Computer Communications 82 (2016) 28-38

journal homepage: www.elsevier.com/locate/comcom

Contents lists available at ScienceDirect

Computer Communications

COI’I]pUtCI‘
communications

Overlay network scheduling design

@ CrossMark

H. Bai? K. Shaban® M. Khodeir¢, F. Gu9,]. Crichigno®, S. Khanf, N. Ghani®*

aElectrical Engineering, University of South Florida, Tampa, FL, United States
b Computer Science and Engineering, Qatar University, Doha, Qatar

€ Electrical Engineering, Jordan University of Science and Technology (JUST), Irbid, Jordan

dVMware Inc., Palo Alto, CA, United States
¢ Department of Engineering, Northern New Mexico College, Espaola, NM, United States

fElectrical & Computer Engineering, North Dakota State University, Fargo, ND, United States

ARTICLE INFO ABSTRACT

Article history:

Received 7 July 2015

Revised 31 December 2015
Accepted 18 February 2016
Available online 26 February 2016

Keywords:

Network scheduling
Traffic scheduling
Advance reservation
Overlay networks

Advance reservation services are being used by a range of applications to schedule connection bandwidth
resources at future time intervals. To date many different algorithms have been developed to support
various point-to-point reservation models. However, with expanding data distribution needs there is a
need to schedule more complex service types to provide connectivity between multiple sites/locations.
In particular, these offerings can help improve network resource utilization and help expand carrier ser-
vice portfolios. Along these lines, this paper presents a novel, scalable optimization solution to schedule
(virtual) overlay networks with fixed end-point nodes. An improved re-routing heuristic scheme is also
proposed and analyzed for comparison purposes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Network advance reservation (AR) allows users to schedule
connection bandwidth at future time intervals [1]. These ser-
vices types are being widely used by a range of applications in
scientific computing, work flow process management, and data
archival/backup. Overall, AR service models differ from more tra-
ditional immediate reservation (IR) models, in which incoming
requests are provisioned in an immediate manner based upon
current resource levels (network state). Namely, AR solutions must
incorporate the time dimension in order to account for varying re-
source levels at future intervals.

In general, connection scheduling is a challenging topic area,
and many AR solutions have been studied in recent years [2]. For
example, researchers have developed a range of service models
for point-to-point connection demands with fixed start/stop times,
variable start/stop times, and fixed transfer volumes, see survey in
[2]. Since most related scheduling sub-problems here are known
to be NP-complete, both optimization and heuristics-based solu-
tions have been proposed. However, as application paradigms ex-
pand, there is a growing need to schedule bandwidth interconnec-
tivity between multiple end-points, e.g., for applications in cloud
backup or mirroring, scientific workflow computing, and event

* Corresponding author. Tel.: +1 (813) 974-4772.
E-mail addresses: haobai@mail.usf.edu (H. Bai), khaled.shaban@qu.edu.qa
(K. Shaban), makhodeir@just.edu.jo (M. Khodeir), fenggu@unm.edu (F. Gu),
jerichigno@ece.unm.edu (J. Crichigno), samee.khan@ndsu.edu (S. Khan),
nghani@usf.edu, ghanin@yahoo.com (N. Ghani).

http://dx.doi.org/10.1016/j.comcom.2016.02.009
0140-3664/© 2016 Elsevier B.V. All rights reserved.

broadcasting (sports, conventions, etc.). Along these lines, several
studies have looked at more complex service request models. For
example, Entel et al. [3] studied multicast connection scheduling
in wavelength-routing optical networks. Meanwhile, Gu et al. [4]
introduce the more generalized virtual overlay network scheduling
(VONS) problem to schedule arbitrary mesh topologies. Consider
the details.

Overlay network scheduling entails network resource (i.e.,
bandwidth) reservation between multiple mesh end-points. This is
a very challenging topic since even the batch point-to-point con-
nection scheduling problem is NP-complete [4], i.e., all known so-
lutions are super-polynomial in time with the input size. Hence
by extension the global/batch VONS problem is at least of polyno-
mial degree higher complexity since multiple links are involved. In
light of this, Gu et al. [4] specified a global integer linear program-
ming (ILP) optimization model to schedule a full batch of incom-
ing overlay demands. However, since the ILP is largely intractable
due to high variable counts, the work in [4] proceeds to develop
and analyze two basic heuristic schemes. Hence there is a need
to further investigate the VONS problem and develop more formal
performance bounds. Along these lines, this paper makes two key
contributions:

(a) Develops and solves a new VONS ILP optimization model that
only treats a subset of time-overlapping requests. Namely, each
incoming overlay request is considered in isolation in a dy-
namic manner in order to lower variable count complexity. In
contrast the work in [4] does not solve any ILP model or pro-
vide any sort of bounds for the heuristic schemes.

http://dx.doi.org/10.1016/j.comcom.2016.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.02.009&domain=pdf
mailto:haobai@mail.usf.edu
mailto:khaled.shaban@qu.edu.qa
mailto:makhodeir@just.edu.jo
mailto:fenggu@unm.edu
mailto:jcrichigno@ece.unm.edu
mailto:samee.khan@ndsu.edu
mailto:nghani@usf.edu
mailto:ghanin@yahoo.com
http://dx.doi.org/10.1016/j.comcom.2016.02.009

H. Bai et al./Computer Communications 82 (2016) 28-38 29

(b) Develops an improved heuristic scheme that incorporates re-
routing/re-scheduling strategies to lower request blocking rates
and undo the effects of greedy allocation. Since overlay de-
mands are only active at future intervals, prior re-routing of as-
sociated link connections will not cause service disruption - a
key saliency. In contrast, Gu et al. [4] only present two basic
VONS heuristics using minimum hop count and minimum dis-
tance routing.

Overall, this work provides a good basis from which to de-
velop further scheduling solutions for cloud-based infrastructure
services. Namely, these services require virtual network (VN) pro-
visioning over cloud substrates consisting of computing/storage
resource pools (datacenter sites) and interconnecting networks
(switches, links), seeFig. 1. Now VN requests differ from overlay re-
quests in that VN nodes also have (storage, computation) resource
requirements and are not necessarily bound to a fixed network lo-
cations [5]. Hence VN embedding (VNE) requires both node map-
ping and connection link routing, adding further dimensionality
to the provisioning problem (see Fig. 1). Although a range of VNE
schemes have been proposed, only immediate reservation scenar-
ios have been studied [6,7]. Therefore as cloud-based infrastruc-
ture services continue to expand, there will be a need to develop
VN scheduling schemes as well, and these can leverage from the
VONS solutions proposed herein.

This paper is organized as follows. Section 2 first presents a
review of existing work in network virtualization design and AR
scheduling. Section 3 then details an improved optimization for-
mulation for the topology overlay scheduling problem, followed by
a novel heuristic re-routing scheme in Section 4. Detailed perfor-
mance analysis results are then presented in Section 5 along with
conclusions and future directions in Section 6.

2. Background

AR schemes perform resource (bandwidth) reservation for fu-
ture transfers. One of the key aspects of the AR problem is
that user request durations are bounded over a given time inter-
val, either fixed or variable. Accordingly, various service models
have been proposed with fixed start/stop times, variable start/stop
times, and variable start/fixed file sizes, etc. [1]. Furthermore, a
wide range of point-to-point connection AR scheduling algorithms
have also been developed to provision these service models, with
many focusing on optical networks, see survey in [7]. These so-
lutions include both optimization [8,9] and heuristic strategies
[10,11]. The former types assume time-slotted arrivals/departures
and pursue various objectives such as minimizing resource uti-
lization, maximizing accepted requests. For example, Andrei et al.
[8] formulates a mixed ILP (MILP) optimization model to jointly
schedule and route lightpath requests with sliding start/stop times.
Owing to the complexity of the problem, a Langrangean approxi-
mation is developed to maximize the scheduled demands. Mean-
while Zheng et al. [9] presents another optimization model to min-
imize wavelength resource utilization. However, optimization de-
signs pose notable scalability limitations due to increased vari-
able counts from the discretized time dimension. Hence a range
of AR heuristics have also been proposed for on-line request ar-
rivals. For example, Zheng and Mouftah [10,11] present graph-
based schemes to schedule fixed start/stop time lightpaths de-
mands (without wavelength conversion). These methods perform
a greedy search using fixed-alternate routing methods.

Now unlike immediate reservation, advance reservation re-
quests are not active until their future scheduled time intervals.
Hence these services can be re-routed prior to start without dis-
rupting any active transfers. Along these lines, several AR connec-
tion re-routing schemes have been proposed to improve blocking

rates and accommodate more requests [12,13]. Most of these algo-
rithms use graph-based heuristics to achieve a tradeoff between
blocking reduction (carried load) and re-routing attempts (com-
plexity). For example, Wallace et al. [12] present two algorithms to
minimize the number of re-routed reservations, and findings show
good blocking reduction versus non-re-routing schemes. Mean-
while Xie et al. [13] develops an ILP model to re-optimize sched-
uled demands and accommodate new requests. This algorithm is
triggered if a regular (heuristic) scheduling algorithm fails and uses
a maximum look-ahead time parameter to bound optimization time
windows (complexity). Overall, this ILP scheme gives notably lower
blocking as compared to some heuristic methods, but this solution
is only feasible for relatively small network sizes (under 10 nodes).

Meanwhile, the overlay network design problem has also been
investigated. The overall aim here is to embed dedicated client
topologies (sets of virtual links) between select network nodes to
provide improved performance, e.g., quality of service (QoS), sur-
vivability, etc. In general, network overlays can be used to support
specific applications such as packetized voice, video streaming,
datacenter interconnection, etc. For example, the service overlay
network (SON) [14] study develops an optimization model to stat-
ically allocate bandwidth resources for overlay topologies (sets of
connection routes between gateways). This formulation uses queu-
ing models to incorporate oversubscription (in terms of load pa-
rameters) and tries to maximize revenues subject to oversubscrip-
tion penalties. An approximate solution is developed and results
are analyzed for different per-unit bandwidth prices and band-
width levels. Meanwhile, the resilient overlay network (RON) project
[15] uses overlays to improve network routing convergence and
resiliency. Specifically virtual links are provisioned between des-
ignated routers running dedicated link-state routing protocols to
achieve various objectives, e.g., delay or loss minimization, rapid
recovery, etc. Results show notable reduction in failure recovery
times versus the legacy border gateway protocol (BGP), i.e., seconds
versus minutes.

In addition, other efforts have also considered overlay topology
provisioning in more specialized networks. For example, Xie et al.
[16,17] present several schemes for extending Ethernet local area
network (LAN) services over SONET/SDH networks using full-mesh
or star/hub overlays. These algorithms use shortest-path heuris-
tics to route virtual link connections, and SONET/SDH inverse
multiplexing capabilities are also leveraged for partial/tiered re-
covery via multi-path splitting. Other efforts have proposed optical
overlay provisioning in fiber-based networks with specialized
physical-layer constraints/capabilities, e.g., wavelength continuity,
fixed/flexible spectrum, regeneration/amplification, etc. [18]. For
example, Pages et al. [19] presents two ILP-based schemes for
maximizing carried loads in optical networks with both fixed and
flexible spectrum grids. The findings show higher carried loads
with the flexible spectrum approach, albeit the associated ILP
model is less scalable. Researchers have also studied the more
generalized virtual network (VN) embedding problem [6,7] where
the virtual node locations themselves are variable and subject to
placement (Fig. 1).

Now as services expand, there is a need to schedule band-
width connectivity between multiple sites, e.g., for applications in
cloud/datacenter mirroring and backup, event broadcasting, sci-
entific computing, etc. However, only a handful of studies have
looked at scheduling non-point-to-point demands/services. For ex-
ample, Entel et al. [3] studied multicast connection reservation
in optical networks. Namely, several optimization and heuristics-
based schemes are proposed to setup wavelength connection paths
with/without multicast group members. However, the ILP mod-
els are only solvable for relatively small networks (under 20
nodes), and findings show improved wavelength conservation for
multicast-aware routing schemes. Finally, Gu et al. [4] introduce

30 H. Bai et al./Computer Communications 82 (2016) 28-38

(Virtual) Overlay Networks

il 3

Overlay
request

Fixed | ! :
node sites |

ConrrrwrectiircAi»r;/'“- ‘
/% rh\f/

+ Overlay nodes located at fixed client sites
+ Overlay links needto mapped to connections

VN node— physical /3
nodemapping ; }

Physical
substrate

Virtual Networks
VN node

VN link

VM node iy

(selection) mappings P

substrate

+ N nodesrequire storagefcomputing resources
+ VN nodesneedto be "mapped" to physical nodes
+ WNIlinksneedto mapped to connections

Fig. 1. Overlay networks and virtual networks (VN).

the virtual overlay network scheduling (VONS) problem for schedul-
ing arbitrary mesh overlay topologies, i.e., sets of virtual links be-
tween designated network nodes. Namely, an ILP formulation is
introduced to minimize resource usage across a set of overlay re-
quests. However, due to excessive variable count complexity, only
basic greedy heuristics are presented instead to schedule virtual
link connections. Specifically, several link weighting schemes are
tested in [4], including static (equal) link weights for resource min-
imization and dynamic bandwidth usage-based weights for load-
balancing. Overall the results show reduced blocking rates with the
latter weighting schemes.

Nevertheless, although Gu et al. [4] present some good findings,
many further issues remain. Foremost, there is a need to develop
and solve proper optimization solutions in order to bound overlay
scheduling performance. Improved heuristics are also required to
improved carried load (revenues) for operators. These concerns are
now addressed.

3. Optimization formulation

As noted earlier in [2], the point-to-point connection AR
scheduling problem is NP-complete. Hence by extension the over-
lay scheduling problem is also of at least polynomial-degree higher
complexity than NP-complete. In light of this, it is very difficult to
find tractable optimization-based solutions, particularly for larger
networks. For example, Gu et al. [4] present a “global” ILP formu-
lation to schedule a complete batch of a-priori overlay requests, but
this model cannot be solved due to excessive variable counts, i.e.,
as it tries to optimize all demands over the full time horizon (all
timeslots).

To address these scalability limitations, a novel dynamic opti-
mization scheme is presented for overlay scheduling (VONS prob-
lem). This approach adapts the ILP model in [4] and only optimizes
a single overlay request over the residual substrate capacity graph
using a shorter time window, i.e., fewer time slots. This contrasts
with the optimization framework in [4] which tries to map all
requests over the full capacity graph and complete time horizon.
Namely, to achieve a tradeoff between performance and complex-
ity, the dynamic ILP only optimizes a subset of the accepted (ear-
lier scheduled) demands that overlap with the incoming request.
Since these requests are not yet active, re-optimizing them does
not cause any service disruptions. This revised optimization is now
detailed.

First consider the requisite notation for substrate and overlay
network topologies, as shown in Fig. 2. The substrate network

here is modeled as a graph, G(V, E), where V is the set of
router/switches nodes and E is the set of network links. Without
loss of generality, all links are assumed to have fixed capacity,
C, and connectivity is bi-directional, i.e., there are two opposing
uni-directional links between neighboring nodes. Each link e € E
also has an associated capacity function, c.(t), which represents its
used (available) capacity as a function of time (future intervals).
Meanwhile overlay network requests are denoted by the 5-tuple,
M= (S",L", ¢}, t},b"), where n is the request index, S" is the set
of node/sites (S"cV), L" is the set of overlay (virtual) links, tI' is
the request start time, and tJ is the request end time. Without
loss of generality, it is also assumed that all overlay links llﬂj el"
request b" units of bandwidth, b" < C. Note that a request can
start at any time after it is received. Hence immediate reservation
(IR) requests can be regarded as special cases where the t!' values
are very close to the actual request arrival times, i.e., with some
minor added delays for provisioning and setup.

Using the above notation, an overlay request is specified as a
set of directional connections, i.e., nodes in S" interconnected via
a set of “virtual” overlay links given in L" (see examples in Fig. 2).
Carefully note that this formulation only incorporates bandwidth
resources, although its can be extended to include datacenter (i.e.,
computing, storage) resources at the nodes as well. Also, in order
to satisfy integer constraints, time is discretized into fixed times-
lots of duration T, and all ¢! and t] values are chosen as integral
multiples thereof. In addition, several other variables are also de-
fined here as follows:

™ incoming overlay request: (SW, L%, tY, t¥, b")

R: set of admitted inactive reservations from timeslot t;
toty, ie, e Rg iff start time t > t; and ! <,

T current time at which ILP is triggered and also the
time when request r" received

T maximum look-ahead time allowed for ILP run

T = max{t7|r" R U {r}}

vl eS" the ith node inS"

L7 i virtual link between v and v?, vl # U;?
vl e ST, U;’ eS"

) .k

p’zj? binary flag for overlay link usage in time slot k,
ie., p?’f’k = 1(0) if L?; does (not) use link e € E
in timeslot k

v—e egress node of linke € EifveV

e— v ingress node of linke € Eifv € V

H. Bai et al./Computer Communications 82 (2016) 28-38

Virtual overlay network 1
M= L', t1.t}, b%) . where
H'={5, V10, V11, V140 V15)

I=
L {16-10’ 16-11 4 ‘EIGH 2 11015’ 111-14’ lI4—I5 }

Vg @@V

Vis @ Vio

Physical network topology

NG Dashed lines represent physical
_connections for virtual overlay links

Fig. 2. Virtual overlay network services example.

ILP timeslots

Fig. 3. Example set of admitted inactive reservations in ILP.

Now consider the reduction of the optimization time window,
an example of which is shown in Fig. 3. Here, T, denotes the
arrival time of the new request r%, and this also happens to
be when the ILP computation is triggered. Meanwhile, T, is de-
fined as the maximum look-ahead time and is set to the maxi-
mum end time across all overlapping inactive reservations in set

tT" U {r"}. Hence any request that starts after request ¥ ends will
not impact it. Based upon this maximum look-ahead time, the ILP
(re)optimization only considers accepted but inactive reservations
in the interval [Ty, Tir], i.e., only those requests that start after T,
and end before Ty;. Hence for the case in Fig. 3, only requests r!, r2,
and 13 are included in the ILP formulation (and not request r#). Al-
ternatively, if request r2 had ended before rV arrived, then it would
not be included in the re-optimization. Overall, reducing the num-
ber of timeslots in the optimization improves computational scal-
ability, but can also result in a locally-optimal (sub-optimal) solu-
tion.
Using the above notation, the overall objective function is de-
fined as:

PO ID DB S e

r"eR u{rW}" eS" ecE Ty <k<Ty

min

(1)

31
Virtual overlay network 2
P=(H?,L?.t2.t2. %) .where
HP={y;,v,95,Vy1)
L={ g s bapa dspn)
Vs v,
Vi Vq
Vs v,
subject to the following constraints:
Zp”e"_l tf<k<t}vfeS vies (2)
vi—e
Yopist=0 <kt eSS vies 3)
e—>vt
Yopitt=1 i <k<t e Ves (4)
e—>v"
Yopist=0 <k<t eSS vies" (5)
v"ae
I k
Yopik =Y Pt g skstlveV\{UL v}l S vies
e—v v—e
(6)
P Zb"p?*je*kgC ecE T, <k<Ty, (7)
r"eR%:u{rW} viest vjest
ek n.e.k+1
plrel = p.*
L] L] (8)

r"eR U{rW} eckE, t"<k<t§,v?e$”,v'}e$"

Here Eq. (1) tr1es to minimize the resource utilization across all re-

quests in set R U {r"}, and thereby helping reduce request block-
ing rates. Meanwhlle the remaining equations specify some nec-
essary constraints. For example, Eqs. (2) and (3) (Egs. (4) and (5))
ensure flow conservation at the respective substrate source (desti-
nation) nodes. Meanwhile, Eq. (6) ensures input/output flow con-
servation at transit nodes. Also, Eq. (7) limits the total provisioned
bandwidth on a link to below its maximum capacity, whereas Eq.
(8) ensures route consistency in the request interval.

The pseudocode listing of the dynamic optimization solution is
shown in Fig. 4. The scheme first identifies the set of overlapping

32 H. Bai et al./Computer Communications 82 (2016) 28-38

1: Given new overlay request r = (S™, L* t¥, ¥, b*)

2: Identify set of accepted inactive reservations RtT5

3: Generate temporary graph, G'(V, E)=G(V, E)) and remove all resources for
reservations in R%

4: Generate ILP formulation for set R;:u u{rv}

5: if ILP solution found

6: Setup success, reserve resources in G'(V, E) and copy G'(V, E) — G(V, E)

7: else

w

8 Drop request r

Fig. 4. ILP formulation framework.

scheduled reservations to (re)optimize when a new request arrives
and then frees up their reserved capacities. To do this, a tempo-
rary working copy of the residual bandwidth graph, i.e., G'(V, E),
is generated and the maximum look-ahead time window used to
identify the overlapping demands. An ILP formulation is then run
for the request along with its set of overlapping reservations over
the substrate graph G'(V, E). If this ILP is successful in finding valid
mappings for all reservations in the set, then the request is ac-
cepted and the residual resource graph G(V, E) is replaced by the
temporary working graph G'(V, E). Otherwise the incoming request
is dropped.

Overall, the dynamic ILP model greatly reduces run-time com-
plexity versus the “global” ILP formulation in [4]. For example, con-
sider a 10 node mesh topology with 100 overlay requests. If the
requests have average holding times of 10 timeslots and average
inter-arrival times of 5 timeslots, then approximately 500 times-
lots are required for the global optimization scheme in [4]. Fur-
thermore, if each overlay request demands 3 nodes and 3 links,
the total number of variables in the global optimization is approx-
imately 15,000,000 (i.e., 3 x 100 total links, 10 x 10 node-to-node
topology, and 500 timeslots). Clearly this value poses insurmount-
able complexity for most modern servers. Now consider the fact
that on average, only 2 requests will overlap in time. Hence assum-
ing a maximum look-ahead time of 10 timeslots in the dynamic
optimization, the total number of optimization variables drops to
about 9000, i.e,, 3 x 2 x 10 x 10 x 15 = 9000 (i.e., 3 x 2 total
links, 10 x 10 node-to-node topology, and 15 timeslots). This fig-
ure is more than three orders of magnitude lower than that for the
global optimization and makes the solution much more tractable.

4. Re-routing heuristic

Some novel overlay scheduling heuristics are also presented to
improve upon the greedy schemes in [4]. The overall goal here is
to use re-routing techniques to re-map accepted overlay requests in
order to make room for a new demands, i.e., much in the in the
same way the dynamic ILP operates. This approach is motivated by
earlier work on AR connection re-routing, which has shown good
blocking reduction, see [13]. Consider the details.

A high-level view of the proposed re-routing framework is il-
lustrated in Fig. 5 along with a more detailed psuedocode descrip-
tion in Fig. 6. Overall, this heuristic comprises of two stages. The
first stage (Stage 1) attempts a regular setup for a new request. If
this stage fails, then the second stage (Stage 2) tries to re-route
a subset of time-overlapped (virtual link) connections to create
enough free resources to accommodate the new request. One of
the key objectives here is to achieve a balance between computa-
tional complexity (i.e., number of re-routing attempts) and request
blocking rates. The two stages are now detailed further.

AR Request
Setup success
Stage 1 [:: P> Selup success
Base scheduling Feasible mapping found
algorithm
No feasible
mapping
Setup success
Stage 2 Feasible mappings found
Link rerouting for new request and all
algorithm re-routed demands

Setup failure
Insufficient resources

Fig. 5. Two-stage overlay network scheduling re-routing strategy.

1: Given new overlay request v = (S, L™, t¥,t%,b")
2: Generate temporary graph, G*(V, E)=G(V, E)
/* Loop and provision all overlay links in request */
3: for j =1 to |LY|
4: /¥ Stage 1: Regular attempt */
Generate another temporary graph G'(V, E)=G*(V, E), remove all non-
feasible links, 5™ < b¥ in [t¥, %]

Run connection scheduling algorithm for j-th virtual link over G'(V, E)

ot

6. if success then

7: Reserve path resources for j-th link in G*(V, E)
8 else
9: /* Stage 2: Re-routing */

Compute candidate path for j-th virutal link in G*(V, E) via MHR,
MNR, or THR approach

10: if fail then

11: Drop r*, discard G'(V, E) and G*(V, E), exit

12: else

13: - Sort reservations on candidate path (decreasing order)
14: - Compute re-routing connection set

15: - Free resources for reservations in re-routing set

16: - Reserve path resources for j-th virtual link

17: - Re-route each connection in re-routing set

18: if success then

19: Reserve candidate path resources in G*(V, E) for j-th virtual link
20: else

21: Drop %, discard G'(V, E) and G*(V, E), exit

N

2: if all overlay (virtual) link connections I} € L" routed

23: Setup successs, copy G*(V, E) — G(V, E)

Fig. 6. Overlay demand re-routing heuristic.

H. Bai et al./Computer Communications 82 (2016) 28-38 33

c.(?)

C

e

i

s s s e e e

Fig. 7. Sample link capacity function c.(t), two reservations (r', r?) when r¥ arrives.

4.1. Baseline scheduling (Stage 1)

The initial stage simply runs a baseline heuristic to setup an in-
coming overlay request (steps 4 and 5, Fig. 6). Now technically any
overlay scheduling heuristic can be re-used here. However, for the
purposes herein, the load-balancing min-distance strategy is cho-
sen as it gives the best performance out of all the schemes in
[4], i.e., reduced blocking (higher carried loads) versus the resource
minimization strategy. Specifically, this approach assigns dynamic
“load-based” weights to links in G(V, E) and then uses them to
compute minimum cost routes for all virtual link connections us-
ing Dijkstra’s algorithm (sequential manner). Namely, the weight
for link e is computed as inversely-proportional to its lowest resid-
ual capacity in the request interval:

w=1/(x +¢€) (9)

where

X = min ce(t) (10)
telty,t']

where ce(t) is the earlier-defined link capacity function, and € is
a small value chosen to avoid division errors. Note that all the
above computations are done using a temporary copy of the resid-
ual bandwidth graph, termed G*(V, E), see steps 1 and 2, Fig. 6.
This copy is used to track/store all accepted connection reserva-
tions (virtual links) in the request being processed. Now if the
overall setup is successful, then the original capacity graph G(V, E)
is replaced by G*(V, E), i.e., steps 22 and 23, Fig. 6. To further im-
prove setup success, Dijkstra’s algorithm only considers substrate
links in G*(V, E) with sufficient capacity to provision the requested
bandwidth for ¥, b" (step 4, Fig. 5). Specifically, based upon the
ce(t), the bottleneck link capacity for link e in the interval [tY, t)']
is defined as follows:

b™m — minc,(t), tY <t <t (11)

Based upon the above, all links with b < b% in G*(V, E) are
removed to generate a reduced sub-graph for routing computa-
tion, labeled as G'(V, E). This approach tries to achieve better load
distribution by preventing specific substrate links from becoming
overloaded. An example of bottleneck link capacity selection is also
shown in Fig. 7.

4.2. Scheduling re-routing (Stage 2)

The re-routing stage is triggered if a virtual link connection at-
tempt in Stage 1 is unsuccessful, i.e., steps 9-21, Fig. 6. Specifically,
a candidate path is first computed for the failed overlay link re-
quest. Next, a subset of the existing reservations on the candidate

path links are re-routed to free up capacity for the failed request.
However, since multiple reservations can be perturbed by this re-
routing/re-scheduling phase, it is important to limit the number of
re-routing attempts, i.e., generally divergent objective versus block-
ing reduction. Hence several candidate path selection approaches
are proposed here including:

« Minimum Hop Re-Routing (MHR): This scheme selects the candi-
date path as the shortest hop count path between the (failed)
overlay link end-point nodes using Dijkstra’s algorithm. Choos-
ing the shortest path indirectly tries to minimize re-routing dis-
ruption.

Minimum Number Re-Routing (MNR): This scheme selects a can-
didate path to minimize the disruption of scheduled demands
(re-routing complexity). Namely, the k-shortest paths (k-SP) be-
tween the overlay link request’s end-point nodes are computed,
and the path giving the fewest number of (virtual link connec-
tion) re-routings is chosen. Specifically, this is done by ordering
all connection reservations on a link by decreasing bandwidth
size and then counting the minimum number needed to meet
the requested capacity, b".

Threshold Re-Route (THR): This scheme minimizes the amount
of perturbation by selecting a path that already has a fraction
p (0 < p < 1) of the requested overlay link capacity in the in-
terval. Namely, Dijkstra’s shortest-path algorithm is re-run over
G*(V, E), and all links with bottleneck capacity below the frac-
tional amount are precluded from consideration, i.e., link e with
bmin > pb% in [, t¥] is kept. This approach is similar to the
connection-level AR re-routing scheme in [13].

Once a candidate path has been chosen, a subset of the ex-
isting (overlay link) connection reservations on its links are se-
lected for re-routing, i.e., termed as the re-routing connection set.
Clearly these reservations can span across multiple overlay de-
mands. Hence to minimize disruption of accepted demands, con-
nections on the candidate path (links) are first sorted in terms
of decreasing bandwidth size. The re-routing procedure then loops
through all candidate path links, and for each, iteratively moves a
sufficient number of scheduled connections (with overlapping du-
rations) to the re-routing connection set to free up capacity. Specif-
ically, upon each iteration at a candidate path link, the bottleneck
link bandwidth b is recomputed until enough capacity is freed
for the new request (step 15, Fig. 6).

Finally, the heuristic tries to sequentially re-schedule all reser-
vations in the re-routing connection set (steps 17-21, Fig. 6). This
step basically re-runs the regular Stage 1 setup algorithm (from
Section 4.1) for each request over the temporary G*(V, E) graph.
If all reservations in the re-routing connection set can be suc-
cessfully re-scheduled, then re-routing is deemed successful and
the request is accepted. Otherwise the request is rejected and the
setup attempt terminated. Note that additional improvements can
also be devised here. For example, the reservations in the re-
routing connection set can be sorted based upon increasing or de-
creasing capacity sizes. This will have a potential impact on the
future requests. However, such modifications are left for future
study.

4.3. Computational complexity

Now consider the overall run-time complexity of the heuris-
tic approach, starting with Stage 1. Foremost, the bottleneck link
capacity filtering step is of O(|E|) complexity. Meanwhile, Dijk-
stra’s shortest path algorithm (used in the min-distance scheme)
is of O(|E| + |V|log(|V]|)) complexity [20]. Hence the aggregate
run-time complexity for scheduling each virtual link is O(|E| +
[VIlog(IV])).

34 H. Bai et al./Computer Communications 82 (2016) 28-38

MNR THR

Table 1
Heuristic complexity comparison.
Heuristic MHR
Stage 1 Baseline scheduling O(|E| + |V|log|V])
Stage 2 Candidate path selection O(|E| + |V|log|V])

Re-routing connection set selection
Rerouting computation

O([E||VI*log V)
O(IVIPIE| + IV log [V])

O(IE] + [V[log |V| + |E[[V[*log V]) OC(IE| +[V]log|V])
0(1) O([E||VI*log V1)

Next consider the re-routing stage, Stage 2. The first step fo-
cuses on candidate path selection, and here both the MHR and THR
schemes use Dijkstra’s shortest path algorithm to compute a can-
didate path, i.e., O(|E| + |V|log(|V|)) complexity, akin to Stage 1.
However the MNR strategy is more involved since it first computes
k-shortest paths and then selects one with the smallest number of
overlay links to re-route. This latter step requires sorting all reser-
vations along each of the k-shortest paths. Now k-shortest paths
computation can be solved in time O(|E| + |V|log(|V|) + k) [21]. In
the worst case, the MNR scheme may have to process all O(|E|)
links in G*(V, E), and each link may have up to O(|V|?) reservations
[13]. Sorting these reservations in decreasing order of bandwidth
size adds an additional O(|E||V|2log|V]) complexity, yielding a total
bound of O(|E| + |V|log(|V|) + |E||V|?log |V]|) for the MNR scheme.

Finally, to compute the re-routing connection set, both MHR
and THR schemes must sort the previously-scheduled reservations
in decreasing order, i.e., O(|E||V|2log|V|) complexity. However, since
the MNR scheme already performs this sorting step earlier, it has
constant time complexity here. Leveraging the above, the total
number of re-routing attempts (across all three candidate path se-
lection strategies) is upper-bounded by O(|V|?), i.e. the same as
the maximum number of reservations on each link. This yields a
computational complexity bound of O(|V|?|E| + |V|3log|V]) for all
three heuristics. In practice, however, the number of active con-
nections on a link will be well below |V|?, and this will give much
lower run-time complexity. These overall bounds are also summa-
rized in Table 1.

5. Performance analysis

The performance of the overlay scheduling schemes is now an-
alyzed. Namely, advanced discrete event simulation models are
developed in the OPNET Modeler™ toolkit to generate and pro-
cess overlay requests/demands. Meanwhile, the dynamic optimiza-
tion model (Section 3) is also solved by generating external file-
driven calls to the CPLEX optimization solver tool. Furthermore,
two topologies are tested here, including the NSFNET backbone
with 16 nodes/25 links (3.12 node degree) and a larger network
with 24 nodes/43 links (3.58 node degree), see Fig. 8. All nodes are
assumed to be IP multiprotocol label switching (MPLS) routers with
10 Gbps links and advanced bandwidth provisioning capabilities.

Meanwhile, the Inet topology generator is used to generate ran-
dom overlay requests (topologies) with 4-6 nodes each and an
average node degree of 2.5. The corresponding overlay link ca-
pacities are also chosen in a random manner, ranging uniformly
between 100 and 1000 Mbps. Furthermore, incoming requests
have exponentially-distributed holding and inter-arrival times with
means 4 and A, respectively (rounded to nearest timeslot value).
In particular, the mean holding time is set to 10 timeslots, and
the mean inter-arrival time is varied according to the desired in-
put load. Carefully note that network load is commonly measured
using the dimensionless Erlang metric, defined as the ratio of the
service rate to the arrival rate [22]. However, in order to properly
account for varying numbers of virtual links (i.e., connections) in
an overlay request, a slightly modified load metric is proposed here

(a) NSFNET backbone topology (16 nodes, 25 links)

(b) 24-node test topology (24 nodes, 43 links)

Fig. 8. Test network topologies.

as follows:

6
Modified Erlang load = 1 > o(n—1) x pu/r (12)
3 n=4

for overlay topologies ranging from n =4-6 nodes. Consider the
findings now.

First, sensitivity tests are done to select the fractional band-
width parameter, p, for the THR scheme. Namely, three different
p values are tested for both network topologies, i.e., p = 0.1, 0.5,
and 0.9. Overall blocking results (not shown) indicate very mini-
mal variations between the different p values, i.e., blocking rates
for different o values within 1% of each other at any given input
load. Meanwhile the average overlay connection path lengths are
shown in Fig. 9 and indicate slightly higher utilization with smaller
p values (particularly at higher loads). Nevertheless, the respective
differences between the p values still fall within 1% of each other
at any given input load. Next, the number of re-routed reservations
is plotted in Fig. 10, and these results show notably higher over-
heads with smaller p values, i.e., due to reduced re-route trigger-
ing thresholds. Finally, the re-routing success rates are also plotted
in Fig. 11 and indicate improved setup performance with larger p
values. This is expected since larger p values result in fewer, more
successful re-routing attempts. Based upon these findings, a me-
dian value of p = 0.5 is chosen to maintain a balance between re-
routing overheads and blocking reduction.

Next, detailed tests are done to compare the performances
of the dynamic optimization and heuristic schemes (MHR, MNR,
THR). The baseline scheduling heuristic in Section 4.1 is also tested
here in order to provide a “non-re-routing” reference. As men-
tioned earlier, this baseline is the same as the best-performing
min-distance heuristic in [4]. Furthermore, since the ILP optimiza-
tion approach has notably higher run-time complexity, all tests

H. Bai et al./Computer Communications 82 (2016) 28-38 35

q 255 b 3.25
S s
=1 2.5 L= 3.2
Q Q
) [
< <
< <
o o
9 LS]
D 2.5 D 3.15
o a
= =
B et
[=
2 2
bt @
S 24 5 31
o o
S S
oo oo
> >
<< <t
2.35 3.05
40 50 60 70 80 20 50 60 70 80 20 100
Load (Erlang) Load (Erlang)
Fig. 9. Average overlay link connection length (a) NSFNET and (b) 24-node network.
12 10
a g ceme P =01 i b g cea- P=01
= —m- p=o05 = —m- p=o05
—.— 0 =0.9 = —— 0 =0.9
10 3
— = 8 - - - A
cu s [s
Et d E g
S5 8 | R S
[= - V4 f = o
a— R P 4 6 = -
wv - wvy - V4
5 = y 5] &
=T~ B o s > o 4
o & of (=3 Vi
] s L s s
oo £ 7 oo 4 Bl
c - 13 3
= 4 -l = = 7
= o oof = Rl
=] -7 <] R4
o R T E
—_ a4 — D 4
_ 2 A — .-
© of [A
° k=] =
- =
o o
40 50 60 70 80 90 50 60 70 80 90 100

Load (Erlang)

Load (Erlang)

Fig. 10. Total number of re-routed requests (a) NSFNET and (b) 24-node network.

comparing its performance are done using 1000 random overlay
requests. Otherwise, all runs are averaged over 100,000 random re-
quests.

Foremost, blocking results are shown in Fig. 12 and confirm
that the dynamic ILP scheme gives the highest setup success rates.
For example, at higher input loads this scheme gives almost 25%
lower blocking versus the baseline min-distance heuristic and close
to 15% lower blocking versus the re-routing heuristics (for both
network topologies). Meanwhile, the separation between the re-
routing and non-rerouting heuristics is generally lower, but still
notable, i.e., averaging around 10% depending upon input load.
However, only minor differences are seen between the various re-
routing (candidate path selection) schemes, with the respective
blocking ratios falling within 2% of each other. The corresponding
run times for the dynamic ILP scheme are also shown in Table 2
(for 1000 requests processed on a 3.7 GHz quad-core processor
with 8 gigabytes of memory). Although these values increase with
load, they mostly fall within the 10s of seconds rage, indicating
good applicability in on-line settings.

Next, the average overlay connection path lengths are plotted
in Fig. 13. As expected, the dynamic ILP scheme gives the low-
est resource utilization, followed by the non-re-routing heuristic. In

Table 2
Average run-time comparison.

Schemes Heuristic Heuristic ILP

no re-routing re-routing optimization
Single request <1's <1ls 5-10's
All requests 15-20 s 20-30 s 100-180 min

particular, the optimization approach gives about 5-10% lower hop
count values than the baseline min-distance scheme. By contrast,
the re-routing schemes give slightly longer path lengths, indicat-
ing higher resource utilization. In general, this is expected as re-
routing procedures force longer detour routes to accomodate new
demands, i.e., tradeoff between blocking and resource efficiency.
The individual re-routing heuristics are also compared here.
First, Fig. 14 plots the total number of re-rerouted link connec-
tions for each scheme in order to gauge overall run-time dura-
tions. These findings indicate that the THR (MHR) algorithm gives
the lowest (highest) amount of re-routing. In light of the rela-
tively close blocking performances across all heuristics (Fig. 12), it
can be concluded that the THR scheme gives the most compet-

H. Bai et al./Computer Communications 82 (2016) 28-38

36
0.3
a ceme P =0.1
—m- O =05
—e— O =0.9
[<}]
et
o
g’ 0.25
—
=
e
7] S
; N
A N
6] A T
Q ‘e ~
S 02 b e S]
@A L™
‘ee. ~
'A_ -
“ca
0.15
40 50 60 70 80 90
Load (Erlang)
Fig. 11. Re-routing success rate (a
a —o— ILP
—#— min distance
A~ MHR &
—e- MNR -
X~THR E
or | X S L
o
=1
©
bt Py
y
3 /!
= / /
0.01
40 50 60 70 80 20
Load (Erlang)
2.6
a —t— ILP
—#—min distance
- -k - MHR
= 255] —@= MNR “=====ssmessesemceee-
K= X ~THR
=
k5]
o 2.5
<
o
o
D 2.45
(=T
=
e
[
QL 24
[}]
B
>
2 2.35
w235 [P
> —
< . ce— L 2
>-—
2.3
40 50 60 70 80 20

b 0.3
come O =01
- - O =0.5
—— O =0.9
[]
e
(]
S
[=T+]
£ o0.25
=1
=
o
S
(3]
S
[7:]
& =
-
S < RN
0.2 +------ e -
wv - —_
Asvonay -
a.
Ttea
0.15
50 60 o 100

70 80 9
Load (Erlang)

) NSENET and (b) 24-node network.

b —a ILP
—®—min distance
<-4 - MHR 4
—e- MNR -
X~ THR °
0.1
2
L
©
S
=
[=3
2
(=]
0.01
50 60 70 80 90 100

Load (Erlang)

Fig. 12. Request blocking rate versus load (a) NSFNET and (b) 24-node network.

Load (Erlang)

3.4
b —— ILP
~—#—min distance
3.3 ce&-MHR

—®— IMNR

3.2

=
o
=1
(=1
(-3}
£
S 3.1
Q
— RS
S .
o 3 e
= -
— A
5 5
; 2.9 ./
-
g .
= o8 }|-——-—- [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
®
<t

2.7 T

50 60 70 80 90 100

Load (Erlang)

Fig. 13. Average overlay link connection length (a) NSFNET and (b) 24-node network.

itive re-routing performance. Meanwhile, re-routing success rates

are also plotted in Fig. 15 to

gauge the efficiency of the re-routing

schemes. These findings show that re-routing is much more effec-
tive at lower load regimes, as there are fewer contending users and
more available network resources (resulting in fewer re-routings).

Despite some fluctuations here, the THR scheme gives the high-
est overall re-routing success rates. Hence this heuristic is deemed
more efficient than the MHR and MNR re-routing schemes, i.e.,
even though all variants yield very close blocking and resource uti-
lization results (see Figs. 12 and 13).

H. Bai et al./Computer Communications 82 (2016) 28-38 37
250 250
a b « ek MHR
—e—MNR A
—X =THR -~
= 200 s 200
I L
= =
£ £
= =
150 150
k7 k7
1] 13
S S
o o
@ =
oo 100 ap 100
= =
=] =]
> >
o o
S —
@ 50 @ so
© ©
k=4 =}
= =
o o
40 50 60 70 80 20 50 60 70 80 20 100
Load (Erlang) Load (Erlang)
Fig. 14. Total number of re-routed requests (a) NSFNET and (b) 24-node network.
a 0.45 b 0.4
- -& - MHR - -k - MHR
—e—MNR x —e—MNR
%X A
— ~THR *\ —x =THR
] [7]
- L
© 035 ©
oo
=y £ 03
E E
o
S S
@ 0.25 Qo
wy wy
v
bS] b4
S S 0.2
> =
[n
0.15
0.05 : 0.1 :
40 50 60 70 80 20 50 60 70 80 20 100

Load (Erlang)

Load (Erlang)

Fig. 15. Re-routing success rate (a) NSFNET and (b) 24-node network.

6. Conclusions and future work

Network advance reservation (traffic scheduling) is an im-
portant area, and a range of studies have looked at reserving
point-to-point connection demands. However, as user applications
continue to evolve, there is a further need to schedule more
complex overlay topologies at future intervals. This paper ad-
dresses this concern and presents a novel dynamic optimization
scheme for overlay scheduling. In addition, some advanced heuris-
tic solutions are also developed by using connection re-routing
strategies. Overall findings confirm that the optimization approach
gives the lowest blocking and resource utilization. However, the
proposed re-routing heuristics also provide very good gains over
a baseline greedy heuristic scheme. In particular, strategies which
use thresholding to minimize the amount of re-routed capacity
give the highest request acceptance rates. Future efforts will look
at extending these schemes to address the more general virtual
network scheduling problem for cloud-based settings.

Acknowledgment

This work was made possible by the NPRP 5-137-2-045 Grant
from the Qatar National Research Fund (a member of Qatar Foun-
dation). The statements made herein are solely the responsibility
of the authors.

References

[1] R. Guerin, A. Orda, Networks with advance reservations: the routing perspec-
tive, in: Proceedings of the IEEE International Conference on Computer Com-
munications, IEEE INFOCOM, vol. 1, 2000, pp. 118-127, doi:10.1109/INFCOM.
2000.832180.

[2] N. Charbonneaum, V. Vokkarane, A survey of advance reservation routing and
wavelength assignment in wavelength-routed WDM networks, IEEE Commun.
Surv. Tutor. 14 (2011) 1037-1064, doi:10.1109/SURV.2011.111411.00054.

[3] T. Entel, et al., Scheduled multicast overlay for bandwidth-intensive applica-
tions, Opt. Netw. Des. Model. (2012) 1-6, doi:10.1109/ONDM.2012.6210278.

[4] E Gu, et al., Virtual overlay network scheduling, [EEE Commun. Lett. 15 (2011)
893-895, doi:10.1109/LCOMM.2011.060811.110819.

[5] Y. Zhu, M. Ammar, Algorithms for assigning substrate network resources to
virtual network components, in: Proceedings of the IEEE International Con-
ference on Computer Communications, IEEE INFOCOM, 2016, pp. 1-12, doi:10.
1109/INFOCOM.2006.322.

[6] N. Mosharaf, et al., A survey of network virtualization, Comput. Netw. 54
(2010) 862-876, doi:10.1016/j.comnet.2009.10.017.

[7] A. Fischer, et al, Virtual network embedding: a survey, IEEE Commun. Surv.
Tutor. 15 (2013) 1888-1906, doi:10.1109/SURV.2013.013013.00155.

[8] D. Andrei, et al., Integrated provisioning of sliding scheduled services over
WDM optical networks, IEEE/OSA J. Opt. Commun. Netw. 1 (2009) A94-A105,
doi:10.1364/JOCN.1.000A94.

[9] J. Zheng, et al., Toward automated provisioning of advance reservation ser-
vice in next-generation optical internet, [IEEE Commun. Mag. 44 (2007) 68-74,
doi:10.1109/MCOM.2006.273102.

[10] J. Zheng, H.T. Mouftah, Supporting advance reservations in wavelength-routed
WDM networks, in: Proceedings of the Tenth International Conference on
Computer Communications and Networks, 2001, pp. 594-597, doi:10.1109/ICC.
2002.997338.

http://dx.doi.org/10.13039/100008982
http://dx.doi.org/10.1109/INFCOM.2000.832180
http://dx.doi.org/10.1109/SURV.2011.111411.00054
http://dx.doi.org/10.1109/ONDM.2012.6210278
http://dx.doi.org/10.1109/LCOMM.2011.060811.110819
http://dx.doi.org/10.1109/INFOCOM.2006.322
http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.1109/SURV.2013.013013.00155
http://dx.doi.org/10.1364/JOCN.1.000A94
http://dx.doi.org/10.1109/MCOM.2006.273102
http://dx.doi.org/10.1109/ICC.2002.997338

38 H. Bai et al./ Computer Communications 82 (2016) 28-38

[11]]. Zheng, H.T. Mouftah, Routing and wavelength assignment for advance reser-
vation in wavelength-routed WDM optical networks, in: Proceedings of the
IEEE International Conference on Communications, ICC, vol. 5, 2002, pp. 2722-
2726.

[12] T. Wallace, et al., Connection management algorithm for advance lightpath
reservation in WDM networks, in: Proceedings of the International Confer-
ence on Broadband Networks, IEEE BROADNETS, 2007, pp. 837-844, doi:10.
1109/BROADNETS.2007.4550520.

[13] C. Xie, et al., Rerouting in advance reservation networks, Comput. Commun. 35
(2012) 1411-1421, doi:10.1016/j.comcom.2012.02.011.

[14] Z. Duan, et al., Service overlay networks: SLAS, QOS, and bandwidth provision-
ing, IEEE/ACM Trans. Netw. 11 (2004) 870-883, doi:10.1109/TNET.2003.820436.

[15] D. Anderson, et al., Resilient overlay networks, in: Proceedings of ACM Sym-
posium on Operating Systems Principles, 35, 2001, pp. 131-145, doi:10.1145/
502034.502048.

[16] C. Xie, et al, Traffic engineering for Ethernet over SONET/SDH: advances and
frontiers, IEEE Netw. 23 (2009a) 18-25, doi:10.1109/MNET.2009.4939259.

[17] C. Xie, et al., Multi-point ethernet over next-generation SONET/SDH, in: Pro-
ceedings of the IEEE International Conference on Communications, ICC, 2009b,
pp. 1-6, doi:10.1109/1CC.2009.5199207.

[18] R. Nejabati, et al., Optical network virtualization, in: Proceedings of the Inter-
national Conference on Optical Network Design and Modeling (ONDM), 2011,
pp. 1-5.

[19] A. Pages, et al., Optimal allocation of virtual optical networks for the future in-
ternet, in: Proceedings of the International Conference on Optical Network De-
sign and Modeling (ONDM), 2012, pp. 1-6, doi:10.1109/ONDM.2012.6210209.

[20] T. Cormen, et al., Introduction to Algorithms, 3rd edition, The MIT Press, 2009.

[21] D. Eppstein, Finding the k shortest paths, SIAM J. Comput. 28 (2) (1998) 652-
673.

[22] R. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, 1989.

http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0011
http://dx.doi.org/10.1109/BROADNETS.2007.4550520
http://dx.doi.org/10.1016/j.comcom.2012.02.011
http://dx.doi.org/10.1109/TNET.2003.820436
http://dx.doi.org/10.1145/502034.502048
http://dx.doi.org/10.1109/MNET.2009.4939259
http://dx.doi.org/10.1109/ICC.2009.5199207
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0018
http://dx.doi.org/10.1109/ONDM.2012.6210209
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30039-1/sbref0022

	Overlay network scheduling design
	1 Introduction
	2 Background
	3 Optimization formulation
	4 Re-routing heuristic
	4.1 Baseline scheduling (Stage 1)
	4.2 Scheduling re-routing (Stage 2)
	4.3 Computational complexity

	5 Performance analysis
	6 Conclusions and future work
	 Acknowledgment
	 References

