Computer Communications 80 (2016) 33-44

journal homepage: www.elsevier.com/locate/comcom

Contents lists available at ScienceDirect

COI’I]pUtCI‘
communications

Computer Communications

NEmu: A distributed testbed for the virtualization of dynamic, fixed
and mobile networks

@ CrossMark

Vincent Autefage, Damien Magoni*

University of Bordeaux, LaBRI, 351, Cours de la Liberation 33400 Talence, France

ARTICLE INFO

ABSTRACT

Article history:

Received 3 March 2015

Revised 14 January 2016
Accepted 22 January 2016
Available online 1 February 2016

Keywords:
Emulation
Mobile
Network
Testbed
Virtualization

Experimentation is typically the last step before launching a network application on a large produc-
tion scale. However, it is often difficult to gather enough hardware resources for experimenting with
a reasonably sized distributed application inside a controlled environment. Virtualization is thus a handy
technique for creating such an experimentation testbed. We propose a tool called NEmu designed to cre-
ate virtual dynamic networks by using emulation for testing and evaluating prototypes of networked or
distributed applications with a complete control over the network topology and link parameters. NEmu
leverages system emulators such as QEMU for virtualizing the hosts and the routers. It uses vnd for virtu-
alizing components such as links and switches. In addition, NEmu allows users to create such customized
topologies with limited hardware resources and without any administrative rights. We validate NEmu by
replicating two network experiments and by showing that NEmu gives results very similar to the original
ones.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Experimentation is important to realistically and accurately test
and evaluate network applications. Experimentation on algorithms
is usually made by simulation. This technique is available through
well known software like ns [1] or OMNeT++ [2] and enables to
evaluate the efficiency and the scalability of algorithms or proto-
cols. Experimentation on a real program, i.e. implementation, is
different to the extent that it is more focused on execution time,
processor usage, memory consumption, network properties, etc.

It can be a difficult task when trying to experiment with a net-
work application involving dozens of machines or more. Moreover,
the mobility or the dynamics of scenarios can drastically increase
the difficulty of experimentation. Using the Internet as a test bed is
impractical as no parameters can be controlled. Setting up a hard-
ware test bed is expensive and cumbersome. Furthermore, net-
work applications can have very different ways of connecting hosts
to each others and changing the network topology and network
parameters of a hardware test bed is time consuming and error
prone. Virtualization techniques for creating such an experimen-
tation test bed can save resources and ease manipulations. It is a
proven method for reducing the equipment and space costs as well
as the energy consumption of using physical hosts [3].

* Corresponding author. Tel.: +33 5 4000 3540; fax: +33 5 4000 6669.
E-mail addresses: autefage@labri.fr (V. Autefage), magoni@labri.fr (D. Magoni).

http://dx.doi.org/10.1016/j.comcom.2016.01.005
0140-3664/© 2016 Elsevier B.V. All rights reserved.

Our solution to overcome the above hardware constraints is
thus to build a test bed able to set up virtualized networks. A vir-
tual network uses virtual machines instead of physical hosts and
connects them with virtual links in order to build a virtual net-
work topology. The virtual machines of a virtual network can be
hosted on one or several physical hosts depending on the num-
ber of virtual machines needed and the resources capacities of the
physical ones.

We propose a tool designed to create virtual networks for test-
ing and evaluating prototypes of applications on the top of static,
dynamic or mobile networks with a complete control over the net-
work topology and link properties (bandwidth, delay, bit error rate,
etc.) and the mobility of nodes. The goal of our tool is to enable
the creation of reasonably sized virtual networks while minimizing
the number of necessary physical hosts and network equipment
needed. It can build host-based overlay networks by using emula-
tors such as QEMU [4]. We have called our tool NEmu which stands
for Network Emulator for mobile universes because it is able to cre-
ate both fixed and mobile emulated networks. It is also a tribute
to the name of the QEMU software which is a powerful machine
emulator heavily used by NEmu. The contributions of our work are
as follows:

« A detailed description of our NEmu software which is able to
manage a distributed set of virtual nodes and links for emu-
lating any arbitrary static, dynamic or mobile network topology
(Section 2).

http://dx.doi.org/10.1016/j.comcom.2016.01.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.01.005&domain=pdf
mailto:autefage@labri.fr
mailto:magoni@labri.fr
http://dx.doi.org/10.1016/j.comcom.2016.01.005

34 V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44

« A detailed description of our nemo tool which implements the
mobility inside NEmu and enables to create a complete au-
tonomous mobile network by following a predefined scenario
(Section 4).

» Two validation experiments by replicating the Mosh exper-
iment originally done with Mininet [5] (Section 5.1), and
the AMIRALE experiment originally done with]BotSim [6]
(Section 5.2).

- A state of the art on related and previous work targeted at net-
working emulation and a comparison of the features provided
by NEmu with the ones offered by similar alternative virtual
networking testbeds (Section 6).

This paper is an extended and revised version of our previous
work published in [6].

2. Description of NEmu
2.1. Overall design

NEmu is a python program consisting of 6000 lines of code
which allows to build a dynamic and distributed virtual network
infrastructure.! It is based on the concept of Network Virtualization
Environment (NVE) introduced by Chowdhury and Boutaba in [7].
The main characteristic of a NVE is that it hosts multiple Virtual
Networks (VN) that are firstly not aware of one another, and that
are secondly completely independent of each other. A VN is a set
of virtual nodes connected by virtual links in order to form a virtual
topology. NEmu provides the possibility of creating several virtual
network topologies with the central property that a VN is strictly
disjoint from another in order to ensure the integrity of each VN.

Thus, NEmu integrates characteristics that are fundamental to a
NVE: First, the flexibility and heterogeneity allows the user to con-
struct a customized topology, with custom virtual nodes and vir-
tual links. The scalability allows different virtual nodes to be hosted
by different physical hosts in order to avoid limitations of a unique
physical machine. The isolation decouples the different virtual net-
works which run on the same infrastructure. It also guaranties a
strict separation between the host and the virtual networks. The
stability ensures that faults in a virtual network would not af-
fect another one. The manageability ensures that the virtual net-
work and the physical infrastructure are completely independent.
Therefore, a VN created on an infrastructure A can be deployed
on another infrastructure B. The legacy support ensures that the
NVE can emulate former devices and architectures. Finally, the pro-
grammability provides some optional network services to simplify
the use of the virtual network (such as DHCP, DNS, etc.). It also
implies that the user can develop and integrate his own additional
services.

In addition, NEmu includes four important extra properties:

+ The accessibility which means that NEmu can be fully executed
without any administrative rights on the physical infrastructure.
Indeed, the major part of public infrastructures, like universities
and laboratories, does not provide administrative access to their
users in order to ensure the security and the integrity of the
whole domain. Therefore, the user execution would allow most
people to use NEmu freely.

» The dynamicity of the topology enables node hot-connections

which means that a virtual node can join or leave the topology

dynamically without perturbing the overall virtual network.

The mobility of nodes provides a way to create a self defined

topology evolution through time and space. In other words, it

is possible to create an autonomous connectivity scenario.

1 http://nemu.valab.net

« The community aspect of the virtual network provides the possi-
bility for several people to supply virtual sub-networks in order
to build a community network like the Internet is.

2.2. Network elements

NEmu is a distributed virtual network environment which al-
lows users to create arbitrary and dynamic topologies. To this end
NEmu is based on different building blocks. NEmu uses virtual
nodes connected by virtual links in order to create a virtual net-
work topology. A virtual topology can be hosted by one or several
physical hosts. The part of the virtual topology laying on a given
physical host represents a NEmu session which is configured by the
NEmu manager.

2.2.1. Virtual node

A virtual node for NEmu is an emulated machine that requires a
hard disk image to work. This image is typically provided as a reg-
ular file on the physical host machine. Two types of virtual nodes
currently exist in NEmu:

« A VHost is a virtual host machine (i.e., end-user terminal) on
which the hardware properties and the operating system can
be fully configured by the user.

- A VRouter is a virtual router directly configured by NEmu and
provides ready-to-use network services.

Each virtual node uses a virtual storage which can be either a
real media (cdrom, hard drive, etc.), a raw file or a host directory.
A raw file can be privately dedicated or shared by several other vir-
tual nodes. A modification of a shared file by one virtual machine
will affect the others which may be troublesome if the file contains
the operating system. To solve the problem, NEmu uses Copy-on-
Write (CoW) operations on the original file. A CoW file (also known
as a sparse file) only stores the differences with its original file.
The advantage, compared to a regular copy, is that the CoW file is
much smaller. In addition, NEmu can use a regular directory on the
physical host (without building a CoW), as a storage media in four
different ways:

» by making a Sparse file which only stores the differences with
its original file;

« by making a Squash file system which is a read-only raw image;

+ by using a FAT16 emulated interface which enables a direct ac-
cess to a host’s file system;

- by using a Virtio interface [8] which also enables a direct access
to a host’s file system;

« by using a Network Block Device which enables a virtual node to
remotely access to a block device through the real IP network
[95;

« by using a SSH tunnel which enables a virtual node to remotely
access to a block device through a secured connection.

As said before, a VHost needs a disk image which must be sup-
plied by the user. This image must be prepared prior to creating
the virtual network. Furthermore, one image can be used by many
VHosts by using sparse files. NEmu provides a network topology
visualization option by processing its topology data file through
Graphviz [10].

A VRouter is directly configured by NEmu and provides several
services to simplify the virtual network management: DHCP, DNS,
NES, HTTP, SSH, NTP, Netfilter, dynamic routing protocols (RIP and
OSPF), and QoS management with Traffic Control [11]. Moreover,
it is easily possible to add some new services through a plug-in
system available in NEmu. A router is running a customized image
version of TinyCore which is a lightweight and highly configurable
Linux distribution [12]. Such a system typically requires about
~30 MBytes on disk and ~100 MBytes in memory with all services

http://nemu.valab.net

V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44 35

VHost VHost VSwitch VRouter VHost VHub VHost

Debian linux Debian linux |«ge-<-<- TCP between virtual hosts===<=4» Debian linux Debian linux
{ QEmU QEMU QEMU QEMU |
: system system Tinycore linux system system :
: emulation emulation d emulation emulation |
: vn i R :
: I switch mode Ethernet overl— :
: Ethernet over UDP unicast QEMU TCP unicast i
: system vnd Ethernet over
i Ethernet over UDP unicast > emulation Ethernet over hub mode | TCP unicast
' Ethernet over .
! . TCP unicast
: TCP unicast

NEmu managed network elements
L

Fig. 1. Network elements in action.

running. Services provided by a VRouter are optional and can be
enabled or disabled before or during runtime.

2.2.2. Virtual link

A virtual link for NEmu is an emulated network connection be-
tween virtual nodes. This emulated connection can either be per-
formed inside the machine emulator of a node (the link thus being
attached to this node) or be performed by a dedicated emulation
program (not running any system image in this case). Three types
of virtual links currently exist in NEmu:

« A VLine is a virtual point-to-point link interconnecting two
nodes.

« A VHub is a virtual multi-point hub emulating a physical Ether-
net hub and interconnecting several nodes.

« A VSwitch is a virtual multi-point switch emulating a physical
Ethernet switch and interconnecting several nodes.

Virtual links typically carry Ethernet frames from one virtual
Network Interface Card (NIC) to one or more other virtual NICs.
This Ethernet traffic is tunneled between virtual nodes by using
TCP or UDP connections. NEmu can also use a VDE [13], a virtual
switch which inter-connects virtual machines through the shared
memory system inside the Linux kernel, in order to create a local
multi-point switch. Alternatively, NEmu can use our vnd program
to emulate a network component. vnd stands for virtual network
device. The vnd is a C++ program which consists in 6k lines of
code that can emulate a VLine, a VHub or a VSwitch (defined
as modes). The advantages of using a vnd is that the user can set
the bandwidth, delay, jitter and bit error rate on any interface in
any mode whereas QEMU offers no control over its hub emulation.
In addition, NEmu also provides a S1irp which is a special type of
link whose purpose is to provide an Internet access to the virtual
node. It is an emulation of a NATed access to the real Internet by
using the physical host NIC. Also, NEmu is able to interconnect a
virtual NIC to a TUN/TAP kernel interface or to any UNIX socket.

Fig. 1 shows an example of a NEmu managed virtual net-
work. On the left side, two VHosts are connected to a VRouter
through a VSwitch by using UDP tunnels. On the right side, two
VHosts are connected to the above VRouter through a VHub by
using TCP tunnels. Here, virtual links are created and managed in-
side vnd processes.

2.3. Management of virtual networks

We explain below the notion of a NEmu session and we de-
scribe the physical resources needed to run a virtual network.

2.3.1. Session

As already said above, a NEmu session represents a complete
configuration of a network topology which lays on a physical host
(storages, virtual nodes configurations and links). A distributed vir-
tual network on n physical hosts consists in n NEmu sessions at
least. A session is represented by an auto-generated directory in
order to be saved and re-used. A session can be saved as a sparse
archive which compresses all elements and which is compatible
with sparse files unlike traditional archives.

2.3.2. Manager

The NEmu manager is the command line user interface to ma-
nipulate a session. Sessions are independent even if they are part
of the same network topology. The manager can be used in three
ways :

+ As a python module to be integrated in another script or pro-
gram;

» As a dynamic python interpreter;

« As a python script launcher.

The NEmu manager provides a remote accesses, through SSH
connections, to manipulate NEmu sessions laying on other distant
hosts. The python language is upgraded in order to interact with
other distant sessions.

2.4. Example of a topology

We present in Fig. 2 the Python script that generates the net-
work topology previously shown in Fig. 1.

2.5. Accuracy and scalability

NEmu does not currently provide any specific primitives or
tools for measuring backend side performances or for collecting
results from all the nodes in the virtual network. The measure-
ment tools available are all the usual system tools that can be in-
stalled and run either inside the virtual machines or on the phys-
ical hosts. Typical network performance evaluation tools include:
iperf, netperf, etc. The accuracy of NEmu is mainly limited
by the underlying network characteristics (e.g., bandwidths, delays,
error rates, etc) of the backend connections between the physical
hosts. It is obvious that the virtual bandwidth set between two vir-
tual nodes will never be able to be above the real physical band-
width available between the physical machines hosting those vir-
tual nodes. Finally, the scalability of NEmu is mainly limited by
QEMU'’s requirements for the virtual machines. The needs for each
VM is typically at least one dedicated core (if possible) and at least

36 V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44

Creates a new session
InitNemu()

New switch with 3 ports
VSwitch(’switch’, niface=3)

New hub with 3 ports
VHub (’hub’, niface=3)

New router with DHCP and SSH services

VRouter ("router", nics=[VNic(), VNic()], services=[

Service("ipforward"),

Service("ifup", "0:192.168.1.1", "1:192.168.2.1"),

Service("dnsmasq", domain="locall", net="192.168.1.0/24",
start="192.168.1.10", end="192.168.1.20"),

Service("dnsmasq", domain="local2", net="192.168.2.0/24",
start="192.168.2.10", end="192.168.2.20"),

Service("sshd")])

New host configuration (French keyboard, SDL display and 512MB of RAM)
VHostConf (’chost’, sdl=None, k=’fr’, m=512)

New hosts with the chost common configuration and 2 NICs

VHost(’a’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])
VHost(’b’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])
VHost(’c’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])
VHost(’d’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])

Connects nodes to links
Link(’router:0’, ’switch:0’)
Link(’router:1’, ’hub:0’)
Link(’a’, ’switch:17)
Link(°b’, ’switch:2?)
Link(’c’, ’hub:1’)

Link(’d’, ’hub:2’)

Starts the virtual network
StartNemu ()

Fig. 2. An example of a topology script written for NEmu.

a few hundred megabytes of RAM per VM. Thus, on a single reg-
ular machine, a virtual network could scale to a dozen nodes. On
a group of regular machines or on a big server or cluster, it could
scale to a hundred nodes.

3. The virtual network device (vnd)

This section presents our software program called vnd. It is a
program which is able to emulate network devices such as a link,
hub, switch or an access point from a high level point of view. This
is by far not the first software able to emulate network devices
but it has some unique features which may prove useful in the
network virtualization domain:

it runs as a lightweight stand-alone process and can fail with-
out killing virtual machines,

it can support dynamic connections and reconnections as well
as disconnections and is immune to the failures of virtual ma-
chines,

it provides many networking backends, such as the sockets API,
which is available on any platform, to connect to the virtual
machines,

it can dynamically set the link properties such as bandwidth,
delay, jitter and bit error rate,

it can coarsely emulate wireless interface cards in infrastructure
and ad hoc modes as well as access points.

3.1. Architecture

A vnd contains an engine and several interfaces. It can contain
any number of interfaces as long as system memory is available.

Interfaces can be created and destroyed at runtime. Each interface
owns an input queue and an output queue. Each queue has a num-
ber of buffers which can be set at runtime. Interfaces are internally
connected through the engine. Fig. 3 shows the architecture of a
vnd with two interfaces. Data coming in or out of a vnd can be
interpreted in two ways:

- raw: data is considered as an uninterpreted flow of bytes and
each buffer can contain data bytes up to its maximum size,

- Ethernet: data is considered as Ethernet frames and each
buffer can contain only one frame whose size shall be less or
equal than the buffer’'s maximum size.

A vnd can be set to one of six different working modes de-
pending on the network component that it emulates. The first
four modes are typical network components which are indepen-
dent from any virtual machine. The last two modes are used to
emulate a Wireless Interface Card (WIC) in either infrastructure or
ad hoc mode. Thus in the last two modes, the vnd is not used as
a separate network component but it is used in conjunction with
a virtual machine to form a mobile node. When the vnd is used as
a wireless card emulator, it is connected to its virtual mobile node
by a specific and unique interface called a direct interface. If the
mobile node is considered using infrastructure mode (BSS or ESS),
then the vnd also has another specific and unique interface called
an access interface which is connected to the access point that
the mobile node is currently associated with. A vnd can be set to
one of the six possible modes:

1. 1ink: each interface is directly bound to another interface,
which means that any data going into the input of the first

V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44

37

VND

ENGIN

-

FORWARDING

E INTERFACE 2

-

Fig. 3. Architecture of a vnd.

VND

ENGIN

FORWARDING

link mode

E

Fig. 4. Link

interface is forwarded to the output of the second interface in
this given direction (i.e., it is one way as shown on Fig. 4),

. hub: each interface is bound to all others, which means that
any data going into the input of an interface is forwarded to
the output of all the other interfaces except itself as shown on
Fig. 5,

. switch: any frame going into the input of an interface is for-
warded to the switch engine which uses a forwarding table to
determine the output interface leading to the device having the
same address as the frame’s destination address as shown on
Fig. 6,

. access point: any frame going into the input of an inter-
face is forwarded to the switch engine which uses a forwarding
table to determine the output interface leading to the device
having the same address as the frame’s destination address (see
Section 4),

. infrastructure interface: any frame going into the in-
put of the access interface is forwarded to the output of
the direct interface leading to the mobile node itself, and
any frame going into the input of the direct interface is for-
warded to the output of the access interface leading to the
access point (see Section 4),

. ad hoc interface: any frame going into the input of any
interface which is not the direct interface is forwarded to
the output of the direct interface leading to the mobile

mode.

node itself, and any frame going into the input of the direct
interface is forwarded to all the other output interfaces except
itself (see Section 4).

The last four modes only make sense when the data is inter-
preted as Ethernet frames as MAC addresses are needed. In order
to emulate the IEEE 802.11 protocols, a pseudo header is added to
any frame coming from an access point or emulated WIC.

The forwarding table is filled as in a hardware switch having
auto-learning capability. When a frame is received by an interface,
the vnd checks if the source MAC address is associated with this
interface. If yes nothing is done, if no, the vnd stores this asso-
ciation in the forwarding table. When a frame is transmitted, the
engine looks up the destination MAC address of the frame in the
forwarding table and forward the frame to the interface associated
with that address. Currently, the forwarding table does not remove
entries depending on a given lifetime and thus the table must be
manually cleared if needed. The vnd supports port-based VLANs
in hub and switch modes. The vnd does not yet implement the
Spanning Tree Protocol, thus it is up to the user to avoid making
loops in the topology of the virtual network.

3.2. Implementation

In the domain of virtualization, the term network backend is
often used to designate the software part of an emulator that

38

V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44

VND
INTERFACE 1 FORWARDING INTERFACE 2
.\ ENGINE /

INTERFACE 3 o/ A0Sl \-

Fig. 5. Hub mode.

VND

INTERFACE 1

.

N

FORWARDING
ENGINE

FORWARDING
TABLE

INTERFACE 3 /

switch mode

Fig. 6. Switch mode.

enables the connection of the emulator to the other emulators ei-
ther on the same physical machine or on different ones. Network
backends on UNIX are usually implemented with TAP interfaces,
VDE [13], sockets or slirp (which provides a full TCP/IP stack imple-
menting a virtual NATed network).

The vnd currently provides Internet and UNIX local sockets back-
ends as well as TAP and VDE backends. All these backends are im-
plemented in an object called endpoint. To be useful, a network
backend must be tied to a virtual network interface in a machine
or a vnd. This tie is implemented in the code of emulators in more
or less flexible ways. In order to support the dynamic features pre-
sented at the beginning of this section, the vnd implements the
tie in a flexible way by separating the virtual interface from the

endpoint. This tie can be dynamically created or destroyed by us-
ing the bind command as shown on Fig. 7. Thus the failure of
a network backend connection does not impact a virtual interface
except for the loss of traffic. An endpoint can also be rewired to
another interface if needed although data can be lost in the pro-
cess.

As NEmu currently only uses QEMU for system emulation, we
show on Fig. 8 an example of a TCP connection between the net-
work backends of a QEMU virtual machine and a vnd. QEMU de-
fines a local VLAN object to associate the virtual ethO interface
to the socket backend called socket.O. The difference between
the vnd bind and the QEMU VLAN is that a bind creates a bi-
jection between an interface and an endpoint whereas a VLAN can

V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44 39

VND

Fig. 7. Bind between an emulated interface and a network backend in a vnd.

0Ss
eth0 vnd
virtual
NIC
@ interface
QEMU
endpoint

TCP connection

Fig. 8. TCP connection between the network backends of a QEMU and a vnd.

Table 1
Throughput of the switch emulators.
Network Emulation Measured
component program throughput (Mbps)
Baseline nc to nc link 910
vnd (raw connections) 682
VLine QEMU to QEMU direct link 272
vnd (link mode) 240
VHub QEMU hub 160
vnd (hub mode) 240
VSwitch Dynamips switch 12
vnd (switch mode) 156

connect several backends to the same interface thus actually acting
as a simple VLAN inside the emulator (everything is broadcasted
inside though).

3.3. Performances

In order to be useful and realistic, the vnd program must have
acceptable performances. We have carried out several measure-
ments to evaluate its performances and compare them to other
emulators, namely QEMU and Dynamips, as they also provide
socket-based network backends. The scenario was interconnecting
two QEMU virtual machines via a virtual network device (line, hub
and switch) emulated by either a QEMU, a Dynamips or a vnd pro-
cess. All network backend connections were TCP connections made
on the loop-back interface of the physical machine which was an
Intel Core 2 equipped desktop PC. An FTP session was established
between the two virtual machines and a 1GB file was transferred
and timed to compute the bandwidth. Table 1 shows the through-
put of the various possible emulations of virtual network devices.
We can see that our vnd program performs at least as well as the
others when emulating any device. We can also see that QEMU
limits the throughput of the virtual machines at around 34 MB/s.

To measure the maximum throughput of the vnd itself, we have
used two netcat processes interconnected by a vnd in raw mode.
The throughput amounts to 682 Mbps to be compared with the
910 Mbps obtained by a direct connection between the two nc.
Thus the vnd only achieves 75% of the throughput achieved by the
direct connection. This loss is due to the pipelining of the two TCP
connections as well as the queueing and the processing time inside
the vnd.

Finally we have also done measurements to evaluate the accu-
racy of the vnd bandwidth and delay parameters. Concerning the
bandwidth, we can deduce from the above results that the vnd can
at most emulate 100 Mbps speeds. We have observed by varying
the bandwidth parameter from 100 kbps to 100 Mbps that the dif-
ference between the value of the bandwidth parameter (set on the
interface of the vnd by the user) and the value of the measured
bandwidth does not exceed 2%.

4. The network mobilizer (nemo)
4.1. Design

NEmu can emulate mobile networks. Thus it is possible to cre-
ate a virtual network topology that evolves in time. In order to
manage mobility, NEmu uses a special mobility engine called nemo.
nemo [14] is a lightweight C++ program which can generate con-
nectivity scenarios for mobile networks. A connectivity scenario is
a time stamped list of wireless link connection and disconnection
events between mobile nodes. Indeed, nemo is based on a specific
use of the vnd [15] software, which can on-the-fly create virtual
links having dynamically set characteristics. nemo is able to send
orders to NEmu in real time which enables to emulate the changes
of connectivity between mobile nodes by creating, destroying or
changing the characteristics of the links at the appropriate time.
nemo works behind the scene and is entirely controlled by NEmu
which acts as the user interface. nemo is implemented in C++, con-
tains around 3000 lines of code, and is using some Boost [16] li-
braries including the powerful asynchronous input/output library
called asio. It is a lightweight program using around 1MB in RAM
and it is portable thanks to Boost (on the majority of UNIX and
Windows variants). nemo is composed of two parts : one part
based on a simulated time scheduler and another part based on
a real time scheduler. The source code is available at [14].

4.2. Simulated time scheduler

The simulated time scheduler is the heart of the simulation part
of nemo. It can generate connectivity scenarios for the real time
scheduler. Three steps are necessary to generate a connectivity
scenario:

- Generate a map;
« Generate a mobility scenario on this map;
» Generate a connectivity scenario from the mobility scenario.

At each step, the results of the step can be saved on disk in or-
der to be loaded at a later time to avoid recomputation. The sim-
ulated time scheduler runs the mobility scenario and at each time
interval (set by the user), it computes the distances and the pos-
sible wireless connections between all the pairs of mobile nodes.
The steps are illustrated on Fig. 9. Being able to generate connec-
tivity scenarios is an advantage over using a network simulator in-
terconnecting real applications with taps, because the latter must
compute the mobility at every run and this computation could be
too heavy to enable the real-time execution of the applications. Up
to now, nemo generate rectangular maps and purely random mo-
bility scenarios. This is useful for carrying functional tests. nemo is
also capable of importing ns-2 formatted mobility files produced

40 V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44

STEP 1: MAP DEFINITION

0, A0

generate generate Pi(t). V-
t(/(N
C s ||« Q
e
mapping too[A 5\%‘ \ mobility modellng tool

Pa(t), Va(t), A(t)

STEP 2: MOBILITY SCENARIO

generate
’f
(p

nRT scheduler

1), Va(t), Aa(t)

'\@

Pa(t), Va(t), As(t)

STEP 3: CONNECTIVITY SCENARIO

Fig. 9. Generation of connectivity scenarios with nemo.

NEmu
U REBIders
col nds control connectlon
nemo [vMm1 |
RT scheduler \ i /,/
® direct
NND\/link
| adhoc
\mode/

Y direct ¥ dlrect

\/;/MZ‘\"nI-(‘/ Yoz) wireless VND\ link VM3\]
\\ - / \Tode link Qode / /

Fig. 10. Emulation of virtual mobile networks with nemo.

by tools such as Bonnmotion [17] providing realistic mobility mod-
els such as the Gauss-Markov Mobility Model [18] or the Reference
Point Group Mobility Model [19]. In the future, nemo will be able to
load more elaborate 2D or 3D maps containing attenuation infor-
mation.

The simulated
limitations:

time scheduler suffers from several

- It may require intensive computation of the order of
0(n?logy(n)) (that is why it is written in C++);

- It requires the user to make a tradeoff between the temporal
precision (the time interval between each connectivity evalua-
tion), the computation time and the number of events detected.

4.3. Real time scheduler

The real time scheduler is the heart of the emulation part of
nemo. It executes the connectivity events at their exact time stamp,
set with respect to the start of the scenario. The temporal precision
used in the real time scheduler is equal to the one set during the
processing of the mobility scenario by the simulated time sched-
uler. The interaction of the real-time scheduler with NEmu is illus-
trated on Fig. 10. It shows that NEmu plays the role of a central
controller for the other processes. In a virtual mobile network, one
vnd is used to emulate each wireless network interface card (WIC).
Thus there is one vnd per virtual mobile node and inside it are
instanciated the real network backend links (i.e., TCP or UDP tun-
nels). NEmu transmits the orders of the user (e.g., start, stop, etc)

to nemo. When the real time scheduler is running, NEmu also re-
covers the connectivity events generated by nemo and retransmit
them to the various vnd corresponding to the WICs of the virtual
mobile nodes in order to make the network topology evolve. The
real time scheduler can be paused and resumed at any moment by
the user.

The real time scheduler suffers from several limitations:

+ as opposed to NEmu, nemo is centralized;

- It is better to execute all the sessions and nodes on a unique
physical host to avoid reducing the performances;

» The sockets used to connect the vnd introduce delays and re-
duce the temporal precision. The latter will be at best of the
order of the millisecond.

5. Experimentation

We present the results of two experiments that we replicated
in order to show the accuracy of NEmu. The first experiment was
initially done with the Mininet container-based emulator, the sec-
ond was done with the JBotSim simulator. In both cases, we were
able to accurately replicate the results with NEmu.

5.1. Mosh experiment replication

In order to validate the accuracy of experimentation results
obtained with NEmu, we reproduce a performance benchmark of
Mosh [20]. Mosh is a remote terminal application which is more
tolerant to connectivity break than SSH by using the SSP protocol
and a predictive algorithm.

The experimentation consists in measuring the average
keystrokes response time for Mosh and SSH. This experiment
has been previously carried out on Mininet [5], another net-
work emulator which is well known for its degree of realism in
experimental conditions [21].

We reproduce the exact experimentation described in a Stan-
ford network lecture [22] and which has been officially supported
by Mosh developers. In this experimentation the client is con-
nected to a switch through an emulated 3G network, and the
server through an emulated Wi-Fi network. Authors consider the
following experimental network conditions:

* 3G:
- packet loss rate: 0.01;
- bandwidth: 1 Mbps;

V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44 41

100% —

90% -

80% ——

70% ,1,\
v 4

60% - }[\

50%

w===Mosh

w—SSH

Percentage

40% Mosh + OpenVPN

w—sSSH + OpenVPN
30%

20%

10%
——
0%
0 0.5 1 15 2 25
Keystroke Response Time (seconds)

Fig. 11. Original Mosh results obtained by mininet.

100% =
90% ' ooy

80% ”
70% Lot

60%
50%
40%

30%
20% Vosh
osh ——
10% SSH ——
0% il 1
0 0.5 1 1.5 2 2.5
Keystroke Response Time (seconds)

CDF

Fig. 12. Mosh results obtained by NEmu.

- delay: 450 ms.

» Wi-Fi:
- packet loss rate: 0.08;
- bandwidth: 25 Mbps;
- delay: 30 ms.

Thanks to our vnd program, we configure the network proper-
ties as detailed above. Original results are presented in Fig. 11. Our
results are illustrated in Fig. 12. We can notice that both results are
nearly identical. Those results imply that NEmu can offer a similar
degree of realism than Mininet.

5.2. AMIRALE experiment replication

In order to validate the accuracy of experimentation with mo-
bile devices performed with NEmu, we replicate performance re-
sults obtained by simulation of a multi-agents system called AMi-
RALE [23]. Emulation is performed with NEmu while simulations
are carried out with JBotSim [24], a Java library which enables the
design of low and high level communication scenarios and behav-
iors of heterogeneous mobile nodes.

AMIRALE is a distributed system which enables several au-
tonomous vehicles to perform common tasks collaboratively. The
application scenario consists in a team of ground robots which has
to collect a given number of garbage in a park, each one being a
target for the cleaning robots. We evaluate the output data rates
generated by AMIRALE as a function of the number of targets to
process. Each robot is specialized which means that it can only
clean one kind of garbage. When a robot finds a garbage which
it is not able to collect itself, it generates a new mission in order to
inform other robots of the existence of this garbage. This strategy

100 —
Theoretical ——
Simulation —=—

80 Emulation ———

60

40 //
20 /

/l/
180 360 720 1440
Number of targets

Datarates (kbit/s)

Fig. 13. AMIRALE results obtained by JBotSim and NEmu.

enables a robot to clean a garbage which has been discovered by
another robot.

Fig. 13 shows the results of our experiment as a function of the
number of targets. Standard deviation values are also shown on the
plots. Since all missions are broadcast without any restriction, we
can calculate the theoretical data rates by multiplying the number
of missions by the size of an unique mission and divide the result
by the frequency of broadcasts. This result is provided by the the-
oretical plot. The emulation plot shows results from the NEmu ex-
periments while the simulation plot shows results from the JBotSim
simulations. This figure shows that theoretical, simulation and em-
ulation results are very similar which implies that NEmu provides
coherent performance results for this mobile devices’ scenario.

6. Related work
6.1. Node emulation systems

Currently, NEmu uses QEMU virtual machines as virtual network
nodes. Despite the fact that a lot of solutions of host virtualization
exist, we chose QEMU which is a generic and open source machine
emulator and virtualizer [4]. QEMU runs without any administra-
tive rights and emulates a lot of various hardware architectures
[25]. Therefore, instantiating a QEMU virtual machine as a virtual
node allows the user to configure freely its hardware and software
layers which fills perfectly with the flexibility and heterogeneity
properties of a NVE.

Others systems such as VMware [26] or Xen [27,28] have bet-
ter I/O performances but can only emulate x86 and x64 architec-
tures [29,30] which compromises the legacy support defined in
Section 2. Moreover, Xen is too close to the system which means
that it requires administrative rights to be configured properly.

Virtualization systems such as VirtualBox [31] and Hyper-V [32]
are also limited to x86 and x64 architecture emulation.

Regarding UML [33], the software is now unmaintained and
only can emulate Linux operating systems.

OpenVZ [34] can be seen as the successor of UML but also only
supports Linux operating systems.

LXC [35] is a Linux kernel system which can encapsulate several
process and a sub-file system in a virtual container. This solution
cannot be consider as a real virtualization system and does not en-
able any hardware configuration.

Dynamips [36] is an emulation system dedicated to CISCO sys-
tems. Therefore, it cannot emulate standard user machines.

6.2. Link emulation systems

6.2.1. Virtual switches

NEmu uses a program called vnd in order to emulate cus-
tomized virtual links. Nevertheless, other systems enable to inter-
connect several virtual machines.

42 V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44

VDE [13] is a virtual switch which inter-connects virtual ma-
chines through the shared memory system inside the Linux kernel.
Such a system cannot be distributed on several physical machines.
Moreover, VDE does not include any mechanism in order to ma-
nipulate link properties like bandwidth, delay, etc.

Open vSwitch [37] is an open source project which enables to
instantiate virtual switches with a high customization of virtual
links. However, this software relies on virtual network interfaces
inside the Linux kernel which can only be created by a system ad-
ministrator of the physical infrastructure. The accessibility defined
in Section 2 would be impossible with Open vSwitch.

Vnet [38] is a distributed inter-connection system which en-
ables to link several virtual machines which lay on different physi-
cal hosts. Even if the system is distributed, it does not provide any
link customization mechanism.

Click [39] is a Linux kernel framework which allows to create
software defined routers (i.e. at network layer 3). Therefore, this
solution is not suitable for our needs.

6.2.2. Link properties manipulation

Our program vswitch includes the link properties customization
in order to configure bandwidth, delay, jitter and bit error rate.
Several other solutions exist in order to make this job. For instance
NetEm [40], which relies on the Linux kernel tools Traffic Control
[11], enables to manipulate same properties. However, it requires
root privileges on the real infrastructure.

Dummynet [41] enables to create some customizable virtual
links between two entities. Therefore, it cannot play the role of a
multi-point device like a hub or a switch. Moreover, this solution
operates directly in the kernel which is not compliant with the ac-
cessibility target.

A similar project called netpath [42] uses the Click library in
order to create customize virtual links.

Another project called Trickle [43] can be used without any ad-
ministrative rights in order to fix the maximum date rates for a
process. However, it can only fix this property for the entire pro-
cess. Thus our virtual switch is much more configurable.

6.3. Network virtualization environment

Dynagen [44] is for Dynamips, the equivalent of NEmu for
QEMU. Dynagen manages fleet of Dynamips machines and their
inter-connections. However, the dynamicity of the topology is
strongly limited, adding network services is quite impossible and
there is not any community aspect.

GNS [45] is an open source software which allows to build
a virtualized network topology with Dynamips, VirtualBox and
QEMU virtual machines. However, it does not provide the possi-
bility to build a community network and adding network services
is as complicated as Dynagen. Finally GNS is hardly usable without
any graphical interface making difficult the creation of a complex
network.

Velnet [46] is a virtual environment dedicated to teaching which
uses VMware virtual machines. The complete topology can only
run on a single host which implies strong limitations on the size
of the virtual network.

ModelNet [47] emulates a distributed virtual network but this
one remains static at runtime. Thus, the dynamicity is not en-
sured with ModelNet. Further, the management of this system is
fully centralized on an unique physical machine which disables the
community aspect.

Vagrant [48] uses VirtualBox virtual machines in order to em-
ulate virtual network. The topology is hosted on a single phys-
ical machine and remains static at runtime. Finally, the inter-
connections are built inside the host kernel making a flat network,

i.e. a network which not relies on standards ways of addressing
and routing.

VINI [49] is a distributed virtual network which overhangs the
PlanetLab testbed [50] which is an international distributed cluster
system. VINI uses UML virtual machines which strongly limits op-
erating systems for nodes. Moreover, connections between nodes
are made with virtual networks interfaces inside the kernel of the
physical machine which makes the configuration impossible with-
out administrative rights.

Violin [51] is similar to VINI but provides some virtual routers
which hosted different services like NEmu. However the use of
UML and the need of an existing overlay limits the use scope of
this solution.

NetKit [52] relies also on UML and VDE switches which do
not require any administrative rights. Such a system cannot be
distributed.

Marionnet [53] is a virtual environment dedicated to teaching.
It provides several network services and the community aspect but
relies on UML.

Virconel [54] uses OpenVZ virtual machines which also strongly
limits operating systems for nodes. Moreover, The topology is static
during runtime and the interconnections between virtual machines
are made in the host kernel which requires special rights on the
physical system.

VNUML [55] is a static virtual system relying on UML and which
requires administrative rights.

VNX [56] is the successor of VNUML is a compatible with other
virtualization systems. However, as VNUML, it requires administra-
tive rights and does not include any link property mechanism.

Cloonix [57] is a dynamic virtual network environment. Never-
theless, it does not include link property mechanism.

Mininet [5] is a Container-Based Emulator which allows to cre-
ate a custom and dynamic topology on a unique physical host. The
second version of this system is highly demanding about fairness
of experimentation conditions [21].

CORE [58] is a graphic tool which enables to emulate virtual
mobile networks. This system relies on a framework called IMUNES
[59] which runs over the FreeBSD [60] operating system. Nodes
and links are managed inside the operating system kernel which
implies strong limitations in terms of flexibility.

MobiEmu simulates mobile networks through ns3 for the mo-
bility and LXC containers for nodes. This tool does not enable NVE
possibilities.

OpenNebula [61] provides a powerful solution to manage a vir-
tual cloud on a wide physical infrastructure with an important
number of nodes. OpenNebula manages the whole cloud domain
from a single access point. Storage medias are centralized and are
accessible through the network which implies the use of a NAS or
NFS.

NET [62] is a powerful hardware-based infrastructure which
allows to perform realistic experimentation on mobile networks.
However, this solution uses real network inter-connection devices
(i.e. switches, etc.) in order to build the virtual network.

PdP [63] is partial NVE implementation which focuses itself on
flexibility, isolation, high-speed data rates and low cost. It uses OS
level virtualization nodes such as OpenVZ.

Onelab2 [64] is a well known emulation tool over PlanetLab. It
also relies on DummyNet which strongly limits the flexibility of
this solution.

IP-TNE [65] is an original solution which enables hosts and real
network to interact with a virtual mobile network. It is not really
an emulation solution since it provides only the mobility proper-
ties of nodes and not the real node virtualization.

Research platforms such as PlanetLab [50], GENI [66] and FED-
ERICA [67] supply virtual infrastructure built on the top of slices of
third parties owned hardware. This approach leads to the concept

V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44 43

Table 2
Comparison of network virtualization tools.
Test and Evaluation Teaching Dynamic Distributed = Mobility =~ Community = Network Regular Configurable =~ NVE+
proof aspect services privileges links compliant
Dynagen . o . o . ° o . . o o
GNS3 . o . o . o o . . o o
Velnet o o . o o o o . . o o
ModelNet . . o o . o o o . . o
Vagrant . o . o o o o . . o o
VINI . . o . . o o o o o
Violin . . o . . o o . . . o
NetKit . o . . o o o . . o o
Marionnet o . . o o . . . o o
Virconel . . . o . o o . ° ° °
VNUML . o . o o o o o o o o
VNX . . . o . o o o o o o
Cloonix o o o o . o o
Mininet o o o o . . o
CORE . . ° . o . ° . o . o
MobiEmu o . o o o . o
NET . . o . . . o ° ° . o
Pdp . . o o . o o o o . o
Onlab2 . . o o . o o o o . o
NEmu

« Yes o No

of Testbed as a Service (TaaS), exemplified by FanTaaStic [68]. Fed-
erations of testbeds have also been recently emerging, such as the
EU-driven OpenLab federation [69] as well as the OneLab federa-
tion [70], managed by UPMC. In all these cases, the user needs a
specific account, must comply to specific usage policies and has to
use the tools, services and APIs of these testbeds.

Table 2 exhibits several properties of those previous solutions
compared to NEmu. We see that NEmu can cover all usages (test
and proof, performance evaluation as well as learn and teach). It
can achieve a high realism as a research tool by managing dynamic
virtual networks and by being able to be distributed over several
physical machines. Furthermore, it can be easily used and deployed
as no special rights are required on the physical machines. The
creation of a complex network is facilitate by the important num-
ber of available network services and the easy way to add another
ones. Finally, it offers a new feature called community aspect that
enables several users to merge their virtual networks together in
order to build a single larger network.

7. Conclusion

NEmu and its associated programs vnd and nemo enable the
creation and management of dynamic, heterogeneous and mobile
virtual networks. They provide a good compromise between ease
of use, low cost and realism. Such virtual networks can be dis-
tributed over several physical hosts and be controlled without any
administrative rights. They can also evolve in real time with nemo
by following a pre-calculated connectivity scenario.

We have compared NEmu to Mininet with regard to the Mosh
experiment and have shown that the results are nearly identical
thus demonstrating that NEmu can be used for similar purposes.
The advantage being that it can be distributed over several physical
machines unlike Mininet. This is important as NEmu uses full sys-
tem emulation and not container based emulation. We have com-
pared NEmu to JBotSim with regard to the AMIiRALE experiment
and the obtained results are similar, thus validating its use for
virtual mobile devices’ experimentation. NEmu can therefore over-
come the cost of a physical testbed infrastructure while enabling
the evaluation of real applications thanks to its low level emula-
tion of network and system components. NEmu can also emulate
mobile ad hoc networks which, as far as we know, is a unique fea-
ture among network emulators.

As envisioned by Conti et al. [71], the Internet of the future will
be polymorphic, i.e., it will allow various specific networking en-
vironments to coexist, thanks to virtualization and federation. The
extended concepts of NVE presented in this paper clearly embrace
those two properties. Our software is a first step towards building
such virtual networks. Its current use is mainly for research exper-
imentation and teaching but its long term use could include pro-
duction. The variety of supported backends could indeed lead our
software to provide new network services.

Several next steps are already planned for our future work on
NEmu. They consist in the following tasks by order of priority:

« the integration of migration capabilities for virtual machines in
order to enable load balancing;

« the integration of new services inside the virtual router;

 the implementation of more sophisticated map generation al-
gorithms;

« the improvement of the accuracy of the vnd.

References

[1] T. Henderson, M. Lacage, G. Riley, C. Dowell,]J. Kopena, Network simulations
with the ns-3 simulator, ACM SIGCOMM demonstration (2008).

[2] A. Varga, et al., The omnet++ discrete event simulation system, in: Proceedings
of ESM, vol. 9, 2001.

[3] B. Yamini, D. Selvi, Cloud virtualization: a potential way to reduce global
warming, in: Proceedings of IEEE RSTSCC, 2010, pp. 55-57.

[4] F. Bellard, QEMU, a fast and portable dynamic translator, in: Proceedings of
USENIX Annual Technical Conference, FREENIX Track, 2005, pp. 41-46.

[5] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid prototyping for
software-defined networks, in: Proceedings of the 9th ACM SIGCOMM Work-
shop on Hot Topics in Networks, 2010, pp. 19:1-19:6.

[6] V. Autefage, D. Magoni, Network emulator: a network virtualization testbed
for overlay experimentations, in: Proceedings of the 17th IEEE International
Workshop on Computer-Aided Modeling Analysis and Design of Communica-
tion Links and Networks, 2012, pp. 38-42.

[7] N. Chowdhury, R. Boutaba, Network virtualization: state of the art and re-
search challenges, IEEE Commun. Mag. 47 (7) (2009) 20-26.

[8] KVM, Virtio, http://www.linux-kvm.org/page/Virtio.

[9] NBD, Network Block Device, http://nbd.sourceforge.net.

[10] Graphviz, Graph Visualization Software, 1988. http://www.graphviz.org.

[11] B. Hubert, G. Maxwell, R. Van Mook, M. Van Oosterhout, P. Schroeder,
J. Spaans, Linux advanced routing & traffic control, in: Proceedings of Ottawa
Linux Symposium, 2003, pp. 213-222.

[12] R. Shingledecker, TinyCore Linux, 2008. http://tinycorelinux.net.

[13] R. Davoli, Vde: virtual distributed ethernet, in: Proceedings of the First In-
ternational Conference on Testbeds and Research Infrastructures for the DE-
velopment of NeTworks and COMmunities, 2005, pp. 213-220. http://vde.
sourceforge.net.

[14] D. Magoni, Network Mobilizer, 2012. http://www.labri.fr/perso/magoni/nemo.

http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0001
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0002
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0002
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0002
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0003
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0003
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0003
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0004
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0004
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0005
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0005
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0005
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0005
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0006
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0006
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0006
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0007
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0007
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0007
http://www.linux-kvm.org/page/Virtio
http://nbd.sourceforge.net
http://www.graphviz.org
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0008
http://tinycorelinux.net
http://vde.sourceforge.net
http://www.labri.fr/perso/magoni/nemo

44 V. Autefage, D. Magoni/Computer Communications 80 (2016) 33-44

[15] D. Magoni, Virtual Network Device, 2012. http://www.labri.fr/perso/magoni/
vnd.

[16] B. Dawes, al., Boost C++ Libraries, http://www.boost.org.

[17] N. Aschenbruck, E. Gerhards-Padilla, M. Gerharz, M. Frank, P. Martini, Mod-
elling mobility in disaster area scenarios, in: Proceedings of the 10th ACM/IEEE
International Symposium on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, 2007, pp. 4-12.

[18] B. Liang, ZJ. Haas, Predictive distance-based mobility management for pcs net-
works, in: Proceedings of IEEE INFOCOM, 1999, pp. 1377-1384.

[19] X. Hong, M. Gerla, G. Pei, C-C. Chiang, A group mobility model for ad hoc
wireless networks, in: Proceedings of the 2nd ACM MSWiM, 1999, pp. 53-60.

[20] K. Winstein, H. Balakrishnan, Mosh: an interactive remote shell for mobile
clients, in: Proceedings of USENIX Annual Technical Conference, 2012, pp. 177-
182.

[21] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown, Reproducible net-
work experiments using container-based emulation, in: Proceedings of the 8th
International Conference on Emerging Networking Experiments and Technolo-
gies, 2012, pp. 253-264.

[22] A. Aljunied, Evaluation of Mosh performance
http://reproducingnetworkresearch.wordpress.com/2013/03/13/
¢s244-2013-evaluation-of-mosh-mobile-shell- performance-results.

[23] V. Autefage, S. Chaumette, D. Magoni, A mission-oriented service discovery
mechanism for highly dynamic autonomous swarms of unmanned systems, in:
Proceedings of IEEE International Conference on Autonomic Computing (ICAC),
2015, 2015, pp. 31-40.

[24] A. Casteigts, Jbotsim: a tool for fast prototyping of distributed algorithms in
dynamic networks, in: Proceedings of the 8th International Conference on
Simulation Tools and Techniques, 2015.

[25] A. Ribiere, Emulation of obsolete hardware in open source virtualization soft-
ware, in: Proceedings of the 8th IEEE INDIN, 2010, pp. 354-360.

[26] EMC, VMware, 2004. http://www.vmware.com.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, A. Warfield, Xen and the art of virtualization, in: Proceedings of the
19th ACM SOPS, 2003, pp. 164-177.

[28] M. Bourguiba, K. Haddadou, G. Pujolle, Packet aggregation based network i/o
virtualization for cloud computing, Comput. Commun. 35 (3) (2012) 309-319.

[29] J. Che, Y. Yu, C. Shi, W. Lin, A synthetical performance evaluation of openvz,
xen and kvm, in: Proceedings of IEEE APSCC, 2010, pp. 587-594.

[30] P. Domingues, F. Araujo, L. Silva, Evaluating the performance and intrusiveness
of virtual machines for desktop grid computing, in: Proceedings of IEEE IPDPS,
2009, pp. 1-8.

[31] Oracle, VirtualBox, 2007. https://www.virtualbox.org.

[32] Microsoft, Hyper-V, 2008. www.microsoft.com/hyper-v-server.

[33] J. Dike, A user-mode port of the Linux kernel, in: Proceedings of Linux Show-
case and Conference, vol. 2, 2000.

[34] Parallels, OpenVZ Linux Containers, 2006. http://wiki.openvz.org.

[35] D. Lezcano, LXC, 2008. http://Ixc.sourceforge.net.

[36] C. Fillot, Dynamips, 2007. https://github.com/GNS3/dynamips.

[37] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, S. Shenker, Extending net-
working into the virtualization layer, Proceedings of ACM HotNets workshop,
20009.

[38] A.L Sundararaj, A. Gupta, PA. Dinda, Dynamic topology adaptation of virtual
networks of virtual machines, in: Proceedings of the 7th LCR Workshop, 2004,
pp. 1-8.

[39] E. Kohler, R. Morris, B. Chen, J. Jannotti, M.F. Kaashoek, The click modular
router, ACM Trans. Comput. Syst. 18 (3) (2000) 263-297.

[40] S. Hemminger, et al., Network emulation with netem, in: Linux Conf Au, 2005,
pp. 18-23.

[41] M. Carbone, L. Rizzo, Dummynet revisited, SIGCOMM Comput. Commun. Rev.
40 (2) (2010) 12-20.

[42] S. Agarwal, J. Sommers, P. Barford, Scalable network path emulation, in: Pro-
ceedings of the 13th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, in: MASCOTS '05,
IEEE, 2005, pp. 219-228.

results,

[43] M. Eriksen, Trickle: a userland bandwidth shaper for unix-like systems, in:
Proceedings of USENIX Annual Technical Conference, FREENIX Track, 2005,
p. 43.

[44] G. Anuzelli, Dynagen, 2006. http://dynagen.org.

[45] GNS3, Graphical Network Simulator, 2007. http://www.gns3.net.

[46] B. Kneale, A.Y. De Horta, I. Box, Velnet: virtual environment for learning net-
working, in: Proceedings of the 6th Australasian Conference on Computing Ed-
ucation, vol. 30, 2004, pp. 161-168.

[47] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti, J. Chase, D. Becker,
Scalability and accuracy in a large-scale network emulator, in: Proceedings of
the 5th ACM SIGOPS Operating Systems Review, 2002, pp. 271-284.

[48] M. Hashimoto,]. Bender, Vagrant, 2010. http://vagrantup.com.

[49] A. Bavier, N. Feamster, M. Huang, L. Peterson,]. Rexford, In vini veritas: re-
alistic and controlled network experimentation, in: Proceedings of ACM SIG-
COMM, 2006, pp. 3-14.

[50] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, M. Wawrzoniak, Operating system support for planetary-
scale network services, in: Proceedings of the 1st USENIX NSDI, 2004, pp. 253-
266.

[51] X. Jiang, D. Xu, Violin: virtual internetworking on overlay infrastructure, in:
Proceedings of the 2nd Springer ISPA, 2003, pp. 937-946.

[52] M. Pizzonia, M. Rimondini, Netkit: easy emulation of complex networks on in-
expensive hardware, in: Proceedings of the 4th IEEE TridentCom, 2008, pp. 1-
10.

[53] J.-V. Lodo, L. Saiu, Marionnet, 2007. http://www.marionnet.org.

[54] Y. Benchaib, A. Hecker, Virconel: a network virtualizer, in: Proceedings of the
19th IEEE MASCOTS, 2011, pp. 429-432.

[55] DIT, VNUML, 2003. http://dit.upm.es/vnumlwiki.

[56] DIT, VNX, 2008. http://dit.upm.es/vnxwiki.

[57] V. Perrier, Cloonix, 2007. http://clownix.net.

[58] J. Ahrenholz, C. Danilov, T. Henderson,]J. Kim, Core: a real-time network emu-
lator, in: Proceedings of IEEE MILCOM, 2008, pp. 1-7.

[59] Z. Puljiz, M. Mikuc, IMUNES, 2003. http://imunes.tel.fer.hr.

[60] FreeBSD, FreeBSD, 1993. http://www.freebsd.org.

[61] C. Labs, OpenNebula, http://www.opennebula.org.

[62] S. Maier, D. Herrscher, K. Rothermel, Experiences with node virtualization for
scalable network emulation, Comput. Commun. 30 (5) (2007) 943-956.

[63] Y. Liao, D. Yin, L. Gao, Network virtualization substrate with parallelized data
plane, Comput. Commun. 34 (13) (2011) 1549-1558.

[64] M. Carbone, L. Rizzo, An emulation tool for planetlab, Comput. Commun. 34
(16) (2011) 1980-1990.

[65] R. Simmonds, B.W. Unger, Towards scalable network emulation, Comput. Com-
mun. 26 (3) (2003) 264-277.

[66] N. Van Vorst, M. Erazo,]. Liu, Primogeni: integrating real-time network simu-
lation and emulation in geni, in: Proceedings of IEEE PADS, 2011, pp. 1-9.

[67] C. GARR, FEDERICA, 2008. http://www.fp7-federica.eu.

[68] A. Willner, S. Albrecht, S. Covaci, F. Schreiner, T. Magedanz, S. Avessta, C. Scog-
namiglio, S. Fdida, U. Bub, Fantaastic: Sustainable management of future inter-
net testbed federations, in: Network Operations and Management Symposium
(NOMS), 2014 IEEE, 2014, pp. 1-4, doi:10.1109/NOMS.2014.6838379.

[69] S. Fdida, T. Korakis, H. Niavis, S. Salsano, G. Siracusano, The express sdn experi-
ment in the openlab large scale shared experimental facility, in: Proceedings of
Science and Technology Conference (Modern Networking Technologies) (MoN-
eTeC), 2014 International, 2014, pp. 1-7, doi:10.1109/MoNeTeC.2014.6995584.

[70] L. Baron, C. Scognamiglio, M. Rahman, R. Klacza, D. Cicalese, N. Kurose,
T. Friedman, S. Fdida, Onelab: major computer networking testbeds open to
the ieee infocom community, in: Proceedings of Computer Communications
Workshops (INFOCOM WKSHPS), 2015 IEEE Conference on, 2015, pp. 3-4,
doi:10.1109/INFCOMW.2015.7179314.

[71] M. Conti, S. Chong, S. Fdida, W. Jia, H. Karl, Y.-D. Lin, P. Mhnen, M. Maier,
R. Molva, S. Uhlig, M. Zukerman, Research challenges towards the future inter-
net, Comput. Commun. 34 (18) (2011) 2115-2134, doi:10.1016/j.comcom.2011.
09.001.

http://www.labri.fr/perso/magoni/vnd
http://www.boost.org
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0010
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0011
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0011
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0011
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0012
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0013
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0013
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0013
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0014
http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0015
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0015
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0015
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0015
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0016
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0016
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0017
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0017
http://www.vmware.com
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0019
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0019
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0019
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0019
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0021
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0021
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0021
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0021
https://www.virtualbox.org
http://www.microsoft.com/hyper-v-server
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0022
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0022
http://wiki.openvz.org
http://lxc.sourceforge.net
https://github.com/GNS3/dynamips
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0023
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0024
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0024
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0024
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0024
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0025
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0026
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0026
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0026
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0027
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0027
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0027
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0028
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0028
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0028
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0028
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0029
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0029
http://dynagen.org
http://www.gns3.net
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0030
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0030
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0030
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0030
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0031
http://vagrantup.com
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0032
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0033
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0034
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0034
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0034
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0035
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0035
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0035
http://www.marionnet.org
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0036
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0036
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0036
http://dit.upm.es/vnumlwiki
http://dit.upm.es/vnxwiki
http://clownix.net
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0037
http://imunes.tel.fer.hr
http://www.freebsd.org
http://www.opennebula.org
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0038
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0038
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0038
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0038
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0039
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0039
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0039
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0039
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0040
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0040
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0040
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0041
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0041
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0041
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0042
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0042
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0042
http://refhub.elsevier.com/S0140-3664(16)00028-1/sbref0042
http://www.fp7-federica.eu
http://dx.doi.org/10.1109/NOMS.2014.6838379
http://dx.doi.org/10.1109/MoNeTeC.2014.6995584
http://dx.doi.org/10.1109/INFCOMW.2015.7179314
http://dx.doi.org/10.1016/j.comcom.2011.09.001

	NEmu: A distributed testbed for the virtualization of dynamic, fixed and mobile networks
	1 Introduction
	2 Description of NEmu
	2.1 Overall design
	2.2 Network elements
	2.2.1 Virtual node
	2.2.2 Virtual link

	2.3 Management of virtual networks
	2.3.1 Session
	2.3.2 Manager

	2.4 Example of a topology
	2.5 Accuracy and scalability

	3 The virtual network device (vnd)
	3.1 Architecture
	3.2 Implementation
	3.3 Performances

	4 The network mobilizer (nemo)
	4.1 Design
	4.2 Simulated time scheduler
	4.3 Real time scheduler

	5 Experimentation
	5.1 Mosh experiment replication
	5.2 AMiRALE experiment replication

	6 Related work
	6.1 Node emulation systems
	6.2 Link emulation systems
	6.2.1 Virtual switches
	6.2.2 Link properties manipulation

	6.3 Network virtualization environment

	7 Conclusion
	 References

