Degree Sequence Problem and study its

un-time behavior.

In a subsequent step we transform the adjacency matrix of G into

traffic matrix by computing a random variable for the traffic volume

or each edge using BPL
inter

resp. BPL
intra

.

.1. Problem formalization

The problem of creating traffic matrices for n nodes with given

ntra- and inter-rack node degrees can be formalized as follows: The

nter-rack node degree of a node is defined as the number of edges

o nodes in different racks whereas the intra-rack node degree of a

ode is defined as the number of edges to nodes in the same rack.

et V = {v1, v2, . . . , vn} be a set of vertices organized in racks of size

where vi·m, vi·m+1, . . . , v(i+1)·m−1∀ 0 ≤ i < �n/m	 are located in the

ame rack i. Let Dint = (dint
1

, dint
2

, . . . , dint
n ) be the desired intra-rack

ode degrees and Dext = (dext
1

, dext
2

, . . . , dext
n ) the desired inter-rack

ode degrees for all n nodes. We are looking for an undirected simple

raph G = (V, E) where the node degrees follow the intra- and inter-

ack degrees given by Dint and Dext.

.2. The degree sequence problem

Let G = (V, E) be a simple graph on n vertices. We call the decreas-

ng order of the node degrees of V the degree sequence of G.

roblem 1 (The Degree Sequence Problem). Let V = (v1, v2, . . . , vn)

e a set of nodes and D = (d1, d2, . . . , dn), di ≥ di+1 ∀ 0 < i < n, the

esired node degrees. Find a simple graph G = (V, E), E⊆V × V, where

he degree sequence of G is equal to D. If such a graph exists, D is

alled realizable.

Problem 1 is extensively studied [17,18]. The main results on the

egree Sequence Problem for simple graphs are Theorem 1 and

heorem 2.

heorem 1 (Erdös–Gallai). D is a realizable degree sequence for a sim-

le graph on n nodes if and only if

1. The sum of all desired node degrees is even

2.
∑k

i=1 di ≤ k(k − 1) + ∑n
i=k+1 min(di, k) ∀ 1 ≤ k ≤ n.

heorem 2. D = (d1, d2, . . . , dn) is realizable as a simple graph if and

nly if D′ = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, dd1+3, . . . , dn) is real-

zable as a simple graph.

From Theorem 2 the iterative algorithm stated in Algorithm 2 can

e deduced to create a simple graph with a given node degree. The

lgorithm creates a graph for which it holds that deg(vi) = di (if such

graph exists).
enerator for data centers, Computer Communications (2015),
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Algorithm 2 ConstructGraph ( D = (d1, . . . , dn) ).

1: G = (V, E), V = {1, 2, . . ., n}, E = {}
2: Let the initial residual node degree of node vi be di.

3: Let U = (u1, u2, . . ., un) be the list of vertices decreasing in the or-

der of their residual node degree.

4: Create edges between u1 and the next d1 nodes in U .

5: if no d1 nodes exists with residual node degree > 0 then

6: return Error

7: end if

8: Update D and corresponding U as stated by Theorem 2.

9: If U is not empty, goto 4.

10: return Pr′(·)

Fig. 6. Run time of ILP 1 for different problem sizes. Errorbars indicate the confidence

intervals for a confidence level of 95%.
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6.3. The k-Partite Degree Sequence Problem

Creating inter-rack edges is different from Problem 1 because here

there exist sets of nodes between which no edges are permitted.

These sets are the sets of nodes located in the same rack. This leads us

to Problem 2, called the Degree Sequence Problem on k-Partite Graphs.

Problem 2. (Degree Sequence Problem on k-Partite Graphs) Given k

degree sequences D1, D2, . . . , Dk, find an undirected k-Partite Graph

G where each partition i consists of |Di| nodes and for each node v in

partition i it holds that deg(v) = Div . We call D1, D2, . . . , Dk realizable

if such a graph exists.

Problem 2 is a special case of the Restricted Degree Sequence Prob-

lem [19] in which arbitrary edges are forbidden to use. The best

known algorithm to solve this problem requires to find a perfect

matching on a simple graph of �(n2) nodes. This makes this approach

inapplicable to our problem: It already took more than 36 minutes on

an Intel i7 2.2 Ghz processor to calculate a graph for seven racks (each

consisting of 20 servers) using the Boost graph library.

Reference [20] presents the Degree Sequence Problem with Associ-

ated Costs where the goal is to find a minimum cost realization of a

given degree sequence. It is possible to model Problem 2 when setting

all costs for intra-rack edges to infinity. However, the running time to

solve the problem is also dominated by finding a perfect matching on

a graph with �(n2) nodes. We thus model our problem as an ILP with

n constraints, which is faster to solve for the problem instance sizes

in this context.

ILP 1 models Problem 2 where Dext = D1 ∪ D2 ∪ ... ∪ Dk. In case

that Dext is realizable, ILP 1 computes a graph Gext with degree se-

quence Dext. If Dext is not valid it will compute the Graph Gext which

has the highest possible edge count under the condition that no node

has a higher degree than specified by Dext.

ILP 1. (Constructing an Inter-Rack Graph)

maximize
∑

0<i<n

∑
0< j<i

bi, j bi, j ∈ {0, 1}

w.r.t. ∑
j∈inter(i)

bmax(i, j),min(i, j) ≤ dext
i ∀1 ≤ i ≤ n

In ILP 1, bi, j equals 1 if an undirected edge exists between nodes

i and j. Note that ILP 1 only models the lower triangular matrix of

the adjacency matrix of Gext because Gext is undirectional. inter(i) de-

scribes the set of nodes that are not in the same rack as node i and is

defined as

inter(i) =
{

j |
⌊

j

m

⌋
�=

⌊
i

m

⌋
∀ 0 < j ≤ n

}
.

We use ILP 1 to compute Gext. To show that the running time is ac-

ceptable for practical instances we are conducting the following ex-

periment on an Intel i7 960 CPU running at 3.2 GHz with 24 GB of
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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DR3 memory. The ILP 1 is solved using Gurobi 5.6. We generated

roblem sequences Dext for different number of nodes n and a fixed

ack size m = 20. The single dext
i

’s are drawn uniformly at random

rom the set {0, 1, . . . , �n · p�} for values of p ∈ {0.05, 0.1, 0.2, 0.3}.

or each parameter pair (n, p) we solved 40 problem instances and

easured the running times. Fig. 6 plots the required running time

gainst the size of the problem instance n and the different values

or p. One can see that the running time is exponential in n and that

he number of edges (controlled by parameter p) has no significant

nfluence on the running time.

.4. Generating a traffic matrix

The process of creating a traffic matrix can be divided into the

wo steps (a) finding the positions of non-zero traffic matrix en-

ries, and (b) assigning traffic volumes to non-zero traffic matrix

ntries.

We are finding the positions of non-zero traffic matrix entries by

reating a graph G with given intra- and inter-rack node degrees.

o this end, two graphs Gint and Gext are constructed. Gint = (V, Eint )

nly contains intra-rack edges with degree sequence Dint and Gext =
(V, Eext ) only contains inter-rack edges with degree sequence Dext.

e construct G by setting G =
(
V, Eint ∪ Eext

)
. Whenever there is an

dge between a pair of nodes i and j we make (i, j) a random vari-

ble in the traffic matrix which is distributed according to BPL
inter

resp.
PL
intra

.

To create Gint, each rack can be examined separately using

lgorithm 2. This leads to k unconnected subgraphs which model

he communication between servers in the same racks. However,

his only works if the degree sequences are realizable. But, as we

raw the degree sequences randomly from the given distribution

nd the rack sizes are relatively small, in most cases the demanded

egree sequences are not realizable. This is problematic as we are

ot allowed to redraw the degree sequences in that case because

his would lead to a wrong distribution of intra-rack node degrees.

ote that this problem is specific to the intra-rack case where the

umber of nodes is very small and the demanded node degrees

re very high. For the inter-rack case, the probability of sampling

non-realizable degree sequence is much lower because of the

arge number of nodes and the relatively small demanded node

egrees.

To compute intra-rack edges with degrees following Nobs
intra

, we de-

eloped ILP 2. ILP 2 assigns penalties to each node in case it does not

eet its demanded node degree. The penalty of a node is defined as

he absolute difference between the demanded node degree (given

y Dint) and the node degree in the solution calculated by the ILP
enerator for data centers, Computer Communications (2015),
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Fig. 7. Comparison of (a) the distribution of node degrees in the demanded degree

sequence and (b) the distribution of node degrees of the solution computed by ILP 2.
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tself. ILP 2 minimizes the sum over the penalties of all nodes i divided

y the probability of degree di (according to Nobs
intra

). This way, the sum

f the relative distances between the degree distribution computed by

he ILP and Nobs
intra

is minimized.

LP 2. (Constructing an Intra-Rack Graph)

minimize
∑

0<i<n

pi

Pr(di)

w.r.t.

pi ≥ 0 ∀1 ≤ i ≤ n

pi ≥
∑

j∈intra(i)

bi, j − di ∀1 ≤ i ≤ n

pi ≥ di −
∑

j∈intra(i)

bi, j ∀1 ≤ i ≤ n

In ILP 2, pi is the penalty assigned to node i. The demanded node

egree of i is denoted di and bi, j is 1 if there is an edge between nodes

and j in the calculated graph. For practical instances, the run time of

he ILP 2 is not critical as each rack can be examined separately and

acks typically consist of up to 40 servers only.

Fig. 7 shows the solution quality of ILP 2 in an experiment with

0,000 servers organized in racks of 20 servers each. The 10,000 de-

anded node degrees are distributed according to Nobs
intra

. One can see

hat the distribution of node degrees computed by ILP 2 is compa-

able to Nobs
intra

. The distributions match very well for node degrees

ith small densities. For larger densities, the gap between the dis-

ribution of demanded degrees and the distribution of node degrees

omputed by ILP 2 is larger. However, the solution of ILP 2 is of suffi-

ient quality for our purpose as can clearly be seen in our evaluation

Figs. 16 and 17).

. Generating TCP flows

.1. Overview

A traffic matrix computed by the Traffic Matrix Creator states the

mount of bytes exchanged by node pairs in a fixed time. Data-center

raffic consists mostly of short-lived flows [1,2]. Thus, for each com-

unicating node pair (non-zero TM entry), the bytes have to be sep-

rated into different flows. We describe a Layer 4 flow as the 4-tuple

start time, source, destination, size). This section only deals with pay-

oad flows.

Given a TM(PL) determining how many bytes to transfer between

very pair of nodes, the question to answer is: How to separate the

on-zero entries of a TM(PL) into flows such that flow sizes are fol-

owing SPL and the flow inter-arrival times are distributed according

o IATPL?
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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Our strategy is to first generate a set of flows complying with SPL

nd IATPL and afterwards map these flows to the non-zero entries of

he TM(PL).

.2. Generating flows

Generating flows complying with SPL and IATPL for a given traf-

c matrix is a challenging task. A simple approach would be to go

hrough all non-zero TM pairs (u, v) and generate flows for them ac-

ording to SPL and IATPL. But this approach raises some questions, for

xample:

When to stop generating new flows for(u, v)?

We could stop assigning flows to (u, v) when the sum of flow

sizes for (u, v) is larger than specified by the TM. But then,

more traffic would be generated than is specified by the TM.

Another way would be to stop generating flows for (u, v) when

the next flow that is to be generated would exceed the amount

stated by the TM. This way, the traffic generated by the flows

would be less than specified by the TM. Hence, no matter how

we decide, the resulting TM(gen)would not follow BPL
inter

and

BPL
intra

.

What if for a small TM entry a huge flow size is generated?

Generating a new flow size in this situation distorts the result-

ing flow-size distribution. And by assigning the too large flow,

the resulting TM(gen)would not comply with BPL
inter

and BPL
intra

.

So generating flows for each host pair individually is not practical.

One way to get around these issues is to first create the TM and

hen a set of “unmapped” flows following SPL and IATPL (where “un-

apped” means the flow is not yet assigned to a source-destination

air, s-d pair). Afterwards, flows get mapped to s-d pairs such that

he sum of flow sizes mapped to each s-d pair matches the amount

iven by the traffic matrix. However, this mapping has to be done

ery carefully. Since there is no information known about inter-flow

ependencies, the mapping must not introduce any artificial patterns

o the generated traffic (such a pattern could, for example, be a higher

robability to map large flows to node pairs with large TM entries).

hus, the goal is a random assignment of flows to host pairs (u, v)

here the amount of traffic given by the flows between u and v is

qual to the TM entry (u, v). We call such a mapping an exact map-

ing. Note that it is not guaranteed (and actually unlikely) that an

xact mapping exists. Nevertheless, a good mapping strategy assigns

ows such that the sum of flow sizes between nodes i and j is as close

s possible to TM entry (i, j).

To create flows, we first determine the overall required traffic sM of

he TM (as the sum of all entries) and then create a set of unmapped

ows such that flow sizes sum up to sM. We denote the sum of all

enerated flow sizes as sF. As sM is a random variable it will hold that

M = sF · ε, ε ∈ R+
0
, where ε is the imbalance factor between the size

f the flows and the TM. Of course, ε should be very close to 1 (mean-

ng there is no imbalance at all), which is why we start over to gener-

te the whole set of unmapped flows with adjusted flow inter-arrival

imes as long as | ε − 1 |> 0.01. This means that the sum of all gen-

rated flow sizes deviates at most 1% from the traffic specified by the

M. We assume this to be a reasonably small error.

We will now present two different strategies to map the un-

apped flows to node pairs. The first one is a purely random pro-

ess and the second one uses a variation of the queuing strategy

eficit round robin (DRR) [21]. Afterwards, we study the quality of both

trategies.

The randomized assignment uses the TM as a probability distri-

ution and, for each generated flow, draws a node pair from this dis-

ribution. In this process, we define the initial probability to assign

flow to node pair (i, j) as the TM entry (i, j) divided by sM. After a

ow has been assigned, the probability distribution at the point of

he node pair is lowered proportionally to the size of the flow.
enerator for data centers, Computer Communications (2015),
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Fig. 8. Deficit Round Robin inspired algorithm for selecting s-d pairs for flows.

Fig. 9. Topsøe distance of flow assignment methods over different traffic volumes. Er-

ror bars show confidence intervals for a confidence level of 95%.
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The second strategy is inspired by DRR. DRR schedules jobs of dif-

ferent sizes and classes onto a shared processor. The goal of DRR is to

share the processor among all classes according to the ratio of their

priorities. To this end, each class is assigned a priority and a credit.

DRR loops Round Robin through all classes. In each iteration of the

loop, the credit of each class is raised by some constant (called quan-

tum) weighted by the priority of the class. If for a class there exists a

job with a size smaller than the current credit of the class, this job is

scheduled to the processor and the credit of the class is lowered by

the size of the job.

We use a DRR variant to map flows to node pairs. In this variant,

node pairs correspond to classes and flows correspond to jobs. The

only difference in our variant is that we do not schedule flows onto a

shared processor; we schedule flows on node pairs. The priority of a

node pair is proportional to the size of its residual traffic matrix entry.

We loop Round Robin over all node pairs and raise their credit pro-

portional to their residual TM entry. Whenever the unmapped flow

under consideration is smaller then or equal to the credit of the node

pair, this flow is mapped to the node pair and the credit is lowered

accordingly.

Our adapted version of the DRR strategy can be seen in Fig. 8. In

this algorithm, i always corresponds to a source, j to a destination and

R is the residual traffic between i and j as specified by the TM: when-

ever a flow is assigned to (i, j), Ri, j is decreased by the size of the flow.

F is a queue that initially contains all flows in a randomized order.

Ci, j is the credit (akin to DRR) of the node pair (i, j). Ci, j is decreased

whenever a flow is assigned to (i, j) by the size of the flow. The algo-

rithm iterates Round Robin over all node pairs and tries to assign the

flows queued in F. For each flow f the algorithm iterates as long over

the node pairs (i, j) as no valid candidate has been found. (i, j) is a valid

candidate for flow f if Ci, j is larger than or equal to the size of f. After a

pair (i, j) has been inspected its deficit counter is increased by max (α
· Ri, j, ω); α and ω control the increase of the deficit counter over time.

Ideally, both parameters are chosen to be very small. We found that

setting them to values below α = 0.1 and ω = 100 cause no signifi-

cant improvement of the flow assignment and only increases the run
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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ime of the algorithm. Thus, we consider α = 0.1 and ω = 100 to be a

ood choice.

.3. Quality of flow assignment

In an optimal flow assignment, each node pair is assigned flows

hich exactly sum up to the amount of traffic stated by the given

M. In reality, we will produce a traffic matrix with slight deriva-

ions. To express the difference between the given TM M and the TM
′ produced by the flow assignment we interpret both M and M′ as

robability distributions of exchanging traffic. Then, we express the

istance between these two distributions by the relative entropy. The

elative entropy is naturally defined as the Kullback–Leibler divergence

KL), but KL requires that M′
i, j

= 0 ⇒ Mi, j = 0 ∀ (i, j) ∈ n × n, which

oes not hold in our case. However, the symmetric form of KL, called

opsøe distance (Eq. 7.1) [22] does not require this implication and can

e used instead to compute the distance between two probability dis-

ributions.

Topsøe(M, M′) =

(i, j)

(
Mi, j ln

2Mi, j

Mi, j + M′
i, j

+ M′
i, j ln

2M′
i, j

Mi, j + M′
i, j

)
(7.1)

We look at the Topsøe distance for different load levels of a net-

ork because given a fixed flow-size distribution, an increasing com-

unication volume (TM size) will influence the results of the flow as-

ignment methods: If the total traffic volume tends towards infinity,

single flow gets very small compared to a TM entry. In such a sce-

ario it is very easy to find matching flow assignments. A load level

s created by multiplying the TMs with a factor l; we denote the cor-

esponding TM by lM. We then assign flows for lM to s-d pairs and

calculate the TM (lM)′ based on that flow assignment.

We use lM as the ground truth and express the difference between

M and (lM)′ as the relative entropy of both matrices. Fig. 9 shows the

elative entropy obtained via either the random strategy or the Deficit

ound Robin strategy calculated as averaged over the Topsøe distance

f 40 matrices of 10 s generated traffic each
(

1
40

∑40
i=1 Topsøe .(lM,

lM)′)). The data center for which we generate traffic consists of 75

acks with 20 servers each. It is the same size that was used in the

tudy [1]. It can be seen that for both methods the Topsøe distance

ecreases with increasing load but for Deficit Round Robin the rela-

ive entropy is much lower, thus the method achieves a better flow

ssignment than the random mapping process. We will only consider

he DRR-based scheme henceforth.

. Empirical evaluation

.1. Approach

DCT2Gen works properly if it is able to compute a schedule of

CP payload transmissions where (when transferred over a network)
enerator for data centers, Computer Communications (2015),
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Fig. 10. Sketch of the Clos-like topology that was used in our experiments.
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a) the generated TM(gen) has the same properties as TM(obs) and (b)

he generated flows have the same properties as the observed flows.

We use a stochastic analysis of the generated TCP schedule to

onfirm that TM(gen) follows the same probability distributions as

M(obs). To this end, we compute N
gen
intra

, N
gen
inter

, B
gen
intra

, B
gen
inter

, and IATgen

ased on the Layer 4 schedule and compare them to Nobs
intra

, Nobs
inter

,

obs
intra

, Bobs
inter

, and IATobs. A network emulation through MaxiNet is

sed to capture the effects of TCP when the generated traffic is re-

layed on a data-center topology. From the results of the emulation,

e compute Sgen and compare them to Sobs.

.2. Traffic properties used in the evaluation

According to [1], Nobs
intra

and Nobs
inter

are heavy-tailed in typical data

enters. It is reported that for a pair of servers located in the same

ack, the probability of communicating in a fixed 10 s period is 11 %

hereas the probability for out-of-rack communication for any pair

f servers is only 0.5 %. In addition, a server either talks to the ma-

ority of servers in its own rack or to less than one forth of them.

he amount of traffic that is exchanged between server pairs is dis-

ributed based on their relationship: Servers in the same rack either

xchange only a small amount or a large amount of data, whereas

raffic across racks is either small or medium per server pair.

Kandula et al. [1] found that 80 % of the flows in the data center

ast no longer than 10 s and that only 0.1 % of the flows last longer

han 200 s. More than half the traffic is in flows shorter than 25 s and

very millisecond 100 new flows arrive at the network.

An independent study [2] looked at traffic from 10 different data

enters. They showed that across all 10 data centers Sobs is nearly the

ame. Most of the flows were smaller than 10 KB and 10 % of the flows

re responsible for more than half of the traffic in the data centers.

For evaluation, we used the observed distributions by [1,2] as an

nput to our traffic generator. Both studies reason about all the traffic

n data centers. In addition to traffic transported with TCP, this in-

ludes ARP, DNS and many more protocols that do not use TCP for

ransport. This results in traffic characteristics that cannot be repro-

uced using TCP only. A flow resulting from an ARP request, for ex-

mple, has a size of 60 Bytes which was also the smallest reported

ow size. Due to the three-way handshake used to establish and tear

own TCP sessions the smallest possible flow size (on Layer 2) TCP

an produce is 272 Bytes. For evaluation we increased all flow sizes

y 212 Bytes to remove this mismatch.

As a result of that increase, Bobs
intra

and Bobs
inter

no longer match the

nlarged Sobs. This makes it impossible to have a good flow assign-

ent because there are not enough small flows to be mapped to the

mall non-zero TM entries. To counteract this, we increased Bobs
intra

and
obs
inter

by 1000 Bytes.

Note that the performed changes are only minor. The average flow

ize extracted from [2] is 142 KB. Thus, increasing the size of each

ow by 219 Bytes is an increase of 0.15 % on average. The average

on-zero intra-rack traffic matrix entry has a size of 12.6 MB, the
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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verage non-zero inter-rack traffic matrix entry 12.4 MB. Thus, an in-

rease of 1000 Bytes per non-zero traffic matrix entry is negligible

about 0.1 %).

.3. Topology and emulation environment

To include the effects of TCP into our evaluation, we choose to

mulate a data center consisting of 72 racks employing a Clos-like

opology. From the emulation, we are able to determine Sgen and

ATgen. A sketch of the emulated topology can be seen in Fig. 10.

ach rack consists of 20 servers and one ToR switch, which makes

440 servers overall. Servers are connected by 1 Gbit/s links to ToR

witches. Pods consist of eight ToR switches which are connected to

wo pod switches with 10 Gbit/s links. Pod switches are connected to

wo core switches with 10 Gbit/s links. The core layer in our topology

onsists of two switches. We assume a forwarding delay of 0.05 ms

er switch. In each experiment, we emulated 60 s of traffic. This traf-

c was generated from the statistics reported in the previous section.

e used a time dilation factor of 200, which means one experiment

ompleted after 200 min.

For emulation, we used 12 physical worker nodes equipped with

ntel Xeon E5506 CPUs running at 2.16 GHz, 12 Gbytes of RAM and

GBit/s network interfaces connected to a Cisco Catalyst 2960G-

4TC-L Switch. Routing paths are computed using equal cost multi-

ath (ECMP) implemented on the Beacon controller platform [23]. As

he controller was placed out-of-band and did not use any kind of

ime dilation, the routing decisions of the single controller were fast

nough for the whole data center network. In addition, the latency

etween the controller and the emulated switches was not artificially

ncreased. This means that in relation to all the other latencies in the

mulated network, the controller decisions were almost immediately

resent at the switches and did not add any noticeable delay to the

ows. Please note that for a real data center (without using time di-

ation) an ECMP implementation based on only one centralized con-

roller would likely not keep up with the high flow arrival rates; for

etails see [15].

.4. Results

To verify that DCT2Gen produces a reasonable flow schedule, the

raffic created by the schedule (box 5 in Fig. 1) must have the same

roperties as the observed traffic (box 1 in Fig. 1). As (a) we do not

ave access to the observed Layer 2 traces and (b) it is unclear how

o directly compare two packet traces with each other, we compare

he statistical properties of the two traces with each other (boxes 2

nd 6 in Fig. 1). Comparison is done throughout the following sec-

ions where each statistical property is inspected individually. Due

o the huge amount of samples (our collected packet traces con-

ain 7,060,194 flows, 330,155 distinct intra-rack and 1,675,305 inter-

ack TM entries; each of our 16 generated Layer 4 schedules contains

round 6 million flows) it is not easily possible to use any goodness of
enerator for data centers, Computer Communications (2015),

http://dx.doi.org/10.1016/j.comcom.2015.12.001


12 P. Wette, H. Karl / Computer Communications 000 (2015) 1–14

ARTICLE IN PRESS
JID: COMCOM [m5G;December 24, 2015;18:6]

Fig. 11. Comparison between Sgen and Sobs.

Fig. 12. Comparison between Ngen

inter
and Nobs

inter
.

Fig. 13. QQ-plot of Ngen

inter
and Nobs

inter
.

Fig. 14. Comparison between Nobs
intra

and Ngen

intra
.

Fig. 15. QQ-plot of Nobs
intra

and Ngen

intra
.
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fit test to judge whether the generated distributions match the cor-

responding observed distributions. This is because there exist small

statistical differences between both distributions that together with

the large set of samples are big enough for the goodness of fit tests

to reject, but too small to be of practical importance for our pur-

pose (these differences are statistically significant, but not relevant).

We instead analyze the distributions by using Quantile-Quantile plots

(QQ-plots)5.

8.4.1. Generated flow-size distribution

To determine Sgen we emulated 60 s of data-center traffic consist-

ing of 1440 hosts as described previously. A packet trace was captured

on the first interface of each emulated core switch. We conducted 16

independent experiments (with 16 different Layer 4 schedules) and

used the corresponding 32 traces to compute Sgen. The number of

captured flows over all experiments is 7,060,194.

Fig. 11 plots Sobs and Sgen. It can be seen that the distributions

clearly match for flow sizes larger 1000 bytes. The distributions of

smaller flows, however, do not match well. We suspect this is partly

due to the behavior of TCP and partly due to our assumptions on the

size of ACK flows as most flows smaller than 1000 bytes are ACK flows

(Fig. 5). As discussed in Section 5.2, smaller flows tend to have a lower

ACK-to-payload ratio. The Flowset Creator, however, calculates the

size of each induced ACK flow with a fixed ratio of r which results

in the slightly wrong distribution of ACK-flow sizes. In the following

subsections and figures, we use comm. as an abbreviation for commu-

nication.

8.4.2. Inter-rack comm. partners

To determine N
gen
intra

and N
gen
inter

we used the same 16 traffic sched-

ules as before. Fig. 12 plots the cumulative density function of the

number of communication partners per server for both N
gen
inter

and
5 QQ-plots are plotting the quantiles of both distributions against each other. If the

plot shows the identity function, this is an indicator that the distributions fit [24].

1

g

(
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obs
inter

. This number is normalized to the total number of servers in the

ata center, i.e., a value of 1 means communication with all servers in

he data center and a value of 0 means no communication at all. From

he plot no difference between the two distributions is discernible.

he corresponding QQ-plot (Fig. 13) also does not show any signifi-

ant differences between Nobs
inter

and N
gen
inter

.

.4.3. Intra-rack comm. partners

The comparison between Nobs
intra

and N
gen
intra

(Fig. 14) shows that our

enerated traffic contains a little too many intra-rack communica-

ion partners with a low degree. Despite that, both CDFs are nearly

dentical. This can also be confirmed by looking at the correspond-

ng QQ-Plot (Fig. 15). The plot shows an almost straight line that lies

bit above the identity function. This result is in line with what is

iscussed in Section 6.4.

.4.4. Intra-rack traffic

The TM(obs)s used in this section are deduced from the same

6 traffic schedules we used in Section 8.4.3. To compute the sin-

le traffic matrix entries, we fixed the payload-to-ACK ratio r to 2.5

see Section 5.2) and computed the size of the flows on Layer 2
enerator for data centers, Computer Communications (2015),
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Fig. 16. Comparison between Bobs
intra

and Bgen

intra
.

Fig. 17. QQ-plot of Bobs
intra

and Bgen

intra
.

Fig. 18. Comparison between Bobs
inter

and Bgen

inter
.
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Fig. 19. QQ-plot of Bobs
inter

and Bgen

inter
.

Fig. 20. Comparison between IATobs and IATgen.
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etween each pair of servers. From that, we calculated the respective

6 TM(obs)s (each for a period of 10 s).

The corresponding B
gen
intra

is compared to Bobs
intra

in Fig. 16. Except for

ntries smaller than 104 Bytes, B
gen
intra

is strictly following Bobs
intra

. This

an further be confirmed by the QQ-Plot (Fig. 17) which additionally

nly shows a small anomaly of the distribution for entries around 106

ytes.

The difference between both distributions in the smaller entries

s due to the process of mapping single flows to traffic matrix entries.

he goal of the Mapper is to distribute flows to traffic matrix entries

uch that for each node pair the difference between their TM entry

nd the sum of flow sizes between that nodes is minimized per server

air. The smaller the TM entry, the fewer flows can be mapped onto

he corresponding node pair which means it is harder to find a well

tting mapping.

.4.5. Inter-rack traffic

Bobs
inter

and B
gen
inter

are plotted in Fig. 18; the corresponding QQ-plot

an be seen in Fig. 19. From Fig. 18, we observe the same situation

s in the intra-rack case. The QQ-plot additionally exposes differ-

nces for the distribution of large entries ( > 107). This effect in the
Please cite this article as: P. Wette, H. Karl, DCT2Gen: A traffic g
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Q-plot is caused by only a slight difference between the tails of both

istributions. As the tails of both Bobs
inter

and B
gen
inter

are very long, slight

ifferences in the probabilities have a huge impact on the QQ-plot.

.4.6. Flow inter-arrival time

To compute IATgen, we used the same 16 traffic schedules as be-

ore. In the Flowset Creator, IATgen is manipulated such that the bytes

ontained in all generated flows are matching the total traffic of the

raffic matrix generated in the Traffic Matrix Generator. Both IATgen

nd IATobs can be seen in Fig. 20. Apparently, these distributions do

ot match. The reason for this mismatch is the manipulation done in

he Flowset Creator. With IATobs extracted from [1] it was not pos-

ible to create enough flows to fill up the generated traffic matrices.

his can have two causes: Either the IATobs reported in [1] does not

atch the used Sobs or the data provided in [1] has such a low resolu-

ion that we were not able to fully recover it. It would be interesting

o repeat this work based on data with better quality.

. Conclusion

The traffic generator DCT2Gen presented in this work creates a

ayer 4 traffic schedule for arbitrary sized data centers. When the

cheduled payloads are transported using TCP, this produces Layer 2

raffic with properties that can be defined in advance using a set of

robability distributions. Our evaluation showed that DCT2Gen re-

roduces these properties with high accuracy. Solely the generated

ow inter-arrival time distribution does not match our chosen target

istribution. As DCT2Gen manipulates the inter-arrival time distribu-

ion to adjust the amount of flows to the given traffic matrices, this

s not surprising. We suspect that this difference will be significantly

maller when using input data of higher quality.

Given that DCT2Gen generates a schedule of payload transmis-

ions between all hosts in a data center it is suitable for simulations,

etwork emulations, and testbed experiments. Using our generated

raffic schedule combined with a large-scale network emulator such
enerator for data centers, Computer Communications (2015),

http://dx.doi.org/10.1016/j.comcom.2015.12.001


14 P. Wette, H. Karl / Computer Communications 000 (2015) 1–14

ARTICLE IN PRESS
JID: COMCOM [m5G;December 24, 2015;18:6]

[

[

as MaxiNet, novel networking ideas can be evaluated under highly re-

alistic conditions which brings new ideas a step closer to deployment

in production environments.
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