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a b s t r a c t 

Network virtualization is a promising scheme to solve Internet ossification. A challenging problem in this 

scheme is virtual network embedding (VNE), which involves efficiently embedding multiple heterogeneous 

virtual networks into one or more physical networks. The VNE problem is known to be NP-hard and thus 

requires an approximate algorithm as a solution. This study models the VNE problem based on virtual net- 

work topology invariance and analyzes the shortcomings of a general embedding algorithm under different 

network topologies. A modified ant colony optimization algorithm is proposed based on network topology 

decomposition. A pre-computation algorithm is first proposed based on ant random walking to accelerate 

the recognition of the ring characteristics of a network topology. Pre-computation results are used to guide 

the decomposition of virtual networks and the embedding process of ring structures. The topology of a vir- 

tual network is decomposed into a combination of ring structures and tree structures, which have different 

characteristics. Different embedding algorithms are then designed for these structures. Point-disjoint paths 

are searched for any two virtual links to ensure the reliability of the network topology in the embedding 

process. The proposed algorithm shows an enhanced optimization performance, which is better than those 

of the ViNE-LB and GN-SP algorithms. 

© 2015 Elsevier B.V. All rights reserved. 
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. Introduction 

An increasing number of applications with various qualities of

ervice (QoS) requirements are being developed over the Internet.

owever, supporting different data delivery mechanisms suitable for

hese QoS requirements is difficult for traditional TCP/IP models. This

roblem is referred to as Internet ossification [1] . As a promising

cheme to address this ossification problem, network virtualization

s proposed to build a diversified Internet that supports a variety of

etwork services and architectures through a shared substrate by de-

oupling network functionalities and infrastructures [2] . 

In this scheme, traditional Internet service providers (ISPs) are

eparated into infrastructure providers (InPs) and service providers

SPs). InPs maintain network resources, and SPs lease network re-

ources to construct their own virtual networks (VNs). InPs need to

mbed VNs into their physical networks by mapping one physical

ode for a virtual node and searching one loop-free path for a vir-

ual link. Thus, many VNs of different SPs would coexist in a physi-

al network. Different mapping methods result in different resource

onsumption. Hence, InPs face the important problem of efficiently
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apping these VNs into a physical network to gain the highest rev-

nue. This problem is referred to as the virtual network embedding

VNE) problem. 

The VNE problem involves both node mapping and link map-

ing. A well-known NP-hard multiple separator problem can be re-

uced to the VNE problem [3,4] . Therefore, the VNE problem is known

o be NP-hard. Single node or link mapping can also be NP-hard,

nd solving them requires heuristic and approximate algorithms.

everal methods have been proposed to address the VNE problem

5] . These techniques are summarized into the following categories:

wo-stage mapping methods [4,6–9] , coordinated node and link map-

ing methods [10–12] , and mapping methods based on graph theory

6,11–14] . However, common problems in research need to be dis-

ussed and addressed. 

1) General embedding algorithms are used for different topologies

of VN requests . Some of the aforementioned methods employ a

general mapping technique for any VN requests and ignore the

differences among VN topologies [4,6–12] . These differences al-

ways indicate different key relations that affect the embedding

process (details are discussed in Section 3 ). A general algorithm

cannot reflect these differences efficiently. 

2) Existing embedding algorithms based on graph decomposi-

tion are too simple . Other methods attempt to reduce the

http://dx.doi.org/10.1016/j.comcom.2015.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.07.014&domain=pdf
mailto:zhufj@sdu.edu.cn
mailto:wanghua@sdu.edu.cn
http://dx.doi.org/10.1016/j.comcom.2015.07.014
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complexity of mapping algorithms and propose some techniques

based on graph decomposition and combination. In some works

[6] , network topology is divided into combinations of star struc-

tures, but the hardness of closed characteristics remains. In other

works [13] , network topology is divided into core networks and

edge networks, and different existing mapping algorithms are

used. However, the algorithms for mapping core and edge net-

works still fail to consider different types of topologies. 

3) Existing embedding algorithms may decrease the reliability re-

quirement of SPs . The topology of a VN always implicitly con-

tains some requirements of the owners of VNs (SPs), such as

the requirement of redundancy degree. However, most map-

ping methods ignore this requirement, resulting in different vir-

tual links sharing one or more physical links or nodes [4,6–

11] . This phenomenon can decrease the reliability of a VN,

and some mutual backup virtual links in the design may fail

simultaneously. 

We propose an embedding algorithm that guarantees that the

mapping networks generated in a substrate network (SN) satisfy the

reliability requirements of SPs. The proposed algorithm attempts to

improve the acceptance ratio while maximizing the revenue of an

InP. The following are our main ideas and contributions to the VNE

problem: 

• Improved optimization performance for InPs . To improve the op-

timization performance, a pre-computation algorithm is designed

to obtain the ring characteristics of a graph (a VN request topol-

ogy or SN topology). A VN topology is randomly divided into a

combination of ring structures and tree structures by using the

ring characteristics of the VN request. Different construction al-

gorithms are then designed for these structures. An algorithm for

ring structures is designed based on the ring characteristics of the

SN. An algorithm for tree structures is designed based on tree-

indexed random walking. 

• Realization of reliability requirements of SPs . To maintain the re-

liability of a VN, the concept of candidate node is proposed to de-

sign point-disjoint paths for the virtual links in the mapping pro-

cess. In this way, a node (or a link) is prevented from being shared

by different virtual links of the VN. 

• Convenience of resource management and protocol deployment for

InPs . Resource management and protocol deployment in VNs are

eventually realized in SNs. In our algorithm, the unique disjoint

SN path for each virtual link facilitates explicit resource man-

agement (such as resource reservation) and is convenient for

deploying special data transmission protocols (such as multi-

protocol label switching or MPLS) in SNs. In existing works,

the sharing of nodes or links among SN paths may cause rout-

ing loops, which result in extra mechanisms (such as mech-

anisms for avoiding packet disorder). This will make resource

management and protocol deployment increasingly difficult for

InPs. 

A modified ant colony optimization (ACO) algorithm is intro-

duced to improve optimization performance. The ACO algorithm is

a population-based algorithm, inspired by the foraging behavior of

ants and proposed by Dorigo [15] . Ants communicate with one an-

other through pheromone; based on this, the ACO algorithm uses

pheromone to accelerate knowledge in problem solving; this algo-

rithm has been successfully applied in many combination optimiza-

tion problems [16] . In our algorithm, each ant randomly constructs

a complete solution according to pheromone and heuristic informa-

tion. The solutions are then evaluated with a fitness function that

guides them toward optimization through multiple iteration pro-

cesses. 

Simulation results show that the idea of random selection in tree

structure mapping (random root selection and random selected sub-
ree growing) and ring structure mapping (random adjacent node se-

ection) results in a flexible and sufficient graph traversal. Moreover,

he ACO algorithm improves optimization performance. Thus, relia-

ility is guaranteed, and high acceptance rate and revenue are ob-

ained. 

This paper is organized as follows. Section 2 summarizes related

orks on the VNE problem. Section 3 describes the background of the

NE problem and defines the optimization problem to be addressed.

ection 4 proposes a modified ACO algorithm to solve the optimiza-

ion problem. Section 5 discusses the simulation results and analysis.

ection 6 concludes the study. 

. Related works 

The VNE problem is an NP-hard problem with different optimiza-

ion objectives; it involves node mapping and link mapping [5] . In

he first part of this section, we mainly summarize existing works

ith the same objective as that of our study. In the second part, other

orks with objectives that differ from that of our study to a certain

egree are introduced. Lastly, the relations between these works and

ur work are analyzed. 

.1. Related works with the same optimization objective 

The objectives of the works in [4,6–14,17–22] are the same as

hat of the present study, i.e., to minimize the cost of a VN request,

r maximize the revenue of an InP. In these studies, the cost of a

N request is generally computed as the weighted sum of the CPU

osts of all mapped nodes and the bandwidth costs of all mapped

aths; thus, the general solutions attempt to determine the mapped

N nodes that are close to one another and to identify the shortest

N path between any two mapped nodes if a virtual link exists be-

ween them in a VN request [6–9 ], or use multiple paths that si-

ultaneously provide bandwidth for a virtual link if the SN supports

plitting data transmit mechanisms [4,10] . To realize these objectives,

ome “sufficient capacity” nodes with more nodes and edges, or more

PU and bandwidth resources, in their neighboring area, are deter-

ined. “Sufficient capacity” nodes imply that their neighboring ar-

as have more opportunities to embed other nodes and links of a VN

equest. 

Based on the aforementioned greedy idea, some forms of heuris-

ic information are defined with several network topology attributes

6–9] , and a single path (the shortest or the k -shortest path) is used

or a virtual link. In [6] , Zhu et al. proposed a basic VN assignment

cheme, which defined neighbor resource availability as heuristic in-

ormation to select nodes greedily, and used the shortest path for

ach virtual link. In [7] , Cheng et al. referenced the Markov random

alk model and proposed ‘NodeRank’ as a measurement for node re-

ource based on this model. The NodeRank value of a node was used

s heuristic information, and two kinds of algorithms were designed:

W-MaxMatch (a two stage algorithm), and RW-BFS (a coordinated

ode and link mapping algorithm). To improve the performance of

heir two stage algorithm, they used a particle swarm optimization

PSO) algorithm to search for the optimal solution among all feasible

olutions. In [8] , Li et al. proposed a two stage scheme, which used

ultiple factors of a network topology that included hop count as a

op- k dominating model to greedy node mapping and used k -shortest

ath to link mapping. In [9] , Cui et al. proposed an algorithm based

n the maximum convergence degree, to ensure that the topology of

 virtual network gathered together when it was mapped onto an SN,

nd the k -shortest path was used for link mapping. In these works,

euristic information could improve the performance, but load bal-

nce was not considered. The load balance of an SN is beneficial to

ccepting successive VN requests and gaining additional revenues.

owever, load balance with a single path for a virtual link is NP-hard

4] . 
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To reduce the computation complexity caused by single paths, a

ulti-commodity flow (MCF) concept was introduced in some works

4,10] , which allowed a virtual link to be mapped to multiple SN

aths. Moreover, the corresponding linear (or mixed integer) pro-

ramming models based on the MCF concept were proposed. In [4] ,

he amount of node and link resources of an SN node was defined as

euristic information, and the nodes were mapped greedily. More-

ver, a linear programming (LP) model was proposed and solved

ith existing tools. Unlike in [4] , a mixed integer programming (MIP)

odel was introduced in [10] by augmenting an SN. A relaxed mech-

nism was used to handle the hardness caused by integer variables,

nd each SN node gained a probability value to map a virtual node. A

ode was selected by using a rounding technique deterministically or

andomly, and then, the LP model was solved again for link mapping.

nhanced performance can be realized in these algorithms, by intro-

ucing load balancing. However, the support of splitting data trans-

ission in an SN may translate into additional costs in resource man-

gement and protocol deployment. 

Except for the use of MCF, some algorithms based on graph the-

ry (mainly graph decomposition) have been proposed to reduce the

ardness of the VNE problem [6,11–14] . In [6] , Zhu et al. proposed

n improved VN assignment algorithm, which divided a large VN re-

uest into a series of star topologies. Thus, acceptance ratio could

e improved, and link and node stress could be balanced. In [12] ,

ischka et al. used a relaxed subgraph isomorphism detection al-

orithm to find a feasible solution in one stage and used the hop

ount constraint to minimize the cost of a VN request. Enhanced op-

imization performance is achieved by using candidates set as Carte-

ian product of all nodes in the node selection process. In [11] , Fa-

jari et al. proposed a scheme for dividing a large VN request into

everal smaller sub-requests (solution components) based on access

odes with fixed geographic locations. This work also used some

opology attributes such as “hanging links” to define heuristic in-

ormation. In [13] , Qing et al. divided a VN into core and edge net-

orks. In [14] , Huang et al. presented some ideas for mapping dif-

erent topologies based on the “importance” of the virtual nodes in

heir structures. However, concrete algorithms are not proposed in

hese works. Although graph decomposition can reduce the com-

lexity of the mapping process by mapping smaller partitions of a

N request separately, the combination of these partitions is not

rivial. Moreover, the mapping sequences of different partitions and

ithin these partitions may severely influence final optimization

erformance. 

To improve the optimization performance that is restricted by

he mapping sequence in previous works, some meta-heuristic algo-

ithms are proposed. With the help of randomization and evolving

ultiple iteration processes, enhanced optimization performance is

chieved. In [7,11,17,18] , some algorithms based on PSO, ACO, and ar-

ificial fish swarm were proposed to search for an optimal solution

mong candidate solutions. In [19] , several meta-heuristic based al-

orithms were discussed and compared based on certain metrics and

nhanced optimization results were obtained from these algorithms,

articularly in ACO-based algorithms. 

Other studies differ from the aforementioned works but have the

ame optimization objective. In [20] , a path algebra-based strategy

as used to optimize link mapping phase. All possible feasible paths

ere listed and ordered after all virtual nodes were mapped. Paths

ere then selected from these paths to construct a feasible solution to

he VNE problem. In [21] , an online embedding framework which was

dapted from the online primal-dual model was proposed. Moreover,

he VNE problem was formulated as a linear program, and an online

lgorithm was designed to solve the dynamic linear programs. A com-

etitive result was obtained even when the sequence of VN requests

as not known in advance. In [22] , a framework was proposed to ad-

ress the dynamics of each VN request itself, namely, the increase or

ecrease of virtual nodes and the requirement changes of VN nodes
r links. Moreover, some heuristic algorithms were proposed to ad-

ress these sub-problems. 

.2. Related works with optimization objectives that differ to a certain 

egree 

Some works with optimization objectives that differ from those

f our schemes also exist. In [23] , a distributed algorithm was pro-

osed; its objective was to determine an effective trade-off between

inimizing a VN request cost and minimizing communication cost.

n [24] , Beck et al. presented a distributed, parallel, and generic

NE framework based on hierarchical network partitioning. They

chieved lower message overhead and kept embedding costs compa-

able with those of centralized approaches. In [25] , the authors pro-

osed a VNE algorithm in a software-defined network environment.

n addition to minimizing the cost of a VN request, the authors also

ttempted to minimize communication delays between the central

ontroller and the distributed controllers in each SN node. 

References [26] and [27] focused on the VNE problem in multiple

N networks. Maximizing revenue across multiple SNs was consid-

red, and the emphasis was placed on the cooperation policies and

echanisms among multiple SNs. Refs. [28] and [29] focused on the

eliable VNE problem. Their optimization objectives emphasized sup-

orting a reliable VN by taking over some redundant lines, while min-

mizing the provision cost of each VN request. 

Refs. [30] and [31] focused on the green VNE problem (or energy-

ware VNE problem). In these studies, minimizing active nodes and

inks to minimize energy consumption while embedding all VN re-

uests was discussed. 

Refs. [32] and [33] discussed the reconfiguration of the VNE prob-

em to overcome the fragmentation of SN resources that was caused

y the incoming and outgoing VN requests, which eventually resulted

n poor performance. The authors discussed how the nodes and links

hat need to be reconfigured were selected, and enhanced perfor-

ance was achieved with the reconfiguration scheme. 

In [34] , research issues and challenges in wireless network virtu-

lization were summarized and discussed. Future research directions

ere also proposed. 

.3. Relations between our work and existing works 

Our work mainly focuses on minimizing VN cost while improv-

ng the acceptance ratio in an SN. Inspired by existing works, we use

raph decomposition to solve the VNE problem. We also use the ran-

omization and evolving iteration processes of meta-heuristic algo-

ithms to improve optimization performance. Moreover, some greedy

deas, such as selecting “sufficient capacity” nodes greedily in each

teration process, were employed. The greedy ideas adopted in our

lgorithm indicate that the heuristic information defined in existing

orks can be used complementarily with our work. However, the dif-

erence of our work with existing works is that we distinguish the

eaning of adjacency (or close) node between a ring structure and

 tree structure, as well as design different mapping algorithms for

hese structures. To guarantee the implications of a VN request, we

ntroduce the concept of VN topology invariance, which also results in

onvenient resource management and protocol deployment. We also

se candidate nodes to realize this objective. The simulation results

n synthetic and real network topologies verify that enhanced opti-

ization performance is achieved in our algorithm even if a much-

estricted constraint of VN topology invariance is introduced. 

. Background and notations 

The VNE problem is described through an example. The SN and

N requests are modeled as undirected graphs, and a mathematical

odel based on some definitions and notations is presented. 
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Fig. 1. Substrate network (right) and virtual network requests (left) [10] . 
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3.1. Background and network notations 

Both the SN and VN requests are modeled as weighted undirected

graphs. An SN is modeled as G 

S = (V S , E S ), where S denotes SN, V S 

denotes the set of nodes, and E S denotes the set of edges of the SN.

A VN request is modeled as G 

R = (V R , E R ), where R denotes the VN

request. We use C S,V at t r (v ) to denote the vertex attribution at t r of a sub-

strate node v ∈ V S and use C S,E at t r (e) to denote the edge attribution at t r

of a substrate edge e ∈ E S , where S denotes the SN, and V and E denote

vertex and edge, respectively. The value of at t r denotes an attribution

of a vertex or an edge; for example, C S,V cpu (v ) is used to denote the cpu

resource of a substrate node v , and C S,E 
bw 

(e) is used to denote the band-

width resource of a substrate edge e . For a virtual node v ∈ V R and a

virtual link e ∈ E R , the donations are C R,V 
at t r (v ) and C R,E 

at t r (e), respectively.

In Fig. 1 [10] , the cpu resource C S,V cpu of a substrate node (or cpu require-

ment C R,V 
cpu of a virtual node) is placed in a rectangular frame near the

node, and the bandwidth resource C S,E 
bw 

of a substrate edge (or band-

width requirement C R,E 
bw 

of a virtual link) is a number placed directly

along the edge. 

Fig. 1 [10] shows the mapping results of VN requests 1 and 2. For

VN request 1, the virtual nodes a, b, c are mapped to the substrate

nodes C, H, B, respectively. The virtual links (a, b), (a, c), and (b, c) are

mapped to the substrate paths (C, D, G, H), (C, A, B), and (C, E, F, H).

The cpu resources of these substrate nodes satisfy the cpu require-

ments of the corresponding virtual nodes. The bandwidth resources

of these substrate paths satisfy the bandwidth requirements of the

corresponding virtual links. Therefore, VN request 1 is accepted, this

mapping result is used, and the resources of the substrate nodes and

edges are reduced accordingly. For the same reason, VN request 2

is also accepted because the residual resources of the SN can satisfy

the resource requirements of the virtual nodes and links through the

given mapping. 

A VN request may have several mappings, each of which can gen-

erate different levels of resource consumption, which influence the

acceptance of other VN requests. The revenue and cost of a mapping

are first given to describe the influence of different mappings on the

InP. 

3.2. Revenue and mapping cost and VN topology invariance 

For a VN request R , the revenue of all mappings is the same. Rev-

enue is defined as the weighted sum of both the CPU resource re-

quirements of all virtual nodes and the bandwidth requirements of

all virtual links. 

Re v enu(R) = α∗ ∑ 

v ∈ V R 
C R,V 

cpu (v ) + β∗ ∑ 

e ∈ E R 
C R,E 

bw 

(e) (1)
here α, β reflect the relative importance of CPU resources and

andwidth, respectively, to the revenue. 

The cost of a VN request depends on the different mappings onto

he SN. Cost is defined as the weighted sum of both the CPU resource

equirements of all virtual nodes and the reserved bandwidth of all

irtual links. The reserved bandwidth of a virtual link is defined as

he reserved bandwidth of a substrate path, which is the mapping of

his virtual link. Thus, the cost of mapping a VN request is defined as

ollows: 

ost(R) = α∗ ∑ 

v ∈ V R 
C R,V 

cpu (v ) + β∗ ∑ 

e ∈ E R 
C R,E 

bw 

(e)∗∥∥P (e)
∥∥ (2)

here p(e) is the mapped substrate path of a virtual link e , and

 p(e)‖ is the hop length of the path p(e). The path p(e) is determined

y a VNE algorithm, and ‖ p(e)‖ is the inflation degree of a virtual link.

he maximum value of the inflation degrees of all virtual links is de-

ned as the inflation degree of a VN and can be expressed as follows:

= max 
e ∈ E R 

(∥∥p(e)
∥∥)

(3)

The value of δ always reflects the delay requirement of a VN re-

uest and is a relaxed isomorphism constraint of a mapping; δ = 1

ndicates the need for a strict (isomorphic) substrate mapping [36] of

 VN request, and each virtual link is mapped to a substrate edge. In

his case, the cost of a VN request is the same as its revenue. δ > 1

ndicates that a relaxed substrate mapping of a VN request can be

sed. A virtual link can be mapped to a substrate path whose hop

ength is larger than 1. In this case, the endpoints of the substrate path

an satisfy the CPU resource requirements of the two corresponding

irtual nodes. The minimum bandwidth of all the substrate edges of

he mapped substrate path can then satisfy the bandwidth require-

ent of the virtual link. A strict mapping ( δ = 1 ) is sometimes dif-

cult to find, and a relaxed mapping ( δ > 1 ) is always used in the

NE algorithm to improve the acceptance ratio. A long mapped sub-

trate path is beneficial in obtaining the load balance of the whole

N and in avoiding the shared substrate edge of different virtual

inks. 

In this work, the mapped substrate paths of any two virtual links

ust not share a (or some) substrate edge (edges). The reason for this

onstraint is that the VN topology is defined by an SP and indicates

ome requirements of the SP. For example, two or more paths exist-

ng between two virtual nodes reflects the reliability requirement of

he SP network; when a path fails, the other paths can guarantee the

onnectedness of the VN. We call this constraint the VN topology in-

ariance . To achieve this characteristic for our VNE algorithm, some

pecial constraints are introduced to our mathematical model of the

NE problem. 

1) When searching a substrate node for a virtual node, the substrate

node must satisfy two constraints: the residual CPU resource of

this substrate node must not be lower than the CPU resource re-

quirement of the virtual node, and the residual degree of this

substrate node must not be lower than the degree of the virtual

node. 

The residual CPU resource of a substrate node v is defined as 

R cpu (v ) = C S,V cpu (v ) −
∑ 

v ′ �→ v : v ′ ∈ V R : V NRaccepted 

C R,V 
cpu (v ′ ) (4)

where the second part of the formula is the sum of the CPU re-

quirements of all virtual nodes mapped to the node v of all ac-

cepted VN requests. 

The residual degree R degree (v ) of a substrate node v is defined

as the total degree of reduction in the degrees used by the other

links of the current VN request. 

The first constraint is the same as that in the literature, that

is, a virtual node must be located in one substrate node; however,

the second constraint is generally ignored, except [12] . The degree
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constraint is a necessary condition for maintaining the character-

istic of the VN topology invariance. 

2) To search for a loop-free substrate path for a virtual link, two

constraints must be satisfied: the minimum residual bandwidth

of this path must not be lower than the bandwidth requirement

of the virtual link, and any two paths must be guaranteed to be

point-disjoint paths. 

The minimum residual bandwidth of a path is defined as the min-

mum residual bandwidth of all substrate edges that belong to this

ath. 

 bw 

(p(e)) = min (R bw 

(e 1 ), R bw 

(e 2 ), . . . , R bw 

(e n )) (5) 

here p(e) = (e 1 , e 2 , . . . , e n ), e 1 , e 2 , . . . , e n ∈ E S is the loop-free sub-

trate path for the virtual link e ∈ E R , and the residual bandwidth of a

ubstrate edge is defined as 

 bw 

(e) = C S,E 
bw 

(e) −
∑ 

e ′ �→ e : e ′ ∈ V R : V NRaccepted 

C R,E 
bw 

(e ′ ) (6) 

To prevent any two mapped paths from sharing the same sub-

trate edges or nodes, we use the following constraints: 

point − d is j oint(p 1 , p 2 ) (7) 

Two loop-free paths are referred to as point-disjoint paths when

hese two paths do not have the same intermediate points. This con-

traint can guarantee that the two paths do not share an intermediate

oint or an intermediate link. 

The first constraint of a path is the same as that in the literature,

hat is, a virtual link to a path that satisfies the bandwidth require-

ents must be located. The second constraint of a path is to avoid

ny two paths sharing the same substrate edges or nodes. The reason

or the second constraint is also to guarantee that the VN topology

nvariance maintains the reliability of the VNE algorithm. 

According to these introduced constraints and the traditional con-

traints of the VNE problem, the VNE problem is mathematically

odeled in the following section. 

.3. Mathematical model of VNE problem based on VN topology 

nvariance 

A mapping of a VN request to an SN can be described as f : G 

R →
 

S ; each virtual node v ∈ V R is mapped to a substrate node f (v ) ∈ V S ,

nd each virtual link e = (u, v ) ∈ E R is mapped to a loop-free sub-

trate path f (e) = p( f (u), . . . , f (v )). To guarantee the success of this

apping, the constraints of the nodes and paths described in the pre-

ious section must be satisfied. 

The load balance of the whole SN should be also considered to

mprove the acceptance ratio of our VNE algorithm. A balanced SN

ndicates that a high acceptance ratio can be obtained. The utility per-

entage of a substrate node is defined as 

 uti (v ) = 

C S,V cpu (v ) − R cpu (v )
C S,V cpu (v )

(8) 

The utility percentage of a substrate edge is defined as 

 uti (e) = 

C S,E 
bw 

(e) − R bw 

(e)

C S,E 
bw 

(e)
(9) 

The variance of the utility percentage of the nodes and edges of

he SN is used as the load balance factor. 

B(G 

S ) = 

√ √ √ √ 

1 

m − 1 

∑ 

v ∈ V S 

( 

P uti (v ) − 1 

m 

∑ 

v ∈ V S 
P uti (v )

) 2 

+ 

1 

n − 1 

∑ 

e ∈ E S 

( 

P u

here m = | V S | is the number of substrate nodes, and n = | E S | is the

umber of substrate edges. 
− 1 

n 

∑ 

e ∈ E S 
P uti (e)

) 2 

(10) 

To assess how different inflation degrees influence acceptance ra-

io and cost or reflect the delay constraint of a VN request, an inflation

egree constraint is given: for any path p, ‖ p‖ ≤ δ. 

Based on the above analysis, the mathematical model of our VNE

lgorithm for guaranteeing VN topology invariance is given by 

in αCost(R)+ βLB(G 

S ) (11) 

s.t. 

 v ∈ V 

S , 
∑ 

i ∈ V R 
S i, v ≤ 1 (12) 

 i ∈ V 

R , 
∑ 

v ∈ V S 
S i, v = 1 (13) 

 v ∈ V 

S , i, k ∈ V 

R , 

∑ 

j∈ E R 
X j, v 

{ ≤ 1 , if 
∑ 

i ∈ V R 
S i, v = 0 

= Deg(k), if 
∑ 

i ∈ V R 
S i, v = 1 and S k, v = 1 

(14) 

 j = (k, l) ∈ E R , k, l ∈ V 

R , v 1 , v 2 ∈ V 

S , ∑ 

v ∈ V S 
X j, v 

{
= 2 , if S k, v 1 = 1 , S l, v 2 = 1 , (v 1 , v 2 ) ∈ E S 

> 2 , ≤ ρ+1 , if S k, v 1 = 1 , S l, v 2 = 1 , (v 1 , v 2 ) / ∈ E S 
(15) 

 v , u ∈ V 

S , ∀ j ∈ E R , 

∑ 

u ∈ N(v )

X j,u = 

{ 

1 , if S i, v · X j, v = 1 

2 , if (1 − S i, v ) · X j, v = 1 

0 , if X j, v = 0 

(16) 

 i ∈ V 

R , ∀ v ∈ V 

S , C R,V 
cpu (i) · S i, v ≤ R cpu (v ) (17)

 j ∈ E R , ∀ u, v ∈ V 

S , (u, v ) ∈ E S , X j,u · X j, v · C R,E 
bw 

( j) ≤ R bw 

(u, v ) (18)

 i, v ∈ (0 , 1 ) (19) 

 j, v ∈ (0 , 1 ) (20) 

here ρis the inflation factor (the hop count of a mapped substrate

ath) which provides a constraint to the length of a mapped path

or a virtual link, Deg(v ) is the degree of a node v , and N(v ) is the

eighboring nodes set of a node v . 
In the preceding mathematical model, we define two binary ma-

rices S and X . Binary matrix S denotes the mapping relations be-

ween virtual nodes and substrate nodes. Moreover, if a virtual node

 ∈ V R is mapped to a substrate node v ∈ V S , then element S i, v = 1 ,

lse S i, v = 0 . Matrix X denotes the mapping relations between virtual

inks and substrate nodes. Moreover, if a virtual link j ∈ E R uses a sub-

trate node v ∈ V S (the substrate node is on the mapped path of the

irtual link), then element X j, v = 1 , else X j, v = 0 . When the feasible

alues of these two matrices are obtained, the mapping relationship

etween a VN request and an SN is decided. Moreover, the optimiza-

ion objective is used to evaluate the solution. However, the values

ust satisfy some constraints to reflect our ideas. In particular, VN

opology invariance must be guaranteed in the mapping. We intro-

uce the meaning of the optimization objective and each constraint

n the following. 
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For each VN request R , Eq. (11) simultaneously minimizes both

the cost of the mapped SN and the load balance factor of the en-

tire SN, thereby reflecting our greedy idea of accepting successive VN

requests, and α and β reflect our trade-off between these two op-

timization goals. Meanwhile, Eq. (12) and ( 13 ) guarantee that each

virtual node is mapped to one substrate node, and neither node is

mapped to the same substrate node. In addition, Eq. (14) indicates

that when a substrate node is not a mapping of any virtual node, this

substrate node is only used for one virtual link at most, which is a

constraint to guarantee all mapped paths that must be disjointed.

If not, the substrate node is used once by each virtual link and one

endpoint is mapped to this substrate node. Hence, the total number

is equal to the degree of the corresponding virtual node. Based on

Eq. (15) , when a virtual link is mapped to a substrate edge, two sub-

strate nodes are used; otherwise, some intermediate nodes must be

used for this virtual link; and path length is limited to ρ(the number

of nodes that is used by a mapped path for a virtual link is not larger

than ρ + 1 ). Meanwhile, Eq. (16) exerts the constraint that for each

substrate node used by a virtual link, if it is an endpoint of this vir-

tual link, then one of its associated edges is used, and if not, two of its

associated edges must be used. This constraint, which is associated

with that of Eq. (15) , guarantees that a loop free path is used for each

virtual link. Along with the constraint in Eq. (14) , these constraints are

proposed to search disjoint loop free paths for all virtual links, which

can guarantee VN topology invariance. Meanwhile, Eq. (17) exerts the

constraint that the residual CPU resource of the mapped substrate

node can satisfy the CPU requirement of a virtual node, whereas

Eq. (18) guarantees that the residual bandwidth of the mapped

substrate path can satisfy the bandwidth requirement of a virtual

link. 

The preceding mathematical model involves the integer variables

of two binary matrices, and this model is intractable if the scale

of VNE problem is large [35] . Thus, a modified ACO is used in our

paper. 

3.4. Fitness function of the proposed VNE algorithm 

The ACO algorithm [15,16] is an iterated algorithm, and a fitness

function to evaluate a solution is necessary to guide the following it-

eration process. Based on the aforementioned mathematical model

and analysis, a suitable solution is that with minimum substrate cost

and improved load balance. This solution should satisfy the con-

straint of the VN topology invariance. However, this constraint is vi-

olated at the stage of merging the different parts that correspond

to the sub-graphs of the VN into a whole network. Improved solu-

tions would evolve from these invalid solutions. A trade-off between

invariance characteristics and probabilistic opportunity is needed

to obtain enhanced solutions; thus, the number of shared nodes

and links is also introduced into the fitness function as a penalty

factor to select some promising solutions. The fitness function is

defined as 

f (s) = 

α

Cost(R)
+ 

β

LB(G 

S )
+ 

�

ε + num 

(21)

where num is the number of shared nodes and links, ε > 0 is a small

real constant to provide the function with meaning when num is zero,

and α, β, � adjust the relative importance among all the factors. A

solution with larger fitness value is considered as a better solution. 

4. ACO algorithm for the VNE problem based on topology 

decomposition 

In this section, we analyze the difference between ring topol-

ogy and tree topology in the mapping process. We also point out

that general embedding algorithms based on “random walking” do

not reflect such difference and that different mapping ideas and
ethods are thus needed. We then propose a mapping algorithm

ased on topology decomposition, in which the VN topology is

rst decomposed into a combination of a series of ring topolo-

ies and tree topologies. Different mapping methods are then pro-

osed for these topologies to map substrate sub-networks. The

apped substrate sub-networks are then merged into one mapping

olution. 

Different processing sequences may result in different decompo-

ition results, which may lead to different mapping solutions and

hus influence mapping success. Random topology decomposition

nd random walking are adopted to increase the flexibility of our

lgorithm. These random ideas are consistent with the idea of the

andom solution construction of the ACO algorithm. Thus, a modi-

ed ACO algorithm is proposed to realize these random ideas eas-

ly. Adopting the evolutional iteration processes of the ACO algo-

ithm in our modified algorithm can help us obtain satisfactory

erformance. 

.1. Differences between ring topology and tree topology in terms of 

apping process 

In the modified ACO algorithm, different mapping methods are

dopted to map ring and tree topologies. In this section, we ana-

yze the differences between these topologies using a general ran-

om walking construction algorithm. A virtual node is randomly

elected as the start node. A substrate node that satisfies the re-

ource requirement of the virtual node is also randomly selected

s the mapping of this virtual node. Subsequent virtual nodes

re selected one by one according to a certain defined sequence

wide first or deep first traverse). An “adjacent” substrate node

or each virtual node is then searched until all virtual nodes are

apped or until the mapping is considered to have failed. In

his algorithm, the adjacent node can satisfy the resource require-

ents of the virtual node, and the connecting substrate link can

atisfy the bandwidth requirement of the corresponding virtual

ink. 

The definition of “adjacent” varies in tree topology and ring topol-

gy because the former is a diffused topology, whereas the latter is

 closed one. When searching the adjacent node for a tree topol-

gy, only the distance between the searching node and the last se-

ected node is considered. When searching the adjacent node for a

ing topology, other relations are considered in addition to the dis-

ance between the searching node and the last selected node. The

eason for this consideration is that in a ring (closed) topology, the

istance between the last node and the first node is also a part of the

hole network cost. Given this difference, different mapping algo-

ithms are needed for these two topologies when addressing the VNE

roblem. 

Recognizing the ring characteristic of a substrate topology is im-

ortant in efficiently mapping a ring topology request for cost min-

mization and given the constraint of VN topology invariance. A

re-computation algorithm for finding the ring characteristic of a

opology is given in the next section. 

.2. Pre-computation algorithm for the ring characteristic of a topology 

The probability of generating a ring among nodes, called ring char-

cteristic of a topology , is first determined to find a ring topology from

 general topology. In our algorithm, this probability is described by

 data structure, which is provided by a pheromone table. This data

tructure is set up and maintained through the random walking of

nts. This pre-computation can be used in a VN topology to guide the

ecomposing process and in the SN topology to guide the mapping

rocess of each virtual ring topology. 

Each node d maintains a pheromone table (τi j ), where each row

s a destination node that denotes a node in the network, each
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olumn denotes a neighbor node with a link to d, and τi j denotes the

robability of generating a ring between the current node d and the

estination node i through the neighbor node j. Some nodes cannot

enerate a ring given a certain neighbor node; therefore, τi j = 0 is

alid. In some cases, a node is not on any ring; therefore, all τi j = 0 is

lso valid. 

The pre-computation process is the initial process of our algo-

ithm. In this process, the ant colony searches the ring characteristic

f a network topology by cooperatively updating the pheromone ta-

le in each node. When the initial process is finished, the pheromone

ables in all nodes can reflect the ring characteristic of the network

opology. 

Each node periodically sends an ant whose destination is the cur-

ent node. In each node, the ant randomly selects a neighbor node as

he next hop at a uniform distribution and records the passing nodes.

hen the ant reaches node k , it checks whether this node is in its

assed path. If the node is not in its passed path, then it continues.

f node k is in its passed path, a ring is detected, and all the nodes

n this ring are obtained through the ant’s record. For each node in

his ring, the pheromone table is updated using the following rules:

he destination nodes are the nodes in this ring, the neighbor node

s the next node in the ring, and the corresponding pheromone value

f these pairs (destination node and neighbor node) is increased by a

ertain value. After the pheromone tables are updated, the ant con-

inues its walk beginning at node k using another neighbor that has

ot been used as the next node. The destination is still the node that

ends the ant. The ant terminates its walk when it reaches the desti-

ation or when it has used up all neighbor nodes in one node. The

rst condition denotes that the ant has found a ring and that the

heromone tables in all the nodes in the ring are to be updated. In

his case, the ant is deleted. The second condition implies that the

nt cannot return to the start node, in which case the ant is also

eleted. 

After the initial process is finished, the ring characteristics of the

etwork topology are distributed in the resulting pheromone tables

n all nodes. We can then use this knowledge to guide the decompos-

ng or mapping process. 

.3. VNE algorithm based on topology decomposition 

In addressing the VNE problem, an inflation factor δ > 1 allows

 virtual link to be mapped to a loop-free substrate path whose

op length is larger than 1. All intermediate substrate nodes in this

ath are called candidate nodes, which are used in the final solu-

ion. To maintain VN topology invariance, any two virtual links are

apped in such a way that they do not share a common substrate

ode or link. To achieve this objective, we use a random construc-

ion algorithm and label all candidate nodes in this path as used;

uch nodes will no longer be used in the same VN request mapping

rocess. 

To guide the iteration process of an ant colony, each virtual re-

uest also has a pheromone table (φi j ) associated with it. In this

able, each row is a virtual node, and each column is a substrate

ode; φi j is the probability of virtual node i mapped to substrate

ode j. 

Each node of the SN maintains a local statistic structure that

ecords the usage of resources, including the initial CPU resource, the

esidual CPU resource of the current node, and the initial and resid-

al bandwidths of each edge that connects with the current node.

hese values can be used as heuristic information in the mapping

rocess. 

.3.1. Mapping algorithm for a ring structure 

An SN first executes the pre-computation process to obtain its

ing characteristics in support of the ring topology mapping pro-

ess. The resulting pheromone table (τi j ) of the pre-computation
rocess in each node is used to guide the ring topology mapping

rocess. 

The solution construction process of an ant is described below. 

For each virtual ring structure, a virtual node v 0 is randomly se-

ected as the first node, all the other nodes in this ring are arranged

lockwise or counter-clockwise (v 1 , v 2 , . . . , v m 

), and the virtual nodes

re mapped one by one by this order. For the first node v 0 , a substrate

ode u 0 is selected randomly as its mapping in those substrate nodes

hat satisfy the resource requirements of the virtual node ( Section 3 ).

he next virtual node v 1 is obtained, and the unused neighbor nodes

 1 , n 2 , . . . n N of node u 0 are checked. The corresponding pheromone

u 0 , n j > 0 of node u 0 and the residual bandwidth of the link (u 0 , n j )

atisfy the bandwidth requirement of the virtual link (v 0 , v 1 ). One

f these neighbor nodes is then selected randomly as the first can-

idate node c 1 for the virtual node v 1 and then labeled as used. The

nt then proceeds to the candidate node c 1 and checks whether its

esidual resources (CPU resource and degree) can satisfy the resource

equirements of the virtual node v 1 . If such requirements are met,

hen this node is used as the final mapping; otherwise, the above

rocess is performed again until a node u 1 is obtained as the map-

ing for this virtual node v 1 . The candidate nodes c 1 , c 2 , . . . , c k in path

u 0 , u 1 ) to construct the mapping for the virtual link (v 0 , v 1 ) will not

e used any more for the current VN request. In this process, if a node

oes not have this kind of neighbor nodes, then the construction pro-

ess is stopped. The process is repeated until all virtual nodes are

apped. 

We assume that the virtual node v i −1 has been mapped to the

ubstrate node u i −1 . For brevity, we denote u i −1 as c 0 for the vir-

ual node v i ( c 0 is not really a candidate node of the current vir-

ual node but the start node of its mapping process). The probabil-

ty of selecting an unused neighbor node n j of the k th candidate

ode c k as the (k + 1 )th candidate node c k +1 for the virtual node v i is
efined as 

p(c k +1 = n j ) = 

φv i , n j 
αηn j 

βτu 0 , n j 
γ∑ 

n j ∈ N c k 
φv i , n j 

αηn j 
βτu 0 , n j 

γ
(22) 

here N c k 
is the set of unused neighbor nodes of the substrate node

 i −1 ( c 0 ) or the candidate node c k in the path (u i −1 , u i ), and ηn j is the

euristic information, which is defined as 

n j = 

R bw 

(c k , n j )

C 

S , E 
bw 

(c k , n j )
(23) 

According to Eq. (22) , the probability of an SN node to be selected

s a candidate node of a virtual node is decided based on three com-

onents: pheromone value, heuristic information, and ring charac-

eristic value. Pheromone value indicates the probability of a virtual

ode mapping to an SN node, which is updated in previous itera-

ion processes. A higher pheromone value implies that in the pre-

ious iteration processes, numerous ants use the SN node as the

apping of the virtual node, and the SN node has high probability

f being selected as the mapping of the virtual node in the follow-

ng iteration process. Thus, the algorithm is provided with oppor-

unities to obtain an effective solution by exploiting the neighbor-

ng area of the SN node. Heuristic information indicates that an SN

ode connected to an SN edge with large bandwidth is selected at

 high probability. This observation is based on the concept of load

alance. The ring characteristic value reflects the probability of the

N node to form a ring with the initially mapped SN node, which is

omputed in the pre-computation process. A higher ring character-

stic value indicates increased chances to form a ring. If the value is

ero, the SN node cannot be selected as a candidate node. The values

f α, β, γ reflect the relative importance of these three components

espectively. 
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The mapping algorithm for a ring structure is presented as

follows. 

Input: A virtual ring structure G R = (V R , E R ), a substrate network G S = (V S , E S ), 

the pre-computation result (τi j ) in each substrate node 

Output: f : v ∈ V R �→ u ∈ V S , f : (v i −1 , v i ) ∈ E R �→ (u i −1 , c 1 , . . . , c k , u i ), 

or fail (reject the virtual request) 

1. Randomly select a virtual node v 0 , and order all the nodes as v 0 , v 1 , v 2 , . . . , v m 
in a clockwise or counter-clockwise direction; 

2. Randomly select a substrate node u 0 as the mapping of v 0 ; 
3. for each virtual node v i , 

Denote u i −1 as c 0 ; 

k = 0 ;
Repeat 

Check all the unused neighboring nodes of c k , find all the nodes 

n 1 , n 2 , . . . , n N whose corresponding value τu 0 , n j > 0 , and 

R bw (c k , n j ) ≥ C R,E 
bw 

(v i −1 , v i ); 

Randomly select a neighboring node n j as its (k + 1 )th candidate node 

c k +1 using the probability defined in Eq. (22) , and label it as used; 

if the resource of c k +1 can satisfy the requirement of the virtual node v i , 
then f : v i �→ c k +1 = u i , f : (v i −1 , v i ) �→ (u i −1 , c 1 , . . . , c k , u i ), continue; 

else 

k + + ;
if k > δ, break; 

Endif 

Endif 

until u i is found or k > δ

Endfor 

4. Output the mapping or failed results. 

4.3.2. Mapping algorithm for a tree structure 

This algorithm is also called a modified random tree-indexed

mapping algorithm because we use the virtual sub-tree (a node with

its child nodes) structure as index. In each step of our algorithm, a

mapped virtual node whose child nodes have not been mapped is se-

lected randomly; all its child nodes are mapped in one step. This step

is repeated until none mapped nodes have unmapped child nodes.

This algorithm differs from the deep-first or width-first traversal al-

gorithm, which results in a fixed node sequence and proceeds the

nodes in a linear order. The random sequence of sub-trees makes our

algorithm flexible for the match between the VN request topology

and the SN topology. In this way, the acceptance probability of a tree

structure is improved. 

The process of mapping all the child nodes of the selected node in

each step is described as follows. 

Assume that the selected virtual node is v and that it has been

mapped to the substrate node u . The child nodes of node v are

v 1 , v 2 , . . . , v m 

, and the links between v and v i are denoted as l i .

As used in Section 3.3.1, 0 th candidate node c i, 0 for each virtual

node v i (i = 1 , 2 , . . . , m) is defined as c i, 0 = u . The unused neighboring

nodes of node u(c i, 0 ) are u 1 , u 2 , . . . , u n , and the links between u(c i, 0 )
and u j are denoted as e j . According to our mapping model, n ≥ m . We

then map these virtual nodes to the SN. 

First, v 1 , v 2 , . . . , v m 

is sequenced in a decreasing order based on

the bandwidth requirement of l i (i = 1 , 2 , . . . , m). These nodes are

processed in this order. For each child node v i , a node u j is randomly

selected as its candidate mapping node c i, 1 , which can satisfy the con-

dition C R,E 
bw 

(l i ) ≤ R bw 

(e j ). The candidate nodes are labeled as used. If

a virtual node cannot find a candidate node, the algorithm is deemed

to have failed. 

For the k th candidate mapping node c i,k (k = 1 , 2 , . . . , δ − 1 ) of each

virtual node v i (i = 1 , 2 , . . . , m), if C R,V 
cpu (v i ) ≤ R cpu (c i,k ) and De v (v i ) ≤

R deg ree (c i,k ) are satisfied, then k th candidate node c i,k is the finial

mapping node f (v i ) = c i,k . If one of the two conditions is not satis-

fied, the (k + 1 )th candidate mapping node c i,k +1 is selected from the

unused neighboring nodes of c i,k . This process is repeated until a final

mapping node is found for each virtual node or until the algorithm is

considered to have failed. 

The aforementioned algorithm aims to map the child nodes of a

selected virtual node in one step. A substrate mapping tree is ob-
ained when all the virtual nodes are mapped. Given that this algo-

ithm is a random algorithm and fails sometimes, it must be run a

umber of times to obtain an entire solution. We use an ant colony

ith each ant executing this algorithm once and with some of the

nts finding a mapping solution. 

The probability of selecting an unused neighboring node u j of the

 th (k = 0 , 1 , 2 , . . . , δ − 1 ) candidate node c i,k as the (k + 1 )th candi-

ate node c i,k +1 of the virtual node v i is defined by the combination of

he pheromone value and the heuristic information. The pheromone

alue φi j records the knowledge of the last iterations of an ACO al-

orithm to find suitable solutions. A node with a high pheromone

alue is selected with high probability. Meanwhile, heuristic informa-

ion reflecting the status of a node should also be used as a selection

omponent. The heuristic information is defined based on the local

tatistic structure that records the initial bandwidth and the residual

andwidth of a substrate edge e j . 

u j = 

R bw 

(e j )

C S,E 
bw 

(e j )
(24)

The candidate node selection probability is defined as follows: 

p(c i,k +1 = u j ) = 

φv i , u j 
αηu j 

β∑ 

u j ∈ N c i,k 
φv i , u j 

αηu j 
β

(25)

here N c i,k 
is the set of the unused neighboring nodes of the

 th candidate node c i,k , and α, β reflect the relative importance of

heromone and heuristic information in the selection process. 

The mapping algorithm for a tree structure is presented as

ollows. 

Input: A virtual tree structure G R = (V R , E R ), a substrate network G S = (V S , E S )

Output: f : v ∈ V R �→ u ∈ V S , f : (v i −1 , v i ) ∈ E R �→ (u i −1 , c 1 , . . . , c k , u i ), or fail (reject 

the virtual request) 

1. Randomly select a virtual node as the root of the virtual tree structure; 

2. Randomly select a substrate node as its mapping; 

3. repeat 

Randomly select a mapped virtual node v whose child nodes have not been 

mapped; 

Sequence all the child nodes v 1 , v 2 , . . . , v m in a decreasing order based on the

bandwidth requirement; 

for each virtual node v i , 
k = 0 ;
c i,k = u = f (v ); 

Randomly select an unused neighboring node of the k th candidate node 

c i,k as the (k + 1 )th candidate node c i,k +1 for each virtual node v i , which 

satisfies C R,E 
bw 

(l i ) ≤ R bw (e j ); 

endfor; 

for each node v i , 
k = 1 ; 

while (! C R,V 
cpu (v i ) ≤ R cpu (c i,k )or ! De v (v i ) ≤ R deg ree (c i,k )) 

Randomly select an unused neighboring node u j of c i,k as the 

(k + 1 )th candidate node c i,k +1 based on the probability defined in 

Eq. (25) , which also satisfies C R,E 
bw 

(l i ) ≤ R bw (e j ); 

k + + ;
Endwhile 

f (v i ) = c i,k ; 

Endfor 

until all virtual nodes have been mapped 

4. Output the mapping or failed results. 

The failed conditions are not shown to increase the readability

f the algorithm. When the unused neighboring node satisfying the

onstraints for one virtual node does not exist or when the inflation

actor is violated, the algorithm is deemed to have failed. 

.3.3. Entire ACO algorithm for VNE problem 

The entire ACO algorithm for the VNE problem includes four

tages: the initial stage, the decomposition stage, the mapping stage

or all sub-graphs (ring structures and tree structures), and the merg-

ng stage. An iteration process of the ACO algorithm includes the last

hree stages. Each ant decomposes the virtual request into a com-

ination of ring structures and tree structures in the decomposition
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tage, maps these structures into the SN one by one using their in-

ividual algorithms in the mapping stage and merges the mapping

esults into an entire mapping in the substrate using the recorded

ssociations in the merging stage. Some ants may obtain an entire

apping result. We evaluate the result using a fitness function and

pdate the pheromone matrix according to some update rules. Many

teration processes are used to search for the optimal solution until

he terminal condition of the ACO algorithm is reached. 

1. The initial stage uses the pre-computation algorithm for the SN

topology and the network topology of the current virtual request

to find their ring characteristics. 

2. The decomposition stage is used only for a virtual request. An

ant begins at a randomly selected virtual node v whose corre-

sponding pheromone value τv j > 0 (which means that node v is
in some ring structures) and searches for the ring structures in the

VN topology. When a ring is found, it is recorded as a sub-graph

and then pruned. The links that connect the ring and the resid-

ual graph are recorded as the associations and then pruned. The

nodes, which are the two endpoints of these association links are

labeled as leaders; the initial degrees are recorded as the current

degrees for these leaders. The process is continued in this residual

topology until no ring structures exist. The residual topologies are

some tree structures. In this stage, different ants may obtain dif-

ferent decomposition results, and the difference makes the map-

ping process highly flexible, which results in a high acceptance

ratio. 

3. At the mapping stage, all the decomposed sub-graphs are plot-

ted into the SN separately using the algorithms proposed in

Sections 4.3.1 and 4.3.2 . The ring structures are mapped first, fol-

lowed by the tree structures. These structures are mapped one by

one. When a structure is mapped, all the candidate and mapping

nodes in the substrate are labeled as used and are not employed

in other mappings. Through this method, we aim to maintain the

topology invariance of the virtual request in the mapping process.

A virtual node, which is a leader, is randomly selected when map-

ping a ring structure; this node serves as the start node in the

mapping process. When mapping a tree structure, a leader con-

nected with a mapped ring structure is randomly selected, and

the associated leader in the ring structure is used as the root of

this tree structure and as the starting element of the mapping

process. Through this method, some associations are addressed

while other associations might be excluded. These excluded asso-

ciations are mapped into the SN in the merging stage. 

4. At the merging stage, all the mapped substrate sub-graphs are

combined into an entire graph by mapping the excluded associa-

tions. From the above mapping stage, some associations that con-

nect a ring structure and a tree structure are mapped; however,

some of these associations and others that connect two ring struc-

tures are still not mapped. Such associations are mapped in the

merging stage. The key problem is searching for an appropriate

mapping edge or path for a virtual link whose two endpoints are

mapped. This problem can be addressed using a pheromone rout-

ing table, as described by Dorigo [15] . Based on this table, an un-

used node is selected one by one. A long path is selected in some

cases. As the complexity of a virtual request influences the merg-

ing stage, this stage can be the most difficult part of a mapping

process for a virtual request. In this study, we relax the topology

invariance constraint in this stage. When searching for an edge or

a path for the associations, some used nodes can be used again

if unused nodes are unavailable. To overcome the influence of

the relaxing method, we introduce a punish factor in the fitness

function, as described in Section 3.4 . We can maintain the degree

of topology invariance by adjusting the parameters in Eq. (21) .

By giving some pheromone increases to the infeasible mappings,

some mapped ring or tree structures in such mappings can obtain
opportunities to be reused as starting points of searching process

of an ant in the following iteration processes. A feasible mapping

may be determined by exploiting the neighboring areas of these

mapped structures or by simply merging mapped structures from

different inf easible mappings. The relaxed method and penalty

factor provide our algorithm with additional opportunities to de-

termine feasible mappings, which may result in enhanced perfor-

mance. The value of parameter � in Eq. (21) can determine the

value of pheromone increase that will be set for these infeasible

mappings, and a large value indicates a relaxed tendency to reuse

an infeasible mapping. 

The entire mapping algorithm for a general virtual request is

resented as follows. 

Input: A virtual request G R = (V R , E R ), where each node or link has its resource 

requirement C R,V 
cpu (v ) or C R,E 

bw 
(e); 

A substrate network G S = (V S , E S ), where each node or link has its resource 

C S,V cpu (v ) or C S,E 
bw 

(e); 

Output: f : v ∈ V R �→ u ∈ V S , f : (v i −1 , v i ) ∈ E R �→ (u i −1 , c 1 , . . . , c k , u i ), or fails (reject 

the virtual request) 

1. Initialization; (initial stage and the initialization of all parameters); 

2. While (the terminal conditions of the ACO algorithm have not been reached) 

For each ant 

randomly decompose the virtual request, record the sub-structures (ring 

structures and tree structures) and the associations; 

map the sub-structures one by one using their own mapping algorithms; 

merge the mapping structures in the substrate by mapping the 

associations; 

record the mapping results or failures. 

endfor 

evaluate the obtained mapping results by the fitness function; 

update the pheromone values; 

endwhile 

3. Output the best mapping results or failures. 

.4. Pheromone update rules 

When an iteration process finishes, the ants obtain a number of

olutions. These solutions are evaluated by the fitness function de-

ned in Eq. (21) . The knowledge for finding improved solutions is ex-

racted from these solutions and used in the next iteration process.

he knowledge is stored in the pheromone matrix (φi j ), and the ele-

ent φi j indicates that the expectation of the virtual node i is mapped

o the substrate node j to obtain the optimal solution. After one iter-

tion process, the pheromone matrix is updated according to the so-

utions obtained by the ants. We use three pheromone update rules.

he first rule is that the elements of the best solution should result

n a pheromone increase. The second rule is that all the pheromones

hould evaporate to avoid excessive pheromone accumulation. The

hird rule is that pheromone normalization reflects the relative prob-

bility. Thus, the pheromone update rules are defined by the follow-

ng formula: 

i j = (1 − λ)φi j + f (s ∗) × x i j (26) 

here s ∗ is the best valid solution, λ is the evaporation rate of the

heromone, and 

 i j = 

{
1 , if f : i �→ j 
0 , else 

(27) 

re binary variables, which indicate the elements of the best solution.

t the same time, 
 

j 

φi j = 1 , ∀ i (28)

uarantees the normalization of the pheromone. 

. Simulation results and analysis 

The simulation environment, the performance metrics, and the

imulation results are discussed in this section. 
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Fig. 2. VN request acceptance ratio with different VN request arrival ratios. 
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5.1. Simulation environment 

The simulation environment is a modified version of the simula-

tion environment used in [10] . We inherit the realization of the GN-

SP, and ViNE-LB algorithms in their simulation platform [37] . Several

modifications are made. First, to compare optimization performances

fairly, the location information in their algorithm is deleted, which

allows a VN request to be embedded into any suitable part of the

SN. Second, hop count is used as the metric to compute the short-

est path by setting the weight of each link as 1 in their algorithms.

Third, to increase randomization in their algorithm, deterministic and

random node selection is applied with equal probability. Thus, the

name of the compared algorithm is ViNE-LB. Fourth, some synthe-

sized topologies whose construction methods are similar with those

presented in [10] and a practical network topology extracted by Rock-

etfuel [38] are used. Lastly, we modify and introduce several perfor-

mance metrics to reflect the node and link utilization and stress. 

The synthesized SN topologies used in our algorithm are gener-

ated by the Georgia Tech Internetwork Topology Models (GT-ITM)

tool [39] with 50 nodes in a 25 × 25 grid. Each pair of SN nodes is

connected randomly with a probability of 0.5 or 0.8 in different SN

topologies to reflect the density of a network topology. The practical

SN topology used is the Sprint network topology which is extracted

by Rocketfuel. We only extract the backbone nodes and the links be-

tween them to form our SN network which has 377 nodes and 1450

edges (that is, some difference with [38] ). The CPU capacity value of

each SN node and the bandwidth value of each SN link are uniformly

distributed between 50 and 100. The VN request topologies are also

generated by the same tool with 2 to 10 nodes in the same grid. Each

pair of VN nodes is connected randomly with a probability of 0.5. The

CPU and bandwidth requirements of the VN nodes and VN links are

uniformly distributed from 0 to 20 and from 0 to 50, respectively. 

The VN requests arrive according to a Poisson process. We adjust

the average rate from 4 to 8 each 100 time units to change the num-

bers of VN requests in the network for the synthesized SN topologies.

The average rate is 40 for each 100 time units for the practical Sprint

topology. The lifespan of a VN request is exponentially distributed,

and the average is 10 0 0 time units. The simulation time is fixed at

50,0 0 0 time units. 

Our proposed algorithm is called ACO-TD (ACO algorithm based on

Topology Decomposition). To evaluate the performance of our pro-

posed algorithm, two algorithms are used as counterparts: ViNE-LB

[10] : deterministic or randomized node mapping with MCF link map-

ping; GN-SP [6] : greedy node mapping with shortest path link map-

ping. 

We realize ACO-TD uniquely in a PC. Our proposed algorithm is

run on Ubuntu 12.04, and coded by C ++ . Moreover, the compiler is

g ++ 4.6. We use the same files of SN topologies, and VN requests

as input for our algorithm and the compared algorithms. Then we

run them separately, output the results to corresponding files, and

compare their performances based on the output files. 

5.2. Performance metrics 

We define the following performance metrics to examine the per-

formance of our algorithm and the two algorithms used for compari-

son. 

1) Acceptance ratio : Measures the percentage of total VN requests

accepted by an algorithm over a given period [10] . 

2) Average generated revenue: Measures the generated revenue of

an embedding algorithm over time, which is defined according to

[10,20,22] . 

3) Provision cost : Measures the provisioning cost of embedding a

VN request (defined in Eq. (2) ) [10] . 
4) Node (link) utilization: Measures the CPU (bandwidth) usage

percentage of an SN node (link) when an algorithm embeds some

VN requests in the SN [10] . 

5) Standard deviation of node (link) utilization: Evaluates the

characteristics of the load balancing of an embedding algorithm.

These load balancing factors can reflect the fluctuation degree of

the resource usage of nodes and links. A low value of this metric

equates to great balancing, which also indicates that a large num-

ber of VN requests can be accepted and that a high revenue can be

obtained [4] . 

6) Average node (link) stress: Defines the average times a VN re-

quest uses a node or a link [6] . To maintain the characteristics of

the topology invariance of a VN request, the value of our proposed

algorithm is always 1.0. This value is larger than 1 for the other al-

gorithms. This condition might be the cause of the low utilization

of some nodes or links. 

.3. Simulation results 

In the following simulation, the edge inflation factor is set to δ ≤ 3 ,

hich means that a virtual link is restricted to be mapped to a sub-

trate path whose hop length is no longer than 3. The reason for this

ecision is that in our simulation environments larger inflation factor

annot help the algorithm obtain better performance obviously. 

.3.1. Simulation results on the synthesized SN topologies 

In this section, the synthesized SN topologies with 50 nodes are

sed in the simulation. 

Fig. 2 shows the acceptance ratio of the three algorithms when

he average number of VN requests changes from 4 to 8 each 100 time

nits. The tendency of the acceptance ratio is lower with a large num-

er of VN requests because the SN has resource constraints. When too

uch virtual requests require mapping to the SN, a large number of

equests are rejected. The figure also shows that our algorithm has

 higher acceptance ratio than the other algorithms. Therefore, the

roposed algorithm allocates resources more efficiently and accepts

ore requests compared with the other algorithms. This finding is

ttributed to the random but shortest paths used, which increases

he flexibility of the mapping process, and to the topology invariance,

hich avoids the repeatable use of some substrate resources as hot

pots. This condition favors the mapping of other requests. 

Fig. 3 shows the average generated revenue by the accepted VN

equests over the simulation period. The average generated revenue

ends to be high given a large number of VN requests. This condition
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Fig. 3. Average generated revenue with different VN request arrival ratios. 

Fig. 4. Average cost of a VN request with different VN request arrival ratios. 
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Fig. 5. Node utilization of the SN with different VN request arrival ratios. 

Fig. 6. Link utilization of the SN with different VN request arrival ratios. 
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s true because several appropriate requests will be mapped given the

eneration in certain ranges of a large number of VN requests whose

equirements are randomly uniform. A high generated revenue, along

ith a high acceptance ratio, indicates an enhanced performance.

he tendency of the generated revenue to increase with the num-

er of requests is more evident in our algorithm than in the other

lgorithms. Such result, along with the high acceptance ratio, shows

he efficient use of the resources of the SN through efficiently used

ubstrate nodes and links. 

Fig. 4 shows the average provision cost of a VN request. The cost

ecreases as the number of VN requests increases because many op-

ortunities for appropriately mapping to the SN become available as

he number of requests generated in some ranges increases. The GN-

P algorithm, greedy node selection followed by shortest path selec-

ion, causes some SN nodes and links disconnected rapidly and makes

he following requests difficult to find a mapping of less cost. The

iNE-LB algorithm, splittable flow along with load balance, uses some

onger paths and seperates one virtual link onto several SN paths to

btain better performance than the GN-SP algorithm. However, the

dea of splittable flow also breaks the SN resources into fragments.

ur algorithm gains less provision cost compared with the other al-

orithms because the proposed algorithm decomposes the whole VN

equest into ring structures and tree structures and maps them using
ifferent algorithms based on the characteristics of topology invari-

nce. This mapping process decreases the interference between the

wo types of structures and results in a highly detailed mapping. An-

ther reason for our algorithm obtaining better performance relies on

he evolutionary iteration processes of the ACO algorithm. 

Figs. 5 and 6 show the node utilization and link utilization, respec-

ively. The proposed algorithm shows higher node utilization than the

ther algorithms and a link utilization similar to that of ViNE-LB. This

nding indicates that the topology invariance of our algorithm can

mprove the utilization of substrate nodes and offers other opportu-

ities for mapping subsequent VN requests. The low node utilizations

f the compared algorithms and their link utilizations similar to that

f the proposed algorithm indicate that some substrate links are used

everal times when mapping a VN request. The sharing of the same

inks not only violates the topology invariance of the VN request, but

lso makes some nodes connected with these links have less oppor-

unities to be used. In this case, isolating the SN and influencing the

apping of the next VN requests become highly likely. 

Figs. 7 and 8 respectively show the standard deviation of the node

tilization and link utilization of the SN. These definitions can de-

cribe the load balance of the nodes and links. The standard devi-

tion of the node utilization of our algorithm is lower than that of

he other algorithms. Furthermore, the standard deviation of the link
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Fig. 7. Standard deviation of node utilization with different VN request arrival ratios. 

Fig. 8. Standard deviation of link utilization with different VN request arrival ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Average node stress with different VN request arrival ratios. 

Fig. 10. Average link stress with different VN request arrival ratios. 

Table 1 

The evolutionary capacity of ACO-TD. 

Iteration times Acceptance ratio Revenue Cost 

1 0 .502 1 .653 219 .087 

2 0 .613 1 .825 206 .435 

10 0 .847 2 .812 184 .276 

Table 2 

Effectiveness of the components of fitness function. 

Acceptance ratio Revenue Cost 

α = 0 0 .751 2 .134 203 .125 

β = 0 0 .803 2 .512 192 .381 

� = 0 0 .826 2 .724 186 .253 

 

a  

A  

e  

h  

a

utilization of our algorithm is similar to that of the other algorithms.

This finding indicates that compared with the other algorithms, our

algorithm can use substrate nodes more efficiently and achieve a

higher acceptance ratio and larger generated revenue. In addition,

the proposed algorithm maps the VN requests more flexibly and ef-

ficiently compared with the other algorithms by analyzing the topol-

ogy characteristics of the SN and VN requests. 

We define the average node stress and link stress of a VN request

to reflect the topology invariance of the algorithms. For the GN-SP

and ACO-TD algorithms, these metrics are easy to compute because a

single path is used for each virtual link. For the ViNE-LB algorithm,

we only count the shared nodes and links among different virtual

links, whereas the nodes and edges shared by multiple paths for a

virtual link are disregarded because we mainly focus on topology in-

variance in this study. Figs. 9 and 10 show the results. Our algorithm

has the constant value of 1.0, whereas the other algorithms have a

larger value. This condition indicates that some nodes and links are

used relatively frequently when mapping a VN request. The analy-

sis of the SN and the VN requests used in our algorithm provides a

unique opportunity to improve the performance of the mapping pro-

cess. The ACO algorithms for ring structures and tree structures can

take advantage of this improved mapping process through random-

ization and evolution. 
The optimization results of one, two, and ten iteration processes

re shown in Table 1 to illustrate the evolutionary capacity of the

CO-TD algorithm. The generation rate of VN requests is set to 4

ach 100 time units. The results indicate that performance can be en-

anced through multiple randomization and pheromone-based iter-

tions. 
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Table 3 

Comparative performance on hub-and-spoke topologies. 

Acceptance ratio Revenue Cost 

GN-SP 0 .617 1 .932 198 .103 

ViNE-LB 0 .802 2 .751 176 .213 

ACO-TD 0 .819 2 .809 183 .516 

Table 4 

Comparative performance on mesh topologies. 

Acceptance ratio Revenue Cost 

cp = 0 . 5 SN-SP 0 .492 1 .657 232 .825 

ViNE-LB 0 .612 2 .482 225 .165 

ACO-TD 0 .407 1 .513 217 .324 

cp = 0 . 8 SN-SP 0 .514 1 .741 203 .143 

ViNE-LB 0 .637 2 .592 218 .954 

ACO-TD 0 .726 2 .967 193 .251 

Table 5 

Comparative performance on sprint. 

Acceptance ratio Revenue Cost 

GN-SP 0 .748 22 .745 201 .728 

ViNE-LB 0 .826 29 .385 182 .465 

ACO-TD 0 .867 31 .946 170 .946 
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Fig. 11. Evolutionary iteration process of ACO-TD. 
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Table 2 shows the effectiveness of different components in the fit-

ess function (which is defined in Eq. (21) ). α = 0 , β = 0 , or � = 0 in-

icates that the cost factor, load balance factor, or penalty factor, re-

pectively, is not used to evaluate a mapping solution. The generation

ate of the VN requests is set to 4 each 100 time units. The simula-

ion results indicate that the cost factor has the most influence on the

ptimization performance, whereas the penalty factor has the least

ontribution. 

To illustrate the performance of ACO-TD and its counterpart algo-

ithms on specific VN requests, two simulations are conducted, and

he generation rate of VN requests is set to 4 each 100 time units.

able 3 presents the simulation results on hub-and-spoke VN topolo-

ies, which exhibit the same tendencies. Table 4 presents the re-

ults on the fully meshed VN requests. In this simulation, we use

wo SN topologies, and set the connection probabilities cp between

ny two nodes to 0.5 and 0.8, which present a regular random topol-

gy ( cp = 0 . 5 ) and a denser topology ( cp = 0 . 8 ). When the SN with

p = 0 . 5 is used, the ViNE-LB algorithm outperforms the other algo-

ithms, and the ACO-TD algorithm exhibits the worst performance.

his finding is attributed to the ACO-TD algorithm keeping the topol-

gy invariance, thus the nodes and edges in the SN which are not in

ny ring cannot be used. When the SN with cp = 0 . 8 is used, the ACO-

D algorithm exhibit the best performance, because numerous rings

xist in a dense network. 

.3.2. Simulation results on the practical sprint network topology 

In this section, the practical sprint network topology, which is ex-

racted by Rocketfuel, is used as the SN. We only use the backbone

odes and the edges connected to them. Given that the network is

ignificantly larger than the previous synthesized SN, the generation

ate of the VN requests is set to 40 each 100 time units to generate

ufficient VN requests. 

Table 5 shows the simulation results of this SN. Although the val-

es change, the same tendency remains. 

.4. Explanation of some ACO-TD components 

In this section, we explain some components of our ACO-TD algo-

ithm. We particularly focus on the benefit of the evolutionary itera-

ion process of ACO to improve performance, the benefit of random-
zation in the mapping process of a tree structure, and the achieve-

ent of topology invariance. Finally, we present the parameters se-

ection strategy. For clarity, the resource requirements of VN requests

nd SN resources are disregarded if they are not related to our discus-

ion. 

A. The evolutionary iteration processes and decomposition may exhibit

enhanced performance. In Fig. 11 b, the VN request is divided into

a ring structure and a tree structure. During an iteration process,

some ants search for mappings for the ring and tree structures.

One ant may find a mapping shown in Fig. 11 d, and the provi-

sion cost is 8 (for brevity, we use hop counts as the cost). An-

other ant may find another mapping shown in Fig. 11 e, and the

provision cost is also 8. The two mappings are not optimal. How-

ever, the mapped partitions in these two mappings will gain some

pheromone increase, which indicates that they will be searched at

a high probability in the following iteration. With the help of ran-

domization and pheromone, in the following iteration process an

ant may find an optimal mapping shown in Fig. 11 f, and the provi-

sion cost is 7. Thus, the iteration process based on randomization

and pheromone update is evolutionary and can help identify ef-

fective solutions. 

B. Random selection of sub-tree and root may increase the flexibility of

mapping process of a tree structure. We randomly select the root

of a tree or a sub-tree to provide multiple starting points, which

result in different search sequences. Meanwhile, we map a sub-

tree in one stage to search an area (a block with some nodes and

their links) simultaneously. Fig. 12 provides an example to illus-

trate the benefit of our algorithm. When an ant maps the VN with

a BFS (broad first search) sequence and a greedy resource idea,

the mapping fails, as shown in Fig. 12 c. If another ant considers

sub-tree mapping and performs random selection, it will obtain a

feasible mapping shown in Fig. 12 d. With multiple ants that start

at a stochastic node and conduct a random search sequence, the

probability to obtain a feasible solution is high. A tree structure

has increased chances of being accepted by obtaining a feasible

mapping. 
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Fig. 12. Random sequence for tree mapping. 

Fig. 13. Benefit of topology invariance. 
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C. Benefit of VN topology invariance to resource management and pro-

tocol deployment in an SN. In addition to the aforementioned re-

liability consideration for topology invariance, resource manage-

ment and protocol deployment are also problems in an SN. If an

SN supports the splitting data transmission, the mapping result

by ViNE-LB algorithm is shown in Fig. 13 c. When this mapping

is realized in the SN, numerous states are eventually employed

in some nodes when a connection-oriented protocol is used (e.g.,

MPLS) for multiple paths established for a virtual link, or loops

will occur when a connectionless protocol is used (e.g., IP). In the

figure, a loop exists between SN node B and C. These will trans-

late more complicated schemes for an SN to avoid state scalability

problem or loop-free mechanisms. Loops may also occur in an SN

in other algorithms that use the shortest path for a virtual link

when there are shared mapped nodes or links between any two

virtual links. 

D. Selection of parameters. The optimal selection of parameters in

each ACO algorithm is another NP-hard problem. Different com-

binations of parameter values significantly influence the explo-

ration and exploitation behavior of ants, and eventually, optimiza-

tion performance [40] . In our pervious works [41] , we model the

optimal parameter selection problem as determining an optimal

point in multi-dimensional space, and present an algorithm based

on PSO to gain a near optimal combination of parameter values.

These values depend on the instances of an optimization prob-

lem. Thus, the parameter selection algorithm is used as a part of

our ACO algorithm. 

6. Conclusion 

We modeled the VNE problem based on virtual network topology

invariance to guarantee the reliability requirements of SPs. We ana-

lyzed the differences between ring structure and tree structure map-

ping process and proposed a modified ACO algorithm for the VNE
roblem based on graph decomposition. We also obtained the ring

haracteristics of the SN and VN requests through pre-computation

nd decomposed each VN request into a combination of ring struc-

ures and tree structures by using pre-computation results. We de-

igned different mapping algorithms for the ring and tree structures.

he ring structure mapping algorithm uses the ring characteristic of

he SN, and the tree structure mapping algorithm uses a tree-indexed

andom walking construction process. These algorithms can use the

opology characteristics efficiently for an enhanced performance. 

To satisfy the requirement of the VN in the VN topology, we pro-

osed the term “topology invariance,” which avoids the unnecessary

haring of nodes and links. Candidate nodes were used to achieve

opology invariance. The proposed algorithm not only guarantees

opology invariance but also improves the load balance of the SN to

ccept several future VN requests. 
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