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a b s t r a c t

This study proposes a capable, scalable, and reliable edge-to-edge model for filtering malicious traffic through

real-time monitoring of the impact of user behavior on quality of service (QoS) regulations. The model inves-

tigates user traffic, including that injected through distributed gateways and that destined to gateways that

are experiencing actual attacks. Misbehaving traffic filtration is triggered only when the network is congested,

at which point burst gateways generate an explicit congestion notification (ECN) to misbehaving users. To in-

vestigate the behavior of misbehaving user traffic, packet delay variation (PDV) ratios are actively estimated

and packet transfer rates are passively measured at a unit time. Users who exceed the PDV bit rates specified

in their service level agreements (SLAs) are filtered as suspicious users. In addition, suspicious users who ex-

ceed the SLA bandwidth bit rates are filtered as network intruders. Simulation results demonstrate that the

proposed model efficiently filters network traffic and precisely detects malicious traffic.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Network intruders continuously formulate new sophisticated tac-

ics of network intrusion. Generating an immense volume of unso-

icited malicious traffic is one of their tactics for overwhelming net-

ork resources and disrupting online services for users. A sudden

urge in network traffic mostly occurs because of malicious traffic

enerated from single or distributed sources to prevent legitimate

sers from using network resources or online services. Malicious traf-

c may cause failure in conducting e-businesses, accessing network

nformation, or running online services [1].

Typically, malicious traffic can be generated through several tech-

ical strategies, such as botnet [2,3], distributed denial of service

DDoS) [4], and Slashdot effect [5]. According to J. Jaeyeon, K. Bal-

chander, and R. Michael [6], the Slashdot effect attack damages the

isited site similar to the DDoS attack, although the former may not

lways be an attack or a malicious distribution. The abovementioned

trategies create huge traffic to execute an attack. Thus, development

f an effective system to filter malicious packets is valuable for all

otnet, DDoS, and Slashdot effect attacks.
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The success of malicious traffic filtration methods depends on ac-

uracy, scalability, and reliability. The accuracy of these methods is

hallenged when malicious and legitimate traffics are similar [7]. The

calability challenge arises because filtering malicious traffic at the

arly stage requires extra overhead in a volume, which mostly results

n performance degradation [8]. The reliability of these methods is

hallenged when user traffic cannot be investigated in whole or in

art. Such a case can be caused by a single point of failure when mak-

ng filtration decisions.

Recent studies [7–15] have proposed methods to filter malicious

ackets and verify intruder attempts by monitoring the impact of

ser behavior on the service level agreement (SLA). According to [16],

LA is an electronic contract between the service provider and its

sers, a contract that defines the thresholds of quality of service (QoS)

etrics that the provider commits to provide the user. The service

rovider uses random early detection (RED) to prevent congestion

t its gateway queues by policing user traffic, which may exceed the

redefined bit rate in the SLA [17]. As described in [18], RED is an

ctive queue management mechanism that performs traffic policing

epending on the gateway’s average queue size, which is calculated

or every packet arriving at the gateway queue.

To prevent incipient traffic burst, the RED gateway notifies the

ser of congestion to reduce its window size once the average queue

ize (AQS) exceeds a predefined threshold. A bursting gateway noti-

es the user of congestion in a probability approximately commensu-

ate with the bandwidth share of that user [17]. According to [19,20],

otifications of RED gateways for misbehaving users can be either
tion of malicious traffic in large-scale networks, Computer Commu-
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Fig. 1. Phases of traffic filtration.
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implicit (dropping packets at gateway queues) or explicit (marking

a bit in packet headers). According to [21–23], explicit notification is

employed by modifying RED gateways to set a mechanism of TCP ex-

plicit congestion notification (ECN) in the header of IP packets. RED

can deny a user from sending more bit rates than those specified in

the SLA through a single gateway. However, it cannot deny the vio-

lation if the user sends it through multiple ingresses at a rate lower

than the SLA bit rate.

The current paper proposes a distributed edge-to-edge model to

detect and filter malicious traffic generated through several gate-

ways and to delimit responsible users through three principal phases:

monitoring, detection, and identification (Fig. 1). In the monitoring

phase, ECN is primarily exploited to trigger traffic filtration. During

traffic congestion, RED gateways distributed on the domain ingress

edges are used to uncover a user with ECN as a misbehaving user

(mBusr) and to classify its traffic as misbehaving user traffic (mBusr-

traffic). In the detection phase, an mBusr with packet delay variation

(PDV) ratios exceeding the predefined ratios in the SLA is classified as

a suspicious user (sPusr), and its traffic is filtered as suspicious user

traffic (sPusr-traffic). In the identification phase, an sPusr that exceeds

the packet transmission rate (PTR) ratios guaranteed in the SLA is a

malicious user, and its injected traffic is malicious traffic (mAl-traffic).

Users who do not violate the ratios specified in the SLA are classi-

fied as legitimate users, and their traffic is filtered as normal traffic

(N-traffic).

The novelty of this study is represented through several potential

contributions. First, this study develops a scalable method for mon-

itoring user violations of QoS regulations. The method benefits from

ECNs, which are issued by RED gateways to misbehaving end users.

ECNs inform misbehaving end users about the need to reduce the

window size of data transmission. Thus, monitoring of user traffic

is triggered only when burst gateways actually generate an ECN to

mBusrs. Second, this study presents a reliable load-balancing tech-

nique for reducing the overhead required to make decisions on traf-

fic filtration. This technique is deployed using multi-management

units that are interconnected on the basis of a virtual overlay net-

work. The virtual structure of overlay networks is exploited to ex-

change filtration messages among the management units and to fi-

nalize decisions on traffic filtration. This technique also benefits from

the anycast protocol for supporting one-to-one transmission among

the gateway routers and the nearest overlay network management

unit. Third, this study proposes a new solution to the problem of

single-point failure in the decision maker agent. This solution in-

volves multi-management units connected through a virtual overlay

network. When a particular unit fails, the overlay network maintains

its structure and sets the nearest unit for the ingress edges closest

to the unit of failure. Lastly, this study defines a deficiency method
Please cite this article as: A.A. Ahmed et al., Filtration model for the detec

nications (2015), http://dx.doi.org/10.1016/j.comcom.2015.10.012
or improving the accuracy of traffic filtration and for distinguishing

Al-traffic from N-Traffic. The accuracy of this method depends on

he passive measurement of transmission rates, although only for the

Pusr filtered in the previous stage of ECN monitoring.

The rest of the paper is organized as follows. Section 2 discusses

elated works. Section 3 describes the architecture of malicious traf-

c filtration. Section 4 presents the deployment of agents. Section 5

escribes the malicious traffic filtration policy. Section 6 presents the

xperimental results and analytical evaluation. Finally, Section 7 con-

ludes and discusses the possibilities for future work.

. Related work and comparison

Many real-time studies have investigated the impact of user

ehavior on QoS regulations to filter malicious traffic. Anomaly

ehavior is detected when its impact on QoS regulations exceeds a

articular threshold. The threshold values, which distinguish normal

rom abnormal impact, are defined either by specifying a predefined

atio or by the threshold ratio obtained through training the system

n a normal pattern. The following subsections classify the related

ork of this paper based on the way of specifying the thresholds and

ritically analyze their existing limitations.

.1. Classification of threshold-based approaches

In this paper, related works are classified into three directions de-

ending on how they specify threshold values: learned, adaptive, and

redefined threshold-based approaches. Learned threshold-based

pproaches have been studied in the past [24–27]. Trained thresholds

re created by learning network traffic patterns on a particular net-

ork for a specific period (e.g., days, weeks, or months). According to

23], the threshold is trained with traces of normal system behavior.

bserved event streams are then fed into the trained threshold,

hich classifies these streams as normal (the observations match the

raining data) or anomalous. Adaptive threshold-based approaches

ave been studied in the past [17,18,28]. Adaptive threshold is a

arying threshold whose value is calculated automatically. The value

f this threshold is set dynamically and adaptively on the basis of a

articular estimation computed from recent traffic measurements.

ccording to [17], the adaptive threshold algorithm is a simple algo-

ithm that detects anomalies on the basis of violations of a threshold

hat is adaptively set following recent traffic measurements. One

dvantage of using the adaptive threshold is that it improves accu-

acy and reduces human intervention by accurately tracking varying

eal-time measurements [17].

Predefined threshold-based approaches refer to preset values con-

idered as a baseline to separate two different behaviors (i.e., normal

r abnormal). This baseline method compares the observed behavior

ith lower and higher bounds of the threshold. Whenever the behav-

or goes below the lower bound threshold or above the higher bound

hreshold, a violation to the thresholds is detected, and the baseline

ethod raises an alarm. The predefined thresholds are commonly

sed in statistical-based detection mechanisms. Table 1 describes the

eneral limitations of the threshold-based approaches.

.2. Critical analysis

The proposed study avoids the aforementioned limitations of

earned-based approaches by using a hybrid of adaptive and prede-

ned thresholds that are not required in the learning process for ma-

icious traffic detection. The adaptive threshold is used in the phase

f network traffic monitoring by utilizing RED thresholds. The pre-

efined threshold is used in the following stages of malicious traffic

ltration by utilizing SLA thresholds. Therefore, the aforementioned

imitations of adaptive threshold are avoided by using predefined
tion of malicious traffic in large-scale networks, Computer Commu-
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Table 1

Limitations of threshold-based approaches.

Approach Limitations

Learned threshold-based approach − Experiencing a high false alarm rate due to the deviation of the normal behavior from the learned pattern.

− If the system undergoes malicious activity during the learning time, it learns malicious behavior, which is later filtered as

normal behavior.

Adaptive threshold-based approach − Adaptive thresholding is designed specifically for real-time anomaly detectors. Other anomaly detectors that operate in

non-real-time measurements (e.g., file analysis algorithms and rule-based traffic classification algorithms) cannot use

adaptive thresholding.

− Several anomalies can potentially go undetected if the predicted score of the adaptive thresholding algorithm is well

above the observed value.

Predefined threshold-based approach − Using predefined thresholds alone makes it difficult to determine thresholds that balance the likelihood of false positives

with that of false negatives.

− The robustness of predefined (fixed) threshold-based models is insufficient. A fixed threshold may fail because of regular

traffic variations [17].

t

d

p

t

l

s

a

o

t

d

u

c

[

A

t

t

A

i

t

m

w

m

p

i

n

g

i

fi

t

a

t

t

c

e

a

m

d

v

e

r

t

s

n

p

r

i

l

t

s

c

s

w

u

[

s

fi

m

w

m

n

t

u

d

e

p

a

t

i

t

S

P

t

m

a

d

g

t

o

c

s

h

i

a

w

c

u

m

m

t

m

n

c

g

t

hreshold combined with the adopted ones. The limitations of pre-

efined thresholds are avoided by utilizing SLA thresholds, which are

ercentile ratios guaranteed by the service provider to the users. SLA

hresholds therefore provide considerable accuracy in balancing the

ikelihood of false positive and false negative alarms in terms of mea-

uring users’ consumptions of QoS metrics. The second limitation is

lso mitigated because the SLA threshold is set to measure a fraction

f the traffic behavior of each user instead of the behavior of the en-

ire network traffic. Therefore, a variation in the entire network traffic

oes not lead to a failure of the SLA threshold. SLA regulations can be

sed to prevent users from changing the transmission rate and ex-

eeding their share in the link bandwidth.

Most work related to adaptive thresholds has been conducted in

17] as a RED of network congestion. RED is applied to compute the

QS for every packet received at the gateway queue. RED uses adap-

ive minimum (minth) and maximum (maxth) thresholds to prevent

raffic bursts at gateways by monitoring traffic shifts in the AQS. The

QS is then compared with maxth and minth. If the calculated AQS

s less than minth, all packets are allowed to pass to the destina-

ion. However, if the AQS value is greater than maxth, the packets are

arked to be dropped. In between, every received packet is marked

ith an ECN in commensurate probability. Users whose packets are

arked with an ECN are notified to reduce the volume of the sent

ackets. The proposed study benefits from the RED algorithm to mon-

tor the anomaly congestion in the network gateways. Users who are

otified by dropping or marking excess packets with an ECN at RED

ateway queues are considered misbehaving users that need further

nvestigation. Therefore, the proposed model considers explicit noti-

cations of bit marking in packet headers as indicators of user viola-

ions of SLA loss and delay guarantees.

Most studies related to predefined threshold-based approaches

re those relying on predefined SLA thresholds [12,14,29–31]. Studies

o detect SLA violation involve inspecting the SLA to detect malicious

raffic in the network. Important studies related to this approach in-

lude [10,13,15]. Although these studies are significant in monitoring

nd-user violation of QoS edge-to-edge regulations, they still have

ccuracy, scalability, and reliability limitations. In these studies, QoS

etrics are measured for every end-user and compared with the pre-

efined SLA threshold to detect violations in the SLA guarantees. SLA

iolation is detected first by an estimated delay of end-user pack-

ts. The delay is estimated by subtracting probe packet timestamps

ecorded at the two edges of the sender and destination or by ex-

racting packet round-trip time (RTT) and dividing it by 2. As de-

cribed in [32,33], the limitation of using packet timestamps is the

on-synchronization of the two ends, whereas the limitation of using

acket RTT is the asymmetric links of the edges. The proposed model

ectifies the abovementioned shortcomings by exploiting ECNs to

dentify misbehaving users at RED gateway queues.

In [34–36], the authors presented studies to detect unwanted ma-

icious traffic in a QoS network domain. These studies accurately dis-
Please cite this article as: A.A. Ahmed et al., Filtration model for the detec

nications (2015), http://dx.doi.org/10.1016/j.comcom.2015.10.012
inguish between malicious and normal traffic; however, use of pas-

ive measurements to investigate every incoming packet consumes

onsiderable network resources. The current model saves network re-

ources by postponing passive measurement to the last stage of band-

idth investigation. Therefore, only the traffic fractions of suspicious

sers that have actually violated SLA are passively investigated.

A recent work most related to the current study is presented in

37]. Violations in the SLA and malicious traffic are detected by in-

pecting QoS metrics such as PDV, packet loss, and PTR [38]. PDV is

rst estimated for all users at the domain edges using active measure-

ent. In PDV violation, packet loss is passively measured for users

ith violated PDV guarantees. SLA violation is detected when the

easured loss ratios exceed the guaranteed SLA ratio of a user. Fi-

ally, the PTR of suspicious users is aggregated and compared with

heir guaranteed ratios to differentiate legitimate from illegitimate

sers. Technically, the probe packets between SLA management and

omain edges are separately transmitted for each stage, namely, PDV

stimation, loss measurement, and PTR measurement. As a result,

rocessing and communication overhead may increase and represent

shortcoming for this approach. In the proposed model, an SLA viola-

ion is deduced when RED gateways generate ECNs toward misbehav-

ng users. Therefore, estimating the PDV for all users and measuring

he packet loss ratios are unnecessary. Users accused of violating the

LA are notified to reduce their window size. Thereafter, the PDV and

TR of these users are measured to filter illegitimate users. Hence,

he communication overhead is improved by reducing information

essages.

The algorithms in [10,11,13,37,39] involve the use of central man-

gement units to gather the measured values of users from various

omain edges and to finally decide on traffic filtration. These al-

orithms may be vulnerable to single points of failure. In contrast,

he algorithm in [15] uses distributed management units on vari-

us edges to gather the measured values of users and filter mali-

ious traffic. Although the distributed algorithm is immune against

ingle points of failure, it is not sufficiently scalable because of the

igh processing and communication overhead generated in gather-

ng distributed measured ratios. The algorithms in all these studies

lso do not support a reliable solution for investigating mBusr-traffic,

hich may be sent to the non-responded edge.

To solve single-point-of-failure problems, the proposed model

reates a new load balancing method by using multi-management

nits that are connected on the basis of a virtual overlay network. This

ethod also remedies the high overhead limitations of distributed

anagement by employing the anycast technique as a routing pro-

ocol among domain ingress edges and overlay network manage-

ent units. Thus, any ingress edge router can communicate with the

earest management unit in the overlay network through one-to-one

onnection. The proposed model mitigates the challenge of investi-

ating the mBusr-traffic sent to non-responded edges through an al-

ernative solution capable of recognizing the non-responded edges
tion of malicious traffic in large-scale networks, Computer Commu-
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Fig. 2. Architecture of malicious traffic filtration.
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first and immediately filtering all mBusr-traffic sent to these edges as

sPusr-traffic.

3. Architecture of malicious traffic filtration

Fig. 2 illustrates the architecture of the proposed model in which

traffic filtration is handled as a complementary process through vari-

ous integrated agents. The next sections describe in detail the design

of each agent and its integration with other agents to develop the

protection system.

3.1. Network monitor agent

The network monitor agent is used to recognize mBusrs notified

with an ECN and to probe the mBusr-traffic for PDV estimation. Prin-

cipally, this agent relies on the RED mechanism of traffic policing at

domain gateways, as performed in [17]. The RED mechanism is used

to prevent traffic bursts at gateways by monitoring abnormal shifts

in the AQS. The AQS is computed for every packet received at the

gateway queue through a low-pass filter algorithm that uses the ex-

ponential weighted moving average (EWMA) technique described in

[40]. RED policy uses EWMA to smooth possible short-term increases

in queue size (QS), which result from normal traffic bursts or from

transitory congestion, significantly increasing the AQS. Therefore, the

AQS of the burst gateway is calculated using equation (1) [17] as

follows:

AQS = AQS × (1 − wq) + wq × q, (1)

where q is the instantaneous buffer size of the gateway queue and wq

is an exponential weight coefficient that defines the time of the low-

pass filter with a ratio much less than one. Choosing an appropriate

ratio for wq is important to efficiently calculate the AQS. If the wq ratio

is too large, the averaging transaction may not filter the transitory

congestion at the gateway queue. However, if the wq ratio is too low,

the response of the AQS to shifts in the actual QS will be too slow;

thus, the gateway may not detect the initial levels of congestion. As

described in [17], the ratio of coefficient wq is selected on the basis

of the number of packet arrivals at the gateway queue. Therefore, the

ratio of wq should be set to satisfy the formula (2) [17]:

n + 1 +
(
(1 − wq)

n+1 − 1
)
/wq < minth, (2)

where n is the number of packets arriving at the gateway and minth

is the RED minimum threshold. In one RTT, minth and maxth are de-

fined by considering that maxth – minth must not be less than the

typical augment in the AQS. The AQS is then compared with maxth

and minth. If the calculated AQS is less than minth, all packets are al-

lowed to pass to the destination. However, if the AQS value is greater

than maxth, the packets are marked to be dropped. In between, every

received packet is marked with an ECN in commensurate probability.

The network monitor agent therefore exploits the RED mechanism in

monitoring network edge routers. The traffic of users who are con-

nected to the edge routers whose AQS exceeds the RED thresholds is

therefore filtered for further investigation.
Please cite this article as: A.A. Ahmed et al., Filtration model for the detec

nications (2015), http://dx.doi.org/10.1016/j.comcom.2015.10.012
.2. Risk controller agent

The failure of one end of the connection to exchange information

robe packets prevents the coordination of other edges, thus inhibit-

ng the system from performing a reliable filtration process. The risk

ontroller agent supports an alternative solution for the early identi-

cation of mBusr-traffic sent to the non-responded edges and its im-

ediate filtration as sPusr-traffic. The risk controller agent activates

he risk mode of the algorithm if an edge fails to exchange informa-

ion probe packets with other edges. Such a case may occur when

sophisticated intrusion, such as DDoS, botnet, or Slashdot, deters

he victim destination edge in delivering the probe packets of coor-

ination. This phenomenon affects filtration in case the intrusion is

evastating enough to deny the destination edges to respond. How-

ver, this phenomenon does not apply to simple intrusions or to some

ormal congestion cases where the destination edge is still able to re-

pond and thus coordinate with the source edges for traffic filtration.

In this study, coordination with the destination edge is required

nly for the PDV estimation to filter sPusr-traffic from mBusr-traffic.

hus, the risk controller function activates only the risk mode when

ending mBusr-traffic to non-responded edges that cannot receive

r respond to coordination probe packets of PDV estimation. In

he risk mode, filtration ignores the detection stage that requires

oordination with the destination edge, going directly instead to the

dentification stage. Thus, mBusr-traffic sent to non-responded edges

s immediately and completely filtered as sPusr-traffic without PDV

stimation as illustrated in Fig 3.

In conclusion, the proposed model may continuously operate with

he risk controller, but with specific users, not with all users in-

olved in the inspection process. A particular edge router can be non-

esponded to some users while responded to other users. The user

ho experiences a non-responded case is not necessarily an attacker

r malicious user. Usually, the victim users are the most users who

xperience non-responded case.

.3. Violation detector agent

The violation detector agent detects SLA violations by estimating

he PDV metric of mBusr-traffic at egress edges. In computer network-

ng, PDV means the difference between one-way delays of selected

ackets in a flow. However, PDV estimation is preferred to not be

ependent on delay measurement to avoid the limitations of non-

ynchronized ends and asymmetrical links (see Section 2). Thus, this

aper proposes the use of a four-packet train method [33] that does

ot require time synchronization or link symmetry for PDV estima-

ion. The four-packet train method estimates PDV ratios by using the

eceived times of the pairs of the four-packet train and the interval

ime between the packet pairs. Thus, the end-to-end PDV of the kth

our-packet train is calculated as follows:

DVk = (Tkx2 − Tkx1) − Tγ , (1 ≤ k ≤ n), (3)
tion of malicious traffic in large-scale networks, Computer Commu-
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here TX1 and TX2 are the received times of consecutive packets x1

nd x2, respectively, k is the serial number of the four-packet train,

nd Tγ is the interval time between the packet pairs. To guarantee

he validity of the PDV’s statistical calculation, T1 must satisfy the fol-

owing formula:

(P)/T1 < min(bi), (1 ≤ i ≤ n), (4)

here bi is the bandwidth of the four-packet train links and s(p) is

he size of the packets in the four-packet train. Once Formula (4) is

atisfied, the same packet pair is guaranteed to be observed over all

inks. Otherwise, packet x1 for the lowest bandwidth link in the first

acket pair cannot complete the transmission before packet x2 when

he second packet pair arrives. Consequently, the edge-to-edge PDV

f the lowest bandwidth link and all subsequent links downstream of

he bottleneck is extremely high, which may invalidate the statistical

alculations.

To obtain meaningful results for detecting SLA violations, the PDV

atio of each user is calculated using EWMA. EWMA is used to smooth

he possible shifts caused by normal traffic bursts or transient con-

estion, which may considerably increase the average PDV ratios of

ackets trains. Through EWMA, the PDV average of the mBusr is com-

uted by employing the following formula:

vg_PDVmBusr = avg_PDVmBusr × w + PDV k
y × (1 − w), (5)

here PDV k
y is the PDV ratio computed from the four-packet train k

t the egress edge y of the mBusr over the time interval �t, and w is

small adaptation factor to emphasize the recent history instead of

he current sample alone.

.4. Traffic filter agent

The traffic filter agent measures the PTR fractions of sPusrs and re-

orts the measured rates to the decision maker agent. The PTR mea-

urement has two considerations. First, measurement is performed

sing passive measurement, which requires counting all user pack-

ts transmitted over network links. Second, the PTR fraction of each

Pusr is measured at the ingress gateways where user-sent packets

an be captured completely. In view of these considerations, the PTR

f every sPusr at each ingress edge can be adequately measured by

ounting the average number of packets generated by a user. Accord-

ng to [41], the PTR can be accurately measured by multiplying the

otal sent packets with the packet size. The bandwidth consumed by

very sPusr is computed by measuring the PTR of that user at each

ngress edge using Eq. (6) [51] as follow:

PTRi
sPusr =

(
ρs ×

(
avg_senti

sPusr

))
/�t, (6)

here avg_senti
sPusr

is the average number of packets sent by the sPusr

t ingress edge i, ρs is the packet size in bits, and �t is the time inter-

al. Conclusions on malicious traffic sources are made once the end-

ser sends more than its preset bandwidth share in the SLA.

.5. Decision maker agent

The decision maker agent provides a mechanism for managing the

ltration of malicious traffic. This agent computes the average rates of

he PTR for sPusrs on the basis of user details gathered from various

ngress edges. Therefore, malicious traffic is differentiated from legit-

mate traffic through the recognition of malicious users who exceed

he SLA bit rate of the PTR. The decision-maker agent comprises var-

ous management routers (MRs) connected through a virtual overlay

etwork. Authors in [42] define overlay network as a virtual network

hat is built on top of a real network. Peer-to-peer and client–server

etworks are examples of overlay networks whose nodes run on top

f the Internet. Nodes in the overlay network are connected to each

ther through virtual or logical links, where each node corresponds

o a path in the underlying network through several physical links.
Please cite this article as: A.A. Ahmed et al., Filtration model for the detec

nications (2015), http://dx.doi.org/10.1016/j.comcom.2015.10.012
n the overlay network, each node probes its neighbors in clockwise

nd counterclockwise directions. Neighbors are determined by visit-

ng the tree through the depth-first search algorithm that starts from

ny edge node and putting all edge nodes in an ordered sequence.

eferring to [43,44], the virtual overlay network is a self-organizing

etwork topology that does not fail in case of node failure. The virtual

verlay network provides fast failure detection and recovery mecha-

isms that enable the network to recover and maintain an appropri-

te network structure in case of node or link failures [45]. According

o [46], failure detection and recovery in the overlay network relies on

robing mechanisms for IP-path performance monitoring and failure

etection.

In this paper, the overlay network manages MRs as membership

n its virtual structure. It treats MRs as peers, similar to a load balanc-

ng system. Once a particular MR fails, the overlay network maintains

ts structure and sets the nearest MR for the ingress edges closest to

he MR of failure. Thus, multiple MRs are used in this study to avoid

ingle-point-of-failure problems. Moreover, the overlay network is

sed to conduct lightweight and scalable communication among var-

ous MRs. Accordingly; the decision maker agent manages the process

f malicious traffic filtration. Once the sPusr-traffic exceeds the PDV

atio predefined in the SLA, every ingress edge measures the PTRs of

he sPusrs and reports them to the nearest MR. Ingress edges com-

unicate with the overlay-based MR in a scalable manner in which

n edge ingress router forwards its PTR to the nearest MR by one-

o-one connection. The anycast technique in IPv6 networks allows a

ystem to connect to the nearest server using only one anycast ad-

ress and is used as a routing protocol among ingress edges and var-

ous MR units. In the proposed overlay network, MRs exchange mes-

ages among themselves to resolve traffic filtration decisions, where

he nearest MR probed from the ingress edges is considered a root

ode of the overlay network. Thus, the root MR immediately probes

he reported PTRsPusr to its neighbor MRs in the right and left direc-

ions. If neighbors are reported from the ingress edges, the MRs add

heir reported PTRMR
sPusr to the aggregated PTRsPusr using the following

ormula:

TRsPusr = PTRsPusr + PTRMR
sPusr. (7)

The process of aggregating the PTR and sending the subtotal to

heir right and left neighbors is repeated for every MR. Fig. 4 shows

ow MRs exploit the virtual structure of overlay networks to ex-

hange PTR messages with each other and resolve the decision of PTR

iolations.

For every sPusr, the total number of PTRs is computed by aggregat-

ng the PTR fractions from the corresponding MRs. To compare the

TR measured ratios with the SLA bandwidth shares and to resolve

he decision of PTR violations, the root MR transfers the total PTRsPusr

o percentile ratios (βsPusr) through the following formula:

sPusr = (PTRsPusr/BndLink) × 100% (8)

here BndLink is the bandwidth of links in the domain. Therefore, the

oot node compares the PTR percentile of sPusrs with the bandwidth
tion of malicious traffic in large-scale networks, Computer Commu-
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shared with a user in the SLA to detect possible malicious traffic. The

decision maker agent then sends notification packets to all ingress

edges to filter as malicious the traffic of the user who exceeds the

PTR share.

4. Agent deployment

Sensor placement is a key factor in the proposed technique. Sen-

sor placement not only produces an early warning system but also

deters network intruders. For this purpose, model agents are opti-

mally placed to guarantee edge-to-edge network security (Fig. 5).

Traffic from the Internet enters the network through an ingress

edge; hence, assured service traffic classification and policing occur

at ingress routers. The network monitor agent is then deployed at

ingress routers to detect when the AQS exceeds the RED threshold

and when packets are marked with ECNs or drop.

A risk controller agent is installed at the ingress edges to investi-

gate traffic of burst egress edges that do not report their PDV estima-

tion details of the four-packet trains. The risk controller is activated

only when the network monitor reports any non-responded destina-

tion edge. In contrast, the violation detector is deployed at the egress

routers of the domain to estimate PDV metrics at the receiver end

using the four-packet train. The violation detector agent is not acti-

vated if no dropping or ECN marking is found at the domain gateways.

However, the traffic filter agent is activated later to compute the PTR

of users who violate their PDV guarantee in the SLA. Bandwidth ra-

tios are measured at ingress edges as the data transfer rate for each

user; hence, the traffic filter agent is deployed at the ingress routers.

The traffic filter agent must be deployed at the ingress routers, not

at the egress routers, to detect local intrusion that may be launched

synchronous with another global intrusion, as described in [37].

The decision maker agent is a separate agent activated when it

is probed by the traffic filter agent for making decisions on the basis

of PTR reports of users from distributed RED gateways. The decision

maker agent (Fig. 5) is deployed on separate routers and installed in a

virtual overlay network. Although ingress edges are the first tactic for

abnormality detection at domain edges, abnormal traffic can still be

injected through several gateways by an illegitimate user or through

profile-exceeding traffic by a legitimate user. Therefore, coordination

among model agents at provider edges (ingress and egress) and the

decision maker agent is required to detect attacks that escape detec-
Please cite this article as: A.A. Ahmed et al., Filtration model for the detec

nications (2015), http://dx.doi.org/10.1016/j.comcom.2015.10.012
ion at single ingress edges. In this section, the transmission protocol

s conducted among various agents that perform traffic filtration.

he protocol steps executed during the filtration phases of attack

onitoring, detection, and identification are illustrated in Fig. 6.

In this protocol, the network monitor agent at burst ingress edges

robes the violation detector agent at egress edges for PDV estima-

ion. In turn, the violation detector agent probes the traffic filter

gent at ingress edges for PTR measurement. The traffic filter agent

t ingress edges reports the PTR of sPusr-traffic to the decision maker

gent. Finally, the decision maker agent uncovers the mAls and probes

he ingress edges to filter mAl-traffic.

This section also discusses the ability of edge routers to operate

he proposed agents, particularly under limited memory resources

nd processor speed. We analyzed the complexity of extra probe

ackets transmitted among several agents, where the total num-

er of probing represents the extra overhead required on the corre-

ponding edge router. The proposed protocol indicates that the net-

ork monitor agent probes the violation detector agents on all edge

outers. Thus, the network monitor agent requires O(n) probing at

ach ingress edge, where n is the number of edge routers. At each

gress edge, the violation detector agent requires O(n) probing to

robe traffic filter agents at all edge routers. The traffic filter agent

t each ingress edge requires only one packet to probe its nearest

R at the decision maker agent. However, the decision maker agent

hrough the nearest MR requires O(n) probing to probe all ingress

dges during intrusion actualization. Each edge router requires only

(n) probing to handle any agent; thus, conclusions on the proposed

gents are scalable on edge routers as long as these routers have ad-

quate resources and high performance.

. Malicious traffic filtration

The following subsections describe the policy of filtering mali-

ious traffic injected from several gateways and delimiting the re-

ponsible users through three main phases: monitoring, detection,

nd identification. Fig. 7 describes the process of checking user’s traf-

c behaviors and filtering malicious traffic. Fig. 8 shows the over-

apped algorithms of the complementary agents responsible for de-

ecting service violation and recognizing malicious traffic.

.1. Monitoring mBusr-traffic

In the proposed model, the network monitor agent employs ECNs

o recognize misbehaving users and filter misbehaving traffic. There-

ore, user traffic marked with ECNs is mBusr-traffic, which is re-

uested for further investigation to verify suspicious behavior. How-

ver, user traffic not notified by the ECN is N-traffic, which is normally

llowed to be transmitted to the destination.
tion of malicious traffic in large-scale networks, Computer Commu-
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for each packet arrival {
if packet header not marked with ECN {

treat the packet as N-traffic

} else {
classify sender user as mBusr. 

probe four-packet trains to Violation-detector at  destination 

edges
}

}

N
et

w
or

k 
- m

on
ito

r

for each probed sPusr {
sPusrPTR = sPusrPTR + sPusrPTR-Fraction

sPusrPercent_PTR = (sPusrPTR / BandwidthLink)* 100 %

i f sPusr <= SLA {
uncover sPusr as a victim user  

treat sPusr-traffic as N-traffic

} else {
uncover sPusr as an intruder

filter Pusr-traffic as mAl-traffic

}
} 

D
ec

is
io

n 
- m

ak
er

f or each received four - packets train {
extract received times 

TmBusr-x1 received time of first packet of train

TmBusr-x2 received time of second packet of train

Tint interval time between consecutive packets
mBusrDV=(TmBusr-x2-TmBusr-x1)-Tint

mBusravg_DV= mBusravg_PDV * w + mBusrPDV * (1-w)

i f mBusr <= SLA {
treat mBusr-traffic as N-traffic

} else {
classify mBusr as  sPusr
treat mBusr-traffic as sPusr-traffic

probe Traffic-filter to aggregate PTR of sPusr

}
}

V
io

la
tio

n 
- d

et
ec

to
r

for each reported sPusr {
aggregate avg_sentsPusr

sPusrPTR-Fraction= (avg_sentsPusr * packet_size * 8)/ t_interval

report sPusrPTR-Fraction to Decision-maker

}  

Tr
af

fic
 - 

fil
te

r

elseif RTT==0 && NOT(isReported (mBusr))
{
classify mBusr as sPusr

treat mBusr-traffic as sPusr-traffic

probe Traffic-filter to aggregate PTR of sPusr
}

R
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k 
- c

on
tro

lle
r

avg_PDV PDV

PTR

PTRPercent_PTR

Fig. 8. Agent-overlapped algorithms.
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.2. Detecting sPusr-traffic

Further investigation is performed on the mBusr-traffic to verify if

t is suspicious by estimating PDV ratios using the active measure-

ent technique. At the same time, estimation of only the mBusr-

raffic, which is the traffic of the misbehaving users, keeps network

erformance scalable during the investigation. During traffic conges-

ion, the network-monitor agent on RED-based gateways is used to

eport misbehaving users to the egress edges in order to estimate

he PDV ratios of the mBusr-traffic. Thus, samples of the four-packet

rain are probed to the violation-detector agent. Once the violation-

etector is probed, the PDV ratios of the mBusr-traffic are computed

nd compared with SLADV. When the PDV of mBusr-traffic exceeds

he bit rate of the PDV metric in the SLA, an SLA breach occurs. There-

ore, the mBusr is classified as sPusr and the mBusr-traffic is filtered

s sPusr-traffic. The violation-detector agent then probes the sPusr-

raffic on the traffic-filter agent at the ingress edges for further in-

estigation. However, the mBusr-traffic that does not exceed SLAPDV is

lassified back to N-traffic and is allowed to reach its destination.

If the network-monitor agent reports particular misbehaving

sers to the violation-detector agent but receives no reply from the

estined edges (i.e., egress edges do not probe the details of PDV

stimation to the traffic-filter agent), the risk-controller agent con-

ludes that these egress edges are under attack. Thus, the algorithm

s transferred to the risk mode. In the risk mode, the PDV estima-

ion of mBusr-traffic destined to nonresponded edges is omitted. The

isk-controller agent immediately filters the fraction of mBusr-traffic

s sPusr-traffic.

.3. Identifying mAl-traffic

In this study, the intruder is detected by identifying the suspi-

ious users that strip the resources of others. Thus, sPusr-traffic with

TR higher than their bandwidth shares in the SLA is identified as

Al-traffic by measuring the PTR of suspicious users. Meanwhile, the

Pusr-traffic of those with normal PTR is N-traffic, and its resources

re actually abused by the mAl-traffic. In the case of PDV violation

n the previous phase, the oscillatory change in the PDV activates

he passive measurement phase to measure the PTR of sPusr-traffic.

he violation-detector agent probes the traffic-filter agent to report

he total bandwidth consumed by each sPusr-traffic user at ingress

ateways. Thus, the PTR of each user is calculated and reported to

he decision-maker agent for comparisons with SLAPTR. The decision-

aker agent considers as intruders the users that exceed the PTR ra-

ios specified in the SLA and their injected traffic as mAl-traffic. Users

ithin the bandwidth ratio guaranteed in the SLA are victims, and

heir traffic is classified back to N-traffic. A local attack, which may

e simultaneous with a global attack, may be detected by measur-

ng the PTR of users at the ingress edges instead of at the egress

dges.
Please cite this article as: A.A. Ahmed et al., Filtration model for the detec

nications (2015), http://dx.doi.org/10.1016/j.comcom.2015.10.012
. Experiment results

This section presents the experimental results of the proposed

odel. A comparative analysis is also conducted to evaluate the per-

ormance of the proposed model with recent existing schemes.

.1. Simulation setup

A simulation experiment was conducted by using a network sim-

lator NS-2.35. As shown in Fig. 9, the network topology is composed
tion of malicious traffic in large-scale networks, Computer Commu-
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Fig. 9. Simulated network topology.

Table 2

Background traffic setting of end-users.

End-users Connected to Destined to N-traffic (Mbps/user)

U1–U10 E1–E5 E26 1

U11–U20 E6–E10 E20 0.7

U21–U30 E11–E15 E30 1

U31–U40 E16–E20 E10 0.5

U41–U50 E21–E25 E33 0.5

U51–U60 E26–E30 E1 0.7

U61–U70 E31–E35 E25 1

Table 3

Parameter values of RED algorithm.

Parameter Name Description Value

Queue limit Router maximum buffer size 100 packets

Minth Minimum threshold 10–15 packets

Maxth Maximum threshold 30–45 packets

Queue weight Emphasizing factor 0.002

Table 4

SLS values of end-users.

Metric Description Maximum Value

Delay One-way delay Total of links delay

DV Delay variation 10% of the links delay

Loss Packet loss 0.01 of each user PTR

Bandwidth Packet transfer rate 20% of link bandwidth

Table 5

Details of simulated attacks.

Attack Attack Source Injected Intended PTR

time user through for (Mbps)

Attack 1 10–25 U30 E11–E15 E30 >10

45–70

Attack 2 25–45 U10 E1–E5 E26 >10

70–85

Attack 3 30–60 U55 E26–E27 E30 >10

Attack 4 5–80 U15 E6–E10 E16 >10

Attack 5 5–80 U12 E6–E10 E26 >8

Attack 6 5–80 U25 E11–E15 E16 >8
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of 47 nodes [35 edge routers (E1–E35) and 12 core routers (CR1–

CR12)]. Network traffic is FTP over TCP traffic generated by 70 end-

users (U1–U70). Each user could use several active sources to send

several flows through one or more ingress edges. Each of the five

edges was gathered as a fivefold set; likewise, each of the 10 end-

users was gathered to obtain a denary set. Each end-user could send

its data through one fivefold set of ingress edges as maximum, and

each ingress edge could be used only by one denary set of end-users

as maximum. For instance, U1 can send its data through E1, E2, E3,

E4, and E5; however, E1 can be used by U1–U10. Further details of

the description of user traffic setting, such as volume of traffic ac-

tually generated, source, and destination machine, are presented in

Table 2.

RED gateways were modified to indicate congestion. Table 3

shows the values of the RED parameters selected to guarantee an

efficient calculation of gateway AQSs. The maximum TCP flow win-

dows were 256 and 512 packets, and the maximum packet size was

1024 bytes. QoS ratios guaranteed for end-users was predefined by

the SLA. The values of delay, PDV, packet loss, and bandwidth metrics

specified for end-users were registered in service level specifications

(SLS), as shown in Table 4. The simulated experiment lasted for 100 s.

6.2. Result and discussion

In this simulated experiment, network traffic was monitored

under light load and traffic burst. Light load was observed at 0–9 and

86–100 s. Within these periods, end-users did not consume more

than their bandwidth share; therefore, the network was properly
Please cite this article as: A.A. Ahmed et al., Filtration model for the detec

nications (2015), http://dx.doi.org/10.1016/j.comcom.2015.10.012
rovisioned. Traffic burst was observed at 10–85 s, when attacks

ere executed and the link bandwidth could no longer accommo-

ate all user traffic. Within this period, six mutual attacks were

imulated as malicious traffic increased from 1 Mbps to more than

0 Mbps. In this experiment, malicious traffic is generated as mix

f constant bit rate (CBR), exponential (EXP), and variable bit rate

VBR) with real-time transport protocol (RTP) traffic. Fig. 9 illustrates

rom which ingress edges the attacks were injected and for which

dges the attacks were intended. Table 5 presents details of these

ttacks and the users that generated them. It is worth mentioning

hat experiment was run several times. In the following graphics the

ean values across several test repetitions are reported. The mean

alues of the test repetitions were also normalized to draw general

onclusion about the findings of this study.

.2.1. Scenario for monitoring mBusr-traffic

This scenario demonstrates the ability of the RED technique to

ecognize misbehaving user traffic in the network gateways. It also

emonstrates the ability of the proposed model to filter different

ypes of traffic and exclude the misbehaving ones. To this end, this

cenario was executed in three modes with different settings. In the

rst mode, TCP window size was set to 256 packets and type of ma-

icious traffic was set to CBR/EXP traffic. In the second mode, TCP

indow was set to 512 packets while malicious traffic was kept as

BR/EXP type. In the third mode, TCP window was kept as 512 pack-

ts, while malicious traffic type was set to VBR with RTP traffic. The

esults obtained from these modes are similar in terms of detecting

he misbehaving traffic as shown in Fig 10a, b, and c.

In these figures, the network gateways with an AQS between 10

nd 45 packets marked the packet headers of misbehaving users with

CN notifications in the period (6 s to 87 s) which is the period of at-

acks. In Fig. 10a, the gateways e1–e15 and e26–e30 of AQS between

0 and 30 marked packets of U1-U30 and U50-U60 with ECN notifica-

ions. In Fig. 10b, the gateways e1–e15 and e26–e30 of AQS between

5 and 45 packets marked the same users with ECN notifications in

he same period. Fig. 10c shows that the same gateways marked the

ame users in the same period. Table 6 shows the details of ECN noti-

cations issued for misbehaving users. E6–E10 marked U11–U20 with

CN from 6 s to 81 s. E11–E15 marked U21–U30 with ECN from 11 s

o 26 s and from 46 s to 71 s. E1–E5 marked U1–U10 with ECN from

8 s to 47 s and from 72 s up to 87 s. E26–E30 marked U51–U60 with

CN from 31 s to 61 s. The ECN notifications were used in this ex-

eriment to identify mBusrs with traffic that required further inves-

igation. During the period of attacks, the number of mBusrs notified
tion of malicious traffic in large-scale networks, Computer Commu-
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Fig. 10a. Domain RED gateways AQS using Minth = 10, Maxth = 30, TCP window 265,

and CBR/EXP over UDP as attack traffic, and FTP over TCP as background traffic.

Fig. 10b. Domain RED gateways AQS using Minth = 15, Maxth = 45, TCP window 512,

CBR/EXP over UDP as attack traffic, and FTP over TCP as background traffic.

Fig. 10c. Domain RED gateways AQS using Minth = 15, Maxth = 45, TCP window 512,

VBR over RTP as attack traffic, and FTP over TCP as background traffic.

Table 6

Details of ECNs issued for mBusr.

Notified Generator ECN marking ECN marking

users edges started at stopped at

U21–U30 E11–E15 11 s 26 s

U21–U30 E11–E15 46 s 71 s

U1–U10 E1–E5 28 s 47 s

U1–U10 E1–E5 72 s 87 s

U51–U60 E26–E30 31 s 61 s

U11–U20 E6–E10 6 s 81 s

Fig. 11. Mean PDV of mBusrs.
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y the burst ingress edges with ECN oscillated to reach a maximum

alue of 40 mBusrs. Therefore, the ECN strategy filtered 40 mBusrs of

0 users in the worst case. This strategy also involved the determina-

ion of filtration time of the burst gateway traffic of these mBusrs.

.2.2. Scenario for detecting sPusr-traffic

Further investigation for every user with mBusr-traffic was con-

ucted by estimating the PDV of the mBusr-traffic using Formulas

3)–(5) of the four-packet train method, where train length is four

ackets, packets type is CBR, and maximum train packet size is 40 B.

n Fig. 11, the PDV estimations of mBusr-traffic show that the average

ates of U(1–10), U(11–20), U(21–30), and U(51–60) exceeded their

DV ratios in the SLA.

The PDV ratios of these users increased from 5 ms to more than

3 ms between 5 and 82 s of simulation time. Thus, the traffic of

hese users was classified as sPusr-traffic and filtered for further in-

estigation. However, those with PDV average rates of approximately

ms throughout the experiment time were legitimate users. There-

ore, their traffic was classified as N-traffic.

.2.3. Scenario for filtering out mAl-traffic

We showed that only users whose traffic was classified as sPusr-

raffic violated the SLA. Thus, the PTR measurement was required only

or the traffic of 40 users, not 70. Using the passive model, the PTRs of

Pusrs were measured at the ingress edges using Formula (6) and re-

orted to the decision-maker agent. The decision-maker agent used

he reported PTR fractions to calculate the total PTR ratio of each sPusr

sing Formula (7). Thereafter, the total PTR ratios were used to com-

ute the link bandwidth consumption percentage of each sPusr using

ormula (8). The computed PTR percentages were compared with the

reset SLA thresholds to differentiate legitimate from malicious traf-

c and intruders from legitimate users. Fig. 12 shows the link band-

idth percentages consumed by every sPusr. This implies that U10,

12, U15, U25, U30, and U55 were intruders who launched the at-

ack. Consequently, the excessive traffic sent by these intruders was

ltered as mAl-traffic. Conversely, other mBusrs were all victims plun-

ered by the attacks of U10, U12, U15, U25, U30, and U55.

.2.4. Efficiency of using ECNs

As explained in Section 2, the existing schemes investigate user

raffic by inferring QoS metrics, such as delay, and comparing these

ith the SLA [11,35,47,48] or training [24,25,49,50] thresholds. De-

ay rates were measured throughout the simulation time to evaluate

he efficiency of using ECNs upon the methods of existing schemes.

he results were analyzed by comparing with the ECN results. For

ll domain users, delay was estimated using the active measurement
tion of malicious traffic in large-scale networks, Computer Commu-
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Fig. 12. Mean PTR of sPusrs at ingress edges.

Fig. 13. Mean delay of users.

Table 7

Symbols and values used in the comparison equations.

Symbol Description Values used

εn Bursting gateways 57% of n

μU Misbehaving user 60% of u

ρs Probe packet size 40 B

S Stripe length 3

T Four-packet train length 4

Mop Mega operations
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Fig. 14. Accuracy and false positive rate of the schemes.
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technique. Fig. 13 shows that the mean delay of users U(1-10), U(11-

20), U(21-30), and U(51-60) exceeded the delay bit rates in the SLA.

Thus, delay estimation filtered 40 mBusrs, whereas ECN monitoring

filtered 40 mBusrs. Notably, all the mBusrs filtered by delay estima-

tion had already been filtered by ECN monitoring. The key advantage

of this model is that misbehaving users that could be filtered by the

delay method with high communication cost and processing over-

head could be filtered by ECN monitoring with low communication

cost and processing overhead. Therefore, the use of ECNs in detecting

and filtering malicious traffic is a significant and novel contribution.

6.3. Analysis and evaluation

Effective intrusion detection systems should be able to support

high detection accuracy with low false alarm rate and a large-scale

network in a scalable manner, and should be reliable for monitor-

ing the entire network traffic. The proposed model was therefore

evaluated by comparing accuracy, scalability, and reliability. Fig. 9

shows the topology used for the comparison analysis. Performance

was measured for a network domain with U users and n edge routers.

Table 7 lists the values of variables used in the comparison equations.

6.3.1. Accuracy evaluation

Accuracy was evaluated by comparing the detection accuracy and

false alarm rate of the proposed FModel with each Stripe-based

[11,13] and Com-based [37] approach. To compare the detection accu-

racy of malicious and non-malicious traffic, accuracy was measured

using the following formula [49]:

Accuracy =
(

TP + TN

TP + TN + FP + FN

)
× 100%, (9)
a

Please cite this article as: A.A. Ahmed et al., Filtration model for the detec
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here TP is true positive, TN is true negative, FP is false positive, and

N is false negative. For each scheme, detection accuracy was mea-

ured in an average, whereas accuracy was computed first for each

nd-user using Formula (9), after which the average user accuracy for

ach scheme was determined. The comparison of scheme accuracy

hown in Fig. 14 demonstrates that FModel has the highest accuracy

mong all schemes.

False alarm rate refers to the percentage of legitimate flows falsely

ltered as misbehaving flows with respect to the percentage of all

onmisbehaving flows. The false alarm rate was measured using the

ollowing formula, as described in [49]:

alsePstv =
(

FP

FP + TN

)
× 100%. (10)

Similar to detection accuracy, false positive rate was measured

rst for each end-user separately, and then an average of the users’

alse alarm rate was computed for each scheme. Comparing the exist-

ng schemes in terms of accuracy (Fig. 16) shows that ECN monitoring

o detect mAl-traffic has the highest accuracy among the schemes that

epend on delay or PDV metrics.

The obtained results also show that ECN monitoring has the least

ercentage of false alarm rates. The percentage of accuracy of FModel

s approximately 22% higher than that of the delay-based approach

nd approximately 19.9% higher than that of thePDV -based approach.

he percentage of false positive rates of the FModel is approximately

3.9% less than that of the delay-based approach and 40.2% less than

hat of thePDV -based approach. The figure also reveals that, com-

ared with the existing schemes, FModel is more capable of recog-

izing service violations and detecting simultaneous attacks with a

ow false negative rate.

.3.2. Scalability evaluation

Scalability evaluation was achieved by measuring the processing

verhead POH and communication overhead COD of each scheme

ith variable domain sizes. To compute the COD, the total number of

robe packets injected per unit time for investigating network traf-

c was multiplied by the size of probe packets ρs. However, the POD

as computed by considering the extra processing δ at all hops h,

hrough which a packet passes per unit time. For each probe packet

n the monitoring schemes, a POD is required to change some fields

n the packet header, such as address lookup, checksum computation,

nd any other central processing unit processing overhead.
tion of malicious traffic in large-scale networks, Computer Commu-
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Fig. 15. POD comparison.
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In this subsection, POD and COD are required to be computed for

ach investigated QoS metric to evaluate the scalability of the cor-

esponding schemes. The POD and COD of the PTR measurement are

quivalent in all schemes. Each scheme approximately requires O(n)

robing overhead to measure the PTR metric, as described in their

lgorithms. In addition, the Stripe-based or Com-based approach re-

uires the approximate O(n) probing overhead to measure metric

oss. However, FModel is conclusively improved in terms of loss mea-

urement overhead. It does not measure metric loss. For delay or

DV metrics, Stripe-based and Com-based approaches estimate one

f these metrics at the monitoring phase, which is the first phase of

ltration where network traffic is not yet filtered. Thus, the POD and

OD in these schemes are required in large volumes to estimate the

elay or PDV of all user traffic. However, FModel estimates PDV at the

etection phase, which is the second phase of filtration where mBusr-

raffic is already filtered and POD and COD are required to estimate the

DV of mBusrs only.

Each of the evaluated schemes requires a different volume of

robing overhead based on its method for delay or PDV estimation.

hus, the communication protocols of these schemes are analyzed

n detail to create mathematical formulas that can be used to calcu-

ate the POD and COD required for delay or PDV estimation on each

cheme. In the Stripe-based approach, every edge injects a stripe of S

ackets to every egress edge pair for each user. The egress edge pair

ends a complementary stripe in reverse. Thus, the total number of

njected probes is S × (n – 1) × (n – 2) × U, where U is the number of

omain end-users. Formulas (11) and (12) show the POD and COD in

he Stripe-based monitoring approach respectively:

ODStripe = S × (n − 1) × (n − 2) × h × δ × U, (11)

ODStripe = S × (n − 1) × (n − 2) × ρs × U. (12)

To monitor the network in the Com-based approach, every edge

njects four-packet trains T to every egress edge of each user. Thus, the

otal number of injected probes is T × (n – 1) × (n − 1) × εU, where

U is the number of users filtered by the Com-based approach algo-

ithm as suspicious end-users. The POD and COD in the Com-based

pproach are computed using Formulas (13) and (14) respectively:

ODCom = T × (n − 1) × (n − 1) × h × δ × εU, (13)

ODCom = T × (n − 1) × (n − 1) × ρs × εU. (14)

In the proposed FModel, every bursting edge bN probes egress

dges with the four-packet trains to report the edge-to-edge PDV es-

imation of the corresponding mBusrs. In response, the egress edge

outers report the PDV estimation of the mBusrs to the ingress edges.

he total number of transmitted probes in the network domain is

εn – 1) × (n − 1) × μU, where εn is the number of bursting gate-

ays and μU is the number of misbehaving end-users. The values of

n and μU are computed based on the result shown in Fig. 10. Thus,

he POD and COD of FModel are computed using Formulas (15) and

16) respectively:

ODFModel = T × (εn − 1) × (n − 1) × h × δ × μU, (15)

ODFModel = T × (εn − 1) × (n − 1) × ρs × μU. (16)

The scalability of each scheme was evaluated using a variable

umber of gateways ranging from 35 to 2000, while the number of

sers was fixed at 70. Evaluation of the scalability of schemes with

housands of edge routers also showed that FModel, when compared

ith the existing schemes, can support a large-scale network in a

calable manner. A comparison of the POD and COD among the three

chemes showed that of all the comparison scenarios FModel exhibits

he lowest values. Fig. 15 shows the POD of each scheme in the moni-

oring phase for a network comprising 2000 edge routers and 70 end

sers. The Stripe-based schemes require approximately 5.E+03 Mega
Please cite this article as: A.A. Ahmed et al., Filtration model for the detec
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perations (Mop). The Com-approach schemes require approximately

.E+03 Mop, and the FModel requires 2.3E+03 Mop. Fig. 16 shows the

OD of each scheme required for monitoring a network with 2000

dge routers and 70 end users. The Stripe-based scheme requires

.6E + 05 Mbps, Com-approach schemes require 2.2E + 05 Mbps, and

he FModel requires 1.3E + 04 Mbps.

.3.3. Reliability evaluation

Reliability is measured as the probability that a system will not

ail and will complete its intended function in the expected manner

ver time. The failure of the scheme to investigate all or a fraction

f network traffic conclusively affects its performance reliability in

etecting an actual attack. In existing studies, reliability challenges

ccur once the algorithm fails to make traffic filtration decisions or

nce a particular edge fails to coordinate with other domain edges

or traffic investigations. The reliability of the scheme was evaluated

ased on its ability to reliably exchange information probe packets

mong domain edges and to continually achieve a reliable filtration

rocess in the expected manner.

The Stripe-based and Com-based approaches did not propose a

olution for single-point-of-failure problems to maintain SLA man-

gement in case of large volumes of malicious traffic. Furthermore,

either of these schemes proposed a solution to investigate traffic

ractions that were sent to nonresponded edges that fail to receive or

espond to probe packets. The proposed FModel addressed these lim-

tations via the functions of the decision-maker and risk-controller

gents (Section 3).

. Conclusion and future work

The model proposed in this study detects the attack before it hap-

ens with early warning notifications to uncover intruders while still

n the planning stages of an attack. Monitoring ECNs as an early no-

ification when anomaly congestion surfaces is beneficial for filtering

alicious traffic and minimizing potential overhead and resources

ssociated with intrusions. Although the results are based on sim-

lation scenarios, a comparison of approximate results indicates that
tion of malicious traffic in large-scale networks, Computer Commu-
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[

the use of ECNs to trigger traffic filtration reduces more than 40% of

traffic investigation overhead and assists the proposed algorithm in

supporting a large-scale network in a scalable manner. Estimation of

the PDV of misbehaving users ensures that suspicious users are fil-

tered and that the scope of bandwidth measurement is reduced from

40 to 36 suspicious users. The strategy of the proposed model to post-

pone passive measurements until the final stages and limit the scope

to suspicious users also results in a continuously accurate and scal-

able system performance throughout the measurement period.

By providing overlay network-based multi-MRs as a reliable so-

lution for single-point-of-failure problems, this model can obviate

failures in making traffic filtration decisions. Conducting an alter-

native solution for investigating the mBusr-traffic destined to non-

responded edges also increases the reliability of the proposed model

to investigate all user traffic, thus resulting in accurate filtration.

Future research will extend the role of the forensic investigator

agent to identify how intruders generate malicious traffic at an early

stage. This objective can be achieved by storing the output of the

forensic investigation process to a historical database. This histori-

cal information may be used in the preliminary phases of filtration to

filter traffic with similar malicious traffic behavior at an early time.
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