
Computer Communications 80 (2016) 33–44

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

NEmu: A distributed testb e d for the virtualization of dynamic, fixed

and mobile networks

Vincent Autefage , Damien Magoni ∗

University of Bordeaux, LaBRI, 351, Cours de la Liberation 33400 Talence, France

a r t i c l e i n f o

Article history:

Received 3 March 2015

Revised 14 January 2016

Accepted 22 January 2016

Available online 1 February 2016

Keywords:

Emulation

Mobile

Network

Testbed

Virtualization

a b s t r a c t

Experimentation is typically the last step before launching a network application on a large produc-

tion scale. However, it is often difficult to gather enough hardware resources for experimenting with

a reasonably sized distributed application inside a controlled environment. Virtualization is thus a handy

technique for creating such an experimentation testbed. We propose a tool called NEmu designed to cre-

ate virtual dynamic networks by using emulation for testing and evaluating prototypes of networked or

distributed applications with a complete control over the network topology and link parameters. NEmu

leverages system emulators such as QEMU for virtualizing the hosts and the routers. It uses vnd for virtu-

alizing components such as links and switches. In addition, NEmu allows users to create such customized

topologies with limited hardware resources and without any administrative rights. We validate NEmu by

replicating two network experiments and by showing that NEmu gives results very similar to the original

ones.

© 2016 Elsevier B.V. All rights reserved.

1

a

i

w

e

c

d

p

w

t

t

i

w

w

t

p

p

t

p

a

t

t

c

w

h

b

p

i

d

w

e

t

t

n

t

f

a

t

e

a

h

0

. Introduction

Experimentation is important to realistically and accurately test

nd evaluate network applications. Experimentation on algorithms

s usually made by simulation . This technique is available through

ell known software like ns [1] or OMNeT++ [2] and enables to

valuate the efficiency and the scalability of algorithms or proto-

ols. Experimentation on a real program, i.e. implementation, is

ifferent to the extent that it is more focused on execution time,

rocessor usage, memory consumption, network properties, etc.

It can be a difficult task when trying to experiment with a net-

ork application involving dozens of machines or more. Moreover,

he mobility or the dynamics of scenarios can drastically increase

he difficulty of experimentation. Using the Internet as a test bed is

mpractical as no parameters can be controlled. Setting up a hard-

are test bed is expensive and cumbersome. Furthermore, net-

ork applications can have very different ways of connecting hosts

o each others and changing the network topology and network

arameters of a hardware test bed is time consuming and error

rone. Virtualization techniques for creating such an experimen-

ation test bed can save resources and ease manipulations. It is a

roven method for reducing the equipment and space costs as well

s the energy consumption of using physical hosts [3] .
∗ Corresponding author. Tel.: +33 5 40 0 0 3540; fax: +33 5 40 0 0 6669.

E-mail addresses: autefage@labri.fr (V. Autefage), magoni@labri.fr (D. Magoni).

ttp://dx.doi.org/10.1016/j.comcom.2016.01.005

140-3664/© 2016 Elsevier B.V. All rights reserved.
Our solution to overcome the above hardware constraints is

hus to build a test bed able to set up virtualized networks. A vir-

ual network uses virtual machines instead of physical hosts and

onnects them with virtual links in order to build a virtual net-

ork topology. The virtual machines of a virtual network can be

osted on one or several physical hosts depending on the num-

er of virtual machines needed and the resources capacities of the

hysical ones.

We propose a tool designed to create virtual networks for test-

ng and evaluating prototypes of applications on the top of static,

ynamic or mobile networks with a complete control over the net-

ork topology and link properties (bandwidth, delay, bit error rate,

tc.) and the mobility of nodes. The goal of our tool is to enable

he creation of reasonably sized virtual networks while minimizing

he number of necessary physical hosts and network equipment

eeded. It can build host-based overlay networks by using emula-

ors such as QEMU [4] . We have called our tool NEmu which stands

or Network Emulator for mobile universes because it is able to cre-

te both fixed and mobile emulated networks. It is also a tribute

o the name of the QEMU software which is a powerful machine

mulator heavily used by NEmu . The contributions of our work are

s follows:

• A detailed description of our NEmu software which is able to

manage a distributed set of virtual nodes and links for emu-

lating any arbitrary static, dynamic or mobile network topology

(Section 2).

http://dx.doi.org/10.1016/j.comcom.2016.01.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.01.005&domain=pdf
mailto:autefage@labri.fr
mailto:magoni@labri.fr
http://dx.doi.org/10.1016/j.comcom.2016.01.005

34 V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44

2

l

N

n

w

p

p

N

2

h

u

c

r

A

t

w

t

W

a

T

m

p

d

p

t

V

v

G

s

N

O

i

s
• A detailed description of our nemo tool which implements the

mobility inside NEmu and enables to create a complete au-

tonomous mobile network by following a predefined scenario

(Section 4).

• Two validation experiments by replicating the Mosh exper-

iment originally done with Mininet [5] (Section 5.1), and

the AMiRALE experiment originally done with JBotSim [6]

(Section 5.2).

• A state of the art on related and previous work targeted at net-

working emulation and a comparison of the features provided

by NEmu with the ones offered by similar alternative virtual

networking testbeds (Section 6).

This paper is an extended and revised version of our previous

work published in [6] .

2. Description of NEmu

2.1. Overall design

NEmu is a python program consisting of 60 0 0 lines of code

which allows to build a dynamic and distributed virtual network

infrastructure. 1 It is based on the concept of Network Virtualization

Environment (NVE) introduced by Chowdhury and Boutaba in [7] .

The main characteristic of a NVE is that it hosts multiple Virtual

Networks (VN) that are firstly not aware of one another, and that

are secondly completely independent of each other. A VN is a set

of virtual nodes connected by virtual links in order to form a virtual

topology. NEmu provides the possibility of creating several virtual

network topologies with the central property that a VN is strictly

disjoint from another in order to ensure the integrity of each VN.

Thus, NEmu integrates characteristics that are fundamental to a

NVE: First, the flexibility and heterogeneity allows the user to con-

struct a customized topology, with custom virtual nodes and vir-

tual links. The scalability allows different virtual nodes to be hosted

by different physical hosts in order to avoid limitations of a unique

physical machine. The isolation decouples the different virtual net-

works which run on the same infrastructure. It also guaranties a

strict separation between the host and the virtual networks. The

stability ensures that faults in a virtual network would not af-

fect another one. The manageability ensures that the virtual net-

work and the physical infrastructure are completely independent.

Therefore, a VN created on an infrastructure A can be deployed

on another infrastructure B . The legacy support ensures that the

NVE can emulate former devices and architectures. Finally, the pro-

grammability provides some optional network services to simplify

the use of the virtual network (such as DHCP, DNS, etc.). It also

implies that the user can develop and integrate his own additional

services.

In addition, NEmu includes four important extra properties:

• The accessibility which means that NEmu can be fully executed

without any administrative rights on the physical infrastructure.

Indeed, the major part of public infrastructures, like universities

and laboratories, does not provide administrative access to their

users in order to ensure the security and the integrity of the

whole domain. Therefore, the user execution would allow most

people to use NEmu freely.

• The dynamicity of the topology enables node hot-connections

which means that a virtual node can join or leave the topology

dynamically without perturbing the overall virtual network.

• The mobility of nodes provides a way to create a self defined

topology evolution through time and space. In other words, it

is possible to create an autonomous connectivity scenario.
1 http://nemu.valab.net

v

L

∼
• The community aspect of the virtual network provides the possi-

bility for several people to supply virtual sub-networks in order

to build a community network like the Internet is.

.2. Network elements

NEmu is a distributed virtual network environment which al-

ows users to create arbitrary and dynamic topologies. To this end

Emu is based on different building blocks. NEmu uses virtual

odes connected by virtual links in order to create a virtual net-

ork topology. A virtual topology can be hosted by one or several

hysical hosts. The part of the virtual topology laying on a given

hysical host represents a NEmu session which is configured by the

Emu manager .

.2.1. Virtual node

A virtual node for NEmu is an emulated machine that requires a

ard disk image to work. This image is typically provided as a reg-

lar file on the physical host machine. Two types of virtual nodes

urrently exist in NEmu :

• A VHost is a virtual host machine (i.e., end-user terminal) on

which the hardware properties and the operating system can

be fully configured by the user.

• A VRouter is a virtual router directly configured by NEmu and

provides ready-to-use network services.

Each virtual node uses a virtual storage which can be either a

eal media (cdrom, hard drive, etc.), a raw file or a host directory.

 raw file can be privately dedicated or shared by several other vir-

ual nodes. A modification of a shared file by one virtual machine

ill affect the others which may be troublesome if the file contains

he operating system. To solve the problem, NEmu uses Copy-on-

rite (CoW) operations on the original file. A CoW file (also known

s a sparse file) only stores the differences with its original file.

he advantage, compared to a regular copy, is that the CoW file is

uch smaller. In addition, NEmu can use a regular directory on the

hysical host (without building a CoW), as a storage media in four

ifferent ways:

• by making a Sparse file which only stores the differences with

its original file;

• by making a Squash file system which is a read-only raw image;

• by using a FAT16 emulated interface which enables a direct ac-

cess to a host’s file system;

• by using a Virtio interface [8] which also enables a direct access

to a host’s file system;

• by using a Network Block Device which enables a virtual node to

remotely access to a block device through the real IP network

[9] ;

• by using a SSH tunnel which enables a virtual node to remotely

access to a block device through a secured connection.

As said before, a VHost needs a disk image which must be sup-

lied by the user. This image must be prepared prior to creating

he virtual network. Furthermore, one image can be used by many

Hosts by using sparse files . NEmu provides a network topology

isualization option by processing its topology data file through

raphviz [10] .

A VRouter is directly configured by NEmu and provides several

ervices to simplify the virtual network management: DHCP, DNS,

FS, HTTP, SSH, NTP, Netfilter, dynamic routing protocols (RIP and

SPF), and QoS management with Traffic Control [11] . Moreover,

t is easily possible to add some new services through a plug-in

ystem available in NEmu . A router is running a customized image

ersion of TinyCore which is a lightweight and highly configurable

inux distribution [12] . Such a system typically requires about

30 MBytes on disk and ∼100 MBytes in memory with all services

http://nemu.valab.net

V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44 35

Fig. 1. Network elements in action.

r

e

2

t

f

a

p

o

N

T

T

s

m

m

t

d

c

a

t

a

I

l

n

u

v

w

t

V

u

s

2

s

2

c

(

t

l

o

a

w

2

n

o

w

c

h

o

2

w

2

t

r

m

s

i

i

b

e

h

t

w

t

Q

V
unning. Services provided by a VRouter are optional and can be

nabled or disabled before or during runtime.

.2.2. Virtual link

A virtual link for NEmu is an emulated network connection be-

ween virtual nodes . This emulated connection can either be per-

ormed inside the machine emulator of a node (the link thus being

ttached to this node) or be performed by a dedicated emulation

rogram (not running any system image in this case). Three types

f virtual links currently exist in NEmu :

• A VLine is a virtual point-to-point link interconnecting two

nodes.

• A VHub is a virtual multi-point hub emulating a physical Ether-

net hub and interconnecting several nodes.

• A VSwitch is a virtual multi-point switch emulating a physical

Ethernet switch and interconnecting several nodes.

Virtual links typically carry Ethernet frames from one virtual

etwork Interface Card (NIC) to one or more other virtual NICs.

his Ethernet traffic is tunneled between virtual nodes by using

CP or UDP connections. NEmu can also use a VDE [13] , a virtual

witch which inter-connects virtual machines through the shared

emory system inside the Linux kernel, in order to create a local

ulti-point switch . Alternatively, NEmu can use our vnd program

o emulate a network component. vnd stands for v irtual n etwork

 evice. The vnd is a C++ program which consists in 6k lines of

ode that can emulate a VLine , a VHub or a VSwitch (defined

s modes). The advantages of using a vnd is that the user can set

he bandwidth, delay, jitter and bit error rate on any interface in

ny mode whereas QEMU offers no control over its hub emulation.

n addition, NEmu also provides a Slirp which is a special type of

ink whose purpose is to provide an Internet access to the virtual

ode. It is an emulation of a NATed access to the real Internet by

sing the physical host NIC. Also, NEmu is able to interconnect a

irtual NIC to a TUN/TAP kernel interface or to any UNIX socket.

Fig. 1 shows an example of a NEmu managed virtual net-

ork. On the left side, two VHosts are connected to a VRouter
hrough a VSwitch by using UDP tunnels. On the right side, two

Hosts are connected to the above VRouter through a VHub by

sing TCP tunnels. Here, virtual links are created and managed in-

ide vnd processes.

.3. Management of virtual networks

We explain below the notion of a NEmu session and we de-

cribe the physical resources needed to run a virtual network.
.3.1. Session

As already said above, a NEmu session represents a complete

onfiguration of a network topology which lays on a physical host

storages, virtual nodes configurations and links). A distributed vir-

ual network on n physical hosts consists in n NEmu sessions at

east. A session is represented by an auto-generated directory in

rder to be saved and re-used. A session can be saved as a sparse

rchive which compresses all elements and which is compatible

ith sparse files unlike traditional archives.

.3.2. Manager

The NEmu manager is the command line user interface to ma-

ipulate a session . Sessions are independent even if they are part

f the same network topology. The manager can be used in three

ays :

• As a python module to be integrated in another script or pro-

gram;

• As a dynamic python interpreter;

• As a python script launcher.

The NEmu manager provides a remote accesses, through SSH

onnections, to manipulate NEmu sessions laying on other distant

osts. The python language is upgraded in order to interact with

ther distant sessions .

.4. Example of a topology

We present in Fig. 2 the Python script that generates the net-

ork topology previously shown in Fig. 1 .

.5. Accuracy and scalability

NEmu does not currently provide any specific primitives or

ools for measuring backend side performances or for collecting

esults from all the nodes in the virtual network. The measure-

ent tools available are all the usual system tools that can be in-

talled and run either inside the virtual machines or on the phys-

cal hosts. Typical network performance evaluation tools include:

perf , netperf , etc. The accuracy of NEmu is mainly limited

y the underlying network characteristics (e.g., bandwidths, delays,

rror rates, etc) of the backend connections between the physical

osts. It is obvious that the virtual bandwidth set between two vir-

ual nodes will never be able to be above the real physical band-

idth available between the physical machines hosting those vir-

ual nodes. Finally, the scalability of NEmu is mainly limited by

EMU’s requirements for the virtual machines. The needs for each

M is typically at least one dedicated core (if possible) and at least

36 V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44

Creates a new session
InitNemu()

New switch with 3 ports
VSwitch(’switch’, niface=3)

New hub with 3 ports
VHub(’hub’, niface=3)

New router with DHCP and SSH services
VRouter("router", nics=[VNic(), VNic()], services=[

Service("ipforward"),
Service("ifup", "0:192.168.1.1", "1:192.168.2.1"),
Service("dnsmasq", domain="local1", net="192.168.1.0/24",

start="192.168.1.10", end="192.168.1.20"),
Service("dnsmasq", domain="local2", net="192.168.2.0/24",

start="192.168.2.10", end="192.168.2.20"),
Service("sshd")])

New host configuration (French keyboard, SDL display and 512MB of RAM)
VHostConf(’chost’, sdl=None, k=’fr’, m=512)

New hosts with the chost common configuration and 2 NICs
VHost(’a’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])
VHost(’b’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])
VHost(’c’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])
VHost(’d’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])

Connects nodes to links
Link(’router:0’, ’switch:0’)
Link(’router:1’, ’hub:0’)
Link(’a’, ’switch:1’)
Link(’b’, ’switch:2’)
Link(’c’, ’hub:1’)
Link(’d’, ’hub:2’)

Starts the virtual network
StartNemu()

Fig. 2. An example of a topology script written for NEmu .

I

o

b

c

v

i

p

f

d

e

a

a

a

a

b

m

t

a

t

o

a few hundred megabytes of RAM per VM. Thus, on a single reg-

ular machine, a virtual network could scale to a dozen nodes. On

a group of regular machines or on a big server or cluster, it could

scale to a hundred nodes.

3. The virtual network device (vnd)

This section presents our software program called vnd . It is a

program which is able to emulate network devices such as a link,

hub, switch or an access point from a high level point of view. This

is by far not the first software able to emulate network devices

but it has some unique features which may prove useful in the

network virtualization domain:

• it runs as a lightweight stand-alone process and can fail with-

out killing virtual machines,

• it can support dynamic connections and reconnections as well

as disconnections and is immune to the failures of virtual ma-

chines,

• it provides many networking backends, such as the sockets API,

which is available on any platform, to connect to the virtual

machines,

• it can dynamically set the link properties such as bandwidth,

delay, jitter and bit error rate,

• it can coarsely emulate wireless interface cards in infrastructure

and ad hoc modes as well as access points.

3.1. Architecture

A vnd contains an engine and several interfaces. It can contain

any number of interfaces as long as system memory is available.
nterfaces can be created and destroyed at runtime. Each interface

wns an input queue and an output queue. Each queue has a num-

er of buffers which can be set at runtime. Interfaces are internally

onnected through the engine. Fig. 3 shows the architecture of a

nd with two interfaces. Data coming in or out of a vnd can be

nterpreted in two ways:

• raw : data is considered as an uninterpreted flow of bytes and

each buffer can contain data bytes up to its maximum size,

• Ethernet : data is considered as Ethernet frames and each

buffer can contain only one frame whose size shall be less or

equal than the buffer’s maximum size.

A vnd can be set to one of six different working modes de-

ending on the network component that it emulates. The first

our modes are typical network components which are indepen-

ent from any virtual machine. The last two modes are used to

mulate a Wireless Interface Card (WIC) in either infrastructure or

d hoc mode. Thus in the last two modes, the vnd is not used as

 separate network component but it is used in conjunction with

 virtual machine to form a mobile node. When the vnd is used as

 wireless card emulator, it is connected to its virtual mobile node

y a specific and unique interface called a direct interface. If the

obile node is considered using infrastructure mode (BSS or ESS),

hen the vnd also has another specific and unique interface called

n access interface which is connected to the access point that

he mobile node is currently associated with. A vnd can be set to

ne of the six possible modes:

1. link : each interface is directly bound to another interface,

which means that any data going into the input of the first

V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44 37

Fig. 3. Architecture of a vnd .

Fig. 4. Link mode.

p

t

a

a

t

i

c

e

f

w

e

m

i

S

l

3

o
interface is forwarded to the output of the second interface in

this given direction (i.e., it is one way as shown on Fig. 4),

2. hub : each interface is bound to all others, which means that

any data going into the input of an interface is forwarded to

the output of all the other interfaces except itself as shown on

Fig. 5 ,

3. switch : any frame going into the input of an interface is for-

warded to the switch engine which uses a forwarding table to

determine the output interface leading to the device having the

same address as the frame’s destination address as shown on

Fig. 6 ,

4. access point : any frame going into the input of an inter-

face is forwarded to the switch engine which uses a forwarding

table to determine the output interface leading to the device

having the same address as the frame’s destination address (see

Section 4),

5. infrastructure interface : any frame going into the in-

put of the access interface is forwarded to the output of

the direct interface leading to the mobile node itself, and

any frame going into the input of the direct interface is for-

warded to the output of the access interface leading to the

access point (see Section 4),

6. ad hoc interface : any frame going into the input of any

interface which is not the direct interface is forwarded to

the output of the direct interface leading to the mobile
node itself, and any frame going into the input of the direct
interface is forwarded to all the other output interfaces except

itself (see Section 4).

The last four modes only make sense when the data is inter-

reted as Ethernet frames as MAC addresses are needed. In order

o emulate the IEEE 802.11 protocols, a pseudo header is added to

ny frame coming from an access point or emulated WIC.

The forwarding table is filled as in a hardware switch having

uto-learning capability. When a frame is received by an interface,

he vnd checks if the source MAC address is associated with this

nterface. If yes nothing is done, if no, the vnd stores this asso-

iation in the forwarding table. When a frame is transmitted, the

ngine looks up the destination MAC address of the frame in the

orwarding table and forward the frame to the interface associated

ith that address. Currently, the forwarding table does not remove

ntries depending on a given lifetime and thus the table must be

anually cleared if needed. The vnd supports port-based VLANs

n hub and switch modes. The vnd does not yet implement the

panning Tree Protocol, thus it is up to the user to avoid making

oops in the topology of the virtual network.

.2. Implementation

In the domain of virtualization, the term network backend is

ften used to designate the software part of an emulator that

38 V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44

Fig. 5. Hub mode.

Fig. 6. Switch mode.

e

i

a

e

a

c

s

w

fi

t

t

j
enables the connection of the emulator to the other emulators ei-

ther on the same physical machine or on different ones. Network

backends on UNIX are usually implemented with TAP interfaces,

VDE [13] , sockets or slirp (which provides a full TCP/IP stack imple-

menting a virtual NATed network).

The vnd currently provides Internet and UNIX local sockets back-

ends as well as TAP and VDE backends. All these backends are im-

plemented in an object called endpoint . To be useful, a network

backend must be tied to a virtual network interface in a machine

or a vnd . This tie is implemented in the code of emulators in more

or less flexible ways. In order to support the dynamic features pre-

sented at the beginning of this section, the vnd implements the

tie in a flexible way by separating the virtual interface from the
ndpoint. This tie can be dynamically created or destroyed by us-

ng the bind command as shown on Fig. 7 . Thus the failure of

 network backend connection does not impact a virtual interface

xcept for the loss of traffic. An endpoint can also be rewired to

nother interface if needed although data can be lost in the pro-

ess.

As NEmu currently only uses QEMU for system emulation, we

how on Fig. 8 an example of a TCP connection between the net-

ork backends of a QEMU virtual machine and a vnd . QEMU de-

nes a local VLAN object to associate the virtual eth0 interface

o the socket backend called socket.0 . The difference between

he vnd bind and the QEMU VLAN is that a bind creates a bi-

ection between an interface and an endpoint whereas a VLAN can

V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44 39

Fig. 7. Bind between an emulated interface and a network backend in a vnd .

Fig. 8. TCP connection between the network backends of a QEMU and a vnd .

Table 1

Throughput of the switch emulators.

Network Emulation Measured

component program throughput (Mbps)

Baseline nc to nc link 910

vnd (raw connections) 682

VLine QEMU to QEMU direct link 272

vnd (link mode) 240

VHub QEMU hub 160

vnd (hub mode) 240

VSwitch Dynamips switch 12

vnd (switch mode) 156

c

a

i

3

a

m

e

s

t

a

c

o

I

b

a

p

W

o

l

u

T

9

T

d

c

t

r

b

a

t

f

i

b

4

4

a

m

n

n

a

e

u

l

o

o

c

n

w

t

b

c

a

W

b

a

4

o

s

s

d

u

i

s

T

t

t

c

t

t

b

a
onnect several backends to the same interface thus actually acting

s a simple VLAN inside the emulator (everything is broadcasted

nside though).

.3. Performances

In order to be useful and realistic, the vnd program must have

cceptable performances. We have carried out several measure-

ents to evaluate its performances and compare them to other

mulators, namely QEMU and Dynamips, as they also provide

ocket-based network backends. The scenario was interconnecting

wo QEMU virtual machines via a virtual network device (line, hub

nd switch) emulated by either a QEMU, a Dynamips or a vnd pro-

ess. All network backend connections were TCP connections made

n the loop-back interface of the physical machine which was an

ntel Core 2 equipped desktop PC. An FTP session was established

etween the two virtual machines and a 1GB file was transferred

nd timed to compute the bandwidth. Table 1 shows the through-

ut of the various possible emulations of virtual network devices.

e can see that our vnd program performs at least as well as the

thers when emulating any device. We can also see that QEMU

imits the throughput of the virtual machines at around 34 MB/s.
To measure the maximum throughput of the vnd itself, we have

sed two netcat processes interconnected by a vnd in raw mode.

he throughput amounts to 682 Mbps to be compared with the

10 Mbps obtained by a direct connection between the two nc .

hus the vnd only achieves 75% of the throughput achieved by the

irect connection. This loss is due to the pipelining of the two TCP

onnections as well as the queueing and the processing time inside

he vnd .

Finally we have also done measurements to evaluate the accu-

acy of the vnd bandwidth and delay parameters. Concerning the

andwidth, we can deduce from the above results that the vnd can

t most emulate 100 Mbps speeds. We have observed by varying

he bandwidth parameter from 100 kbps to 100 Mbps that the dif-

erence between the value of the bandwidth parameter (set on the

nterface of the vnd by the user) and the value of the measured

andwidth does not exceed 2%.

. The network mobilizer (nemo)

.1. Design

NEmu can emulate mobile networks. Thus it is possible to cre-

te a virtual network topology that evolves in time. In order to

anage mobility, NEmu uses a special mobility engine called nemo .

emo [14] is a lightweight C++ program which can generate con-

ectivity scenarios for mobile networks. A connectivity scenario is

 time stamped list of wireless link connection and disconnection

vents between mobile nodes. Indeed, nemo is based on a specific

se of the vnd [15] software, which can on-the-fly create virtual

inks having dynamically set characteristics. nemo is able to send

rders to NEmu in real time which enables to emulate the changes

f connectivity between mobile nodes by creating, destroying or

hanging the characteristics of the links at the appropriate time.

emo works behind the scene and is entirely controlled by NEmu

hich acts as the user interface. nemo is implemented in C++, con-

ains around 30 0 0 lines of code, and is using some Boost [16] li-

raries including the powerful asynchronous input/output library

alled asio . It is a lightweight program using around 1MB in RAM

nd it is portable thanks to Boost (on the majority of UNIX and

indows variants). nemo is composed of two parts : one part

ased on a simulated time scheduler and another part based on

 real time scheduler. The source code is available at [14] .

.2. Simulated time scheduler

The simulated time scheduler is the heart of the simulation part

f nemo . It can generate connectivity scenarios for the real time

cheduler. Three steps are necessary to generate a connectivity

cenario:

• Generate a map;

• Generate a mobility scenario on this map;

• Generate a connectivity scenario from the mobility scenario.

At each step, the results of the step can be saved on disk in or-

er to be loaded at a later time to avoid recomputation. The sim-

lated time scheduler runs the mobility scenario and at each time

nterval (set by the user), it computes the distances and the pos-

ible wireless connections between all the pairs of mobile nodes.

he steps are illustrated on Fig. 9 . Being able to generate connec-

ivity scenarios is an advantage over using a network simulator in-

erconnecting real applications with taps, because the latter must

ompute the mobility at every run and this computation could be

oo heavy to enable the real-time execution of the applications. Up

o now, nemo generate rectangular maps and purely random mo-

ility scenarios. This is useful for carrying functional tests. nemo is

lso capable of importing ns-2 formatted mobility files produced

40 V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44

Fig. 9. Generation of connectivity scenarios with nemo .

Fig. 10. Emulation of virtual mobile networks with nemo .

t

c

t

m

r

t

5

i

i

o

a

5

o

M

t

a

k

h

w

e

f

b

n

s

f

by tools such as Bonnmotion [17] providing realistic mobility mod-

els such as the Gauss–Markov Mobility Model [18] or the Reference

Point Group Mobility Model [19] . In the future, nemo will be able to

load more elaborate 2D or 3D maps containing attenuation infor-

mation.

The simulated time scheduler suffers from several

limitations:

• It may require intensive computation of the order of

O (n 2 log 2 (n)) (that is why it is written in C++);

• It requires the user to make a tradeoff between the temporal

precision (the time interval between each connectivity evalua-

tion), the computation time and the number of events detected.

4.3. Real time scheduler

The real time scheduler is the heart of the emulation part of

nemo . It executes the connectivity events at their exact time stamp,

set with respect to the start of the scenario. The temporal precision

used in the real time scheduler is equal to the one set during the

processing of the mobility scenario by the simulated time sched-

uler. The interaction of the real-time scheduler with NEmu is illus-

trated on Fig. 10 . It shows that NEmu plays the role of a central

controller for the other processes. In a virtual mobile network, one

vnd is used to emulate each wireless network interface card (WIC).

Thus there is one vnd per virtual mobile node and inside it are

instanciated the real network backend links (i.e., TCP or UDP tun-

nels). NEmu transmits the orders of the user (e.g., start, stop , etc)
o nemo . When the real time scheduler is running, NEmu also re-

overs the connectivity events generated by nemo and retransmit

hem to the various vnd corresponding to the WICs of the virtual

obile nodes in order to make the network topology evolve. The

eal time scheduler can be paused and resumed at any moment by

he user.

The real time scheduler suffers from several limitations:

• as opposed to NEmu , nemo is centralized;

• It is better to execute all the sessions and nodes on a unique

physical host to avoid reducing the performances;

• The sockets used to connect the vnd introduce delays and re-

duce the temporal precision. The latter will be at best of the

order of the millisecond.

. Experimentation

We present the results of two experiments that we replicated

n order to show the accuracy of NEmu . The first experiment was

nitially done with the Mininet container-based emulator, the sec-

nd was done with the JBotSim simulator. In both cases, we were

ble to accurately replicate the results with NEmu .

.1. Mosh experiment replication

In order to validate the accuracy of experimentation results

btained with NEmu , we reproduce a performance benchmark of

osh [20] . Mosh is a remote terminal application which is more

olerant to connectivity break than SSH by using the SSP protocol

nd a predictive algorithm.

The experimentation consists in measuring the average

eystrokes response time for Mosh and SSH. This experiment

as been previously carried out on Mininet [5] , another net-

ork emulator which is well known for its degree of realism in

xperimental conditions [21] .

We reproduce the exact experimentation described in a Stan-

ord network lecture [22] and which has been officially supported

y Mosh developers. In this experimentation the client is con-

ected to a switch through an emulated 3G network, and the

erver through an emulated Wi-Fi network. Authors consider the

ollowing experimental network conditions:

• 3G:

– packet loss rate: 0.01;

– bandwidth: 1 Mbps;

V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44 41

Fig. 11. Original Mosh results obtained by mininet.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.5 1 1.5 2 2.5

C
D

F

Keystroke Response Time (seconds)

Mosh
SSH

Fig. 12. Mosh results obtained by NEmu .

t

r

n

d

5

b

s

R

a

d

i

t

a

t

t

g

p

c

i

i

 0

 20

 40

 60

 80

 100

180 360 720 1440

D
a
ta

ra
te

s
 (

k
b
it
/s

)

Number of targets

Theoretical
Simulation
Emulation

Fig. 13. AMiRALE results obtained by JBotSim and NEmu .

e

a

n

p

c

o

b

o

p

s

u

c

6

6

n

e

e

t

[

n

l

p

t

t

S

t

a

o

s

p

c

a

t

6

6

t

c

– delay: 450 ms.

• Wi-Fi:

– packet loss rate: 0.08;

– bandwidth: 25 Mbps;

– delay: 30 ms.

Thanks to our vnd program, we configure the network proper-

ies as detailed above. Original results are presented in Fig. 11 . Our

esults are illustrated in Fig. 12 . We can notice that both results are

early identical. Those results imply that NEmu can offer a similar

egree of realism than Mininet .

.2. AMiRALE experiment replication

In order to validate the accuracy of experimentation with mo-

ile devices performed with NEmu , we replicate performance re-

ults obtained by simulation of a multi-agents system called AMi-

ALE [23] . Emulation is performed with NEmu while simulations

re carried out with JBotSim [24] , a Java library which enables the

esign of low and high level communication scenarios and behav-

ors of heterogeneous mobile nodes.

AMiRALE is a distributed system which enables several au-

onomous vehicles to perform common tasks collaboratively. The

pplication scenario consists in a team of ground robots which has

o collect a given number of garbage in a park, each one being a

arget for the cleaning robots. We evaluate the output data rates

enerated by AMiRALE as a function of the number of targets to

rocess. Each robot is specialized which means that it can only

lean one kind of garbage. When a robot finds a garbage which

t is not able to collect itself, it generates a new mission in order to

nform other robots of the existence of this garbage. This strategy
nables a robot to clean a garbage which has been discovered by

nother robot.

Fig. 13 shows the results of our experiment as a function of the

umber of targets. Standard deviation values are also shown on the

lots. Since all missions are broadcast without any restriction, we

an calculate the theoretical data rates by multiplying the number

f missions by the size of an unique mission and divide the result

y the frequency of broadcasts. This result is provided by the the-

retical plot. The emulation plot shows results from the NEmu ex-

eriments while the simulation plot shows results from the JBotSim

imulations. This figure shows that theoretical, simulation and em-

lation results are very similar which implies that NEmu provides

oherent performance results for this mobile devices’ scenario.

. Related work

.1. Node emulation systems

Currently, NEmu uses QEMU virtual machines as virtual network

odes. Despite the fact that a lot of solutions of host virtualization

xist, we chose QEMU which is a generic and open source machine

mulator and virtualizer [4] . QEMU runs without any administra-

ive rights and emulates a lot of various hardware architectures

25] . Therefore, instantiating a QEMU virtual machine as a virtual

ode allows the user to configure freely its hardware and software

ayers which fills perfectly with the flexibility and heterogeneity

roperties of a NVE.

Others systems such as VMware [26] or Xen [27,28] have bet-

er I/O performances but can only emulate x86 and x64 architec-

ures [29,30] which compromises the legacy support defined in

ection 2 . Moreover, Xen is too close to the system which means

hat it requires administrative rights to be configured properly.

Virtualization systems such as VirtualBox [31] and Hyper-V [32]

re also limited to x86 and x64 architecture emulation.

Regarding UML [33] , the software is now unmaintained and

nly can emulate Linux operating systems.

OpenVZ [34] can be seen as the successor of UML but also only

upports Linux operating systems.

LXC [35] is a Linux kernel system which can encapsulate several

rocess and a sub-file system in a virtual container. This solution

annot be consider as a real virtualization system and does not en-

ble any hardware configuration.

Dynamips [36] is an emulation system dedicated to CISCO sys-

ems. Therefore, it cannot emulate standard user machines.

.2. Link emulation systems

.2.1. Virtual switches

NEmu uses a program called vnd in order to emulate cus-

omized virtual links. Nevertheless, other systems enable to inter-

onnect several virtual machines.

42 V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44

i

a

P

s

e

a

p

o

w

U

t

n

d

I

r

l

d

a

p

r

v

t

t

a

s

o

m

[

a

i

b

p

t

n

f

a

N

a

H

(

fl

l

a

t

n

a

t

E

t
VDE [13] is a virtual switch which inter-connects virtual ma-

chines through the shared memory system inside the Linux kernel.

Such a system cannot be distributed on several physical machines.

Moreover, VDE does not include any mechanism in order to ma-

nipulate link properties like bandwidth, delay, etc.

Open vSwitch [37] is an open source project which enables to

instantiate virtual switches with a high customization of virtual

links. However, this software relies on virtual network interfaces

inside the Linux kernel which can only be created by a system ad-

ministrator of the physical infrastructure. The accessibility defined

in Section 2 would be impossible with Open vSwitch.

Vnet [38] is a distributed inter-connection system which en-

ables to link several virtual machines which lay on different physi-

cal hosts. Even if the system is distributed, it does not provide any

link customization mechanism.

Click [39] is a Linux kernel framework which allows to create

software defined routers (i.e. at network layer 3). Therefore, this

solution is not suitable for our needs.

6.2.2. Link properties manipulation

Our program vswitch includes the link properties customization

in order to configure bandwidth, delay, jitter and bit error rate.

Several other solutions exist in order to make this job. For instance

NetEm [40] , which relies on the Linux kernel tools Traffic Control

[11] , enables to manipulate same properties. However, it requires

root privileges on the real infrastructure.

Dummynet [41] enables to create some customizable virtual

links between two entities. Therefore, it cannot play the role of a

multi-point device like a hub or a switch. Moreover, this solution

operates directly in the kernel which is not compliant with the ac-

cessibility target.

A similar project called netpath [42] uses the Click library in

order to create customize virtual links.

Another project called Trickle [43] can be used without any ad-

ministrative rights in order to fix the maximum date rates for a

process. However, it can only fix this property for the entire pro-

cess. Thus our virtual switch is much more configurable.

6.3. Network virtualization environment

Dynagen [44] is for Dynamips, the equivalent of NEmu for

QEMU. Dynagen manages fleet of Dynamips machines and their

inter-connections. However, the dynamicity of the topology is

strongly limited, adding network services is quite impossible and

there is not any community aspect.

GNS [45] is an open source software which allows to build

a virtualized network topology with Dynamips, VirtualBox and

QEMU virtual machines. However, it does not provide the possi-

bility to build a community network and adding network services

is as complicated as Dynagen. Finally GNS is hardly usable without

any graphical interface making difficult the creation of a complex

network.

Velnet [46] is a virtual environment dedicated to teaching which

uses VMware virtual machines. The complete topology can only

run on a single host which implies strong limitations on the size

of the virtual network.

ModelNet [47] emulates a distributed virtual network but this

one remains static at runtime. Thus, the dynamicity is not en-

sured with ModelNet. Further, the management of this system is

fully centralized on an unique physical machine which disables the

community aspect.

Vagrant [48] uses VirtualBox virtual machines in order to em-

ulate virtual network. The topology is hosted on a single phys-

ical machine and remains static at runtime. Finally, the inter-

connections are built inside the host kernel making a flat network ,
.e. a network which not relies on standards ways of addressing

nd routing.

VINI [49] is a distributed virtual network which overhangs the

lanetLab testbed [50] which is an international distributed cluster

ystem. VINI uses UML virtual machines which strongly limits op-

rating systems for nodes. Moreover, connections between nodes

re made with virtual networks interfaces inside the kernel of the

hysical machine which makes the configuration impossible with-

ut administrative rights.

Violin [51] is similar to VINI but provides some virtual routers

hich hosted different services like NEmu . However the use of

ML and the need of an existing overlay limits the use scope of

his solution.

NetKit [52] relies also on UML and VDE switches which do

ot require any administrative rights. Such a system cannot be

istributed.

Marionnet [53] is a virtual environment dedicated to teaching.

t provides several network services and the community aspect but

elies on UML.

Virconel [54] uses OpenVZ virtual machines which also strongly

imits operating systems for nodes. Moreover, The topology is static

uring runtime and the interconnections between virtual machines

re made in the host kernel which requires special rights on the

hysical system.

VNUML [55] is a static virtual system relying on UML and which

equires administrative rights.

VNX [56] is the successor of VNUML is a compatible with other

irtualization systems. However, as VNUML, it requires administra-

ive rights and does not include any link property mechanism.

Cloonix [57] is a dynamic virtual network environment. Never-

heless, it does not include link property mechanism.

Mininet [5] is a Container-Based Emulator which allows to cre-

te a custom and dynamic topology on a unique physical host. The

econd version of this system is highly demanding about fairness

f experimentation conditions [21] .

CORE [58] is a graphic tool which enables to emulate virtual

obile networks. This system relies on a framework called IMUNES

59] which runs over the FreeBSD [60] operating system. Nodes

nd links are managed inside the operating system kernel which

mplies strong limitations in terms of flexibility.

MobiEmu simulates mobile networks through ns3 for the mo-

ility and LXC containers for nodes. This tool does not enable NVE

ossibilities.

OpenNebula [61] provides a powerful solution to manage a vir-

ual cloud on a wide physical infrastructure with an important

umber of nodes. OpenNebula manages the whole cloud domain

rom a single access point. Storage medias are centralized and are

ccessible through the network which implies the use of a NAS or

FS.

NET [62] is a powerful hardware-based infrastructure which

llows to perform realistic experimentation on mobile networks.

owever, this solution uses real network inter-connection devices

i.e. switches, etc.) in order to build the virtual network.

PdP [63] is partial NVE implementation which focuses itself on

exibility, isolation, high-speed data rates and low cost. It uses OS

evel virtualization nodes such as OpenVZ.

Onelab2 [64] is a well known emulation tool over PlanetLab. It

lso relies on DummyNet which strongly limits the flexibility of

his solution.

IP-TNE [65] is an original solution which enables hosts and real

etwork to interact with a virtual mobile network. It is not really

n emulation solution since it provides only the mobility proper-

ies of nodes and not the real node virtualization.

Research platforms such as PlanetLab [50] , GENI [66] and FED-

RICA [67] supply virtual infrastructure built on the top of slices of

hird parties owned hardware. This approach leads to the concept

V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44 43

Table 2

Comparison of network virtualization tools.

Test and Evaluation Teaching Dynamic Distributed Mobility Community Network Regular Configurable NVE+

proof aspect services privileges links compliant

Dynagen • ◦ • ◦ • ◦ ◦ • • ◦ ◦
GNS3 • ◦ • ◦ • ◦ ◦ • • ◦ ◦
Velnet ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦
ModelNet • • ◦ ◦ • ◦ ◦ ◦ • • ◦
Vagrant • ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦
VINI • • ◦ • • ◦ ◦ ◦ ◦ • ◦
Violin • • ◦ • • ◦ ◦ • • • ◦
NetKit • ◦ • • ◦ ◦ ◦ • • ◦ ◦
Marionnet • ◦ • • ◦ ◦ • • • ◦ ◦
Virconel • • • ◦ • ◦ ◦ • ◦ ◦ ◦
VNUML • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
VNX • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦
Cloonix • • • • ◦ ◦ ◦ ◦ • ◦ ◦
Mininet • • • • ◦ ◦ ◦ ◦ • • ◦
CORE • • ◦ • ◦ • ◦ • ◦ • ◦
MobiEmu • • • • ◦ • ◦ ◦ ◦ • ◦
NET • • ◦ • • • ◦ ◦ ◦ • ◦
PdP • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦
Onlab2 • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦
NEmu • • • • • • • • • • •

• Yes ◦ No

o

e

E

t

s

u

c

a

c

v

p

a

c

b

o

e

o

7

c

v

o

t

a

b

e

t

T

m

t

p

a

v

c

t

t

m

t

b

v

e

t

s

i

d

s

N

R

f Testbed as a Service (TaaS), exemplified by FanTaaStic [68] . Fed-

rations of testbeds have also been recently emerging, such as the

U-driven OpenLab federation [69] as well as the OneLab federa-

ion [70] , managed by UPMC. In all these cases, the user needs a

pecific account, must comply to specific usage policies and has to

se the tools, services and APIs of these testbeds.

Table 2 exhibits several properties of those previous solutions

ompared to NEmu . We see that NEmu can cover all usages (test

nd proof, performance evaluation as well as learn and teach). It

an achieve a high realism as a research tool by managing dynamic

irtual networks and by being able to be distributed over several

hysical machines. Furthermore, it can be easily used and deployed

s no special rights are required on the physical machines. The

reation of a complex network is facilitate by the important num-

er of available network services and the easy way to add another

nes. Finally, it offers a new feature called community aspect that

nables several users to merge their virtual networks together in

rder to build a single larger network.

. Conclusion

NEmu and its associated programs vnd and nemo enable the

reation and management of dynamic, heterogeneous and mobile

irtual networks. They provide a good compromise between ease

f use, low cost and realism. Such virtual networks can be dis-

ributed over several physical hosts and be controlled without any

dministrative rights. They can also evolve in real time with nemo

y following a pre-calculated connectivity scenario.

We have compared NEmu to Mininet with regard to the Mosh

xperiment and have shown that the results are nearly identical

hus demonstrating that NEmu can be used for similar purposes.

he advantage being that it can be distributed over several physical

achines unlike Mininet. This is important as NEmu uses full sys-

em emulation and not container based emulation. We have com-

ared NEmu to JBotSim with regard to the AMiRALE experiment

nd the obtained results are similar, thus validating its use for

irtual mobile devices’ experimentation. NEmu can therefore over-

ome the cost of a physical testbed infrastructure while enabling

he evaluation of real applications thanks to its low level emula-

ion of network and system components. NEmu can also emulate

obile ad hoc networks which, as far as we know, is a unique fea-

ure among network emulators.
As envisioned by Conti et al. [71] , the Internet of the future will

e polymorphic , i.e., it will allow various specific networking en-

ironments to coexist, thanks to virtualization and federation . The

xtended concepts of NVE presented in this paper clearly embrace

hose two properties. Our software is a first step towards building

uch virtual networks. Its current use is mainly for research exper-

mentation and teaching but its long term use could include pro-

uction. The variety of supported backends could indeed lead our

oftware to provide new network services.

Several next steps are already planned for our future work on

Emu . They consist in the following tasks by order of priority:

• the integration of migration capabilities for virtual machines in

order to enable load balancing;

• the integration of new services inside the virtual router;

• the implementation of more sophisticated map generation al-

gorithms;

• the improvement of the accuracy of the vnd .

eferences

[1] T. Henderson , M. Lacage , G. Riley , C. Dowell , J. Kopena , Network simulations

with the ns-3 simulator, ACM SIGCOMM demonstration (2008) .
[2] A. Varga , et al. , The omnet++ discrete event simulation system, in: Proceedings

of ESM, vol. 9, 2001 .
[3] B. Yamini , D. Selvi , Cloud virtualization: a potential way to reduce global

warming, in: Proceedings of IEEE RSTSCC, 2010, pp. 55–57 .
[4] F. Bellard , QEMU, a fast and portable dynamic translator, in: Proceedings of

USENIX Annual Technical Conference, FREENIX Track, 2005, pp. 41–46 .

[5] B. Lantz , B. Heller , N. McKeown , A network in a laptop: rapid prototyping for
software-defined networks, in: Proceedings of the 9th ACM SIGCOMM Work-

shop on Hot Topics in Networks, 2010, pp. 19:1–19:6 .
[6] V. Autefage , D. Magoni , Network emulator: a network virtualization testbed

for overlay experimentations, in: Proceedings of the 17th IEEE International
Workshop on Computer-Aided Modeling Analysis and Design of Communica-

tion Links and Networks, 2012, pp. 38–42 .

[7] N. Chowdhury , R. Boutaba , Network virtualization: state of the art and re-
search challenges, IEEE Commun. Mag. 47 (7) (2009) 20–26 .

[8] KVM, Virtio, http://www.linux-kvm.org/page/Virtio .
[9] NBD, Network Block Device, http://nbd.sourceforge.net .

[10] Graphviz, Graph Visualization Software, 1988. http://www.graphviz.org .
[11] B. Hubert , G. Maxwell , R. Van Mook , M. Van Oosterhout , P. Schroeder ,

J. Spaans , Linux advanced routing & traffic control, in: Proceedings of Ottawa
Linux Symposium, 2003, pp. 213–222 .

[12] R. Shingledecker, TinyCore Linux, 2008. http://tinycorelinux.net .

[13] R. Davoli, Vde: virtual distributed ethernet, in: Proceedings of the First In-
ternational Conference on Testbeds and Research Infrastructures for the DE-

velopment of NeTworks and COMmunities, 2005, pp. 213–220 . http://vde.
sourceforge.net .

[14] D. Magoni, Network Mobilizer, 2012. http://www.labri.fr/perso/magoni/nemo .

http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0002
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0002
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0002
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0003
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0003
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0003
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0004
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0004
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0005
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0005
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0005
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0005
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0006
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0006
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0006
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0007
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0007
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0007
http://www.linux-kvm.org/page/Virtio
http://nbd.sourceforge.net
http://www.graphviz.org
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://tinycorelinux.net
http://vde.sourceforge.net
http://www.labri.fr/perso/magoni/nemo

44 V. Autefage, D. Magoni / Computer Communications 80 (2016) 33–44

[

[15] D. Magoni, Virtual Network Device, 2012. http://www.labri.fr/perso/magoni/
vnd .

[16] B. Dawes, al., Boost C++ Libraries, http://www.boost.org .
[17] N. Aschenbruck , E. Gerhards-Padilla , M. Gerharz , M. Frank , P. Martini , Mod-

elling mobility in disaster area scenarios, in: Proceedings of the 10th ACM/IEEE
International Symposium on Modeling, Analysis and Simulation of Wireless

and Mobile Systems, 2007, pp. 4–12 .
[18] B. Liang , Z.J. Haas , Predictive distance-based mobility management for pcs net-

works, in: Proceedings of IEEE INFOCOM, 1999, pp. 1377–1384 .

[19] X. Hong , M. Gerla , G. Pei , C.-C. Chiang , A group mobility model for ad hoc
wireless networks, in: Proceedings of the 2nd ACM MSWiM, 1999, pp. 53–60 .

[20] K. Winstein , H. Balakrishnan , Mosh: an interactive remote shell for mobile
clients, in: Proceedings of USENIX Annual Technical Conference, 2012, pp. 177–

182 .
[21] N. Handigol , B. Heller , V. Jeyakumar , B. Lantz , N. McKeown , Reproducible net-

work experiments using container-based emulation, in: Proceedings of the 8th

International Conference on Emerging Networking Experiments and Technolo-
gies, 2012, pp. 253–264 .

[22] A. Aljunied, Evaluation of Mosh performance results,
http://reproducingnetworkresearch.wordpress.com/2013/03/13/

cs244- 2013- evaluation- of- mosh- mobile- shell- performance- results .
[23] V. Autefage , S. Chaumette , D. Magoni , A mission-oriented service discovery

mechanism for highly dynamic autonomous swarms of unmanned systems, in:

Proceedings of IEEE International Conference on Autonomic Computing (ICAC),
2015, 2015, pp. 31–40 .

[24] A. Casteigts , Jbotsim: a tool for fast prototyping of distributed algorithms in
dynamic networks, in: Proceedings of the 8th International Conference on

Simulation Tools and Techniques, 2015 .
[25] A. Ribiere , Emulation of obsolete hardware in open source virtualization soft-

ware, in: Proceedings of the 8th IEEE INDIN, 2010, pp. 354–360 .

[26] EMC, VMware, 2004. http://www.vmware.com .
[27] P. Barham , B. Dragovic , K. Fraser , S. Hand , T. Harris , A. Ho , R. Neugebauer ,

I. Pratt , A. Warfield , Xen and the art of virtualization, in: Proceedings of the
19th ACM SOPS, 2003, pp. 164–177 .

[28] M. Bourguiba , K. Haddadou , G. Pujolle , Packet aggregation based network i/o
virtualization for cloud computing, Comput. Commun. 35 (3) (2012) 309–319 .

[29] J. Che , Y. Yu , C. Shi , W. Lin , A synthetical performance evaluation of openvz,

xen and kvm, in: Proceedings of IEEE APSCC, 2010, pp. 587–594 .
[30] P. Domingues , F. Araujo , L. Silva , Evaluating the performance and intrusiveness

of virtual machines for desktop grid computing, in: Proceedings of IEEE IPDPS,
2009, pp. 1–8 .

[31] Oracle, VirtualBox, 2007. https://www.virtualbox.org .
[32] Microsoft, Hyper-V, 2008. www.microsoft.com/hyper- v- server .

[33] J. Dike , A user-mode port of the Linux kernel, in: Proceedings of Linux Show-

case and Conference, vol. 2, 20 0 0 .
[34] Parallels, OpenVZ Linux Containers, 2006. http://wiki.openvz.org .

[35] D. Lezcano, LXC, 2008. http://lxc.sourceforge.net .
[36] C. Fillot, Dynamips, 2007. https://github.com/GNS3/dynamips .

[37] B. Pfaff, J. Pettit , T. Koponen , K. Amidon , M. Casado , S. Shenker , Extending net-
working into the virtualization layer, Proceedings of ACM HotNets workshop,

2009 .
[38] A.I. Sundararaj , A. Gupta , P.A. Dinda , Dynamic topology adaptation of virtual

networks of virtual machines, in: Proceedings of the 7th LCR Workshop, 2004,

pp. 1–8 .
[39] E. Kohler , R. Morris , B. Chen , J. Jannotti , M.F. Kaashoek , The click modular

router, ACM Trans. Comput. Syst. 18 (3) (20 0 0) 263–297 .
[40] S. Hemminger , et al. , Network emulation with netem, in: Linux Conf Au, 2005,

pp. 18–23 .
[41] M. Carbone , L. Rizzo , Dummynet revisited, SIGCOMM Comput. Commun. Rev.

40 (2) (2010) 12–20 .

[42] S. Agarwal , J. Sommers , P. Barford , Scalable network path emulation, in: Pro-
ceedings of the 13th IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems, in: MASCOTS ’05,
IEEE, 2005, pp. 219–228 .
[43] M. Eriksen , Trickle: a userland bandwidth shaper for unix-like systems, in:
Proceedings of USENIX Annual Technical Conference, FREENIX Track, 2005,

p. 43 .
44] G. Anuzelli, Dynagen, 2006. http://dynagen.org .

[45] GNS3, Graphical Network Simulator, 2007. http://www.gns3.net .
[46] B. Kneale , A.Y. De Horta , I. Box , Velnet: virtual environment for learning net-

working, in: Proceedings of the 6th Australasian Conference on Computing Ed-
ucation, vol. 30, 2004, pp. 161–168 .

[47] A. Vahdat , K. Yocum , K. Walsh , P. Mahadevan , D. Kosti , J. Chase , D. Becker ,

Scalability and accuracy in a large-scale network emulator, in: Proceedings of
the 5th ACM SIGOPS Operating Systems Review, 2002, pp. 271–284 .

[48] M. Hashimoto, J. Bender, Vagrant, 2010. http://vagrantup.com .
[49] A. Bavier , N. Feamster , M. Huang , L. Peterson , J. Rexford , In vini veritas: re-

alistic and controlled network experimentation, in: Proceedings of ACM SIG-
COMM, 2006, pp. 3–14 .

[50] A. Bavier , M. Bowman , B. Chun , D. Culler , S. Karlin , S. Muir , L. Peterson ,

T. Roscoe , T. Spalink , M. Wawrzoniak , Operating system support for planetary-
scale network services, in: Proceedings of the 1st USENIX NSDI, 2004, pp. 253–

266 .
[51] X. Jiang , D. Xu , Violin: virtual internetworking on overlay infrastructure, in:

Proceedings of the 2nd Springer ISPA, 2003, pp. 937–946 .
[52] M. Pizzonia , M. Rimondini , Netkit: easy emulation of complex networks on in-

expensive hardware, in: Proceedings of the 4th IEEE TridentCom, 2008, pp. 1–

10 .
[53] J.-V. Lodo, L. Saiu, Marionnet, 2007. http://www.marionnet.org .

[54] Y. Benchaib , A. Hecker , Virconel: a network virtualizer, in: Proceedings of the
19th IEEE MASCOTS, 2011, pp. 429–432 .

[55] DIT, VNUML, 2003. http://dit.upm.es/vnumlwiki .
[56] DIT, VNX, 2008. http://dit.upm.es/vnxwiki .

[57] V. Perrier, Cloonix, 2007. http://clownix.net .

[58] J. Ahrenholz , C. Danilov , T. Henderson , J. Kim , Core: a real-time network emu-
lator, in: Proceedings of IEEE MILCOM, 2008, pp. 1–7 .

[59] Z. Puljiz, M. Mikuc, IMUNES, 2003. http://imunes.tel.fer.hr .
[60] FreeBSD, FreeBSD, 1993. http://www.freebsd.org .

[61] C. Labs, OpenNebula, http://www.opennebula.org .
[62] S. Maier , D. Herrscher , K. Rothermel , Experiences with node virtualization for

scalable network emulation, Comput. Commun. 30 (5) (2007) 943–956 .

[63] Y. Liao , D. Yin , L. Gao , Network virtualization substrate with parallelized data
plane, Comput. Commun. 34 (13) (2011) 1549–1558 .

[64] M. Carbone , L. Rizzo , An emulation tool for planetlab, Comput. Commun. 34
(16) (2011) 1980–1990 .

[65] R. Simmonds , B.W. Unger , Towards scalable network emulation, Comput. Com-
mun. 26 (3) (2003) 264–277 .

[66] N. Van Vorst , M. Erazo , J. Liu , Primogeni: integrating real-time network simu-

lation and emulation in geni, in: Proceedings of IEEE PADS, 2011, pp. 1–9 .
[67] C. GARR, FEDERICA, 2008. http://www.fp7-federica.eu .

[68] A. Willner, S. Albrecht, S. Covaci, F. Schreiner, T. Magedanz, S. Avessta, C. Scog-
namiglio, S. Fdida, U. Bub, Fantaastic: Sustainable management of future inter-

net testbed federations, in: Network Operations and Management Symposium
(NOMS), 2014 IEEE, 2014, pp. 1–4, doi: 10.1109/NOMS.2014.6838379 .

[69] S. Fdida, T. Korakis, H. Niavis, S. Salsano, G. Siracusano, The express sdn experi-
ment in the openlab large scale shared experimental facility, in: Proceedings of

Science and Technology Conference (Modern Networking Technologies) (MoN-

eTeC), 2014 International, 2014, pp. 1–7, doi: 10.1109/MoNeTeC.2014.6995584 .
[70] L. Baron, C. Scognamiglio, M. Rahman, R. Klacza, D. Cicalese, N. Kurose,

T. Friedman, S. Fdida, Onelab: major computer networking testbeds open to
the ieee infocom community, in: Proceedings of Computer Communications

Workshops (INFOCOM WKSHPS), 2015 IEEE Conference on, 2015, pp. 3–4,
doi: 10.1109/INFCOMW.2015.7179314 .

[71] M. Conti, S. Chong, S. Fdida, W. Jia, H. Karl, Y.-D. Lin, P. Mhnen, M. Maier,

R. Molva, S. Uhlig, M. Zukerman, Research challenges towards the future inter-
net, Comput. Commun. 34 (18) (2011) 2115–2134, doi: 10.1016/j.comcom.2011.

09.001 .

http://www.labri.fr/perso/magoni/vnd
http://www.boost.org
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0011
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0011
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0011
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0013
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0013
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0013
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0015
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0015
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0015
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0015
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0016
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0016
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0017
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0017
http://www.vmware.com
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0019
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0019
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0019
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0019
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0021
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0021
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0021
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0021
https://www.virtualbox.org
http://www.microsoft.com/hyper-v-server
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0022
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0022
http://wiki.openvz.org
http://lxc.sourceforge.net
https://github.com/GNS3/dynamips
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0024
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0024
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0024
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0024
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0026
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0026
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0026
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0027
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0027
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0027
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0028
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0028
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0028
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0028
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0029
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0029
http://dynagen.org
http://www.gns3.net
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0030
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0030
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0030
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0030
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://vagrantup.com
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0034
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0034
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0034
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0035
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0035
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0035
http://www.marionnet.org
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0036
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0036
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0036
http://dit.upm.es/vnumlwiki
http://dit.upm.es/vnxwiki
http://clownix.net
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://imunes.tel.fer.hr
http://www.freebsd.org
http://www.opennebula.org
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0038
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0038
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0038
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0038
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0039
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0039
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0039
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0039
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0040
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0040
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0040
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0041
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0041
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0041
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0042
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0042
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0042
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0042
http://www.fp7-federica.eu
http://dx.doi.org/10.1109/NOMS.2014.6838379
http://dx.doi.org/10.1109/MoNeTeC.2014.6995584
http://dx.doi.org/10.1109/INFCOMW.2015.7179314
http://dx.doi.org/10.1016/j.comcom.2011.09.001

	NEmu: A distributed testbed for the virtualization of dynamic, fixed and mobile networks
	1 Introduction
	2 Description of NEmu
	2.1 Overall design
	2.2 Network elements
	2.2.1 Virtual node
	2.2.2 Virtual link

	2.3 Management of virtual networks
	2.3.1 Session
	2.3.2 Manager

	2.4 Example of a topology
	2.5 Accuracy and scalability

	3 The virtual network device (vnd)
	3.1 Architecture
	3.2 Implementation
	3.3 Performances

	4 The network mobilizer (nemo)
	4.1 Design
	4.2 Simulated time scheduler
	4.3 Real time scheduler

	5 Experimentation
	5.1 Mosh experiment replication
	5.2 AMiRALE experiment replication

	6 Related work
	6.1 Node emulation systems
	6.2 Link emulation systems
	6.2.1 Virtual switches
	6.2.2 Link properties manipulation

	6.3 Network virtualization environment

	7 Conclusion
	 References

