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a b s t r a c t 

Multiple Attribute Decision Making (MADM) is one of the best candidate network selection methods used 

for Vertical Handover Decision (VHD) in heterogeneous wireless networks (4G). Selection of the network 

in MADM is predominantly decided by two steps, i.e., attribute normalization and weight calculation. This 

dependency in MADM results in an unreliable network selection for handover, and in a rank reversal (ab- 

normality) problem during the removal and insertion of the network in the network selection list. Hence, 

this paper proposes a Simplified and Improved Multiple Attributes Alternate Ranking method referred to as 

SI-MAAR to eliminate the attribute normalization and weight calculation methods, thereby solving the rank 

reversal problem. Further, the MATLAB simulation results demonstrate that the proposed SI-MAAR method 

outperforms MADM methods such as TOPSIS, SAW, MEW and GRA with respect to the network selection 

reliability and rank reversal problems. 

© 2015 Elsevier B.V. All rights reserved. 
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. Introduction 

The characteristics of heterogeneous wireless networks, Quality of

ervice (QoS) stipulations of applications [1,2] , users’ anticipation in

erms of perceived QoS [3] , monetary cost and battery power [4,5] ,

nd service providers’ obligations introduced many challenges in 4 th

eneration (4G) heterogeneous wireless networks [6–9] . Integration

f heterogeneous wireless networks like non-IEEE: GPRS, UMTS and

EEE: WiMAX, WiFi etc., is essential in 4G networks in order to pro-

ide Always Best Connected (ABC) anywhere at anytime [10] . De-

igning an optimized and efficient mobility management scheme for

eamless communication [11] in heterogeneous wireless networks is

 key challenge because of the diverse properties of non-IEEE and

EEE wireless access systems [9,10,12] , user and application stipula-

ions, multiple interface mobile device capabilities [13] and service

roviders’ obligations. 

Mobility management in heterogeneous wireless networks is de-

ned as the process of Heterogeneous Information Gathering (HIG),

ertical Handover Decision (VHD) and Vertical Handover Execution

VHE) for the seamless communication of mobile devices between

isparate radio access networks [14,15] . VHD is one of the prominent
∗ Corresponding author. Tel.: +91 8242474053. 
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teps of mobility management in heterogeneous wireless networks

or selecting the next suitable network for a seamless handover of

obile devices between the ’ n ’ available heterogeneous wireless net-

orks [16] . Many VHD strategies [17–20] have been proposed in the

iterature, such as Function-based, User-Centric, Markov [21] , Fuzzy

ogic [22] , Multiple Attribute Decision Making (MADM) [23] and

ame Theory [24] with differing complexity, flexibility and reliability.

n heterogeneous wireless networks, the handover may not always be

ue to weak received signal strength (Horizontal handover) [25] , but

ould also be due to an improvement or degradation in the Quality

f Service (QoS) attributes of the networks or variations in the expec-

ations of the user, mobile device or applications. Multiple interface

obile Nodes (MN) have limited resources of battery lifetime [26] ,

omputational capabilities and memory; hence it is essential to have

n optimized and simple multiple attributes VHD method for seam-

ess migration of MN in heterogeneous wireless networks. Among the

xisting VHD schemes, MADM is one of the strategies that considers

ultiple attributes with medium complexity [19,27] . On the other

and, the complexity of other VHD strategies increases with an in-

rease in the number of attributes. Hence, in our proposed work we

ocus only on classical MADM methods. Table 1 shows a comparison

f the salient features of different existing VHD strategies for hetero-

eneous wireless networks. 

Many classical MADM methods [18,29] such as Simple Additive

eight (SAW), Technique for Order Preference by Similarity to

deal Solution (TOPSIS) [30,31] , Multiplicative Exponent Weighting

http://dx.doi.org/10.1016/j.comcom.2015.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.10.011&domain=pdf
mailto:brcnitk@gmail.com
mailto:profgrmreddy@gmail.com
http://dx.doi.org/10.1016/j.comcom.2015.10.011
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Table 1 

Comparisons of existing VHD strategies [17,19,27,28] . 

VHD strategies User consideration Multi-attribute Complexity Flexibility Reliability Multi-service 

Function-based Medium Yes Low High Medium No 

Merits: minimum degradation in high load and congestion situations. 

Demerits: time consuming if services and/or available access points increase. 

User-centric Strong Yes Low High Medium No 

Merits: maximizes users’ utility and low implementation complexity. 

Demerits: non-real-time support, simple rate prediction method and medium precision. 

MADM Medium Yes Medium High Medium No 

Merits: multiple criteria consideration, easy to implement, scalable and accurate results. 

Demerits: medium implementation complexity, selection of suitable method and normalization. 

Markov Low Yes Medium Medium High No 

Merits: adaptive and applicable to a wide range of conditions. 

Demerits: implementation complexity. 

Fuzzy Logic Medium Yes High Low High No 

Merits: makes decisions in an autonomous way, considers multiple criteria. 

Demerits: complexity increases if additional input parameters are considered. 

Game Theory Strong Yes Medium Medium High No 

Merits: efficient resource management. 

Demerits: additional decision parameters are required in practice to ensure better quality of service. 

Reputation Medium Yes Medium Medium Medium No 

Merits: faster VHD decision-making. 

Demerits: reputation sustainability needs to be addressed in greater depth. 
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(MEW) [29] , ELimination Et Choice Translating REality (ELECTRE)

[29] , Grey Relational Analysis (GRA) [29,32] and Preference Ranking

Organization METHods for Enrichment Evaluations (PROMETHEE)

are extensively discussed in the literature [20] . These classical MADM

methods are not only limited to the field of networking, but are also

popularly used in areas like Logistics and Supply Chain Management,

Design, Engineering and Manufacturing Systems, Business and Mar-

keting Management, Health, Safety and Environmental Management,

Human Resources Management, Energy Management, Chemical

Engineering, and Water Resources Management [29,30] . 

Table 2 shows a comparison between the different classical

MADM methods with respect to procedure- and application- based

merits and demerits. 

The major problem with classical MADM methods is their depen-

dency on the attribute normalization and weight calculation meth-

ods. Hence, these dependencies not only provoke unreliable selection

of the network for handover [27] , but also give rise to a rank rever-

sal (abnormality) problem in the case of the removal and insertion

of the network in the network selection list during network ranking

[34] . The rank reversal problem with classical MADM methods leads

to the reversal of the relative ranking of the networks if an alterna-

tive network is removed from or inserted into the candidate network

selection list. For example, consider the ranks of three different net-

works N1, N2 and N3 as Rank N 1 > Rank N 2 > Rank N 3 . The removal of

network N1 should result in the rank of the other two networks be-

coming Rank N 2 > Rank N 3 . However, as in classical MADM methods,

computation of network rank and score depends on the remaining

other networks’ attribute values, the removal of network N1 may re-

sult in the rank of the other two networks becoming Rank N 3 > Rank N 2 ,

resulting in a rank reversal problem. The same may be observed when

a new network is inserted into the network selection list. Moreover,

the presence of a rank reversal problem with classical MADM meth-

ods raises a reliability issue with respect to the selected network for

handover. 

The unreliability in network ranking and the rank reversal prob-

lem of classical MADM methods are the key challenges for the

seamless handover of MNs in heterogeneous wireless networks. This

is as wrong selection of a network during the VHD in heterogeneous

wireless networks results in poor Quality of Service (QoS) of the

applications in terms of high packet delay, packet loss, unnecessary

handover (ping-pong effect) and handover failure (rejecting the

MN handover request by the selected network due to insufficient

resources). Further, this may lead to user dissatisfaction and high con-
umption of mobile device resources such as memory and battery life.

ence, there is a need for improving the reliability of the network se-

ection of classical MADM methods, thereby eliminating dependence

n the attribute normalization and weight calculation methods. 

The main challenge in improving the reliability of network selec-

ion and eliminating the rank reversal problem is replacing the exist-

ng VHD’s heterogeneous attribute normalization by its equivalent, as

ell as removing the VHD’s heterogeneous attribute weight (which

ignifies its importance) during the computation of the network rank.

n classical MADM methods, executing attribute normalization and

eight computation are the two specific steps to proceed with the

anking of the networks: this motivated us to design a novel and sim-

lified MADM method to overcome the unreliable network selection

nd the rank reversal problem of classical MADM methods. The main

dea of our proposed simplified and improved MADM method is to

vercome the key limitations of existing classical MADM methods

sed for VHD in heterogeneous wireless networks. To overcome un-

eliable network selection and the rank reversal problem of classical

ADM methods, we propose a mobile device controlled Simplified

nd Improved Multiple Attributes Alternate Ranking method referred

o as SI-MAAR. This can be achieved by replacing attribute normal-

zation and weight calculation methods by a simple closeness index

utility) matrix which is computed by the networks’ attributes and

he expectations of the same. Further, to overcome the rank reversal

roblem, we propose new positive and negative ideal solutions based

n the benefit and cost attributes. 

Our key research contributions in this paper are, to the best of our

nowledge: 

• The first paper on mobile device controlled Simplified and Im-

proved Multiple Attributes Alternate Ranking method referred to

as SI-MAAR which is independent of the attribute normalization

and weight calculation methods for achieving 100% network se-

lection reliability. 

• The first approach for completely avoiding the rank reversal prob-

lem of classical MADM methods. 

The rest of the paper is organized as follows: Section 2 addresses

he background and related work in the area of VHD; Section 3

resents a performance analysis of the classical MADM methods:

OPSIS, SAW, MEW and GRA; Section 4 presents the proposed

ethod for solving the network selection unreliability and rank re-

ersal problems; finally, the conclusion and future work are given in

ection 5 . 
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Table 2 

Comparison of classical MADM methods [24,28] . 

MADM Merits Demerits 

Method Procedure-based Application-based [33] Procedure-based Application-based [33] 

SAW Easy to understand, 

easy to implement and 

support multiple 

attributes. 

Good performance for 

interactive applications. 

Poor-valued attributes 

can be outweighed by a 

very good value of 

another attribute [24] , 

unreliable ranking and 

rank reversal problem 

[34] . 

Poor performance for 

data applications. 

TOPSIS Simple and 

comprehensive, 

scalable, high efficiency, 

high flexibility, and 

accurate results. 

Good performance for 

interactive and 

background 

applications [18] . 

Imprecise data cannot 

be handled, unreliable 

ranking and rank 

reversal problems. 

Poor performance in 

bandwidth and delay 

applications [18] . 

MEW Medium 

implementation 

complexity and the least 

sensitive method. 

Good performance for 

interactive applications 

[35] . 

Penalizes alternatives 

with poor-valued 

attributes more heavily, 

unreliable ranking and 

rank reversal problem. 

Poor performance for 

data applications. 

ELECTRE Integrates subjective 

assessments with 

numerical data. 

Satisfactory 

performance for data 

applications. 

Complicated, uses 

pairwise comparisons, 

unreliable ranking and 

rank reversal problem. 

Poor performance for 

voice applications [36] . 

AHP-GRA Integrates subjective 

appraisals with 

numerical statistics, 

supports multiple 

attributes with precise 

solutions. 

Good performance for 

bandwidth and delay 

applications. 

Complicated, uses 

pairwise comparisons, 

the length of the 

process increases with 

the number of levels, 

unreliable ranking and 

rank reversal problem. 

Poor performance for 

interactive and 

background 

applications [18] . 
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. Related work 

This section of the paper presents an overview of recent work in

he areas of heterogeneous wireless network mobility management

nd Vertical Handover Decision methods. 

Several research papers on mobility management and Vertical

andover Decision methods are available in the literature presenting

everal issues such as key features of the heterogeneous wireless net-

orks; future heterogeneous wireless technologies; different types

f handover in wireless overlay networks; differences between tra-

itional and next generation handover strategies; handover metrics;

obile device requirements for future heterogeneous wireless net-

orks; and research challenges for mobility management in future

eterogeneous wireless networks [9,11] . In [17] , [19] and [27] , authors

resented vertical handover processes (system discovery, handover

ecision and handover execution) along with a comparison of differ-

nt vertical handover decision strategies. 

Xenakis et al. [37] presented a survey of mobility management for

emtocells in LTE-A with a comparative list of different handover de-

ision algorithms based on different handover decision parameters.

urther, the authors also presented a comparison of different han-

over decision algorithms with respect to handover metrics. The dif-

erent handover decision algorithms listed by the authors with re-

pect to the LTE-A femtocells are also used in mobility management

or heterogeneous wireless networks. 

Mrquez-Barja et al. [14] presented the use of Media Independent

andover (MIH) for system discovery along with additional open re-

earch issues such as Quality of Service (QoS), Quality of Expectation

QoE), security, and service provider management and evaluation. 

Yan and Narayanan [20] highlighted four different VHD al-

orithms based on RSS, Bandwidth, Cost and Hybrid with their

omparative features. Further, the authors concluded that none

f these VHD methods comprehensively consider various network

arameters. 

Wang and Kuo [28] presented an analytical framework used for

odelling network selection in the classical MADM methods: TOPSIS,
AW, GRA and ELECTRE. The authors listed the key attributes (bene-

t and cost) used for the network selection problem along with the

ifferent subjective and objective attribute normalization and weight

omputation methods. 

Stevens-Navarro and Wong [33] discussed handover metrics

bandwidth, latency, reliability, power, price, security and availabil-

ty) and the different traffic classes (conversational, streaming, inter-

ctive and background). Further, the authors simulated the classical

ADM methods: TOPSIS, SAW, MEW and GRA, but did not address

he unreliability in network ranking due to existing attribute normal-

zation and weight computation methods. 

Wanga and Luoc [34] demonstrated the rank reversal problem of

he Analytical Hierarchy Process (AHP) along with the other classi-

al MADM methods: TOPSIS and SAW. The main reason identified by

he authors for the rank reversal in MADM is its dependency on the

ttribute normalization method. Further, the authors concluded that

ormalization cannot prevent the rank reversal problem. 

Chamodrakas and Martakos [22] developed an energy efficient

tility function-based fuzzy TOPSIS for network selection, thereby

ddressing the rank reversal problem. Their method is based on the

rade-off between performance and energy consumption. The major

rawback of this method is its dependency on attribute weight cal-

ulation using linguistic values. 

Yang and Tseng [31] proposed a novel approach for attribute rating

eferred to as Weighted Rating of Multiple Attributes (WRMA), which

elies on TOPSIS for network ranking. Similar to AHP, the major draw-

acks of WRMA are the decision maker competency in identifying the

pplication level priority, and its dependency on TOPSIS. 

Wang and Binet [38] proposed a new subjective attribute weight-

ng method referred to as TRigger-based aUtomatic Subjective

eighTing (TRUST). The major drawback of their proposed approach

s that the important attributes usually obtain a larger weight and the

nimportant attributes obtain a weight of 0, resulting in neglect of all

nimportant attributes. 

Zhang [39] developed handover decision using the fuzzy MADM

ethod. The input data is fuzzy in nature, but the TOPSIS, SAW, AHP
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and DEA methods are finally used for ranking the alternates; hence,

their approach did not address the rank reversal problem. 

He et al. [40] proposed a VHD method based on the classification

of mobile nodes (resource-poor and resource-rich) and dynamic new

call blocking probability. The major drawbacks of this method are the

classification of mobile nodes and the weighting of decision parame-

ters. The final ranking of the networks depends on the attribute nor-

malization and weight computation methods; hence, their method

did not address the network rank unreliability and the rank reversal

problem. 

Ahuja et al. [41] proposed an algorithm for network selection in

heterogeneous wireless networks using received signal strength, dis-

tance and outage probability. The proposed algorithm consists of two

stages: during the first stage, a distance parameter is used to select

the best network for handover, and in the second stage, received sig-

nal strength and outage probability are used for the same. The major

problem with this algorithm is its complexity increase with an in-

crease in the number of decision-making parameters and available

networks during the handover decision. Further, this leads to an un-

reliable selection of the network. 

Wen and Hung [42] proposed three algorithms for selecting the

most energy efficient networks in heterogeneous wireless networks

based on application characteristics and transmission loads. How-

ever, since the main constraints of mobile devices are memory and

computational capabilities apart from energy consumption, these al-

gorithms are too complex for mobile devices. 

Khloussy et al. [43] proposed a Markov Decision Process (MDP)-

based distribution of overlay heterogeneous wireless networks

among MNs with the objective of maximizing the operators’ revenue.

This method did not consider the time taken to complete handover

decision and handover execution. Further, the authors did not address

the computation of the weight associated with a request to handover

to a particular network. 

Table 3 summarizes the literature survey conducted related to the

mobility management, VHD and classical MADM methods. 

3. Performance analysis of the classical MADM methods: TOPSIS, 

SAW, MEW and GRA 

This section numerically substantiates the unreliability in net-

work ranking and the rank reversal problem of the classical MADM

methods: TOPSIS, SAW, MEW and GRA. Fig. 1 illustrates the sequen-

tial steps of the network (alternate) ranking of the aforementioned

four classical MADM methods [28,32,33,35,36] . As shown in Fig. 1 ,

TOPSIS, SAW, MEW and GRA are primarily dependent on the attribute

normalization [44] and weight calculation methods [28] during net-

work ranking. Some of the popularly used attribute normalization

methods in classical MADM methods are: (i) Vector normalization

(ii) Sum normalization and (iii) Max-Min normalization. Similarly,

weights of the attributes can be computed by (i) Entropy [45] and

(ii) Variance [28] for objective attributes and (iii) Simplified and Im-

proved AHP (SI-AHP) for subjective attributes [38] . 

As shown in Fig. 1 , attribute normalization is the essential step of

classical MADM methods to present the attributes: bandwidth, de-

lay, energy consumption, etc., of different dimensions: bits per sec

(bps), millisecond (msec), mWatt (mWatt), etc., as dimensionless for

common comparison of the attributes. The attribute weight calcula-

tion methods compute the importance (common to all alternates) of

the attributes, either by using all available network attributes values

(Objective method: Entropy and Variance) or by using inputs from

the decision maker (Subjective method: Analytical Hierarchy Process

(AHP)) [27,28,46] . Moreover, AHP uses the reciprocal matrix input

from the decision maker in computing attribute weights, after which

the computed attribute weights are accepted into the network rank-

ing if the Consistency Ratio (CR) is less than 0.1. The major problem

with AHP is the competency of the decision maker in producing the
eciprocal matrix, which may lead to unreliable attribute weights.

he Simplified and Improved AHP (SI-AHP) method proposed in our

revious work [47] reduces the involvement of the decision maker

n producing the reciprocal matrix, leading to 100% reliable attribute

eights. The remaining steps of network ranking methods shown in

ig. 1 are unique to the respective classical MADM methods as listed

elow: 

• TOPSIS [28,33,35,36] : 

• Weight cast matrix: computes the product of the normalized

network attributes and the respective attribute weights. 

• Ideal solution: computes the positive and negative ideal values

of the attributes using the weight cost matrix. 

• Euclidean distance: computes the separations from the posi-

tive (best) and negative (worst) values of the attributes among

networks. 

• Relative closeness: computes the closeness to the positive

value of the attributes among networks. 

• SAW [28,33,35,36] : 

• Weight cast matrix: computes the product of the normalized

network attributes and the respective attribute weights. 

• Network score: computes the score of individual networks by

adding the respective network weight cost matrix entries. 

• MEW [28,33,35,36] : 

• Network score: computes the score of the individual networks

by the weighted product of the respective network normalized

attributes. 

• Value ratio: ratio of the individual network score to the

weighted product of the positive ideal value of the attributes. 

• GRA [28,32,33] : 

• Reference sequence: computes the positive ideal values of the

attributes using normalized network attributes. 

• Grey relational coefficient: describes the similarities between

networks and the reference sequence. 

• Grey relational grade: computes the correlation between ref-

erence sequence and comparability sequence. 

The major drawbacks with classical MADM methods ( Fig. 1 ) are: 

• Dependency of classical MADM methods on attribute normaliza-

tion and weight calculation methods substantially influences the

ranking of the networks. Further, this results in an uncertainty

in selecting the appropriate attribute normalization and weight

calculation method with respect to a specific classical MADM

method. 

• The way the attributes are normalized or the weights are calcu-

lated depends on the relation between one network’s attributes

and those of other networks existing in the network selection list.

The outcome of this dependency is the rank reversal problem with

classical MADM methods during the removal and insertion of the

network in the network selection list [34] . 

An extensive MATLAB simulation is carried out to numerically jus-

ify the network rank unreliability and the rank reversal problem of

he classical MADM methods: TOPSIS, SAW, MEW and GRA. The re-

aining part of this section is detailed as follows: 

• Section 3.1 : Effect of the different attribute normalization and

weight calculation methods on the network rank and score in

TOPSIS, SAW, MEW and GRA, for common networks and the cor-

responding attribute values ( a ij ). 

• Section 3.2 : The Rank Reversal Problem (RRP) in TOPSIS, SAW,

MEW and GRA with different pairs of attribute normalization and

weight calculation methods for 10 0 0 different combinations of a ij .

In Sections 3.1 and 3.2 to demonstrate the unreliability in network

ank and the RRP (reversal of the relative ranking of the networks if

n alternative network is removed from or inserted into the candidate

etwork selection list during the selection procedure) of the classical
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Table 3 

A summary of literature survey. 

Heuristic Contribution Remarks 

Siddiqui and Zeadally [9] Survey paper Mobility management, heterogeneous 

wireless networks key features, its 

challenges, different type of handovers 

and their metrics. 

Nasser et al. [11] 

Kassar et al. [17] 

Zekri et al. [19] 

Charilas and Panagopoulous [27] 

Xenakis et al. [37] Mobility management for femtocells in 

LTE-A. 

Mrquez-Barja et al. [14] MIH in system discovery, along with 

VHD open research issues. 

Yan and Narayanan [20] Categories of VHD algorithms. 

Wang and Kuo [28] Survey and simulation Theory behind the classical MADM 

methods. Detailed list of subjective and 

objective attributes. 

Stevens-Navarro and Wong [33] Handover metrics and simulation of 

classical MADM methods. 

Wanga and Luoc [34] Verification Demonstrated the rank reversal problem 

in SAW, TOPSIS, MEW and DEA. 

Chamodrakas and Martakos [22] New TOPSIS Energy efficient fuzzy TOPSIS. 

Yang et al. [31] Weight computation method of the attributes. Five steps of attribute weight 

computation method referred to as 

Weighted Rating of Multiple Attributes 

(WRMA). 

Wang Binet [38] TRigger-based aUtomatic Subjective 

weighTing (TRUST) method. 

Zhang [39] New MADM Fuzzy MADM. 

He et al. [40] New VHD method VHD method based on MN classification. 

Kiran Ahuja et al. [41] Received signal strength, distance and 

outage probability-based VHD method. 

Wen and Hung [42] Energy efficient VHD method. 

Khloussy et al. [43] Markov Decision Process (MDP)-based 

VHD method. 
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T  

o  
ADM methods, a MATLAB simulation is carried out with the follow-

ng three cases: 

• Case 1 - removal of network N4 from the network selection list

{N1, N2, N3, N4}, resulting in {N1, N2, N3} 

• Case 2 (Normal) - with four networks {N1, N2, N3, N4} 

• Case 3 - inserting a new network N5 into the network selection

list {N1, N2, N3, N4}, resulting in {N1, N2, N3, N4, N5} 

Further, the attributes in the TOPSIS, SAW, MEW and GRA meth-

ds are normalized with the Vector, Sum and Max-Min normalization

ethods. Similarly, attribute weight is computed with the Entropy,

I-AHP and Variance methods. 

.1. The effect of different attribute normalization and weight 

alculation methods on the classical MADM methods 

To demonstrate numerically the network selection unreliability in

he classical MADM methods: TOPSIS, SAW, MEW and GRA, a MAT-

AB simulation is carried out with five heterogeneous wireless net-

orks (N1, N2, N3, N4 and N5) each with six attributes (four benefit

ttributes and two cost attributes) in three different cases: Case 1,

ase 2 and Case 3. The attributes in MADM methods can be benefit

ttributes (i.e., the higher the attribute value, the better is the net-

ork rank and score) or cost attributes (i.e., the lower the attribute

alue, the better is the network rank and score). The benefit attributes

n VHD’s network selection can be bandwidth, SNR, throughput, etc.,

nd the cost attributes can be packet delay, packet loss, monetary

ost, energy consumption, etc. [28] . The heterogeneity of the five net-

orks is accomplished in the MATLAB simulation with the differ-

nt range values for the six attributes with respect to the individual

etworks. 
Table 4 enumerates the MATLAB simulation parameters for one

ombination of networks and the corresponding attribute values

 a ij ), the expected attribute’s value ( e j ) used in the SI-MAAR and the

inguistic crisp value of the six attributes (Very Low (1), Low (3),

edium (5), High (7) and Very High (9)) [22] used in the SI-AHP

ethod. 

Table 5 shows the attribute weights computed with the Entropy,

I-AHP and Variance methods after normalizing the attributes with

he Vector, Sum and Max-Min normalization methods with respect

o a ij and e j as shown in Table 4 with the condition 

∑ m 

j=1 w j = 1

nd w j ≥ 0 . As illustrated in Fig. 1 , attribute weight computation in

he Entropy and Variance methods depends on the normalized val-

es of the attributes, resulting in variation in attribute weight with

hanges in attribute normalization method. As shown in Table 5 , Sl.

os.: (1, 2) and (8, 9, 10) indicate the variation in attribute weights

omputed using the Entropy method with the Vector and Sum nor-

alization methods respectively. However, Entropy with the Vector

Sl. no.: 3) and Max-Min (Sl. no.: (15, 16, 17)) normalization meth-

ds results in an invalid attribute weight ( w j = ∞ or w j < 0). In the

ntropy attribute weighting method, a few of the attributes with vec-

or normalization (Sl. no.: 3) result in entropy E j > 1, which leads to

 j < 0. Also, in Max-Min normalization (Sl. nos.: (15, 16, 17)), the

ntropy weighting method computes w j = ∞ , since x i j = 0 for some

ttributes, leading to ln( x ij ) = ∞ . Further, as shown in Table 5 , Sl. nos.:

5, 12, 19), (6, 13, 20) and (7, 14, 21) indicate the variation in attribute

eight computed using the Variance method with Vector and Sum

ormalization. However, in SI-AHP (Sl. nos.: 4, 11, 18), the computed

eight of the attributes remains the same, since SI-AHP is indepen-

ent of attribute normalization methods. 

Tables 6–9 illustrate the variation in network rank and score in the

OPSIS, SAW, MEW and GRA methods respectively for different pairs

f attribute normalization and weight calculation methods in three
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Table 4 

MATLAB simulation parameters. 

Simulation case Network (Alternate) Attribute ( a ij ) 

Case 1 Case 2 Case 3 Benefit Cost 

1 2 3 4 5 6 

N1 N1 N1 Network 1 (N1) 30 31 47 30 9.75 33 

N2 N2 N2 Network 2 (N2) 60 57 10 118 3.75 37 

N3 N3 N3 Network 3 (N3) 22600 91 50 106 8.25 16 

- N4 N4 Network 4 (N4) 450 0 0 1 50 94 3.75 5 

- - N5 Network 5 (N5) 550 0 0 161 128 104 3 10 

e j 10030 61 77 148 3.75 73 

SI-AHP (Attributes linguistic value) M-5 L-3 VL-1 M-5 H-7 L-3 

Table 5 

Attribute weights in different attribute normalization and weight methods. 

Sl. no. Normalization Weight method Case Attributes weight 

Benefit Cost 

1 2 3 4 5 6 

1 Vector Entropy 1 0.461429 0.09974 0.137427 0.12054 0.093301 0.08756 

2 2 0.436522 0.22816 0.085489 0.06464 0.059212 0.12598 

3 3 - - - - - - 

4 SI-AHP - 0.170455 0.05682 0.034091 0.17045 0.511364 0.05682 

5 Variance 1 0.406652 0.1191 0.147529 0.13312 0.101723 0.09187 

6 2 0.301955 0.20182 0.118236 0.10707 0.115139 0.15578 

7 3 0.238596 0.20928 0.175534 0.08932 0.125051 0.16221 

8 Sum Entropy 1 0.683413 0.05532 0.10231 0.08011 0.043524 0.03532 

9 2 0.469046 0.21932 0.076826 0.05879 0.057001 0.11901 

10 3 0.363999 0.23759 0.144743 0.04775 0.072814 0.13311 

11 SI-AHP - 0.170455 0.05682 0.034091 0.17045 0.511364 0.05682 

12 Variance 1 0.406652 0.1191 0.147529 0.13312 0.101723 0.09187 

13 2 0.301955 0.20182 0.118236 0.10707 0.115139 0.15578 

14 3 0.238596 0.20928 0.175534 0.08932 0.125051 0.16221 

15 Max-Min Entropy 1 - - - - - - 

16 2 - - - - - - 

17 3 - - - - - - 

18 SI-AHP - 0.170455 0.05682 0.034091 0.17045 0.511364 0.05682 

19 Variance 1 0.243252 0.1477 0.122146 0.12284 0.175762 0.18829 

20 2 0.233195 0.15913 0.122312 0.12598 0.167662 0.19172 

21 3 0.204371 0.18171 0.182122 0.11437 0.150567 0.16686 

Table 6 

TOPSIS - variations in network rank and score with respect to different attribute normalization and weight methods for three different cases. 

Sl. no. Normalization Weight Case Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

method Network Score Network Score Network Score Network Score Network Score 

1 Vector Entropy 1 3 0.93549 2 0.14781 1 0.13511 

2 2 4 0.68547 3 0.58474 2 0.23008 1 0.14786 

3 3 – – – – – – – – – –

4 SI-AHP 1 2 0.58919 3 0.5375 1 0.05808 

5 2 4 0.84568 2 0.60097 3 0.41233 1 0.07084 

6 3 5 0.9587 4 0,79522 2 0.62209 3 0.33257 1 0.04222 

7 Variance 1 3 0.92255 2 0.17762 1 0.15802 

8 2 4 0.64613 3 0.61784 2 0.29342 1 0.19548 

9 3 5 0.94831 4 0.49166 3 0.47081 2 0.24837 1 0.16952 

10 Sum Entropy 1 3 0.98587 1 0.04945 2 0.044 

11 2 4 0.74193 3 0.554477 2 0.18298 1 0.11301 

12 3 5 0.96889 4 0.53852 3 0.45771 2 0.18211 1 0.12758 

13 SI-AHP 1 3 0.63237 2 0.47289 1 0.05003 

14 2 4 0.84653 2 0.52713 3 0.43157 1 0.06834 

15 3 5 0.96158 4 0.78351 2 0.57765 3 0.33806 1 0.04495 

16 Variance 1 3 0.94948 2 0.12175 1 0.11089 

17 2 4 0.67772 3 0.59436 2 0.25629 1 0.16714 

18 3 5 0.95274 4 0.49365 3 0.46885 2 0.23363 1 0.16368 

19 Max-Min Entropy 1 – – – – – – – – – –

20 2 – – – – – – – – – –

21 3 – – – – – – – – – –

22 SI-AHP 1 3 0.76024 1 0.67479 2 0.25106 

23 2 3 0.72708 1 0.67844 4 0.29119 2 0.25306 

24 3 3 0.72778 1 0.67573 5 0.31135 4 0.29564 2 0.27969 

25 Variance 1 3 0.64518 1 0.45311 2 0.41142 

26 2 3 0.6234 1 0.48327 4 0.47981 2 0.44017 

27 3 5 0.62394 3 0.49841 1 0.41948 2 0.39432 4 0.38963 
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Fig. 1. The classical MADM methods: TOPSIS, SAW, MEW and GRA. 
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ifferent cases (Case 1, Case 2 and Case 3) with respect to a ij and e j as

hown in Table 4 . 

The following are the pairs of different attribute normalization

nd weight calculation methods considered for MATLAB simulation

esults, as shown in Tables 6 –9 : 

• Attributes Vector normalization method with the Entropy (Sl.

nos.: 1–3), SI-AHP (Sl. nos.: 4–6) and Variance (Sl. nos.: 7–9) meth-

ods 

• Attributes Sum normalization method with the Entropy (Sl. nos.:

10–12), SI-AHP (Sl. nos.: 13–15) and Variance (Sl. nos.: 16–18)

methods 

• Attributes Max-Min normalization method with the Entropy (Sl.

nos.: 19–21), SI-AHP (Sl. nos.: 22–24) and Variance (Sl. nos.: 25–

27) methods 

Following are the pairwise entries in Table 6 which illustrate the

etwork rank unreliability with the TOPSIS method: 

• Vector normalization with the Entropy, SI-AHP and Variance

methods: Sl. nos. - (1, 4) and (4, 7) in Case 1; Sl. nos. - (2, 5) and

(5, 8) in Case 2; and Sl. no. - (6, 9) in Case 3. 
• Sum normalization with the Entropy, SI-AHP and Variance meth-

ods: Sl. nos. - (10, 13) and (10, 16) in Case 1; Sl. nos. - (11, 14) and

(14, 17) in Case 2; and Sl. nos. - (12, 15) and (15, 18) in Case 3. 

• Max-Min normalization with the entropy, SI-AHP and Variance

methods: Sl. no. - (24, 27) in Case 3. 

Inference: 

• In the TOPSIS method, the Entropy weighting method is suitable

for the Sum normalization method. 

• The dependency of TOPSIS on attribute normalization methods

results in an unreliable network rank and score, despite SI-AHP

being independent of the normalized attributes. 

• The TOPSIS method with the Vector and Max-Min normalization

methods is suitable for both SI-AHP and Variance methods, but

not the Entropy method. 

Table 7 illustrates the following unreliable network rank pairwise

ntries with the SAW method: 

• Vector normalization with the Entropy, SI-AHP and Variance

methods: Sl. nos. - (2, 5) and (5, 8) in Case 2; and Sl. no. - (6, 9)

in Case 3. 
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Table 7 

SAW - variations in network rank and score with respect to different attribute normalization and weight methods for three different cases. 

Sl. no. Normalization Weight Case Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

method Network Score Network Score Network Score Network Score Network Score 

1 Vector Entropy 1 3 0.80559 1 0.26762 2 0.24 84 9 

2 2 3 0.54219 4 0.50275 2 0.27283 1 0.2421 

3 3 – – – – – – – – – –

4 SI-AHP 1 3 0.6876 1 0.48132 2 0.34336 

5 2 3 0.56185 1 0.45833 4 0.40263 2 0.31967 

6 3 3 0.48881 1 0.4309 5 0.40273 4 0.33001 2 0.28792 

7 Variance 1 3 0.78867 1 0.29101 2 0.27431 

8 2 3 0.54606 4 0.44077 2 0.3261 1 0.31775 

9 3 5 0.59427 3 0.3924 4 0.2897 1 0.28595 2 0.26754 

10 Sum Entropy 1 3 0.81315 1 0.09795 2 0.0889 

11 2 4 0.36831 3 0.34922 2 0.15147 1 0.131 

12 3 5 0.37219 3 0.20921 4 0.1857 1 0.11713 2 0.11578 

13 SI-AHP 1 3 0.49026 1 0.29621 2 0.21353 

14 2 3 0.32384 1 0.25089 4 0.24885 2 0.17642 

15 3 3 0.24954 5 0.21722 1 0.21565 4 0.17421 2 0.14338 

16 Variance 1 3 0.64576 1 0.18254 2 0.1717 

17 2 3 0.33776 4 0.29393 2 0.18828 1 0.18003 

18 3 5 0.33438 3 0.21344 4 0.16198 1 0.14974 2 0.14046 

19 Max-Min Entropy 1 – – – – – – – – – –

20 2 – – – – – – – – – –

21 3 – – – – – – – – – –

22 SI-AHP 1 2 0.70667 3 0.59323 1 0.04236 

23 2 4 0.89669 2 0.71729 3 0.4888 1 0.05758 

24 3 5 0.964 4 0.78633 2 0.64498 3 0.41164 1 0.02845 

25 Variance 1 3 0.85143 2 0.36293 1 0.14885 

26 2 4 0.80652 3 0.67501 2 0.39281 1 0.19015 

27 3 5 0.95573 4 0.61281 3 0.4896 2 0.31192 1 0.11203 

Table 8 

MEW - variations in network rank and score with respect to different attribute normalization and weight methods for three different cases. 

Sl. no. Normalization Weight Case Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

method Network Score Network Score Network Score Network Score Network Score 

1 Vector Entropy 1 3 0.76785 2 0.03854 1 0.0299 

2 2 3 0.51737 4 0.20422 2 0.0325 1 0.02277 

3 3 − – – – – – – – – –

4 SI-AHP 1 3 0.66615 1 0.18502 2 0.15946 

5 2 3 0.55178 4 0.29427 1 0.15325 2 0.13208 

6 3 3 0.47271 5 0.33944 4 0.2521 1 0.13129 2 0.11315 

7 Variance 1 3 0.75138 2 0.0508 1 0.0407 

8 2 3 0.52122 4 0.1942 2 0.06884 1 0.05615 

9 3 5 0.5087 3 0.37982 4 0.12928 2 0.06609 1 0.06334 

10 Sum Entropy 1 3 0.74857 2 0.01078 1 0.00708 

11 2 3 0.33517 4 0.14229 2 0.01759 1 0.01204 

12 3 5 0.32365 3 0.20468 4 0.07241 2 0.1777 1 0.01478 

13 SI-AHP 1 3 0.44696 1 0.12414 2 0.10699 

14 2 3 0.3188 4 0.17002 1 0.08854 2 0.07631 

15 3 3 0.24 4 49 5 0.17556 4 0.13039 1 0.06791 2 0.05852 

16 Variance 1 3 0.569 2 0.03847 1 0.03082 

17 2 3 0.32233 4 0.1201 2 0.04257 1 0.03473 

18 3 5 0.2789 3 0.20824 4 0.07088 2 0.03624 1 0.03472 

19 Max-Min Entropy 1 – – – – – – – – – –

20 2 – – – – – – – – – –

21 3 – – – – – – – – – –

22 SI-AHP 1 – – – – – – – – – –

23 2 – – – – – – – – – –

24 3 – – – – – – – – – –

25 Variance 1 – – – – – – – – – –

26 2 – – – – – – – – – –

27 3 – – – – – – – – – –

 

 

 

 

 

 

 

• Sum normalization with the Entropy, SI-AHP and Variance meth-

ods: Sl. no. - (11, 14, 17) in Case 2; and Sl. nos. - (12, 15) and (15,

18) in Case 3. 

• Max-Min normalization with the Entropy, SI-AHP and Variance

methods: Sl. no. - (22, 25) in Case 1; Sl. no. - (23, 26) in Case 2;

and Sl. no. - (24, 27) in Case 3. 
Inference: 

• In the SAW method, the Entropy weighting method is suitable for

the Sum normalization method. 

• The dependency of SAW on attribute normalization methods re-

sults in an unreliable network rank and score, despite SI-AHP be-

ing independent of the normalized attributes. 
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Table 9 

GRA - variations in network rank and score with respect to different attribute normalization and weight methods for three different Cases. 

Sl. No. Normalization Weight Case Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

method Network Score Network Score Network Score Network Score Network Score 

1 Vector Entropy 1 3 0.94671 2 0.54198 1 0.48796 

2 2 4 0.83878 3 0.70874 2 0.50 0 04 1 0.44717 

3 3 – – – – – – – – – –

4 SI-AHP 1 2 0.82125 3 0.77147 1 0.50018 

5 2 4 0.92536 2 0.81308 3 0.65975 1 0.48238 

6 3 5 0.96581 4 0.80555 2 0.74336 3 0.58354 1 0.4428 

7 Variance 1 3 0.94168 2 0.56382 1 0.50138 

8 2 4 0.84625 3 0.73745 2 0.56643 1 0.48328 

9 3 5 0.95733 4 0.67062 3 0.55727 2 0.50268 1 0.41449 

10 Sum Entropy 1 3 0.98026 2 0.47377 1 0.45819 

11 2 4 0.85811 3 0.70886 2 0.51332 1 0.467 

12 3 5 0.97124 4 0.65366 3 0.53935 2 0.45064 1 0.4044 

13 SI-AHP 1 2 0.83737 3 0.83498 1 0.59308 

14 2 4 0.93656 2 0.82178 3 0.70633 1 0.54302 

15 3 5 0.97022 4 0.81678 2 0.75005 3 0.0646 1 0.4693 

16 Variance 1 3 0.95857 2 0.60255 1 0.55599 

17 2 4 0.86033 3 0.75773 2 0.59415 1 0.52225 

18 3 5 0.96132 4 0.67535 3 0.56596 2 0.50728 1 0.4265 

19 Max-Min Entropy 1 – – – – – – – – – –

20 2 – – – – – – – – – –

21 3 – – – – – – – – – –

22 SI-AHP 1 3 0.75514 1 0.71473 2 0.49259 

23 2 1 0.72445 3 0.67571 4 0.52317 2 0.4983 

24 3 1 0.70647 3 0.63574 5 0.58227 2 0.50427 4 0.47193 

25 Variance 1 3 0.78956 1 0.58959 2 0.56083 

26 2 3 0.69192 1 0.61532 4 0.60986 2 0.58277 

27 3 5 0.76724 2 0.5433 1 0.53628 3 0.5354 4 0.47268 
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• The SAW method with the Vector and Max-Min normalization

methods is suitable for both SI-AHP and Variance methods, but

not Entropy. 

Table 8 illustrates the following unreliable network rank pairwise

ntries with the MEW method: 

• Vector normalization with the Entropy, SI-AHP and Variance

methods: Sl. nos. - (1, 4) and (4, 7) in Case 1; Sl. nos. - (2, 5) and

(5, 8) in Case 2; and Sl. no. - (6, 9) in Case 3. 

• Sum normalization with the Entropy, SI-AHP and Variance meth-

ods: Sl. nos. - (10, 13) and (13, 16) in Case 1; Sl. nos. - (11, 14) and

(14, 17) in Case 2; and Sl. nos. - (12, 15) and (15, 18) in Case 3. 

• Max-Min normalization with the Entropy, SI-AHP and Variance

methods: This is not applicable with respect to network ranking. 

Inference: 

• Sl. nos.: (19–27) indicate that the MEW method is not suitable for

Max-Min normalization irrespective of attribute weight calcula-

tion methods. 

• In MEW, irrespective of the attribute normalization method, the

rank of networks remains the same for the Entropy and Variance

methods. 

• In MEW, Entropy attribute weight method is suitable for the Sum

normalization method. 

• The dependency of MEW on attribute normalization methods re-

sults in an unreliable network rank and score, despite SI-AHP

method being independent of the normalized attributes. 

Table 9 illustrates the following unreliable network rank pairwise

ntries with the GRA method: 

• Vector normalization with the Entropy, SI-AHP and Variance

methods: Sl. nos. - (1, 4) and (4, 7) in Case 1; Sl. nos. - (2, 5) and

(5, 8) in Case 2; and Sl. no. - (6, 9) in Case 3. 

• Sum normalization with the Entropy, SI-AHP and Variance meth-

ods: Sl. nos. - (10, 13) and (13, 16) in Case 1; Sl. nos. - (11, 14) and

(14, 17) in Case 2; and Sl. nos. - (12, 15) and (15, 18) in Case 3. 
• Max-Min normalization with the Entropy, SI-AHP and Variance

methods: Sl. no. - (23, 26) in Case 2; and Sl. no. - (24, 27) in

Case 3. 

Inference: 

• The GRA with the Entropy weighting method is suitable for the

Sum normalization method. 

• The dependency of GRA on attribute normalization methods re-

sults in an unreliable network rank and score, despite SI-AHP

method being independent of the normalized attributes. 

• The GRA with the Vector and Max-Min normalization methods is

suitable for both SI-AHP and Variance methods, but not the En-

tropy method. 

Similarly, as shown in Tables 6 –9 , the variation in the network

core is observed in all pairs of attribute normalization and weight

alculation methods with the TOPSIS, SAW, MEW and GRA methods

espectively. 

Ultimately, this section numerically demonstrated ( Tables 6 –9 )

he network rank unreliability of the classical MADM methods: TOP-

IS, SAW, MEW and GRA. Subsequently, the following subsection will

ighlight the second major limitation of the classical MADM methods

.e. rank reversal problem. 

.2. Rank reversal problem of the classical MADM methods 

The second major challenging issue of the classical MADM meth-

ds is the rank reversal problem. As explained in Section 1 , the rank

eversal problem with classical MADM methods leads to the reversal

f the relative ranking of the networks if an alternative network is

emoved from or inserted into the candidate networks selection list. 

Further, we use the same Tables 6, 7 and 9 to illustrate the rank

eversal problem of the classical MADM methods: TOPSIS, SAW and

RA respectively (Note: no rank reversal problem entries of MEW -

able 8 for a ij shown in Table 4 .) 

Table 6 illustrates the following entries with the rank reversal

roblem in the TOPSIS method: 
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Table 10 

Rank reversible problem for 10 0 0 different a ij in TOPSIS, SAW, MEW and GRA. 

Sl. no. Normalization Weight method Total no. of a ij Classical MADM methods 

No. of invalid a ij No. of a ij with RRP 

TOPSIS SAW MEW GRA TOPSIS SAW MEW GRA 

1 Vector Entropy 10 0 0 981 981 981 981 9 13 6 16 

2 SI-AHP 0 0 0 0 578 587 0 564 

3 Variance 0 0 0 0 496 706 261 594 

4 Sum Entropy 0 0 0 0 456 676 280 570 

5 SI-AHP 0 0 0 0 671 645 0 622 

6 Variance 0 0 0 0 487 700 261 583 

7 Max-Min Entropy 10 0 0 10 0 0 10 0 0 10 0 0 - - - - 

8 SI-AHP 15 15 717 15 261 350 33 503 

9 Variance 15 15 717 15 654 489 32 748 
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• Sl. nos.: 10 (Case 1) and 11 (Case 2) present the removal of network

N4 in Case 2 that results in the ranking of the other three networks

(Case 1) as Rank N 3 > Rank N 1 > Rank N 2 instead of Rank N 3 > Rank N 2 
> Rank N 1 

• Sl. nos.: 13 (Case 1) and 14 (Case 2) present the removal of network

N4 in Case 2 that results in the ranking of the other three networks

(Case 1) as Rank N 3 > Rank N 2 > Rank N 1 instead of Rank N 2 > Rank N 3 
> Rank N 1 

• Sl. nos.: 26 (Case 2) and 27 (Case 3) present the insertion of a new

network N5 in Case 2 with better network attributes that results

in the ranking of the networks (Case 3) as Rank N 5 > Rank N 3 >

Rank N 1 > Rank N 2 > Rank N 4 instead of Rank N 5 > Rank N 3 > Rank N 1 
> Rank N 4 > Rank N 2 

Table 7 illustrates the following entries with the rank reversal

problem in the SAW method: 

• Sl. nos.: 1 (Case 1) and 2 (Case 2) present the removal of network

N4 in Case 2 that results in the ranking of the other three networks

(Case 1) as Rank N 3 > Rank N 1 > Rank N 2 instead of Rank N 3 > Rank N 2 
> Rank N 1 

• Sl. nos.: 7 (Case 1) and 8 (Case 2) present the removal of network

N4 in Case 2 that results in the ranking of the other three networks

(Case 1) as Rank N 3 > Rank N 1 > Rank N 2 instead of Rank N 3 > Rank N 2 
> Rank N 1 

• Sl. nos.: 8 (Case 2) and 9 (Case 3) present the insertion of a new

network N5 in Case 2 with better network attributes that results

in the ranking of the networks (Case 3) as Rank N 5 > Rank N 3 >

Rank N 4 > Rank N 1 > Rank N 2 instead of Rank N 5 > Rank N 3 > Rank N 4 
> Rank N 2 > Rank N 1 

• Sl. nos.: 10 (Case 1) and 11 (Case 2) present the removal of network

N4 in Case 2 that results in the ranking of the other three networks

(Case 1) as Rank N 3 > Rank N 1 > Rank N 2 instead of Rank N 3 > Rank N 2 
> Rank N 1 

• Sl. nos.: 11 (Case 2) and 12 (Case 3) present the insertion of a new

network N5 in Case 2 with better network attributes that results

in the ranking of the networks (Case 3) as Rank N 5 > Rank N 3 >

Rank N 4 > Rank N 1 > Rank N 2 instead of Rank N 5 > Rank N 4 > Rank N 3 
> Rank N 2 > Rank N 1 

• Sl. nos.: 16 (Case 1) and 17 (Case 2) present the removal of network

N4 in Case 2 that results in the ranking of the other three networks

(Case 1) as Rank N 3 > Rank N 1 > Rank N 2 instead of Rank N 3 > Rank N 2 
> Rank N 1 

• Sl. nos.: 17 (Case 2) and 18 (Case 3) present the insertion of a new

network N5 in Case 2 with better network attributes that results

in the ranking of the networks (Case 3) as Rank N 5 > Rank N 3 >

Rank N 4 > Rank N 1 > Rank N 2 instead of Rank N 5 > Rank N 3 > Rank N 4 
> Rank N 2 > Rank N 1 

Table 9 illustrates the following entries with the rank reversal

problem in the GRA method: 
• Sl. nos.: 22 (Case 1) and 23 (Case 2) present the removal of net-

work N4 in Case 2 that results in the ranking of the other three

networks (Case 1) as Rank N 3 > Rank N 1 > Rank N 2 instead of Rank N 1 
> Rank N 3 > Rank N 2 

• Sl. nos.: 23 (Case 2) and 24 (Case 3) present the insertion of a new

network N5 in Case 2 with better network attributes that results

in the ranking of the networks (Case 3) as Rank N 1 > Rank N 3 >

Rank N 5 > Rank N 2 > Rank N 4 instead of Rank N 1 > Rank N 3 > Rank N 5 
> Rank N 4 > Rank N 2 . 

• Sl. nos.: 26 (Case 2) and 27 (Case 3) present the insertion of a new

network N5 in Case 2 with better network attributes that results

in the ranking of the networks (Case 3) as Rank N 5 > Rank N 2 >

Rank N 1 > Rank N 3 > Rank N 4 instead of Rank N 5 > Rank N 3 > Rank N 1 
> Rank N 4 > Rank N 2 

Further, to study the rank reversal problem’s detrimental effect

n the classical MADM methods: TOPSIS, SAW, MEW and GRA, an ex-

ensive MATLAB simulation is carried out on the randomly generated

0 0 0 different combinations of a ij . Table 10 shows the number of in-

alid a ij and the number of a ij with the rank reversal problem. 

Fig. 2 illustrates the flowchart to study the rank reversal prob-

em’s detrimental effect on the classical MADM methods as shown

n Table 10 . As shown in Fig. 2 , an invalid a ij represents the a ij with

 ij = ∞ (Max-Min normalization) or w j < 0 (Entropy) or Score i = ∞
MEW ranking). In Table 10 , the number of combinations of a ij with

he rank reversal problem is computed for the valid a ij , if the rank

eversal exists in Case 2 and Case 1 or Case 2 and Case 3. 

As shown in Table 10 , rank reversal problem is observed in all the

lassical MADM methods with the different pairs of attribute normal-

zation and weight calculation methods. With the help of the results

hown in Table 10 , it is difficult to compare the classical MADM meth-

ds: TOPSIS, SAW, MEW and GRA, with respect to the rank reversal

roblem. 

Inference : Dependency of the classical MADM methods on at-

ribute normalization and weight calculation methods and the inter-

ependence between one network attribute and the other network

ttributes will cause an unreliable network ranking and the rank re-

ersal problem. 

Hence, we propose a novel, simplified and improved solution to

ddress the two key limitations of classical MADM methods, i.e., the

etwork rank unreliability and the rank reversal problem as demon-

trated in Sections 3.1 and 3.2 respectively. 

. Proposed Simplified and Improved Multiple Attributes 

lternate Ranking (SI-MAAR) method 

This section of the paper presents the proposed Simplified and

mproved Multiple Attributes Alternate Ranking (SI-MAAR) method.

he main objectives of the SI-MAAR method are: 

• To eliminate the dependency of attribute normalization and

weight calculation methods, thereby improving the reliability of

network selection. 
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Fig. 2. Flowchart for counting the rank reversible problem of the classical MADM methods for 10 0 0 different a ij . 
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• To compute the network rank and score, which are independent of

other network attributes, thereby avoiding the rank reversal prob-

lem. 

Fig. 3 shows the proposed SI-MAAR method of ranking the avail-

ble heterogeneous wireless networks during the handover. The SI-

AAR accepts the expectation of the attributes ( e j ) instead of weight

f the attributes. The e j is depicted based on the network, user, mobile

evice and the application ( k ) [1,2] . Further, e j is used along with the

etworks and the corresponding attribute values ( a ij ) in computing

he Closeness Index matrix or Utility matrix. This step of the SI-MAAR

ethod eliminates the dependency from the attribute normalization

nd weight calculation methods. 

Closeness Index (CI) or Utility matrix : It represents the closeness

r utility (satisfaction) between the a ij and e j . The higher the differ-

nce between a ij and e j , the better is the CI of the i th network with

espect to the jth benefit attribute, however the same is not true if

he jth attribute is the cost attribute. The CI between the a ij and e j is

omputed using the following equation: 

I i j = 

a i j 

(a i j + e j )
, i = 1 , 2 , 3 , . . . , n and j = 1 , 2 , . . . , m . (1) 

here a ij is i th network jth attribute value, e j is the jth attribute ex-

ectation from the network, user, mobile device or applications. 

Observation 1: The higher the CI of a network with respect to the

enefit attributes, the better is the network with respect to the same

ttributes, however the same is not true for the cost attributes. 

Ideal solution : It represents an ideal (best/worst) value of the at-

ributes. To eliminate the dependency (rank reversal problem) among

he network attributes on the network ranking procedure, the best

positive) and the worst (negative) ideal value considered for the at-

ributes are: 

Positive Ideal Solution ( A 

+ ) = { A 

+ 
1 
, A 

+ 
2 
, . . . , A 

+ 
m 

} 
Negative Ideal Solution ( A 

−) = { A 

−
1 
, A 

−
2 
, . . . , A 

−
m 

} 
where 

 

+ 
j 

= 

{
1 , for all benefit attributes 
0 , for all cost attributes 

(2) 

 

−
j 

= 

{
0 , for all benefit attributes 
1 , for all cost attributes 

(3) 

Euclidean distance: Euclidean distance is the distance measuring

pproach between two real valued vectors [48] . Minkowsky class of

istance measure between two vectors x and y ∈ D 

m is given by 

 m 

(x , y ) = 

( 

m ∑ 

j=1 

(x j − y j )
p 

) 1 /p 

(4) 

Euclidean Distance (ED) between two real valued vectors which

atisfies the properties: Permutation Invariance, Extension Invari-

nce, One dimensional value-sensitivity, Sub-vector Consistency and

onotonic Order Sensitivity with p = 2 in Eq. 4 is given by 

 m 

(x , y ) = 

√ 

m ∑ 

j=1 

(x j − y j )2 (5) 

uclidean distance with respect to the positive ideal solution ( A 

+ ) is:

D 

+ 
i 

= 

√ 

m ∑ 

j=1 

(CI i j − A 

+ 
j 
)2 (6) 

uclidean distance with respect to the negative ideal solution ( A 

−) is:

D 

−
i 

= 

√ 

m ∑ 

j=1 

(CI i j − A 

−
j 
)2 (7) 

here ED 

+ 
i 

and ED 

−
i 

represents the Euclidean distance of the i th net-

ork for the positive ideal ( A 

+ ) and the negative ideal ( A 

−) solution

espectively. 



92 B.R. Chandavarkar, R.M.R. Guddeti / Computer Communications 83 (2016) 81–97 

Fig. 3. The SI-MAAR method. 
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a  
Observation 2: Positive and the negative ideal solutions shown

in Eqs. (2) and (3) results into E D 

+ 
p∈ n independent of E D 

+ 
q ∈ n 

and ED 

−
p∈ n independent of ED 

−
q ∈ n . This property of ED 

+ and ED 

−

eliminates the rank reversal problem because of its independent

nature. 

Relative Closeness (RC) : It represents the closeness of the i th

network to the positive and the negative Euclidean distance. The

i th network’s, minimum distance with the positive and maxi-
um distance with the negative Euclidean distance results into

aximum score. 

core i = 

ED 

−
i 

(E D 

+ 
i 

+ E D 

−
i 
)

(8)

inal selection of the network for handover: Finally, the networks

re ranked based on the relative closeness (score) and further, a
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Table 11 

Network ranking results for parameters shown in Table 4 . 

Case Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

Network Score Network Score Network Score Network Score Network Score 

1 3 0.5347 2 0.3927 1 0.3409 - - - - 

2 3 0.5347 4 0.5063 2 0.3927 1 0.3409 - - 

3 5 0.6554 3 0.5347 4 0.5063 2 0.3927 1 0.3409 

Table 12 

Variation in the rank count of the individual network for 10 0 0 different combinations of a ij in Case 1, Case 2 and Case 3. 

Network Network (i) count in a particular Rank (r) for the particular Case (c) ( (Count i )
c 
r ) 

Case 1 Case 2 Case 3 

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3 Rank 4 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

N1 177 483 340 16 175 471 338 2 19 175 467 337 

N2 88 310 602 4 91 305 600 0 8 92 300 600 

N3 735 207 58 174 568 200 58 36 176 533 197 58 

N4 - - - 806 166 24 4 280 544 148 24 4 

N5 - - - - - - - 682 253 52 12 1 

No. of a ij with rank reversal = 0 

Table 13 

Variation in the rank count of the individual network for 10 0 0 different combinations of e j and the common a ij ( Table 4 )in Case 1, Case 2 and 

Case 3. 

Network Network (i) count in a particular Rank (r) for the particular Case (c) ( (Count i )
c 
r ) 

Case 1 Case 2 Case 3 

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3 Rank 4 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

N1 0 1 999 0 0 1 999 0 0 0 9 991 

N2 0 999 1 0 8 991 1 0 8 237 754 1 

N3 10 0 0 0 0 559 441 0 0 559 441 0 0 0 

N4 - - - 441 551 8 0 441 551 8 0 0 

N5 - - - - - - - 0 0 755 237 8 

No. of a rank reversal problem for 10 0 0 different combinations of e j = 0 

n  

d

S

4

 

L  

t  

p

 

f  

T  
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m  

w  

C  

C  
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etwork with the maximum score is selected by the MN for the han-

over in heterogeneous wireless networks. 

elected network for handover = max 
i 

(Score i ) (9) 

.1. MATLAB simulation results and analysis 

Objective: To numerically justify the proposed SI-MAAR, a MAT-

AB simulation with respect to Table 4 is carried out for computing

he network rank and score, and also for checking the rank reversal

roblem of the SI-MAAR method. 

Table 11 shows the network rank and score with respect to Table 4

or three different cases: Case 1, Case 2 and Case 3. As shown in

able 11 , even after the removal of network N4 in Case 1 or the in-

ertion of network N5 in Case 3 with respect to Case 2, there is no

hange in the network rank and score. The removal and insertion of

he network in the network selection list in the proposed SI-MAAR

ethod does not make any change in the rank and score of the net-

orks. As shown in the Table 11 , the score of network N3 (0.5347) in

ase 2 remains unchanged even after the removal of network N4 in

ase 1 or the insertion of network N5 in Case 3 with respect to Case

, and similarly with other networks. 

Further, to check the existence of the rank reversal problem in SI-

AAR, an extensive MATLAB simulation is carried out on the similar

0 0 0 combinations of a ij (used for Table 10 ) with the fixed e j shown

n Table 4 . Table 12 shows the variation in the network (N1, N2, N3,

4 and N5) count in a particular rank for 3 different cases (Case 1,

ase 2 and Case 3), where the number of invalid a ij and the number

f ‘ a ij ’ with the rank reversal problem is zero. Table 12 also shows the

ensitivity of the SI-MAAR method for the variation of a ij . 
In Table 12 , (Count i )
c 
r represents the i th network count in rth rank

or the cth case, where 

Case 1 (c = 1, n = 3): i = r = {1, 2, 3}, 

Case 2 (c = 2, n = 4): i = r = {1, 2, 3, 4} and 

Case 3 (c = 3, n = 5): i = r = {1, 2, 3, 4, 5}. 

As shown in Table 12 , (Count 1 )
1 
r is 177, 483 and 340 represent-

ng the network N1 count in rank 1, rank 2 and rank 3 respectively

or Case 1, and so on for the other networks with the following

onditions: 

• 
∑ n 

r=1 (Count i )
c 
r = No. of combinations of a ij 

• 
∑ n 

i =1 (Count i )
c 
r = No. of combinations of a ij 

With respect to Table 12 following are some of the observations: 

• For Case x , after removing the n th network, the remaining

(n − 1 ) networks rank count in a particular rank for Case x − 1

can be computed as, 

(Count i )
c 
r � =1 = [ (C ount i )

c+1 
r+1 − (C ount i )

c+1 ∗
r +1 ,r � = n ] 

+ (Count i )
c+1 ∗
r (10) 

(Count i )
c 
r=1 = [ (C ount i )

c+1 
r + (C ount i )

c+1 
r+1 ] − (Count i )

c+1 ∗
r+1 (11) 

where 
∑ n 

i =1 (C ount i )
c+1 ∗
r,r � =1 

= 

∑ n 
r= r (C ount n +1 )

c+1 
r+1 

∑ n 
i =1 (C ount i )

c+1 ∗
1 

= 

∑ n 
r=2 (Count n +1 )

c+1 
r+1 

, represents the rank r count of the network

i of Case x which remains in the same rank r in Case x − 1 . 

• For no rank reversal problem, 

(Count i )
c+1 ∗
r ≥ 0 (12) 

Similarly, SI-MAAR is also verified for different e j to study the rank

eversal problem for the fixed a ij ( Table 4 ). Table 13 shows the vari-

tion in the rank count of the networks for 10 0 0 different random
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combinations of e j with the 0% rank reversal problem. The rank count

of the individual networks shown in Table 13 follows the Eqs. 10 and

11 , and Eq. 12 for 0% of the rank reversal problem. 

In addition to the above, an extensive MATLAB simulation is car-

ried out to compare classical MADM methods and SI-MAAR with re-

spect to the percentage of invalid a ij ( Fig. 4 ), the percentage of a ij with

the rank reversal problem ( Fig. 5 ) and the percentage of unreliable

networks ranking ( Figs. 6 and 7 ) for 10,0 0 0 different combinations of

a ij . The percentage of a ij with the rank reversal problem is computed

against the valid number of a ij . Also, the percentage of unreliable net-

works ranking is computed for (i) different attribute weight method

with respect to the attribute normalization methods ( Fig. 6 ) and (ii)

attribute normalization method with respect to the attribute weight

methods ( Fig. 7 ). 

As shown in Fig. 4 , the percentage of invalid a ij (i.e a ij with x ij =
∞ ) in the proposed SI-MAAR method is zero compared to the clas-

sical MADM methods. Similarly, Fig. 5 illustrates, the percentage of

the rank reversal problem with the proposed SI-MAAR method is

zero compared to the classical MADM methods. As shown in Fig. 5 ,

among the classical MADM methods, rank reversal problem is less in

the MEW method. 

Furthermore, Fig. 6 illustrates the percentage of unreliable ranking

of the classical MADM methods for 10,0 0 0 different combinations of

a ij with respect to the attribute weight method to the different at-

tribute normalization methods. As shown in Fig. 6 , the percentage

of unreliable ranking of the classical MADM methods is more than

97%, whereas, in the proposed SI-MAAR method is zero (not shown

in Fig. 6 ). 

Similarly, Fig. 7 illustrates the percentage of unreliable ranking of

the classical MADM methods for 10,0 0 0 different combinations of a ij 
with respect to the attribute normalization method to the different

attribute weight methods. As shown in Fig. 7 , among the classical

MADM methods, the percentage of unreliable ranking is less in the

MEW method. Moreover, with the proposed SI-MAAR, the percentage

of unreliable ranking is zero in comparison with the classical MADM

methods. 

Hence, it is demonstrated that the proposed Simplified and Im-

proved Multiple Attributes Alternate Ranking (SI-MAAR) method is

the simplest and most improved network ranking method for VHD in

heterogeneous wireless networks. SI-MAAR is a simple method with

less complex and unambiguous network ranking steps when com-

pared to the classical MADM methods: TOPSIS, SAW, MEW and GRA.

Moreover, the proposed SI-MAAR method is completely eliminating

unreliability in network rank and the rank reversal problem of the

classical MADM methods. Hence, the worst time complexity of the

proposed SI-MAAR for n networks of m attributes (including both the

benefit and cost attribute) is O ( m ∗n ). 

Finally, SI-MAAR method is one of the best replacements for the

existing classical MADM methods, not only applicable to the field

of real heterogeneous wireless networks, but also to the other fields

where classical MADM methods are widely used in real life. 

5. Conclusions and future work 

In comparison with the classical MADM methods: TOPSIS, SAW,

MEW and GRA, the proposed Simplified and Improved Multiple At-

tributes Alternate Ranking (SI-MAAR) method eliminated the at-

tribute normalization and weight calculation method’s dependency,

resulting in reliable network rank for the seamless handover with-

out the rank reversal problem. The MATLAB simulation carried out in

10 0 0 and 10,0 0 0 different combinations of network attributes, and

10 0 0 different combinations of the expected attributes, justified net-

work attribute sensitivity, 100% network rank reliability with 0% rank

reversal problem of the SI-MAAR method when compared to the clas-

sical MADM methods. 
The future work in this direction can be carried out by verifying

I-MAAR method using network simulator and test-bed for the

erformance metrics like number of handovers, handover delay,

oS of the real-time, non-real-time and interactive applications, and

he percentage of user satisfaction in the heterogeneous wireless

etworks. 
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