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a b s t r a c t

Incentive mechanisms are critical for the success of mobile crowdsensing (MCS). Existing mechanisms mainly

focus on scenarios where all sensing tasks are belong to a monopolistic campaign, while ignoring the situa-

tion where multiple campaigns coexist and compete for potential sensing capacities. In this paper, we study

mechanisms in a two-sided heterogeneous MCS market with multiple requesters and users, where each re-

quester publishes a sensing campaign consisting of various tasks whereas each user can undertake multiple

tasks from one or more campaigns. The mechanism design in such a market is very challenging as the de-

mands and supplies are extremely diverse. To fairly and effectively allocate resources and facilitate trades, we

propose a novel truthful double auction mechanism named TDMC. By introducing a carefully designed virtual

padding requester, a two-stage allocation approach and corresponding pricing schemes for both requesters

and users are developed in TDMC. Through theoretical analysis, we prove that TDMC has the properties of

truthfulness, individual rationality, budget balance, computational tractability, and asymptotic efficiency as

the workload supply compared with demand becomes more and more sufficient. To make TDMC more adapt-

able, we further introduce two more flexible bid profiles for both requesters and users, and two adjustment

methods to control the sensing quality. Extensive simulations demonstrate the effectiveness of TDMC.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Mobile Crowdsensing (MCS) [1] has become a promising paradigm

o solve large-scale and complex data collection problems by lever-

ging pervasive sensor-equipped mobile devices of the crowd (e.g.,

martphones, Tablet PCs, wearable devices). In a MCS platform, a

ig data collection problem is usually divided into small tasks, thus

obile device users can contribute their relatively small sensing ca-

acities to accomplish the problem in a crowdsourcing way. So far,

number of crowd sensing applications have been developed for a

ariety of purposes, such as traffic information collecting [2], envi-

onment monitoring [3], crowdsourced commercial activities [4], and

o on.

One critical issue in practical MCS applications is how to stimulate

sers to participate in the sensing campaigns, as executing sensing

asks will undoubtedly consume physical resources of devices, time,

nd even human intelligence. Similar to the employment relationship
∗ Corresponding author. Tel.: +86 10 62565533; fax: +86 10 62533449.
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n a labor market, appropriate incentives are needed to compensate

sers in order to recruit enough sensing workforce.

However, current incentive mechanisms are mainly based on a

onopoly campaign scenario, which means they simply assume all

ensing tasks are belong to a globally unique campaign, and all par-

icipating users are working for the same campaign. This may be rea-

onable for some specific-purpose applications, but things become

ifferent in an integrated MCS platform. In such a platform, many kinds

f MCS applications are available, and different requesters can pub-

ish multiple sensing campaigns in a unified platform concurrently.

ome platforms such as Medusa [5] and gPS [6] have been designed in

his way. Integrated MCS brings significant benefits, including total

verhead reduction and more efficient management. What is more,

t also relieves the users from switching between various MCS plat-

orms and provides them more sensing choices.

In this paper, we consider the case where multiple campaign

equesters demand for sensing workforce and multiple users supply

heir sensing capacities. Besides, both requesters and users are

elf-interested and want to maximize their own benefits strategically.

his actually builds up a further developed two-sided market, which

s fundamentally different from the traditional monopoly campaign

cenario. As multiple requesters with different interests may com-

ete for potential sensing capacities, it is unsuitable to regard all
o-sided heterogeneous mobile crowdsensing markets, Computer
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campaigns as a whole and apply a single incentive mechanism in

a monopolistic way. Letting each campaign apply an independent

incentive mechanism is also inconvenient, since users have to con-

template different strategies among various campaigns to maximize

their utilities. Indeed, none of existing incentive mechanisms [7–19]

can work well in the multiple-campaign competing situations.

In order to fairly and effectively allocate resources and facilitate

trades between requesters and users, we propose a Truthful Double

auction mechanism for the two-sided Mobile Crowdsensing market

(TDMC). However, the design is challenging as the market is intrinsi-

cally heterogeneous. Further to say, requesters demand for tasks with

diverse requirements in aspects of locations, time and sensing meth-

ods, while users have different availabilities and preferences for dif-

ferent tasks based on their spatio-temporal and device states. This

makes it extremely difficult to allocate tasks and achieve efficiency,

i.e., the total valuation of all allocated resources of all requesters and

users, or called the social welfare, is maximum. Besides, truthfulness

is critical for an auction, which means bidders should truthfully re-

veal their private information for the items they bid. However, to fully

stimulate the sensing capacities, users should be allowed to freely

bid for multiple heterogeneous tasks as long as they can undertake.

Their private information is actually multi-dimensional, which makes

it harder to ensure truthfulness. What is more, it is also important for

a double auction to guarantee: (i) individual rationality: bidders have

non-negative utilities by reporting truthfully, (ii) budget balance: auc-

tioneer would not suffer a deficit, and (iii) computational tractability:

auction runs in polynomial time.

To overcome above challenges, we first categorize all tasks from

different campaigns into orthogonal sensing patterns to characterize

the heterogeneity of the market. Then we allow users to bid per-

sonalized maximum available workload and associated (unit) costs

for different patterns based on their sensing capacities. Finally, we

adopt a two-stage allocation approach to determine the trading re-

sults and optimize the social welfare. In stage one, by introducing a

carefully designed virtual padding requester, we intentionally inten-

sify the competition among requesters and screen out a set of more

competitive requesters to be the winners. In stage two, we match

these selected requesters with users who offer the cheapest workload

and get the final allocation. Novel pricing schemes are also designed

for both requesters and users, which ensures the truthfulness as well

as budget balance. Furthermore, we also show TDMC can asymptoti-

cally approach the efficiency as the workload supply compared with

demand becomes more and more sufficient. The contributions of this

paper are as follows.

• To the best of our knowledge, TDMC is the first truthful auction

mechanism for a two-sided heterogeneous MCS market, where

multiple requesters and users have diverse demands and supplies.

A joint consideration of competition among requesters and het-

erogeneity in the market significantly complicates the design.

• Utilizing a padding idea, TDMC develops a two-stage allocation

approach and corresponding pricing schemes for requesters and

users to achieve approximate efficiency while preserving truth-

fulness and budget balance.

• We theoretically prove that TDMC possesses the attractive prop-

erties of truthfulness, individual rationality, budget balance, com-

putational tractability, and asymptotic efficiency as the work-

load supply compared with demand becomes more and more

sufficient.

• We further consider several practical issues to make TDMC more

adaptable, including more flexible bid profiles for both requesters

and users, and two adjustment methods of price intervention and

workload quota to control the sensing quality.

The rest of the paper is organized as follows. In Section 2, we re-

view the related work. In Section 3, we introduce the model and for-

mulate the problem. In Section 4, we elaborate the details of TDMC
Please cite this article as: S. Chen et al., A truthful double auction for t
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nd provide theoretical proofs of desired properties. Then in Section 5

e consider several practical issues of TDMC. In Section 6 we show

ome simulation results. In Section 7, we conclude the paper.

. Related Work

.1. Incentive mechanisms for mobile crowdsensing

A number of incentive mechanisms [7–19] have been developed

or MCS. In [8,9], the platform (also the campaign organizer) applies

stackelberg game to maximize its utility by deciding an optimal

otal reward. Koutsopoulos [7] proposes a reverse auction in which

he platform determines users’ participation levels based on their re-

orted unit costs to minimize the total payments under certain ser-

ice quality limits. An all-pay auction is introduced in [10], where the

latform allocates a contribution-dependent prize and only the user

ho makes the highest contribution can win. After that a Tullock con-

ext model is designed in [11], which gives weak players more oppor-

unities to win compared with all-pay auctions to attract more users

o participate. These works consider that the market is homogeneous

nd single user has a uniform cost to all tasks. Some works [8,12–18]

lso deal with the heterogeneity of MCS from different aspects. In [8],

ach user bids for a bundle of tasks with a single private cost and the

latform selects a subset of users to maximize its submodular utility

unction. Following this way, Zhao et al. [12] develop two online auc-

ions by adopting a multiple-stage sampling-accepting process. The

ork in [13] considers the location-awareness of tasks while in [14]

onsiders the dynamic arrivals of users and tasks. Sun and Ma [16]

ocus on designing long-term user participation incentives by mod-

lling the problem as a restless multi-armed bandit process. He et al.

15] study a unified platform where multiple tasks are distributed in

ifferent locations and focuses on optimal task allocation to maxi-

ize the total reward for the platform. Cheung et al. [17] develop a

nite-step task selection game for users to make their plans of un-

ertaking location-based and time-sensitive tasks. Jin et al. [18] intro-

uce a critical metric of information quality into the design of reverse

uction mechanisms for MCS systems. However, all above works re-

ard that tasks in MCS are belong to a unique campaign without car-

ng whether tasks are from multiple self-interested requesters. As far

s we know, there is only one work [19] that is related to our two-

ided MCS market, where the platform recruits workers to participate

n multiple sensing processes, but its target is to maximize total num-

er of satisfied users without considering the processes’ utilities and

onsequent competition among them.

.2. Double auctions for two-sided markets

In economics, double auctions are widely used for a two-sided

arket with multiple buyers and sellers. Traditional VCG mechanism

s truthfulness, individual rationality and efficiency, but it cannot

uarantee budget balance. McAfee double auction [20] is truthful and

udget balanced to trade single units of items, and [21] extends it to

he multi-unit situation, but the items they study are homogeneous.

hen trading multiple heterogeneous items, the problem becomes

ore difficult. Actually, the general form is a multi-unit combinato-

ial auction, whose optimal allocation problem is NP-hard [22]. Only

few truthful and budget balanced mechanisms with approximate

fficiency have been designed in specific cases. Babaioff and Walsh

23] and Chu and Shen [24] consider a scenario where each buyer

ants a bundle of items while each seller only offers single unit of

ne item. Chu [25] studies the case where a buyer’s demand is a bun-

le while a seller can offer multiple units of one item. The padding

dea in our work is inspired by Chu [25], but it cannot be directly ap-

lied to our work, as we further allow each seller (user) to offer multi-

le heterogeneous items (maximum available workload for different

ensing patterns).
wo-sided heterogeneous mobile crowdsensing markets, Computer
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. System model and problem formulation

In this section, we first give some preliminaries and describe the

ystem model for a two-sided heterogeneous MCS market. Then we

ormulate the problem and state our design targets.

.1. System model

In a two-sided MCS market, three kinds of players exist: sensing

ampaign requesters, mobile device users and a third party platform.

ach requester wants to initiate a sensing campaign consisting of a

eries of tasks. Each user wants to undertake available tasks regard-

ess of which campaign they belong to. The platform acts as an auc-

ioneer and periodically runs a sealed-bid double auction to allocate

asks and determine trading prices. We think that players do not col-

ude with each other.

Considering a single round, M = {1, 2, . . . , M} denotes the set of

equesters, N = {1, 2, . . . , N} denotes the set of users. A requester i

ubmits a bid Bi = (Si, vi), where Si is a specification sheet of all tasks

n his campaign, vi is the reported valuation for his campaign repre-

enting the highest price he wants to pay.

As the market is heterogeneous, users have different availabili-

ies and private costs for different tasks. To characterize the hetero-

eneity, we introduce a practical concept of sensing pattern. A pattern

niquely defines all necessary features of a class of similar tasks, in-

luding area, period, sensing method, etc. The platform categorize all

asks from campaigns of requesters into orthogonal sensing patterns,

y aggregating tasks of same features into a pattern. i.e., tasks exe-

uted in the same area, same period of time and with a same sens-

ng method are aggregated into a pattern. The rationality behind this

etting is, as long as tasks in a pattern are similar enough, it can be

nsured that a user has the same privacy information for these tasks,

s he is usually insensitive to execute tasks with the same features.

ut he may still have different private information for tasks of dif-

erent patterns. Note that in practice the granularity of patterns’ fea-

ures should be carefully chosen to enable the rationality of pattern

ategorization as well as to make a tradeoff between accuracy and

implicity, which should depend on specific scenarios.

Without loss of generality, let the set of all sensing patterns be

= {1, 2, . . . , T}. Tasks of a certain pattern may come from one or

ore campaigns, tasks in a certain campaign may also belong to one

r more patterns. we consider that all tasks in the same pattern could

e represented as several sub-tasks of uniform size, which is rational

ue to the similarity of tasks in the same pattern. For example, for

asks of traffic condition monitoring and parking slot monitoring in

ne pattern, a uniform sub-task can be taking a small fixed number

f pictures. For the retail good price reporting and the commodity

nventory reporting tasks in another pattern, a uniform sub-task can

e updating a small fixed number of records. We can always define

proper uniform sub-task for each pattern, so that each task can be

ivided into several units of such sub-tasks. For convenience, we call

he amount of uniform sub-tasks for any pattern as workload, which

hould be an integer number.

As a result, the bid of requester i can be rewritten as Bi = (di, vi).

i = (di1, di2, . . . , diT ) is a demand vector, where dit is the required

orkload of requester i for pattern t. If pattern t is not required by

equester i, dit = 0. To fully stimulate the sensing capacities, users

hould be allowed to freely undertake multiple tasks of different pat-

erns as long as they can accomplish. So we let users bid a multi-

imensional maximum available bid profile, which contains maximum

vailable workload and associated private unit costs for different pat-

erns. Formally, user j bids A j = (m j, c j). In the supply vector m j =
(m j1, m j2, . . . , m jT ), each mjt is the maximum available workload of

ser j for pattern t, while in associated reported cost vector c j =
(c j1, c j2, . . . , c jT ), each cjt is the reported unit workload cost of user j

or pattern t. If pattern t is unavailable for user j, m jt = 0 and c jt = ∞.
Please cite this article as: S. Chen et al., A truthful double auction for tw
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Notice that vi, mj and cj are not necessary equal to the true val-

ation vi for the campaign of requester i, the true supply vector m j

f user j and the true cost vector c j of user j, considering the poten-

ial dishonest behaviors of both requesters and users. As a requester

as no motivation to misreport his true demand, we think that di is

lways true.

After receiving bids from both requesters and users, the platform

ecides each one’s outcome, including task allocation and trading

rices. In the outcome (xi, pi) of requester i, the allocation xi ∈ {0,

} means whether i wins or not in the auction, the payment pi is the

rice requester i needs to pay to the platform. The utility of requester

is

r
i = vixi − pi. (1)

ere we consider the utility functions of requesters are single-

inded, which means they either win and successfully recruit all

heir required workload or lose and get nothing. In Section 5.1.1 we

ill introduce a more flexible solution, which allows requesters to

in campaigns partially.

The outcome of user j is (wj, rj). In the allocation vector wj =
(w j1, w j2, . . . , w jT ), each w jt is the workload of pattern t finally as-

igned to user j, while in the reward vector r j = (r j1, r j2, . . . , r jT ),

ach rjt is the reward paid by the platform for accomplishing w jt units

f workload for pattern t, r j = ∑
t∈T r jt . The utility of user j is

u
j =

∑
t∈T

Uu
jt =

∑
t∈T

(r jt − c jt wjt ). (2)

We consider the utility function is linear and all the rewards and

osts are simply additive, more complex situations such as non-linear

unctions are left for future work. More frequently used notations are

isted in Table 1.

.2. Problem formulation

Unlike requesters and users, we assume the third party platform

ims to benefit the whole market rather than only itself. So we focus

n designing a mechanism to maximize the social welfare. If all bid-

ers bid truthfully, the social welfare optimization problem P(M,N )

an be formulated as follows:

ax SW(M,N ) = ∑
i∈M

vixi − ∑
j∈N

∑
t∈T

c jt wjt

.t.

{∑
i∈M dit xi = ∑

j∈N wjt ∀t ∈ T ,

xi ∈ {0, 1} ∀i ∈ M,

wjt ∈ {0, 1, . . . , mjt} ∀ j ∈ N , t ∈ T ,

(3)

here all xi and w jt are integers and the allocated workload w jt must

ot exceed the maximum available workload mjt. The first condition

f (3) means the demand and supply for all patterns are balanced. The

ptimal solution of P(M,N ) is defined as (x∗, w∗).

Obviously (3) is an integer programming (IP) problem, we show

t is NP-hard. Briefly speaking, if we degenerate (3) to a specific case

here there are multiple requesters and only one user, vi = 1 for all

equesters and m1t = 1, c1t = 0 for all patterns of the only user 1,

he problem will straightly become the set packing problem, which

s a well-known NP-complete problem [26]. So problem (3) must be

P-hard. To make it tractable, approximate methods should be ap-

lied. What is more, several critical economic properties should also

e guaranteed. In general, the design targets of TDMC include:

• Truthfulness: Bidders cannot benefit from bidding dishonestly.

i.e., for any requester i, Ur
i
(vi) ≥ Ur

i
(vi), ∀vi, for any user j,

Uu
j
(m j, c j) ≥ Uu

j
(m j, c j), ∀mj, cj.

• Individual rationality: Bidders have non-negative utilities by re-

porting true valuations, i.e., Ur
i
(vi) ≥ 0 and Uu

j
(m j, c j) ≥ 0 always

hold.

• Budget balance: For the platform, the total payment paid by all re-

questers is no less than the total reward paying to all users, i.e.,∑
i∈M pi − ∑

j∈N
∑

t∈T r jt ≥ 0.
o-sided heterogeneous mobile crowdsensing markets, Computer
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Table 1

Frequently used notations.

Notation Description

M, N , T Set of requesters, users and patterns

i, j Requester and user

Bi , Si Bid and specification sheet of requester i

di Demand vector of requester i

dit Required workload of requester i for pattern t

vi, vi Reported valuation and true valuation of requester i

Aj Bid of user j

mj , m j Supply vector and true supply vector of user j

cj , c j Reported cost vector and true cost vector of user j

mjt , cjt Maximum available workload and reported unit cost of user j for pattern t

Ur
i
, Uu

j
Utility of requester i and user j

xi , pi Allocation and payment of requester i

wj , rj , rj Allocation vector, reward vector and total reward of user j

wjt , rjt Allocated workload and reward of user j for pattern t

SW, SW Social welfare

(x∗ , w∗) Optimal solution of social welfare optimization problem

(x′ , w′) Stage-one allocation of TDMC

(x′ ′ , w′ ′) Stage-two allocation of TDMC

V Virtual padding requester (VPR)

Ms Set of survived requesters

mv Demand vector of VPR

mv
t Required workload of VPR for pattern t

bc
i

Critical price of requester i

Ct[r], Ct(s) Discrete and continuous marginal cost function of workload for pattern t

Ct
− j

[r], Ct
− j

(s) Discrete and continuous marginal cost function of workload for pattern t excluding user j

Ht Total traded workload of pattern t

αL
i

Discount vector of requester i

mE
jt
, cE

jt
Tiered supply vector and tiered cost vector of user j for pattern t

β j , γ j , Quality factor of user j

m

i

s

s

s

m

s

r

t

o

T

s

t

s

N
a

l

m

s

a

• Computational tractability: The outcome of TDMC can be com-

puted in polynomial time.

• Asymptotic efficiency: TDMC is approaching optimal social welfare

as the workload supply of users becomes more and more suffi-

cient compared with the workload demand of requesters.

4. Mechanism details and analysis

In this section, we first elaborate the details of TDMC. Then, we

prove TDMC is truthful, individual rational, budget balanced, com-

putational tractable, and asymptotic efficient as the workload supply

compared with demand becomes more and more sufficient.

4.1. Mechanism details

In order to solve the social welfare optimization problem in poly-

nomial time, a straight thought is to turn to the linear relaxation form

P(M,N ), which is formulated as follows1:

max SW(M,N ) = ∑
i∈M

vixi − ∑
j∈N

∑
t∈T

c jt wjt

s.t.

{∑
i∈M dit xi = ∑

j∈N wjt ∀t ∈ T .

0 ≤ xi ≤ 1 ∀i ∈ M.

0 ≤ wjt ≤ mjt ∀ j ∈ N , t ∈ T .

(4)

However, simply solving (4) is not enough. We should further en-

sure: (1) the allocation is feasible, which means x and w must be

integer solutions, (2) all targets we have mentioned above must be

satisfied, especially the critical properties of truthfulness and budget

balance.

Inspired by the padding idea in [25], we introduce a virtual

padding requester (VPR), which has a special demand vector mv =
(mv

1
, mv

2
, . . . , mv

T
) and unlimited budget. We let mv

t = max j∈N {m jt},
∀t ∈ T . That means, the demand vector of VPR can just cover the sup-

ply vector of any user.
1 We assume both P(M,N ) and P(M,N ) output unique optimal solutions, ties are

broken randomly if multiple solutions exist.

s

r

q

Please cite this article as: S. Chen et al., A truthful double auction for t
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Through this, we design a two-stage allocation approach to deter-

ine allocation for requesters and users. In the first stage, we add VPR

nto the market to intensify the competition between requesters, and

olve a linear programming problem involving requester set M, user

et N and the VPR V . As V has unlimited budget, his demand must be

atisfied, so the problem P(M,N ,V) is formulated as follows:

ax SW(M,N ,V) = ∑
i∈M

vixi − ∑
j∈N

∑
t∈T

c jt wjt

.t.

{∑
i∈M dit xi + mv

t = ∑
j∈N wjt ∀t ∈ T .

0 ≤ xi ≤ 1 ∀i ∈ M.

0 ≤ wjt ≤ mjt ∀ j ∈ N , t ∈ T .

(5)

Assume the optimal solution of P(M,N ,V) is (x′, w′). For each

equester i, define the critical price bc
i
= inf{vi|x′

i
= 1}, which means

he minimum price requester i can bid while satisfying x′
i
= 1 in the

ptimal solution of P(M,N ,V), given the bids of others unchanged.

hen we screen out a survived requester set Ms = {i|x′
i
= 1}, repre-

enting that only more competitive requesters who bid higher than

heir critical prices can enter the next stage. In Section 4.2 we will

ee, they are also winners in the final allocation.

In the second stage, we let requesters in Ms trade with users in

. To maximize the social welfare, the problem can be formulated

s another linear programming problem P(Ms,N ), which is formu-

ated as follows:

ax SW(Ms,N ) = ∑
i∈M

vixi − ∑
j∈N

∑
t∈T

c jt wjt

.t.

{∑
i∈Ms dit xi = ∑

j∈N wjt ∀t ∈ T .

0 ≤ xi ≤ 1 ∀i ∈ Ms.

0 ≤ wjt ≤ mjt ∀ j ∈ N , t ∈ T .

(6)

The optimal solution of P(Ms,N ) is defined as (x′′, w′′). (x′′, w′′)
lso determines the final allocation, i.e., (x, w) = (x′′, w′′). If i /∈ Ms,

et xi = 0 by default.

We also design pricing schemes for both requesters and users. For

equesters, we develop a critical pricing scheme. If xi = x′′
i

= 1, re-

uester i will win and pay the critical price bc
i

to the platform, else he
wo-sided heterogeneous mobile crowdsensing markets, Computer
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Fig. 1. An illustration of marginal cost function.
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ill lose and pay nothing. The payment of requester i is defined as:

pi =
{

bc
i

xi = 1;
0 otherwise.

(7)

For users, we develop a VCG-like pricing scheme. The reward of

ser j paid by the platform is defined as the change of all other bid-

ers’ social welfare caused by user j’s participation, which is:

j =
∑
t∈T

c jt wjt + SW(Ms,N ) − SW(Ms,N\{ j}). (8)

Roughly speaking, by adding the VPR, TDMC aims to intentionally

hrink the potential transactions and loss some efficiency in order

o preserve the truthfulness and budget balance. However, a higher

PR may lead to a larger loss of efficiency. In Section 4.2 we will

rove, by setting mv
t = max j∈N {m jt}, ∀t ∈ T for VPR as we defined,

oth truthfulness and budget balance can be ensured. Note that in

he MCS environment, the sensing capacity of a single user is usually

uch smaller compared to the sizes of campaigns, so VPR would not

e very large and the loss of efficiency is limited, which makes TDMC

ffective enough.

Before the mechanism analysis, we should first introduce a con-

ept of marginal cost function of workload for any pattern. Given user

et N , for any pattern t, we sort all units of workload offered by users

ased on their reported costs in an ascending order, and define the

ost of rth cheapest unit of workload for pattern t as the marginal

ost Ct[r].2 We also define a continuous form Ct (s) = Ct [	s
], where

s
 is the smallest number no less than s. Ct
− j

[r] and Ct
− j

(s) are sim-

lar concepts except that the user set becomes N\{ j}. A illustra-

ion is showed in Fig. 1, where bids of users are (m1t , c1t ) = (2, 1),

(m2t , c2t ) = (1, 2), (m3t , c3t ) = (3, 3), (m4t , c4t ) = (2, 4). As an ex-

mple, we have Ct [4] = Ct (3.5) = 3 while Ct
−3

[4] = Ct
−3

(3.5) = 4. Ob-

iously, Ct[r], Ct
− j

[r], Ct(s) and Ct
− j

(s) are all monotone increasing.

Particularly, Eq. (8) can be re-expressed as:

j =
∑
t∈T

r jt =
∑
t∈T

wjt∑
r=1

Ct
− j[Ht − r + 1], (9)

here Ht = ∑
j∈N w jt is the total traded workload of pattern t. We

ill prove the correctness of Eq. (9) in Section 4.2.

.2. Mechanism analysis

First we will show, although by solving two LP problems, the al-

ocation (x, w) is guaranteed to be an integer solution. We begin by

ntroducing the following lemma.

emma 1. For any requester i ∈ Ms, x′′
i

= 1 is in the optimal solution of

(Ms,N ).

roof. In stage one, the allocated workload of any pattern t is

j∈N w′
jt

= ∑
k∈M dkt x′

k
+ mv

t . In stage two, the allocated workload of
2 We assume all reported costs of users are different so the rank is unique, ties are

roken randomly.

a

P

h

Please cite this article as: S. Chen et al., A truthful double auction for tw

Communications (2015), http://dx.doi.org/10.1016/j.comcom.2015.11.010
ny pattern t is
∑

j∈N w′′
jt

= ∑
k∈Ms dkt x′′

k
. Since x′

k
= 1 if k ∈ Ms and

v
t ≥ 0, so

∑
k∈M dkt x′

k
+ mv

t ≥ ∑
k∈Ms dkt . Note that Ct(s) is monotone

ncreasing, so we have Ct (
∑

k∈M dkt x′
k

+ mv
t ) ≥ Ct (

∑
k∈Ms dkt ).

On the other hand, for any requester i ∈ Ms, x′
i
= 1, we must

ave vi ≥ ∑
t∈T Ct (

∑
k∈M dkt x′

k
+ mv

t )dit . If not, due to the conti-

uity of linear programming, we can always let x′
i
= 1 less a

mall number ε to be 1 − ε, and make SW(M,N ,V) increase by

(
∑

t∈T Ct (
∑

k∈M dkt x′
k

+ mv
t )dit − vi) > 0. In this case, x′

i
= 1 must

ot be in the optimal solution of P(M,N ,V), which leads to con-

radiction. Note that ∀t ∈ T , there exists:∑
∈Ms

dkt ≥
∑

k∈Ms\{i}
dkt x′′

k + dit ≥
∑

k∈Ms

dkt x′′
k ,

hus we have:

i ≥
∑
t∈T

Ct

( ∑
k∈Ms

dkt

)
dit

≥
∑
t∈T

Ct

( ∑
k∈Ms\{i}

dkt x′′
k + dit

)
dit

≥
∑
t∈T

Ct

( ∑
k∈Ms

dkt x′′
k

)
dit .

In stage two, if x′′
i

< 1, we could always increase x′′
i

to 1 to achieve

higher social welfare, so x′′
i

= 1 must be in the optimal solution of

(Ms,N ). �

heorem 1. The allocation of TDMC is feasible.

roof. According to Lemma 1, x′′
i

= 1 exists for all requesters who

nter stage two. Therefore, the total traded workload of any pattern t

s an integer number. To achieve an optimal allocation, the allocated

orkload of users should be chosen according to their reported costs

rom low to high. As we have assumed the rank of users’ workload

ccording to their reported costs is unique, each user will be allocated

iscrete units of workload. �

The next, we will prove the desired properties of TDMC.

heorem 2. TDMC is truthful and individual rational for requesters.

roof. Based on Eq. (7), for any requester i who wins, the payment

o the platform is the critical price bc
i
, for any losing requester, the

ayment is zero. If requester i bids lower than bc
i
, i.e. x′

i
< 1, he will

ot be in the survived requester set Ms and enter stage two. Thus he

ill not win. If requester i bids higher than bc
i
, he will survive in stage

ne, according to Lemma 1, he will also win in stage two. When his

rue valuation vi < bc
i
, he prefers to loss to avoid a negative utility,

hich can be achieved by bidding truthfully. When his true valuation

i > bc
i
, he prefers to win to obtain a positive utility, which can also

e achieved by bidding truthfully. When vi = bc
i
, he is indifferent to

in or not. As a conclusion, truthfulness is a dominant strategy. Thus,

DMC is truthful for requesters.

By bidding truthfully, a requester can always follow his preference

nd have a non-negative utility. Thus, TDMC is individual rational for

equesters. �

Before proving the truthfulness and individual rationality for the

sers, we introduce the following lemma.

emma 2. For any requester i ∈ Ms, x′′′
i

= 1 is in the optimal solution of

(Ms,N\{ j}), given the optimal solution (x
′ ′ ′

, w
′ ′ ′

) of P(Ms,N\{ j})
nd any user j ∈ N .

roof. According to Lemma 1, for any requester i ∈ Ms, x′
i
= 1, we

ave vi ≥ ∑
t∈T Ct (

∑
k∈M dkt x′

k
+ mv

t )dit . As mv
t ≥ m jt , ∀t ∈ T , j ∈ N
o-sided heterogeneous mobile crowdsensing markets, Computer
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f �
by the definition of mv
t , we have

∑
k∈M dkt x′

k
+ mv

t ≥ ∑
k∈Ms dkt + m jt .

Thus:

t

(∑
k∈M

dkt x′
k + mv

t

)
≥ Ct

( ∑
k∈Ms

dkt + mjt

)
.

On the other hand, we always have:

t

( ∑
k∈Ms

dkt x′′′
k + mjt

)
≥ Ct

− j

( ∑
k∈Ms

dkt x′′′
k

)
.

Note that ∀t ∈ T , there exists:∑
k∈Ms

dkt ≥
∑

k∈Ms\{i}
dkt x′′′

k + dit ≥
∑

k∈Ms

dkt x′′′
k ,

so we have:

vi ≥
∑
t∈T

Ct

( ∑
k∈Ms

dkt + mjt

)
dit

≥
∑
t∈T

Ct

( ∑
k∈Ms\{i}

dkt x′′′
k + dit + mjt

)
dit

≥
∑
t∈T

Ct

( ∑
k∈Ms

dkt x′′′
k + mjt

)
dit

≥
∑
t∈T

Ct
− j

( ∑
k∈Ms

dkt x′′′
k

)
dit .

In P(Ms,N\{ j}), if x′′′
i

< 1, we could always increase x′′′
i

to 1 to

achieve a higher social welfare, so x′′′
i

= 1 must be in the optimal so-

lution of P(Ms,N\{ j}). �

Lemma 3. Eq. (8) is equivalent to Eq. (9).

Proof. By Lemmas 1 and 2, all requesters in Ms will always win in the

optimal solution of both P(Ms,N ) and P(Ms,N\{ j}), which holds

for any user j. Recall that Ht is the total traded workload of any pat-

tern t, we see Ht = ∑
j∈N w′′

jt
= ∑

g∈N\{ j} w′′′
gt = ∑

i∈Ms d jt is fixed no

matter whether user j participates in stage two. Given the optimal

allocation of P(Ms,N\{ j}), let user j enter the game, to achieve an

optimal allocation again, workload of user j will be allocated by re-

placing others’ if his reported costs are lower. Further to say, for any

pattern t, if c jt > Ct
− j

[Ht ], w jt will be zero by replacing no workload

of others. If c jt < Ct
− j

[Ht − m jt + 1], w jt will be allocated as the maxi-

mum available workload of mjt, by replacing mjt units of highest-cost

allocated workload of others. If Ct
− j

[Ht − h] < c jt < Ct
− j

[Ht − h + 1],

where h ∈ {1, 2, . . . , m jt − 1}, w jt will be allocated as h units, by re-

placing h units of highest-cost allocated workload of others. The

change of social welfare is actually caused by the new allocated work-

load and its replaced workload, i.e. SW(Ms,N ) − SW(Ms,N\{ j}) =∑
t∈T

∑w jt

r=1
Ct

− j
[Ht − r + 1] − ∑

t∈T c jt w jt .

Based on Eq. (8) and above allocation method, we can directly ex-

press the reward rj as the sum of costs of the workload ”replaced” by

user j, consisting of all patterns. The formula is followed as:

r j =
∑
t∈T

r jt =
∑
t∈T

wjt∑
r=1

Ct
− j[Ht − r + 1],

which is just Eq. (9). �

Theorem 3. TDMC is truthful and individual rational for users.

Proof. Based on Eqs. (2) and (9), the utility of user j is:

u
j =

∑
t∈T

w jt∑
r=1

(Ct
− j[Ht − r + 1] − c jt ). (10)
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We first focus on the utility of user j for any pattern t, i.e., Uu
jt

=
w jt

r=1
(Ct

− j
[Ht − r + 1] − c jt ). If his true cost c jt > Ct

− j
[Ht ], to maximize

u
jt
, user j will prefer not to win any units of workload for pattern

, which can be achieved by bidding truthful mjt and cjt. If his true

ost c jt < Ct
− j

[Ht − m jt + 1], to maximize Uu
jt
, user j will prefer to win

ll his available workload of pattern t, which can also be achieved

y bidding truthful mjt and cjt. If Ct
− j

[Ht − h] < c jt < Ct
− j

[Ht − h + 1],

here h ∈ {1, 2, . . . , m jt − 1}, to maximize Uu
jt
, user j will prefer to

in h units of workload for pattern j, which can also be achieved by

idding truthful mjt and cjt. Then we can see, by truthful reporting

jt and cjt for all patterns, user j can always achieve the maximum

ossible total utility. Truthfulness is a dominant strategy. Thus, TDMC

s truthful for users.

By bidding truthfully, a user can always follow his preference and

ave a non-negative utility. Thus, TDMC is individual rational for

sers. �

heorem 4. TDMC is budget balanced for the platform.

roof. We first consider the requester side and get a lower bound

or the total payment paid by all the requesters. By Lemma 1, for any

equester i who wins, it must satisfy vi ≥ ∑
t∈T Ct (

∑
k∈Ms dkt + mv

t )dit .

y Theorem 2, if vi > bc
i
, requester i will win and pay pi = bc

i
, which

till holds when vi is moving toward bc
i
. In the limit case we have

pi ≥ ∑
t∈T Ct (

∑
k∈Ms dkt + mv

t )dit . So the total payment
∑

i∈M pi is no

ess than the total payment when per unit of the traded workload for

ach pattern t has the fixed price Ct (
∑

k∈Ms dkt + mv
t ).

Then we consider the user side and get a upper bound for the total

eward paying to all the users. For any user j, according to Eq. (9), the

eward of per unit of the traded workload for pattern t is no more

han Ct
− j

[Ht ] = Ct
− j

[
∑

k∈Ms dkt ]. Besides, we have Ct
− j

[
∑

k∈Ms dkt ] ≤
t (

∑
k∈Ms dkt + mv

t ). So the total reward
∑

j∈N
∑

t∈T r jt is no more

han the total reward when per unit of the traded workload for each

attern t has the fixed price Ct (
∑

k∈Ms dkt + mv
t ).

Therefore, for the platform, the total payment paid by requesters is

lways no less than the total reward paying to the users. Thus, TDMC

s budget balanced. �

heorem 5. TDMC is computational tractable.

roof. We analysis the computational complexity of TDMC by study-

ng the allocation approach and the pricing schemes respectively.

or the allocation approach, it first takes O(NT) time to calculate

he VPR. Then two linear programming problems are processed,

hich can be solved in polynomial time, we express it as O(P). So the

omputational complexity of allocation approach is O(NT ) + O(P).

hen calculating the prices for users, we use Eq. (10) directly, which

s a closed-form expression and can terminate in polynomial time.

pecially, O(Nlog(N)) time is taken to form the marginal cost function
t
− j

[r], then O(T + W ) time is taken to calculate Uu
j
, where W is

he upper bound of w jt . So the computational complexity of pricing

cheme for users is O(NTlog(N) + NW ). When calculating the prices

or requesters, Eq. (7) is used and we just need to determine the

orresponding critical prices for winners. Although the critical price

xpression bc
i
= inf{vi|x′

i
= 1} is not closed-form, we can leverage

umerical methods instead. According to Theorem 4, if any requester

wins, the critical price bc
i
≥ ∑

t∈T Ct (
∑

k∈M dkt x′
k

+ mv
t )dit . On the

ther hand, obviously bc
i
≤ vi by the definition of individual ratio-

ality. The interval of bc
i

is limited and we can use a binary search

ethod to achieve a solution which is accurate enough in polyno-

ial time. Given the required accuracy �, the binary search takes

(log( I
� )) iterations to determine bc

i
, where I is the upper bound of

he interval of bc
i
. In each iteration the allocation approach needs to

e applied, so the computational complexity of the pricing scheme

or requesters is O(Mlog( I ))O(P). In conclusion, the computational
wo-sided heterogeneous mobile crowdsensing markets, Computer
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omplexity of TDMC is O(NTlog(N) + NW ) + O(Mlog( I
� ))O(P),

DMC is computational tractable. �

heorem 6. TDMC is asymptotic efficient as the workload supply com-

ared with demand becomes more and more sufficient, given bounded

ost distributions of workload for all patterns.

roof. We only need to prove, on condition that the workload sup-

ly of users for all patterns becomes more and more sufficient com-

ared with the workload demand of requesters, the allocation (x,

) of TDMC will converge to the optimal solution (x∗, w∗) of so-

ial welfare optimization problem P(M,N ) with probability 1. With-

ut loss of generality, we fix the demand side and investigate the

mpacts on efficiency by increasing the workload supply. Assume

he reported cost distribution of users for any pattern t is between

ct , ct ]. For any requester i, if vi <
∑

t∈T dit ci, as the workload supply

f pattern t increases, he will never be allocated in P(M,N ), nei-

her will he be allocated in TDMC. If vi >
∑

t∈T dit ci, as the work-

oad supply of pattern t increases, more workload with cheaper

ost appears, Ct (
∑

k∈M dkt + mv
t ) will approach c t. This holds for

ll patterns, so there must exist a supply threshold that satisfies

i >
∑

t∈T Ct (
∑

k∈M dkt + mv
t )dit >

∑
t∈T dit ci. By Lemma 1, requester

will win in TDMC. As vi >
∑

t∈T Ct (
∑

k∈M dkt )dit also holds, re-

uester i also wins in the optimal solution of P(M,N ).

That is to say, when the workload supply is sufficient enough to

atisfy vi >
∑

t∈T Ct (
∑

k∈M dkt + mv
t )dit , requester i will win in both

DMC and P(M,N ). Provided that the number of requesters is fi-

ite, the overlap percent between x and x∗ will approach 100% as the

orkload supply increases, at the same time w also converges to w∗.

n this way, TDMC can asymptotically approach efficiency. Typically,

f all requesters win in the auction, TDMC achieves the optimal social

elfare. �

emark. Relatively sufficient workload supply compared with de-

and is usually common in MCS due to the large population of the

rowd. In Section 6 we will see, nearly optimal social welfare can be

chieved without requiring too much workload supply.

heorem 7. TDMC is truthful, individual rational, budget balanced,

omputational tractable, and asymptotic efficient as the workload supply

ompared with demand becomes more amd more sufficient.3

. Practical issues

In this section, we further consider several practical issues to

ake TDMC adaptable in more general cases, including two more

exible bid profiles for both requesters and users, and two adjust-

ent methods to control the sensing quality. Notably, all properties

roved in Section 4.2 are still preserved. Besides, we also discuss the

rivacy and collusion issues briefly.

.1. Flexible bid profiles

More flexible bid methods can better satisfy participators and pro-

ote more potential transactions. Here we provide two more flexible

id profiles for requesters and users respectively.

.1.1. Discounted bid profiles for requesters

In previous discussions, we assumed the utility functions of re-

uesters are single-minded, which makes requesters either win the

hole campaigns or lose and get nothing. However, a requester may

till want to accept a win with parts of required sensing tasks at a dis-

ounted price as well. Thus, we allow requesters to win a partial cam-

aign even if xi < 1. Requester i now bids a new profile (di, vi,α
L
i
).
3 In fact, we can further prove, Theorem 7 holds if and only if mv
t > max j∈N {mjt} − 1,

t ∈ T . Details are omitted here. But larger VPRs may lead to more losses of efficiency,

hich are not needed.

o

u

c

T
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L
i

is a discount vector where 1 = α1
i

> α2
i

> · · · > αL
i

> 0, represent-

ng that requester i will accept a win with partial demand of αl
i
di if

he payment is lower than αl
i
vi. Assume that αl

i
di is discrete. We also

egard that requester i always prefers a higher αl
i

as long as the pay-

ent does not exceed corresponding reserved price αl
i
vi, which is

ational when requesters are demand oriented and want to complete

heir campaigns as much as possible.

The mechanism still takes the two-stage allocation approach. The

nly difference is to generate a new survived requester set Ms′ like

his: after determining the stage-one allocation (x′, w′) as usual, for

ny requester i, choose the highest αl∗
i

that satisfies αl∗
i

≤ x′
i
, and set

equester i into Ms′ with a bid profile (αl∗
i

di, α
l∗
i

vi). If no such an αl∗
i

xists, requester i will loss. Typically, if x′
i
= 1, αl∗

i
= 1. We now prove

hat all requesters in the new survived requester set Ms′ will win in

tage two. Assume that there is a virtual mapping two-stage alloca-

ion approach, for any requester i in Ms′, we replace his bid profile

(di, vi,α
L
i
) with (αl∗

i
di, α

l∗
i

vi), it must have x′
i
= 1 in stage one ac-

ording to the definition of αl∗
i

, so requester i will win in stage two

y Lemma 1. Notice that the survived requester set in the mapping

ituation is just the same with Ms′, so requester i will also win in

tage two in current situation with a demand of αl∗
i

di, i.e., xi = αl∗
i

.

For any discount αl
i
, we redefine the critical price as bc

i
(αl

i
) =

nf{αl
i
vi|x′

i
≥ αl

i
}, and let requester i who wins pay a payment of

c
i
(αl∗

i
). Before proving the truthfulness for requesters, first we show

hat
bc

i
(α1

i
)

α1
i

>
bc

i
(α2

i
)

α2
i

>, . . . , >
bc

i
(αL

i
)

αL
i

. For requester i, assume that vi =
bc

i
(αl

i
)

αl
i

, then we have x′
i
≥ αl

i
> αl+1

i
. It must have

bc
i
(αl

i
)

αl
i

>
bc

i
(αl+1

i
)

αl+1
i

y the definition of bc
i
(αl+1

i
). This holds for all l, so we can deduce

bc
i
(α1

i
)

α1
i

>
bc

i
(α2

i
)

α2
i

>, . . . , >
bc

i
(αL

i
)

αL
i

. For requester i, if vi > bc
i
(α1

i
), he will

refer to win the whole campaign with demand of di. If
bc

i
(αl

i
)

αl
i

> vi ≥
bc

i
(αl+1

i
)

αl+1
i

where l ∈ {1, 2, . . . , L − 1}, he will prefer to win a partial cam-

aign with demand of αl+1
i

di. If vi <
bc

i
(αL

i
)

αL
i

, he will prefer to loss.

ll these preferences can be followed by bidding the truthful valu-

tion vi. Thus, truthfulness and individual rationality are preserved

or requesters. For requester i who wins, the payment pi = bc
i
(αl∗

i
) ≥

t∈T Ct (
∑

k∈Ms ′ αl∗
k

dkt + mv
t )dit . Similar to Theorem 4, budget bal-

nce can be guaranteed. Other properties obviously hold and we omit

he proofs.

.1.2. Tiered bid profiles for users

Based on the maximum available bid profile, we further allow

sers to report tiered costs for different units of workload. We take

attern t as an example. Formally, for any pattern t, user j can bid

rofile (mE
jt
, cE

jt
) instead of (mjt, cjt). cE

jt
is a tiered cost vector, where

1
jt

< c2
jt

<, . . . , < cE
jt

. It means his reported unit cost for the first m1
jt

nits of workload is c1
jt
, next m2

jt
units is c2

jt
..., the last mE

jt
units is

E
jt
, which reflects that the marginal cost of users is increasing as the

orkload grows.

In this case, we modify the demand vector of VPR by letting mv
t =

ax j∈N {∑E
e=1 me

jt
} for any pattern t. When taking the two-stage allo-

ation approach, (mE
jt
, cE

jt
) can be regarded as E individual bids each

ith a tiered cost. We sort the offered workload of all users according

o their reported tiered costs from low to high, and still define the cost

f rth cheapest unit of workload for pattern t as Ct[r]. The outcome of

ser j is (wE
jt
, rE

jt
). As ce

jt
increases with tier e, in the two-state allo-

ation approach, we
jt

must be fully allocated before we+1
jt

is allocated.

he reward rj of user j is defined the same as Eq. (8). According to
o-sided heterogeneous mobile crowdsensing markets, Computer
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Lemma 3, rjt can be calculated as:

r jt =
E∑

e=1

re
jt =

E∑
e=1

we
jt∑

r=1

Ct
− j[Ht − r + 1].

The true unit cost of user j for pattern t now becomes a func-

tion as C
t

j[r], which means his true cost for rth unit of workload

for pattern t is C
t

j[r], m jt is still the maximum available workload.

If C
t

j[1] > Ct
− j

[Ht ], user j prefers not to win any units of workload

for pattern t. If C
t

j[m jt ] < Ct
− j

[Ht − m jt + 1], user j prefers to win all

available workload for pattern t. If Ct
− j

[Ht − h] < C
t

j[h + 1] and C
t

j[h] <

t
− j

[Ht − h + 1], where h ∈ {1, 2, . . . , m jt − 1}, user j prefers to win

h units of workload for pattern j. All these preferences can be fol-

lowed by bidding truthful cost function C
t

j[r] and maximum available

workload m jt . Truthfulness and individual rationality are preserved

for users. Similar to Theorem 4, budget balance is guaranteed. Other

properties obviously hold.

Remark. These two methods still focus on the two-stage allocation

approach based on TDMC by solving two LP problems, which is the

key to keep computational tractable. More general bid profiles for re-

questers and users are left for future work.

5.2. Sensing quality control

The quality of sensing data is also critical for the success of mobile

crowdsensing. We provide two quality control methods to prompt

users to offer high quality data based on TDMC.

5.2.1. Price intervention

The intuition is to manually intervene the reported costs of users

to let users with low sensing qualities become less competitive in the

auction and vice versa. We define a quality factor β j ∈ (0, 1] to reflect

the sensing quality of user j based on his previous performances, a

higher β j means a higher sensing quality. Take any pattern t as an ex-

ample, when running the auction, we replace the reported cost cjt of

user j with c′
jt

= c jt

β j
, and the corresponding outcome are calculated as

(w jt (β j), r′
jt
). We let the final allocation of user j for pattern t just be

w jt (β j), but let the corresponding final reward be β jr
′
jt

. So the util-

ity of user j for pattern t is Uu
jt
(β j) = β j(r′

jt
− c′

jt
). Notice that maxi-

mum r′
jt

− c′
jt

can be achieved by bidding truthful (m jt , c′
jt
) in original

TDMC according to Theorem 3, so maximum β j(r′
jt

− c′
jt
) can also be

achieved by bidding truthful (mjt, cjt) here. In this way, truthfulness

and individual rationality are preserved for users. Budget balance has

be satisfied even if the reward is r′
jt
, so it is also satisfied with a less

reward of β jr
′
jt

. Other properties obviously hold.

This method is similar with the reputation score proposed in [27],

but here we further show that a higher quality factor β j must lead to

a higher utility Uu
jt
(β j). As r′

jt
= ∑w jt (β j )

r=1
Ct

− j
[Ht (β j) − r + 1], Uu

jt
(β j)

can also be expressed as:

u
jt (β j) =

wjt (β j )∑
r=1

β j

(
Ct

− j[Ht (β j) − r + 1] − c jt

β j

)
,

where Ht(β j) is total traded workload of pattern t. When β j increases,

c′
jt

will reduce, thus w jt (β j) would not reduce as the price is more

competitive. Accordingly, Ht(β j) also would not reduce given other

inputs unchanged. We also have Ct
− j

[Ht (β j) − r + 1] ≥ c jt

β j
, for all r ∈

{1, 2, . . . , w jt (β j)}, so Uu
jt
(β j) must increase. In this way, users have

the motivation to improve their sensing quality to achieve higher

utilities.
Please cite this article as: S. Chen et al., A truthful double auction for t
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.2.2. Workload quota

A more direct way to control sensing quality is to restrict the

aximum available workload of users with low sensing qualities.

ake any pattern t as an example. We define the workload quota of

ser j for pattern t as γ jMt, where Mt is a global workload threshold

or pattern t, which can be appropriately determined according to

istorical information of mv
t . Another quality factor γ j ∈ [0, 1] also

eflects the sensing quality of users, a higher γ j means a higher

uality. Then, the maximum available workload of user j for pattern

becomes m jt (γ j) = max{m jt , �γ jMt�}. Truthfulness is preserved as

t is independent with mjt. Other properties obviously hold.

Similarly, the utility of user j for pattern t is:

u
jt (γ j) =

wjt (γ j )∑
r=1

(Ct
− j[Ht (γ j) − r + 1] − c jt ),

When γ j is lower, w jt (γ j) and Ht(γ j) would not be higher, Uu
jt
(γ j)

ould not be higher either. So users also have the motivation to im-

rove the sensing quality for a higher utility.

emark. These two methods can be used together to obtain a more

owerful quality control ability.

.3. Discussions about privacy and collusion

.3.1. Privacy issues

Mobile users in the MCS market may suffer privacy threats: re-

orting the pattern-tagged data with location and time information

ay leak their home and workplace locations, whereabouts, habits,

ifestyles, or other private information to the requesters and the

hird-party platform, which makes users reluctant to participate

28]. So we consider the solutions of user privacy preserving for

DMC. First, users should take the privacy preferences into account

hen determining their available bid profiles based on the sensing

atterns in TDMC, by which users can either avoid choosing the task

atterns implying sensitive information, such as those around their

omes or workplaces, or bid higher prices to execute these tasks

or the compensation of privacy disclosure. What is more, technical

ethods should be used to protect user privacy more actively. Many

ecently emerged techniques have made much progress on privacy

reserving in MCS from different aspects, which can contribute to our

odel’s solution. Further to say, if coarse-grained data is required for

he MCS applications, some information obfuscation methods can be

dopted to hide data’s private information, including pseudonymity

29], anonymization [30], data aggregation [31], data perturbation

32], etc. Otherwise if fine-grained data is needed, a more direct

olution is to use encryption methods. For example, [33] develops a

ryptographic technique to encrypt the sensing data, which prevents

he platform from eavesdropping and only target requesters have

ccess to the contents. For more about privacy preserving techniques

n MCS, we refer readers to [34,35]. Note that these techniques are

rthogonal to the mechanism proposed in this paper and can be

ntegrated with TDMC, we leave the details for future work.

.3.2. Collusion issues

In above analyses, we assumed that users do not collude in the

uction, but they may communicate in practice. Here we relax this

ssumption and discuss the impacts of user collusion on TDMC. As

ollusive users share individual private information, they can coor-

inate their bid strategies and deviate from truthfulness to achieve

igher utilities, which may harm other legal players’ utilities and the

ystem’s efficiency [36]. But we claim that the very characteristics

xisting in TDMC can significantly counteract these effects. In fact, in

he MCS market, the workload supply of any single user is usually

uch smaller compared with that of the total crowd, which means

o user has an independent power to influence the market greatly.
wo-sided heterogeneous mobile crowdsensing markets, Computer
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Fig. 2. Social welfare, requesters’ satisfaction and users’ revenue vs. the number of users N (M = 10).
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hen only small-scale collusion occurs in TDMC, the collusive users

till cannot affect the workload supply and bid prices of the majority

f the crowd, so the influence on the outcome of TDMC is limited. On

he other hand, if large-scale collusion happens, the impacts indeed

an be considerable. In an extreme case, all relevant users collude

ogether to form a powerful cartel, and they can effectively improve

heir profits by intentionally raising bid prices meanwhile reducing

he whole supply, which may lead to large losses of requesters’ utili-

ies and the social welfare [37]. But actually forming large-scale col-

usion is difficult in TDMC. As it will take high costs for users to main-

ain cooperation and coordinate strategies, faced with the facts of

trong liquidity, loose organization and trust shortage of the crowd in

he MCS market, without saying the challenges of preventing betray-

ls and dividing spoils. Of course, more operations such as communi-

ation restriction, severe detection and punishment can be added to

urther suppress collusion in TDMC, we do not elaborate here for the

imit of paper’s space.

. Simulation results

In this section, we conduct extensive simulations to evaluate

he performance of TDMC. All simulations are run on MATLAB. We

rst implement TDMC and its extended form named TDMC-D which

onsiders the discounted bid profiles for requests. For comparison,

e introduce two mechanisms denoted by Uniq-one and Uniq-all,

hich means they only allow each user to bid a unique cost for all

asks. In Uniq-one, users only bid for maximum available workload
Please cite this article as: S. Chen et al., A truthful double auction for tw
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f a single pattern by reporting corresponding cost. In Uniq-all, users

id for maximum available workload of all available patterns, but

he reported cost is the highest cost of all these patterns in order

o ensure individual rationality. We also implement the optimal

olution in the complete information scenario, i.e. the optimal so-

ution (x∗, w∗) of the social welfare optimization problem P(M,N )

s a benchmark, which is denoted by Optimal. Three metrics are

xamined: social welfare, requesters’ satisfaction and users’ revenue.

equesters’ satisfaction is a ratio of the total valuation of winning

equesters to the total valuation of all requesters, which is defined

s
∑

i∈M vixi/
∑

i∈M vi. Users’ revenue is the sum of rewards all users

cquire. We calculate it as the total true cost of traded workload in

ptimal. Then, we further consider different degrees of competition

n both sides of the market in TDMC to investigate their impacts

n requesters and users. Two metrics of requesters’ satisfaction

nd users’ revenue per workload are evaluated. The latter is a ratio

f users’ revenue to the total traded workload, which reflects the

verage price of unit workload offered in the market. Finally, we

erify the effectiveness of the two quality control methods of price

ntervention and workload quota based on TDMC.

.1. Simulation setup

In simulations, the default settings are as follows. The number

f requesters M is 10, the number of users N is 300, the number of

ensing patterns T is 20. For any requester i, the required patterns

re randomly chosen among T with an average number of 4, and the
o-sided heterogeneous mobile crowdsensing markets, Computer
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Fig. 3. Social welfare, requesters’ satisfaction and users’ revenue vs. the number of requesters M (N = 300).
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Fig. 4. Requesters’ satisfaction and users’ revenue per workload with various demand/supply (M = 10, N = 300).
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o

required workload of any required pattern is equally distributed be-

tween 1 and 30. For any user j, the available patterns are randomly

chosen among T with an average number of 3, and the maximum

available workload of any available pattern is equality distributed

between 1 and 3. We assume the cost cjt of any user j for any pat-

tern t is uniformly distributed in (0, 1). Accordingly, the valuation

of any requester i is uniformly distributed in (0,
∑

t∈T dit ), where∑
t∈T dit is his total required workload. In TDMC-D, we set αL of any
i

Please cite this article as: S. Chen et al., A truthful double auction for t
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equester i as {1, 0.8}. For workload quota, we set Mt of any pattern t

s 3.

We first evaluate social welfare, requesters’ satisfaction and users’

evenue of TDMC and TDMC-D compared with Optimal, Uniq-one

nd Uniq-all by varying the number of users from 50 to 600 and

arying the number of requesters from 2 to 20, respectively. All re-

ults are averaged over 1000 times. Then we enable various degrees

f competition on both sides of the market in TDMC to evaluate
wo-sided heterogeneous mobile crowdsensing markets, Computer
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Fig. 5. 100 cases of profit of user j with various quality factors (M = 10, N = 300).
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equesters’ satisfaction and users’ revenue per workload by applying

ifferent workload demand and supply respectively. We consider

he settings of half, normal and double demand (supply), which

uccessively achieve higher degree of competition on the requester

user) side. Further to say, given M = 10 and N = 300, the normal de-

and (supply) is set for requesters (users) by having default bids, the

alf-demand (supply) is set for requesters (users) by cutting all their

efault average number of required patterns (available patterns) in

alf, and double demand (supply) is set for requesters (users) by

xpanding all their default average number of required patterns

available patterns) to two times. The results are also averaged by

000 times. Finally we focus on a certain user j to evaluate his utility

iven various values of quality factor β j and γ j. 100 random-sampled

ases with different bid profiles of requesters and users are displayed.

.2. Performance analysis

Fig. 2 (a) and (b) shows that the social welfare and requesters’ sat-

sfaction of both TDMC-D and TDMC always outperform Uniq-all and

niq-one, and are only a little worse than Optimal. TDMC-D is better

han TDMC as more flexible bid profiles make more requesters win.

niq-one performs the worst due to the offered workload is strongly

estricted while Uniq-all does not work well as higher reported costs

educe the trading volume, both of which indicate that bidding a

nique cost for all tasks is unsuitable in a heterogeneous MCS en-

ironment. As the number of users increases, social welfare increases

or all mechanisms, since more workload is available and resources

an be allocated more effectively. Requesters’ satisfaction also in-

reases, as more requesters win while the number of requesters is

xed. Specially, the social welfare of TDMC-D and TDMC closes to Op-

imal as N increases, and almost equals to Optimal when N exceeds

00, which verifies our theoretical analysis that TDMC can asymp-

otically approach efficiency as the workload supply compared with

emand becomes more and more sufficient. As shown in Fig. 2(c), the

sers’ revenue first increases as the traded workload increases, then

educes because users with lower reported costs attend and are allo-

ated. Besides, higher reported costs drive up the revenue of Uniq-all.

hus, TDMC-D and TDMC first acquire higher revenue and then are

atched up by Uniq-all. The Optimal is lower as the rewards are the

rue costs of workload.

From Fig. 3(a) and (b), again we can see, TDMC-D and TDMC al-

ays outperform Uniq-all and Uniq-one by social welfare and users’

atisfaction, while only having a small gap compared with Optimal.

he reason is the same as we elaborated above. As the number of
Please cite this article as: S. Chen et al., A truthful double auction for tw
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equesters increases, the social welfare increases since more trans-

ctions are completed in the market. The requesters’ satisfaction re-

uces since more requesters make the competition more intense

nd only more competitive requesters can win. At the same time,

he social welfare of TDMC-D and TDMC slightly deviates from Op-

imal as the workload supply of users becomes relatively tighter. In

ig. 3(c), the users’ revenue increases along with the number of re-

uesters, since the total traded workload increases. Although the re-

orted costs of workload are higher, the revenue of Uniq-all and Uniq-

ne is still less than the revenue of TDMC-D and TDMC, as the trading

olume of the formers is lower.

Fig. 4 (a) shows that requesters’ satisfaction decreases with the

xpansion of workload demand, while increases with the expansion

f workload supply, which indicates that requesters are harder to

in when competition becomes more intense on their own side, but

re easier to win benefiting from a more intense competition on the

ser side. The results in Fig. 4(b) show that users’ revenue per work-

oad increases as the workload demand increases, while decreases

s the workload supply increases, which indicates that the workload

ffered by users is averagely priced higher when the degree of com-

etition is higher for requesters, but is averagely priced lower when

he degree of competition is higher for users. Thus we can find that in

DMC competition on one side is unfavorable for players on this side

hereas is favorable for players on the other side, which is rational

or a two-sided market.

Fig. 5 (a) and (b) depicts the impact of various quality factor β j

nd γ j on the utility of an arbitrary user j. To show the results more

learly, we rearrange the 100 random-sampled cases according to

ser j’s utility in an ascending way. We can find out that in all cases

higher β j or γ j must lead to a higher utility, which confirms that

oth price intervention and workload quota can prompt users to of-

er higher quality sensing data, i.e., the two quality control methods

re effective.

. Conclusion

In this paper, we propose a truthful double auction TDMC for

wo-sided heterogeneous mobile crowdsensing markets. TDMC de-

elops a two-stage allocation approach and corresponding pricing

chemes for both requesters and users. We prove that TDMC is truth-

ul, individual rational, budget balanced, computational tractable,

nd asymptotic efficient as the workload supply compared with de-

and becomes more and more sufficient. Several practical issues are
o-sided heterogeneous mobile crowdsensing markets, Computer
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also considered to make TDMC more adaptable. Extensive simula-

tions demonstrate the effectiveness of TDMC.
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