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a b s t r a c t 

Deploying minimum sensors to construct a wireless sensor network such that critical areas in a sensing field 

can be fully covered has received much attention recently. In previous studies, a sensing field is divided into 

square grids, and the sensors can be deployed only in the center of the grids. However, in reality, it is more 

practical to deploy sensors in any position in a sensing field. Moreover, the number of sensors may be limited 

due to a limited budget. This motivates us to study the problem of using limited sensors to construct a wire- 

less sensor network such that the total weight of the covered critical square grids is maximized, termed the 

weighted-critical-square-grid coverage problem, where the critical grids are weighted by their importance. 

A reduction, which transforms our problem into a graph problem, termed the constrained node-weighted 

Steiner tree problem, is proposed and used to solve our problem. In addition, three heuristics, including the 

greedy algorithm (GA), the group-based algorithm (GBA), and the profit-based algorithm (PBA), are proposed 

for the constrained node-weighted Steiner tree problem. Simulation results show that the proposed reduc- 

tion with the PBA provides better performance than the others. 

© 2015 Elsevier B.V. All rights reserved. 
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1. Introduction 

Due to the growth and advances in networking and electronic

hardware techniques, wireless sensor networks have developed

rapidly. In a wireless sensor network, many small sensors are de-

ployed in a field to detect the environment and collect sensing data,

such as temperature, humidity, or light data. Each sensor can process,

compute, and transfer data to others in wireless sensor networks.

Many applications based on the wireless sensor networks have been

developed [1–6] , such as medical safety protection, fire and explosion

monitors, and environment monitors. Because the efficiency of the

wireless sensor network is often related to the sensor deployment,

the coverage problem has thus become a hot research topic, and is

studied in this paper. 

In the coverage problem, barrier coverage is a typical problem

for applications for theft prevention and illegal intruder monitoring.

For these applications, when an illegal intruder comes into a barrier

coverage area, at least one sensor in the area will detect the event

to ensure area security. In [7] , methods are proposed to select and
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ctivate minimum sensors from sensors that are randomly deployed

n a field to form barrier coverage. In [8] , a sink-constructed barrier

overage method is proposed to construct virtual barrier coverage for

ptimizing the detection degree, detection quality, and transmission

atency of a wireless sensor network. In [9,10] , methods are proposed

o schedule mobile sensors to construct barrier coverage in order to

liminate blind spots. In [11] , the deployment for barrier coverage is

tudied when sensors are dropped from an aircraft along a given path.

he study shows that the barrier coverage of line-based normal ran-

om offset distribution provides better performance than that of the

oisson model. 

Full coverage is an important problem for applications that con-

inuously monitor an entire area [12,13] . In [14] , efficient methods

re proposed to schedule sensors to be activated or inactivated to

orm a wireless sensor network that can cover the entire sensing

eld. In [15,16] , a deployment-polygon-based method is proposed to

chieve full coverage and k-connectivity. In addition, their proposed

ethod has been proved to have optimal solutions for constructing

ireless sensor networks under different ratios of the sensor trans-

ission range to the sensor sensing range. In [17] , the method that

ses a combination of static sensors and a mobile-robot is proposed

o deploy sensors such that the sensing field can be fully covered.

n [18] , methods are proposed to activate sensors whose total cost is

inimized to fully cover the sensing field. In [19] , sensor deployment
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Fig. 1. Example of the weighted-critical-square-grid coverage problem. (a) A sensor field divided into 9 grids of squares with length � , where R s = 

√ 
3 

2 
�, R t = �, every grid is labeled 

with a pair of numbers, four critical grids are labeled with (1, 1), (2, 1), (2, 3), and (3, 1) are shown in green, the weight of each critical grid is shown in red, and hollow circles are 

the points that are allowed to deploy sensors. (b) A wireless sensor network constructed by 7 sensors denoted by solid circles, where an edge between two sensors represents that 

the two sensors can communicate with each other. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ethods are proposed to fully cover an irregular sensing field by

ividing the field into many sub-regions. 

Recently, a new coverage problem that studies deploying mini-

um sensors to cover critical areas in a sensing field has received

uch attention. In [20] , a critical-square-grid coverage problem is

roposed and shown to be NP-complete. In the problem, a sensing

eld is divided into square grids. The problem is to deploy minimum

ensors in the center of grids to cover all critical grids. In [21] , an

pproximation algorithm, termed the Steiner-tree-based critical grid

overing algorithm (STBCGCA), is proposed for the problem. In addi-

ion, in [22] , improved methods based on STBCGCA are proposed to

inimize the number of deployed sensors. Note that in [21,22] , the

ensors must be deployed in the center of square grids. 

In reality, it is more practical to deploy sensors in any position in

 sensing field. In addition, sensors are often characterized by var-

ous features, such as environmental detection, intruder detection,

nd nuclear, biological, chemical (NBC) attack detection [23–25] , due

o different monitoring objectives. The prices of the sensors may be

ostly such that only limited sensors can be used for deployment

26–28] . That is, the critical areas in the field may not be fully cov-

red. Therefore, critical areas must be weighted by their importance.

he more important a critical area, the higher the weight of the area.

or example, in a wilderness ecological observation network [21,29] ,

he nests of animals are more important than their foraging areas.

his motivates us to study a coverage problem, termed the weighted-

ritical-square-grid coverage problem. In the problem, the sensing

eld is divided into weighted square grids. Although the number of

ensors and the locations of points that are allowed to deploy sen-

ors are given, the problem is to find a connected wireless sensor

etwork such that the total weight of the covered critical grids is

aximized. In the following sections, Section 2 illustrates the prob-

em definition and its hardness. A reduction transformed from the

eighted-critical-square-grid coverage problem into a general graph

roblem, termed the constrained node-weighted Steiner tree prob-

em, is proposed in Section 3 to solve the coverage problem. In addi-

ion, three centralized heuristics, termed the greedy algorithm (GA),

he group-based algorithm (GBA), and the profit-based algorithm

PBA), for the constrained node-weighted Steiner tree problem are

roposed in Section 4 . The simulations are discussed in Section 5 to

how the performance of our proposed methods. Section 6 concludes

he paper. 

. Problem definition and its hardness 

We first introduce our problem, termed the weighted-critical-

quare-grid coverage problem, in Section 2.1 . In Section 2.2 , we
iscuss the hardness of the weighted-critical-square-grid coverage

roblem. 

.1. The weighted-critical-square-grid coverage problem 

In this paper, the sensing model in the wireless sensor network is

ssumed to be a binary sensor model [18,22,30] , in which the prob-

bility of detecting an event by a sensor u is 1 if the event is within

 ’s sensing range R s ; otherwise, the probability is 0. In addition, the

ommunication model is assumed to be a unit disk graph model [31] ,

n which a sensor u can receive messages sent from sensor v if u is

ithin the transmission range R t of v . Let Field denote a sensing field,

hich is divided into grids of squares that have length � . In Field , the

et of points that are allowed to deploy sensors are denoted by Lo-

ation . In addition, the set of grids that belong to critical areas are

enoted by a weighted set Critical , where every grid c ∈ Critical has a

eight w(c) ∈ Z + . Hereafter, grids in Critical are called critical grids.

ere, a critical grid is said to be covered by a sensor v deployed on a

oint in Location if the grid is fully within v ’s sensing range [32] . Our

roblem, termed the weighted-critical-square-grid coverage prob- 

em, is the problem of finding a connected wireless sensor network

 in Field , with at most n sensors, to cover critical grids in Critical

f the maximum total weight, while the instance, containing R s , R t ,

 , Field , Critical , and Location , is given. The weighted-critical-square-

rid coverage problem is illustrated as follows: 

INSTANCE: R s , R t , n , Field , Critical , Location , and a positive integer k .

QUESTION: Does there exist a connected wireless sensor network

 in Field , with at most n sensors deployed on the points in Location ,

uch that W covers critical grids in Critical with total weight no less

han k ? 

Take Fig. 1 , for example. Fig. 1 a shows an instance of the weighted-

ritical-square-grid coverage problem, containing R s , R t , Field , Critical ,

ocation , where R s = 

√ 

3 
2 �, R t = �, Field is the sensor field, Critical =

(1, 1), (2, 1), (2, 3), (3, 1)}, w ((1, 1)) = 9, w ((2, 1)) = 4, w ((2, 3)) = 7,

 ((3, 1)) = 5, Location = { p 1 , p 2 , p 3 , p 4 , p 5 , p 6 , p 7 , p 8 , p 9 }. Here let n =
 in the instance. Fig. 1 b shows a connected wireless sensor network

 that has 7 sensors deployed on points p 1 , p 2 , p 4 , p 6 , p 7 , p 8 , and p 9 ,

espectively. In addition, the total weight of the critical grids covered

y W is 25. 

.2. The hardness of the weighted-critical-square-grid 

overage problem 

We show that the weighted-critical-square-grid coverage prob-

em is NP-complete here. Because the problem of finding a mini-

um size connected wireless sensor network to fully cover all critical
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Fig. 2. Example of the constrained node-weighted Steiner tree problem. (a) An undirected weighted graph G ( V G , E G , w c , w p ), where there are 13 nodes in V G , t 1, 1 , t 2, 1 , t 2, 3 , and t 3, 1 

are terminal nodes, w c ( v 1 ) = w c ( v 2 ) = w c ( v 3 ) = w c ( v 4 ) = w c ( v 5 ) = w c ( v 6 ) = w c ( v 7 ) = w c ( v 8 ) = w c ( v 9 ) = 1, w p ( t 1, 1 ) = 9, w p ( t 2, 1 ) = 4, w p ( t 2, 3 ) = 7, and w p ( t 3, 1 ) = 5. (b) A tree T ( V T , E T ) 

in G , where V T = { v 1 , v 2 , v 4 , v 6 , v 7 , v 8 , v 9 , t 1, 1 , t 2, 1 , t 2, 3 , t 3, 1 } and E T = {( v 1 , v 2 ), ( v 2 , v 6 ), ( v 6 , v 9 ), ( v 4 , v 7 ), ( v 7 , v 8 ), ( v 8 , v 9 ), ( v 1 , t 1, 1 ), ( v 4 , t 2, 1 ), ( v 6 , t 2, 3 ), ( v 7 , t 3, 1 )}. 
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grids [20,22] , termed the critical-square-grid coverage problem, is

similar to the weighted-critical-square-grid coverage problem, we

use it to show the hardness of that problem in Theorem 1 . In this

problem [20,22] , a sensor field, denoted by F , is divided into grids

of squares that have length � ′ . The field is allowed to deploy sen-

sors on grid points each located on the center of a grid. The set of

grids in F required to be fully covered by sensors is denoted by C .

Let the sensing and transmission ranges of a sensor be R ′ s and R ′ t , re-

spectively. The critical-square-grid coverage problem is illustrated as

follows: 

INSTANCE: R ′ s , R ′ t , F , C , and a positive integer n ′ . 
QUESTION: Does there exist a connected wireless sensor network

W , with no more than n ′ sensors deployed on the grid points in Field ,

such that W fully covers all critical grids in C ? 

Theorem 1. The weighted-critical-square-grid coverage problem is

NP-complete. 

Proof. Because the weighted-critical-square-grid coverage problem

clearly belongs to the NP class, it suffices to show that the instance

of the critical-square-grid coverage problem is solvable if, and only if,

the instance of the weighted-critical-square-grid coverage problem

is solvable. Given any instance of the critical-square-grid coverage

problem, including R ′ s , R ′ t , F , C , and n ′ , the instance of the weighted-

critical-square-grid coverage problem is created as follows: R s = R ′ s ,
R t = R ′ t , n = n ′ , F ield = F , Location is the set of all grid points in F ,

Critical = C in which for every c ∈ Critical w(c) = 1 , and k is the num-

ber of critical grids in Critical . It is obvious that the reduction can

be performed in polynomial time. In addition, it is clear that the in-

put instance is solvable if, and only if, the output instance is solv-

able. Because the critical-square-grid coverage problem [20,22] is NP-

complete, this completes the proof. �

3. A reduction in the weighted-critical-square-grid coverage 

problem 

Our idea for solving the weighted-critical-square-grid coverage

problem is to transform the problem into a more general graph prob-

lem, termed the constrained node-weighted Steiner tree problem.

Once a solution to the constrained node-weighted Steiner tree prob-

lem is obtained, the inverse transform is used to get the solution to

the weighted-critical-square-grid coverage problem. The constrained

node-weighted Steiner tree problem and its hardness are introduced

in Section 3.1 . In Section 3.2 , the reduction in the weighted-critical-

square-grid coverage problem is described. 
.1. The constrained node-weighted Steiner problem and its hardness 

Let G ( V G , E G , w c , w p ) be an undirected weighted graph, where V G

or E G ) is a set of nodes (or edges), every node v ∈ V G has a non-

egative cost value and a non-negative profit value, and w c ( v ) (or

 p ( v )) denotes the cost (or profit) value of node v for v ∈ V G . In G ,

everal nodes are special nodes, termed terminal nodes. Let S be a

et of terminal nodes in G . Given G ( V G , E G , w c , w p ), S , and a positive

nteger budget , the constrained node-weighted Steiner tree problem

s finding a tree T ( V T , E T ) in G such that v is a leaf in T for any v ∈
 T ∩ S , the total cost of nodes in V T is not greater than budget , and

he total profit of nodes in V T is maximum, which is illustrated as

ollows: 

INSTANCE: G ( V G , E G , w c , w p ), S , budget , and a positive integer x . 

QUESTION: Does there exist a tree T ( V T , E T ) in G such that v is a

eaf in T for any v ∈ V T ∩ S , the total cost of nodes in V T is not greater

han budget , and the total profit of nodes in V T is not less than x ? 

Take Fig. 2 , for example. Fig. 2 a shows an instance of the con-

trained node-weighted Steiner tree problem, containing G ( V G , E G ,

 c , w p ) and S , where V G = { v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 , t 1, 1 , t 2, 1 ,

 2, 3 , t 3, 1 }, E G = {( v 1 , v 2 ), ( v 1 , v 4 ), ( v 2 , v 3 ), ( v 2 , v 5 ), ( v 2 , v 6 ), ( v 3 , v 6 ), ( v 4 ,

 5 ), ( v 4 , v 7 ), ( v 5 , v 7 ), ( v 5 , v 8 ), ( v 6 , v 9 ), ( v 7 , v 8 ), ( v 8 , v 9 ), ( v 1 , t 1, 1 ), ( v 4 ,

 2, 1 ), ( v 6 , t 2, 3 ), ( v 7 , t 3, 1 )}, S = { t 1, 1 , t 2, 1 , t 2, 3 , t 3, 1 }. Here let budget = 7

n the instance. Fig. 2 b shows a tree T ( V T , E T ) in G whose total cost and

otal profit are 7 and 25, respectively, where V T = { v 1 , v 2 , v 4 , v 6 , v 7 , v 8 ,

 9 , t 1, 1 , t 2, 1 , t 2, 3 , t 3, 1 } and E T = {( v 1 , v 2 ), ( v 2 , v 6 ), ( v 6 , v 9 ), ( v 4 , v 7 ), ( v 7 ,

 8 ), ( v 8 , v 9 ), ( v 1 , t 1, 1 ), ( v 4 , t 2, 1 ), ( v 6 , t 2, 3 ), ( v 7 , t 3, 1 )}. In addition, v is a

eaf in T for any v ∈ V T ∩ S . 

Next, we use the node-weighted Steiner tree with a budget prob-

em in [33] to show the hardness of the constrained node-weighted

teiner tree problem in Theorem 2 . Let G 

′ (V G ′ , E G ′ , w c ′ , w p ′ ) be an

ndirected weighted graph, where V G ′ (or E G ′ ) is a set of nodes (or

dges) and w c ′ (v ) (or w p ′ (v )) denotes the cost (or profit) value of

ode v for v ∈ V G ′ . In the node-weighted Steiner tree with a budget

roblem, given G 

′ (V G ′ , E G ′ , w c ′ , w p ′ ) and a positive integer b , the prob-

em is finding a tree T ′ (V T ′ , E T ′ ) in G 

′ such that the total cost of nodes

n V T ′ is not greater than b and the total profit of nodes in V T ′ is maxi-

um, which is illustrated as follows: 

INSTANCE: G 

′ (V G ′ , E G ′ , w c ′ , w p ′ ), b , and a positive integer x ′ . 
QUESTION: Does there exist a tree T ′ (V T ′ , E T ′ ) in G 

′ such that the

otal cost of nodes in V T ′ is not greater than b and the total profit of

odes in V T ′ is not less than x ′ ? 

heorem 2. The constrained node-weighted Steiner tree problem is

P-complete. 
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roof. Because it is clear that the constrained node-weighted Steiner

ree problem belongs to the NP class, it suffices to show that the

nstance of the node-weighted Steiner tree with a budget problem

s solvable if, and only if, the instance of the constrained node-

eighted Steiner tree problem is solvable. Given any instance of

he node-weighted Steiner tree with a budget problem, including

 

′ (V G ′ , E G ′ , w c ′ , w p ′ ), b , and x ′ . the instance of the constrained node-

eighted Steiner tree problem is created as follows: G ( V G , E G , w c , w p )

 G 

′ (V G ′ , E G ′ , w c ′ , w p ′ ), S = ∅ , budget = b , and x = x ′ . It is obvious that

he reduction can be performed in polynomial time. In addition, it

s clear that the input instance is solvable if, and only if, the output

nstance is solvable. Because the node-weighted Steiner tree with a

udget problem [33] is NP-complete, this completes the proof. �

.2. A reduction 

In the reduction, our idea is to first transform the weighted-

ritical-square-grid coverage problem into the constrained node-

eighted Steiner tree problem. In the transformation, while given

he instance of the weighted-critical-square-grid coverage problem,

ncluding R s , R t , n , Field , Critical , and Location , the instance of the con-

trained node-weighted Steiner tree problem, including a graph G ( V G ,

 G , w c , w p ), a set of terminal nodes S , and budget , is constructed. Once

 solution to the constrained node-weighted Steiner tree problem is

btained, the solution is used to select the points that are allowed

o deploy sensors for the weighted-critical-square-grid coverage

roblem. 

In the construction of G , each critical grid c ∈ Critical is denoted

y a terminal node whose cost value and profit value are equal to 0

nd the weight of c , that is, w ( c ), respectively; each point p ∈ Loca-

ion is denoted by a non-terminal node whose cost value and profit

alue are equal to 1 and 0, respectively; there is a link between a

on-terminal node and a terminal node if the sensor deployed on

he point denoted by the non-terminal node can cover the critical

rid denoted by the terminal node; there is a link between two non-

erminal nodes if two sensors deployed on the points denoted by the

wo non-terminal nodes can communicate with each other. In addi-

ion, S is set to the set of all terminal nodes in G , and budget is set to

 . Based on G , S , and budget , we can apply the algorithm proposed in

ection 4 to find a tree T ( V T , E T ) for the constrained node-weighted

teiner tree problem. Finally, we select the points that are denoted by

he non-terminal nodes in T to deploy sensors. Given R s , R t , n , Field ,

ritical , and Location , the reduction, which constructs a set of points,

ermed DEP , for deploying sensors, is described in detail as the fol-

owing three steps: 

( 1) Construction of G ( V G , E G , w c , w p ), a set of terminal nodes S ,

nd budget : Let V 1 be the set of nodes t i , j for all critical grid ( i , j ) ∈
ritical , and let V 2 be the set of nodes v x for all points p x in Location .

he cost value and the profit value of each node t i , j in V 1 are assigned

 and w (( i , j )), respectively; the cost value and the profit value of each

ode v x in V 2 are assigned 1 and 0, respectively. Let V G = V 1 ∪ V 2 . Let

 1 be the set of edges ( v x , t i , j ) for all points p x in Location and critical

rid ( i , j ) ∈ Critical , such that the sensor deployed on point p x covers

he critical grid ( i , j ). Let E 2 be the set of edges ( v x , v y ) for all points

 x and p y in Location , such that the distance between p x and p y is not

reater than R t . Then, E G = E 1 ∪ E 2 . In addition, S is set to V 1 , and

udget is set to n . 

( 2) Construction of constrained node-weighted steiner tree

 : Once G , S , and budget are obtained, the algorithms proposed in

ection 4 can be applied to construct a constrained node-weighted

teiner tree T ( V T , E T ) in G . 

( 3) Formation of set DEP : DEP is the set of points p x for all v x ∈ T . 

Take Fig. 2 , for example. The first step is constructing the graph G ,

s shown in Fig. 2 a, based on the instance of Fig. 1 a. In constructing

 , t 2, 3 with w c ( t 2, 3 ) = 0 and w p ( t 2, 3 ) = 7 is in V 1 because critical grid

2, 3) is in Critical ; v 6 with w c ( v 6 ) = 1 and w p ( v 6 ) = 0 is in V 2 because
oint p 6 is in Location . In addition, ( v 6 , t 2, 3 ) is in E 1 because the sensor

eployed on point p 6 can cover the critical grid (2, 3); ( v 3 , v 6 ) is in E 2 
ecause the distance between p 3 and p 6 is smaller than R t . The second

tep is constructing a constrained node-weighted Steiner tree T , such

s the tree in Fig. 2 b. Note that t 1, 1 , t 2, 1 , t 2, 3 , and t 3, 1 are leaves in T .

inally, we have DEP = { p 1 , p 2 , p 4 , p 6 , p 7 , p 8 , p 9 } because v 1 , v 2 , v 4 , v 6 ,

 7 , v 8 , and v 9 are in T . 

.3. Analysis of the reduction 

In the following, Theorem 3 shows that sensors deployed on the

oints selected by the proposed reduction method can form a con-

ected wireless sensor network. In addition, Theorem 4 shows that by

ur reduction method, the instance of the weighted-critical-square-

rid coverage problem has an optimal solution if the corresponding

nstance of the constrained node-weighted Steiner tree problem has

n optimal solution. 

heorem 3. Sensors deployed on the points in DEP obtained by the

eduction method form a connected wireless sensor network. 

roof. Because each terminal node in the constrained node-

eighted Steiner tree T ( V T , E T ) constructed by the reduction method

s a leaf, the tree after removing all terminal nodes, termed

 

′ (V T ′ , E T ′ ), is still a tree. We have that T ′ is connected and V T ′ ∩ 

 = ∅ . In addition, because a link existing between two non-terminal

odes implies that two sensors deployed on the points denoted by

he two non-terminal nodes can communicate with each other, we

ave that the network formed by the sensors deployed on the points

 x for all v x ∈ T ′ is connected, and thus, this completes the proof. �

heorem 4. The weighted-critical-square-grid coverage problem has an

ptimal solution obtained by our reduction method if the constrained

ode-weighted Steiner tree problem has an optimal solution. 

roof. Given any instance I of the weighted-critical-square-grid cov-

rage problem, we can construct the corresponding instance I ′ of the

onstrained node-weighted Steiner tree problem with the reduction

ethod. Let T OPT denote the optimal solution to the instance I ′ ; let

EP T OPT 
denote the solution to the instance I that is obtained by the

eduction method based on T OPT . Because T OPT is a constrained node-

eighted Steiner tree whose terminal nodes are leaves, and the profit

alue of each terminal node is 1 in G , the total profit of nodes in T OPT ,

enoted by w p ( T OPT ), is equal to the total weight of the critical grids

overed by the sensors deployed on the points in DEP T OPT 
, denoted by

(DEP T OPT 
). It suffices to show that DEP T OPT 

is an optimal solution. 

Assume that DEP T OPT 
is not optimal. We have that w ( DEP OPT ) >

(DEP T OPT 
), where DEP OPT denotes the optimal solution to the in-

tance I . We can construct a constrained node-weighted Steiner tree,

 DEP OPT 
, based on DEP OPT as the following three steps. In the first step,

ecause the sensors deployed on the points in DEP OPT can form a con-

ected wireless sensor network, a spanning tree T 1 in G is constructed

y spanning v x for all p x ∈ DEP OPT . Because the sensors deployed on

he points in DEP OPT can cover a set of critical grids, called C , a critical

rid in C always can be covered by a sensor deployed on a point in

EP OPT . In the second step, for every ( i , j ) ∈ C , an edge ( v x , t i , j ) is added

nto T 1 in G such that p x is in DEP OPT . Finally, T DEP OPT 
is the tree T 1 . It is

asy to verify that T DEP OPT 
is a constrained node-weighted Steiner tree.

t is clear that w c (T DEP OPT 
) ≤ budget because the cost value of every

on-terminal (or terminal) node is 1 (or 0) in G , where w c (T DEP OPT 
)

enotes the total cost of nodes in T DEP OPT 
. In addition, it is also clear

hat w p (T DEP OPT 
) = w ( DEP OPT ) because the profit value of every non-

erminal node is 0 in G , where w p (T DEP OPT 
) denotes the total profit

f nodes in T DEP OPT 
. Because w ( DEP OPT ) > w(DEP T OPT 

), w p (T DEP OPT 
) =

 ( DEP OPT ), and w p ( T OPT ) = w(DEP T OPT 
), we have that w p (T DEP OPT 

) >

 p ( T OPT ). This implies that the constrained node-weighted Steiner

ree T DEP OPT 
, which is a solution to the instance I ′ , has a higher profit
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Algorithm 1 Greedy Algorithm ( G ( V G , E G , w c , w p ), budget ). 

1: Let src be the terminal node u with a highest profitvalue in V G 
2: Let T (V T , E T ) be a tree with a node src 

3: Let tot _ cost be the cost of src 

4: while tot _ cost < budget do 

5: Let W be the set of the terminal nodes in V G − V T with highest 

profit values 

6: if W = ∅ then 

7: return T 

8: end if 

9: while W 
 = ∅ do 

10: Let dst be the node in W that has a minimum hop distance 

to src in G 

11: Let P be the shortest path from src to dst in G such that the 

nodes on the shortest path, excluding the end-points, are non- 

terminal nodes 

12: Let add be the total cost of the nodes on P − V T 
13: if tot _ cost + add ≤ budget then 

14: Add P into T 

15: t ot _ cost ← t ot _ cost + add 

16: W ← W − { dst} 
17: else 

18: return T 

19: end if 

20: end while 

21: src ← dst 

22: end while 

23: return T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A constrained node-weighted Steiner tree T ( V T , E T ) constructed by the greedy 

algorithm in the graph G shown in Fig. 2 a, where V T = { v 1 , v 2 , v 6 , t 1, 1 , t 2, 3 }, and E T = 

{( v 1 , t 1, 1 ), ( v 1 , v 2 ), ( v 2 , v 6 ), ( v 6 , t 2, 3 )}. 
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value than T OPT , which constitutes a contradiction. This completes

the proof. �

4. Algorithms for the constrained node-weighted steiner 

tree problem 

Because the constrained node-weighted Steiner tree problem is

NP-complete as shown in Theorem 2 , we propose three heuristics for

the problem. Here, the greedy algorithm (GA), the group-based al-

gorithm (GBA), and the profit-based algorithm (PBA) are presented,

respectively, in Sections 4.1 –4.3 . 

4.1. Greedy algorithm 

In the greedy algorithm, our idea is first to select a node u ∈ V G 

with the highest profit value. Let u be a tree T ( V T , E T ) by itself, and src

be set to u . Then we iteratively merge the tree with other terminal

nodes that have next higher profit values if the total cost of the nodes

that are merged or included in the tree does not exceed budget . Let dst

be set to the terminal node that has the next higher profit value and

the minimum hop distance to src in G . Also let P = (v 1 , v 2 , . . . , v n ) be

the shortest path from src to dst in G such that the nodes on the short-

est path, excluding the end-points, are non-terminal nodes, where

v 1 = src and v n = dst . In each iteration, the shortest path P is merged

in T , that is, V T = V T ∪ { v 1 , v 2 , . . . , v n }, and E T = E T ∪ {( v 1 , v 2 ), ( v 2 , v 3 ),

. . . , (v n −1 , v n )}, if the total cost of the nodes in V T ∪ { v 1 , v 2 , . . . , v n }
does not exceed budget . src is set to dst if the terminal nodes with

the same profit values as dst are all merged in the tree T . Algorithm 1

shows the greedy algorithm in detail. In addition, Theorem 5 shows

the time complexity of the greedy algorithm. 

Theorem 5. The time complexity of the greedy algorithm is bounded in

O ( mn 2 ), where n and m denote the numbers of nodes and terminal nodes

in G , respectively. 

Proof. It is clear that m ≤ n because n and m denote the numbers

of nodes and terminal nodes in G , respectively. In addition, we know
hat the time complexity of finding the shortest path in an undirected

raph is O (| E G |) [34] , where | E G | denotes the number of edges in E G .

ecause | E G | ≤ n(n −1 )
2 and at most m terminal nodes are merged in

he tree T , the time complexity of the greedy algorithm is bounded in

 ( mn 2 ), which completes the proof. �

Take Fig. 3 , for example. Assume that budget is 5. The greedy al-

orithm initially constructs a one-node tree T ( V T , E T ) containing node

 1, 1 because t 1, 1 has the highest profit value 9 in graph G shown in

ig. 2 a. Let src be t 1, 1 . In iteration one, let dst be node t 2, 3 because t 2, 3

as the next higher profit value 7. Let P = ( t 1, 1 , v 1 , v 2 , v 6 , t 2, 3 ) be the

hortest path from src to dst in G . Because the total cost of the nodes

n { t 1, 1 } ∪ { t 1, 1 , v 1 , v 2 , v 6 , t 2, 3 } is 3 and is less than budget , P can be

erged in T . Then V T becomes { t 1, 1 , v 1 , v 2 , v 6 , t 2, 3 }, and E T becomes

( v 1 , t 1, 1 ), ( v 1 , v 2 ), ( v 2 , v 6 ), ( v 6 , t 2, 3 )}. src is then set to t 2, 3 . In iteration

wo, let dst be node t 3, 1 because t 3, 1 has the next higher profit value

. Let P = ( t 2, 3 , v 6 , v 9 , v 8 , v 7 , t 3, 1 ) be the shortest path from src to dst in

 . Because the total cost of the nodes in { t 1, 1 , v 1 , v 2 , v 6 , t 2, 3 } ∪ {( t 2, 3 ,

 6 , v 9 , v 8 , v 7 , t 3, 1 )} is 6 and is more than budget , P cannot be merged

n T , and the algorithm terminates. Finally, V T = { v 1 , v 2 , v 6 , t 1, 1 , t 2, 3 },

nd E T = {( v 1 , t 1, 1 ), ( v 1 , v 2 ), ( v 2 , v 6 ), ( v 6 , t 2, 3 )}. 

.2. Group-based algorithm 

In each iteration of the greedy algorithm, the shortest path in G

rom a node in V T to the terminal node that has the next higher profit

alue is considered to be added in T . However, the addition of the

ath may incur a higher total cost of nodes in V T because of its longer

ath length. Take Fig. 3 , for example. In iteration two of the greedy

lgorithm, V T = { v 1 , v 2 , v 6 , t 1, 1 , t 2, 3 }, src is t 2, 3 , and dst is t 3, 1 . When

he shortest path P = ( t 2, 3 , v 6 , v 9 , v 8 , v 7 , t 3, 1 ) from src to dst in G is

onsidered to be added in T , the total cost of nodes in V T will increase

rom 3 to 6 because of the addition of v 7 , v 8 , and v 9 . However, if we

onsider another path P ′ that has a minimum distance from the ter-

inal node that has the next higher profit value to any node in V T ,

hat is, P ′ = ( t 3, 1 , v 7 , v 5 , v 2 ), the total cost of nodes in V T will just in-

rease from 3 to 5 because of the addition of v 5 and v 7 . The tree that

s merged with path P ′ is shown in Fig. 4 . This motivates us to pro-

ose the group-based algorithm, which is extended from the greedy

lgorithm. In the group-based algorithm, we treat the nodes in V T as

 group. In addition, in each iteration the shortest path in G from the

erminal node that has the next higher profit value to the group, that

s, any node in V T , is considered to be added into V T . The detailed

roup-based algorithm is shown in Algorithm 2 . The time complexity

f the group-based algorithm is provided in Theorem 6 . 

heorem 6. The time complexity of the group-based algorithm is

ounded in O ( m 

2 n 2 ), where n and m denote the numbers of nodes and

erminal nodes in G , respectively. 
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Fig. 4. A constrained node-weighted Steiner tree T ( V T , E T ) constructed by the group- 

based algorithm in the graph G shown in Fig. 2 a, where V T = { v 1 , v 2 , v 5 , v 6 , v 7 , t 1, 1 , t 2, 3 , 

t 3, 1 }, and E T = {( v 1 , v 2 ), ( v 2 , v 6 ), ( v 2 , v 5 ), ( v 5 , v 7 ), ( v 1 , t 1, 1 ), ( v 6 , t 2, 3 ), ( v 7 , t 3, 1 )}. 

Algorithm 2 Group-Based Algorithm ( G ( V G , E G , w c , w p ), budget ). 

1: Let u be the terminal node with a highest profit value in V G 
2: Let T (V T , E T ) be a tree with a node u 

3: Let tot _ cost be the cost of u 

4: while tot _ cost < budget do 

5: Let W be the set of the terminal nodes w ∈ V G − V T such that 

w.p ≥ v .p for all terminal nodes v ∈ V G − V T 
6: if there exists a terminal node dst ∈ W such that d ist G (d st, T )

≤ dist G (w, T ) for all w ∈ W , where d ist G (d st, T ) (or d ist G (w, T )) 

denotes the minimum hop distance from dst (or w ) to any node x 

∈ V T in G then 

7: Let src be the node in V T having a minimum hop distance 

to dst 

8: Let P be the shortest path from src to dst in G such that the 

nodes on the shortest path, excluding the end-points, are non- 

terminal nodes 

9: Let add be the total cost of the nodes in S P − V T , where S P 
denotes the set of the nodes on P 

10: if tot _ cost + add ≤ budget then 

11: Add P into T 

12: tot _ cost ← tot _ cost + add 

13: else 

14: return T 

15: end if 

16: else 

17: return T 

18: end if 

19: end while 

20: return T 
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Algorithm 3 Profit-Based Algorithm ( G ( V G , E G , w c , w p ), budget ). 

1: Let u be the terminal node with a highest profit value in V G 
2: Let T (V T , E T ) be a tree with a node u 

3: Let tot _ cost be the cost of u 

4: while tot _ cost < budget do 

5: Evaluate every terminal node u ’s u.ap 

6: Let W be the set of the terminal nodes w ∈ V G − V T such that 

w.ap ≥ v .ap for all terminal nodes v ∈ V G − V T 
7: if there exists a terminal node dst ∈ W such that d ist G (d st, T )

≤ dist G (w, T ) for all w ∈ W , where d ist G (d st, T ) (or d ist G (w, T )) 

denotes the minimum hop distance from dst (or w ) to any node x 

∈ V T in G then 

8: Let src be the node in V T having a minimum hop distance 

to dst 

9: Let P be the shortest path from src to dst in G such that the 

nodes on the shortest path, excluding the end-points, are non- 

terminal nodes 

10: Let add be the total cost of the nodes in S P − V T , where S P 
denotes the set of the nodes on P 

11: if tot _ cost + add ≤ budget then 

12: Add P into T 

13: t ot _ cost ← t ot _ cost + add 

14: else 

15: return T 

16: end if 

17: else 

18: return T 

19: end if 

20: end while 

21: return T 
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roof. In each iteration of the group-based algorithm, at most m ter-

inal nodes are considered to find the minimum hop distance to any

ode in T . Therefore, it requires at most O ( mn 2 ) to find suitable src and

st for each iteration. Because at most m iterations are in the group-

ased algorithm, the time complexity of the group-based algorithm

s bounded in O ( m 

2 n 2 ). This completes the proof. �

.3. Profit-based algorithm 

In either the greedy or group-based algorithm, we always try to

erge an existing tree with the terminal node that has the next

igher profit value in each iteration. However, the selected terminal

ode may be far from the tree, that is, a longer path is required to be

erged in the tree, which may incur a much higher total cost of nodes

n V T but increase little total profit. To avoid this scenario, we define a

ew metric for every terminal node u , called the average profit value

er incremental cost of u , denoted by u . ap . Let T and T ′ be the trees
efore and after the terminal node u is merged by the shortest path

n G from a node in T to u . The u . ap is defined as follows: 

.ap = 

prof it(T ′ )
cost(T ′ ) − cost(T )

, (1) 

here profit ( T ′ ) denotes the total profit of nodes in T ′ , and cost ( T ) (or

ost ( T ′ )) denotes the total cost of nodes in T (or T ′ ). By the metric, we

herefore propose the profit-based algorithm, which is extended from

he group-based algorithm. In each iteration of the profit-based algo-

ithm, we evaluate every terminal node u ’s u . ap . Then the shortest

ath in G from the terminal node, which has the next higher aver-

ge profit value per incremental cost, to any node in the existing tree

 ( V T , E T ), is considered to be added into T . The detailed profit-based

lgorithm is shown in Algorithm 3 . The time complexity of the profit-

ased algorithm is provided in Theorem 7 . 

heorem 7. The time complexity of the profit-based algorithm is

ounded in O ( m 

2 n 2 ), where n and m denote the numbers of nodes and

erminal nodes in G , respectively. 

roof. In each iteration of the profit-based algorithm, except for the

valuation of the average profit value, the other part requires O ( mn 2 )

ue to the similarity of the group-based algorithm. In addition, to

valuate every node u ’s u . ap , the shortest path from u to an exist-

ng tree in G is required to be found and evaluated. Because there

re at most m terminal nodes, it requires O ( mn 2 ) for the evaluation.

e thus have that it requires O ( mn 2 ) + O ( mn 2 ) = O ( mn 2 ) for each

teration. Because at most m iterations are in the profit-based algo-

ithm, the time complexity of the profit-based algorithm is bounded

n O ( m 

2 n 2 ). This completes the proof. �

Take Fig. 5 , for example. Assume that budget is 5. Initially, a one-

ode tree T ( V T , E T ) containing node t 1, 1 is constructed. In iteration

ne, we have that t 2, 1 . ap = 6.5, t 2, 3 . ap = 5.33, and t 3, 1 . ap = 4.67.

o evaluate t 2, 1 . ap , the cost ( T ) and cost ( T ′ ) must be evaluated first,
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Fig. 5. A constrained node-weighted Steiner tree T ( V T , E T ) constructed by the profit- 

based algorithm in the graph G shown in Fig. 2 a, where V T = { v 1 , v 2 , v 4 , v 6 , v 7 , t 1, 1 , t 2, 1 , 

t 2, 3 , t 3, 1 }, and E T = {( v 1 , v 2 ), ( v 1 , v 4 ), ( v 2 , v 6 ), ( v 4 , v 7 ), ( v 1 , t 1, 1 ), ( v 4 , t 2, 1 ), ( v 6 , t 2, 3 ), ( v 7 , 

t 3, 1 )}. 
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Fig. 6. Comparison of the instances that have R s = 

√ 

2 , R t = 1, n = 75, and the number 

of critical grids ranges from 50 to 150. 
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2 , R t = 1, the number of critical 

grids is equal to 100, and n ranges from 25 to 125. 
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where T ′ is the tree T after merging the terminal node t 2, 1 by the

shortest path in G . Clearly, the shortest path from t 2, 1 to T is ( t 2, 1 ,

v 4 , v 1 , t 1, 1 ). Therefore, cost ( T ) is 0 and cost ( T ′ ) is 2 because v 1 and v 4
are non-terminal nodes. In addition, profit ( T ′ ) is 9 + 4 = 13 because

t 2, 1 is included in T ′ . Therefore, t 2, 1 . ap = 

13 
2 −0 = 6.5. The t 2, 3 . ap and

t 3, 1 . ap can be evaluated in the same way. Because t 2, 1 . ap is greater

than t 2, 3 . ap and t 3, 1 . ap , we merge T with t 2, 1 . Therefore, dst and src

are set to t 2, 1 and t 1, 1 , respectively. Then the edges not in T but on

the shortest path in G from t 2, 1 to t 1, 1 , including ( v 4 , t 2, 1 ), ( v 1 , v 4 ),

and ( v 1 , t 1, 1 ), are inserted into T . Then we have that V T = { t 1, 1 , v 1 , v 4 ,

t 2, 1 }, E T = {( v 1 , t 1, 1 ), ( v 1 , v 4 ), ( v 4 , t 2, 1 )}, and tot _ cost = 2. Following

the same process, in iteration two, we insert the edges on the short-

est path in G from t 3, 1 to v 4 because t 3, 1 . ap = 18 and t 2, 3 . ap = 10. In

iteration three, we insert the edges on the shortest path in G from t 2, 3 

to v 1 because tot _ cost = 5 is not greater than budget . Finally, the tree

is constructed as shown in Fig. 5 . 

5. Performance evaluation 

Because the simulators, including avrora, castalia, tossim, and

cooja [35–37] , are often used to simulate physical, MAC, and network

layer protocols for an existing wireless sensor networks, in this pa-

per, we thus develop another simulator implemented by C language

to evaluate the performance of the proposed methods for construct-

ing new wireless sensor networks. In the simulation, the sensing

field was divided into 20 × 20 grids with side length 1. The critical

grids were randomly selected from the grids in the sensing field. The

weight on each critical grid was randomly chosen from the interval

[1, 100]. In addition, 800 points that were allowed to deploy sensors

were randomly chosen within the sensing field. There were at most n

sensors that could be deployed in the sensing field, where each sen-

sor had sensing range R s and transmission range R t . In the simula-

tion, we evaluated the performance with our proposed methods, in-

cluding Reduction+GA, Reduction+GBA, and Reduction+PBA, where

the Reduction+GA, the Reduction+GBA, and the Reduction+PBA de-

noted the proposed reductions by applying the greedy algorithm, the

group-based algorithm, and the profit-based algorithm, respectively.

The total weight of the critical grids covered by deployed sensors was

evaluated with the proposed methods in Sections 5.1 –5.4 . In addi-

tion, the total number of deployed sensors was evaluated with the

proposed methods in Section 5.5 , when n was set large enough such

that all critical grids can be covered. Finally, we have provided a sim-

ulation to compare our proposed methods with an exhaustive search

[38,39] in Section 5.6 . Although the exhaustive search can find an op-

timal solution for the weighted-critical-square-grid coverage prob-

lem, it requires exponential time. The following empirical data were

obtained by averaging the data of 100 sensing fields. The confidence
nterval for the 95% confidence level of the total weight of the critical

rids covered by deployed sensors (or the total number of deployed

ensors) is within 5% of the mean value. 

.1. Number of critical grids 

Fig. 6 illustrates the results in the sensing fields that have the

umber of critical grids ranging from 50 to 150 when R s = 

√ 

2 ,

 t = 1, and n = 75. The Reduction+PBA provides a better performance

han the Reduction+GA and the Reduction+GBA. This is because the

BA considers using minimum sensors to achieve great total profit for

olving the constrained node-weighted Steiner tree problem. Thus,

he maximum total profit is achieved by the Reduction+PBA while

 fixed number of sensors are used. In addition, the Reduction+GA

rovides the worst performance among the proposed methods. This

tems from the fact that in each iteration of the GA, the addition of

 path to a tree may cause higher total cost. Therefore, more sensors

re required to increase total profit in the Reduction+GA. In addition,

he higher the number of critical grids, the higher the total weight

f the proposed methods. This is because it has more probability of

overing critical grids by the deployed sensors. 

.2. Number of sensors 

Fig. 7 shows the results when R s = 

√ 

2 , R t = 1, the number of crit-

cal grids is equal to 100, and n ranges from 25 to 125. The Reduc-

ion+PBA and the Reduction+GA provide the best and the worst per-

ormances among the proposed methods. In addition, the higher the

umber of sensors, the higher the total weight of the proposed meth-

ds. This is because more sensors can be used to cover critical grids. 
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.3. Sensing range 

Fig. 8 illustrates the results in the sensing fields that have R s rang-

ng from 

√ 

2 to 2 
√ 

2 when R t = 1, n = 75, and the number of critical

rids is equal to 100. Clearly, the Reduction+PBA provides the best

erformance among the proposed methods. In addition, the larger

he sensing range of each sensor, the higher the total weight that

an be achieved by the proposed methods. This is because when the

ensing range increases, the deployed sensors have more probability

f covering more critical grids. 

.4. Transmission range 

Fig. 9 shows the results in the sensing fields that have R t ranging

rom 1 to 3 when R s = 

√ 

2 , n = 75, and the number of critical grids

s equal to 100. The Reduction+PBA has the best performance. In ad-

ition, the larger the transmission range, the higher the total weight

chieved by the proposed methods. This is because fewer sensors are

equired to keep the sensors connected, and thus, more sensors can

e used to cover critical grids. 

.5. Number of deployed sensors versus number of critical grids 

Fig. 10 illustrates the results in the sensing fields that have the

umber of critical grids ranging from 50 to 150 when R s = 

√ 

2 , R t =
, and n is set large enough such that all critical grids can be covered.

he Reduction+PBA requires fewer sensors to cover all critical grids

han the Reduction+GA and the Reduction+GBA. This is because the

eduction+PBA considers using fewer sensors to cover critical grids
nd form a connected wireless sensor network, as discussed before.

n addition, as we expected, the more critical grids, the more sensors

re required to be deployed in our proposed methods. 

.6. Optimal solution versus proposed methods 

Fig. 11 shows the results in the sensing fields, each divided into 3 ×
 grids with side length 1, when R s = 

√ 

2 , R t = 1, the number of critical

rids is equal to 5, and n ranges from 2 to 12. The weight on each crit-

cal grid was randomly chosen from the interval [1, 10]. In addition,

8 points that were allowed to deploy sensors were randomly chosen

ithin the sensing field. In Fig. 11 , the Reduction+PBA provides better

erformance than the Reduction+GBA and the Reduction+GA, as ob-

erved in Fig. 7 . In addition, the result of the Reduction+PBA is close

o that of the optimal solution. 

. Conclusion 

In the paper, we investigated the weighted-critical-square-grid

overage problem, which is the problem of using limited sensors

o construct a wireless sensor network such that the total weight

f the covered critical square grids is maximized. The problem was

hown to be NP-complete. In addition, a reduction that transforms

he weighted-critical-square-grid coverage problem into the con-

trained node-weighted Steiner tree problem was proposed. Once a

olution to the constrained node-weighted Steiner tree problem is

btained, the solution can be used to select the points that are al-

owed to deploy sensors for the weighted-critical-square-grid cover-

ge problem. We also showed that the constrained node-weighted
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Steiner tree problem is NP-complete. In addition, the greedy algo-

rithm (GA), the group-based algorithm (GBA), and the profit-based

algorithm (PBA), were proposed for the constrained node-weighted

Steiner tree problem. 

In the simulation, we evaluated the performance with our pro-

posed methods, including Reduction+GA, Reduction+GBA, and Re-

duction+PBA, in terms of the total weight of the critical grids covered

by deployed sensors, where the Reduction+GA, the Reduction+GBA,

and the Reduction+PBA denoted the proposed reductions by apply-

ing the greedy algorithm, the group-based algorithm, and the profit-

based algorithm, respectively. The simulation results showed that

the Reduction+PBA had a higher total weight than the others. We

also evaluated the performance with the proposed methods in terms

of the number of deployed sensors if the number of sensors was

large enough to cover all critical grids. The simulation results showed

that the Reduction+PBA used fewer sensors than the others for

deployment. 
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