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a b s t r a c t 

A Device Free Localization (DFL) system can locate and track people wearing no wireless devices, due 

to the fact that a person standing at different locations attenuates wireless links differently. Since the 

DFL system usually consists of battery-powered sensors, energy efficiency is a critical issue. However, 

existing works mainly focus on improving localization accuracy by designing various metrics to charac- 

terize wireless link attenuation, and none of them considers energy efficiency, specifically. We present 

EE-Loc, an energy efficient localization system, for locating and tracking people with higher energy ef- 

ficiency and comparable localization accuracy compared to the state-of-the-art DFL systems. EE-Loc has 

two main energy efficient components. First, EE-Loc has a radio tomographic imaging (RTI) component 

that uses only one bit information to describe link attenuation. The one bit information is derived from 

the Kullback–Leibler divergence (KL-divergence) of Received Signal Strength (RSS), and we prove that RTI 

with this one bit information is sufficient for localization. Second, EE-Loc has a tracking component that 

deactivates many unnecessary links through predicting the person’s location with Kalman filter to reduce 

energy consumption. We build a test-bed of EE-Loc using 16 sensors. The experimental results indicate 

that EE-Loc improves energy efficiency by 27.05% compared to Spin ∗> for locating a person, and reduces 

link measurements by 41.91% for tracking a person, without compromising the localization accuracy. 

© 2016 Published by Elsevier B.V. 
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. Introduction 

Device free localization (DFL) with wireless sensor networks

an be applied to many scenarios including future healthcare,

mart building and security applications [1,2] . DFL technologies are

istinct from traditional localization methods in that they do not

ssume the targets wear any electronic devices such as RFID tags.

his ‘noninvasive’ property is especially useful for surveillance sys-

ems where the intruders might be device-less. Typically, DFL tech-

ologies utilize the attenuation of wireless links caused by human

resence to locate people. The attenuation of a wireless link can

e characterized by the Received Signal Strength (RSS) change. DFL

ith wireless sensors can be implemented conveniently because

SS can be easily measured from most sensor platforms. 

Existing DFL systems [2–5] mainly target at high localization ac-

uracy. Therefore, various RSS dynamic measures have been pro-

osed to characterize the attenuation caused by human presence,

uch as difference of mean RSS readings [2] , variance of RSS read-
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ngs [3] and the Kullback–Leibler divergence (KL-divergence) of

wo RSS reading distributions [6] . A better measure for RSS dy-

amic values leads to a better localization accuracy. However, to

alculate the proposed RSS dynamic values, raw RSS readings from

ll links should be sent to the base station. Higher traffic con-

umes the energy of every sensor much more quickly, resulting in

 shorter network lifetime. Unfortunately, this important issue has

ot been addressed in existing DFL systems. 

We aim at improving the energy efficiency of DFL systems with-

ut sacrificing the localization accuracy. This is achieved through

he following observations. First, RSS readings in most platforms

such as the TelosB platform [7] ) are represented by an 8-bit in-

eger. We can finish a round of RSS collection much more quickly

nd put the network in sleep mode if the RSS dynamic values can

e calculated locally in sensors and represented by fewer bits. Sec-

nd, not all wireless links are necessary in tracking a moving per-

on since a person can only attenuate a few links of the system.

ccordingly, many sensors can turn off their radio modules to save

nergy if we can predict the location of the person. 

We design EE-Loc, an energy efficient DFL system based on the

bove observations. EE-Loc contains two energy efficient mecha-

isms: radio tomographic imaging with binarized KL-divergence

referred to as KLDB in this work) and reducing unnecessary link
cient device-free localization, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.01.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
mailto:panwunju@gmail.com
mailto:wuxb@nju.edu.cn
mailto: \ignorespaces barrywuh@gmail.com
mailto:gchen@nju.edu.cn
mailto:nju.mfshan@gmail.com
mailto:xzhu@nuaa.edu.cn
http://dx.doi.org/10.1016/j.comcom.2016.01.010
http://dx.doi.org/10.1016/j.comcom.2016.01.010


2 P. Wu et al. / Computer Communications 0 0 0 (2016) 1–9 

ARTICLE IN PRESS 

JID: COMCOM [m5G; March 8, 2016;13:2 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

a  

m  

t  

p  

b  

t  

I  

‘  

o  

l  

n  

o

 

r  

p  

D  

s  

i  

n  

fi  

d  

t  

c  

n  

s  

d  

o  

c  

n  

s  

i  

E  

t  

e  

m

3

 

m  

a  

m

3

 

p  

t  

m  

a  

d  

w  

m

 

t  

l  

a  

l  

w  

a  

i  

s  

a  

k  

t  
measurements with Kalman filter when tracking a person. In ra-

dio tomographic imaging with KLDB, we derive one bit KLDB from

KL-divergence of a wireless link to represent the RSS dynamic of

the link and implement the RSS dynamic calculation locally in the

wireless sensor network. Compared with other DFL systems, sen-

sors in EE-Loc only report one bit KLDB, instead of 8-bit raw RSS

reading, for each wireless link. This reduces the payload size of

packets in EE-Loc. With the decrease of the payload size, the time

consumption of data collection module in EE-Loc is only 65 . 11 ms,

which is 27.05% shorter than that of Spin 

∗> , an improved version

of Spin [2] . Our indoor and outdoor experiments demonstrate that

EE-Loc does not compromise its localization accuracy compared to

the existing work although it transmits less bits. For tracking a per-

son, EE-Loc uses Kalman filter to predict next possible region of

the person, and turns off receivers of unrelated links to save en-

ergy. Our experiments show that this mechanism reduces the link

measurements by about 41.91% in each round of data collection. 

The rest of the paper is organized as follows. Section 2 presents

the related works. Section 3 introduces the background of device

free localization. We give an overview of EE-Loc in Section 4 , and

present our design of EE-Loc in Section 5 . Section 6 presents the

experimental results and Section 7 concludes the paper. 

2. Related works 

Localization in wireless sensor networks has long been an

important research issue [2,3,5,6,8–12] . Since [3,8] introduce the

concept of RF-based device-free localization, several RF-based DFL

systems have been implemented with wireless sensor networks.

In this section we examine existing research related to RF-based

DFL systems. 

Fingerprinting is widely used tool in indoor localization. In

[1,13] , fingerprinting has been successfully applied for locating peo-

ple in DFL systems. A passive radio map is constructed offline.

With the map, distance in signal strength space is used as the RSS

dynamic value to locate people. Moreover, Kalman filter is used

to improve the tracking performance [13] . A more advanced tool,

namely Support Vector Regression (SVR), is utilized to build a real-

time and scalable DFL system [12] . The surveillance field is divided

into many triangular areas. SVR is then used to locate people in

each triangular area. Both fingerprint-based method and SVR-based

method are required to collect a large amount of labeled training

data, which is a time consuming step for DFL systems. One way to

get rid of the burden of collecting labeled training data is to derive

link model from training data. In [3,14] , Zhang et al. propose a link-

centric coverage model and design several geometric algorithms to

locate and track targets. A more accurate fade-level skew-Laplace

signal strength model is introduced in [15] . Based on experimen-

tal data, the new link model is characterized by the skew-Laplace

distribution, which takes the fade level into consideration. 

Radio Tomographic Imaging (RTI) [2] images the attenuation

caused by human presence in the surveillance field. Wilson and

Patwari propose a linear model for using RSS difference to obtain

images of moving targets in a RTI system. In their later work [9] ,

the variance of RSS readings is used as a new RSS dynamic mea-

sure to detect human motion. Considering the inaccuracy of RSS

readings, Zhao and Patwari [16] propose a subspecies decomposi-

tion method to eliminate noise in RSS readings. They show that us-

ing RSS readings projected onto the extrinsic subspace has a better

accuracy in location and tracking. Recently, Zhao et al. [6] adopt

the kernel distance as an RSS dynamic measure to locate and track

both stationary and moving people without calibration. 

Besides RTI, there exist other methods to locate and track

people in RF-based DFL systems. Chen et al. [4] utilize a se-

quential Monte Carlo (SMC) method for tracking targets and

design an online EM algorithm to find location for sensors. In this
Please cite this article as: P. Wu et al., A few bits are enough: Energy effi
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ay, an RSS-based DFL system can be deployed rapidly. Zheng

nd Men [17] model the RSS distribution of a wireless link as a

ixture of Gaussians. They propose an online learning algorithm

o update the model and detect the affected links to locate a

erson. In [5,18] , Xu et al. design a device-free localization method

ased on probabilistic classification and extend the DFL techniques

o count and locate multiple targets in the surveillance field.

n [19,20] , compressive sensing is introduced to recover the sparse

signal’ in the DFL problem. Considering the high computation cost

f compressive sensing based recovery, Yang et al. [19] propose a

ightweight compressed maximum matching select algorithm. The

otion of the correlated link is introduced to reduce the number

f necessary RSS measurements. 

Different from existing works that focus on improving the accu-

acy of DFL systems, we exploit some merits of KL-divergence and

rediction of human presence to improve the energy efficiency of

FL systems. To achieve energy efficiency, we propose two energy

aving mechanisms in our DFL system EE-Loc. The first mechanism

s to save energy by efficiently reducing packet payload size. We

otice that in some RTI systems [2,6] RSS readings of sensors are

rst transmitted to a base station, and are then processed into RSS

ynamics on the PC. The RSS dynamics are later fed as input to

he RTI algorithm. In our method, computation of RSS dynamics

an be done locally in the wireless sensor network and RSS dy-

amics, other than raw RSS readings, are transmitted to the base

tation. We provide a new metric called KLDB derived from KL-

ivergence to represent the RSS dynamic of a wireless link with

nly one bit. Our method reduces the payload size of each packet

ompared with other DFL systems. Meanwhile, we show that the

ew metric can be efficiently implemented in commercial off-the-

helf sensors. The second mechanism is to save energy by decreas-

ng the number of link measurements when tracking a person. In

E-Loc, we adopt Kalman filter to predict the possible region of

he person and then turn off receivers of unrelated links to save

nergy, which is different from predicting possible regions with

aximum speed of the person [19] . 

. Background 

DFL systems are characterized by link model and RSS dynamic

easures adopted in these systems. In this section, we first revisit

 classical link model in RTI, and then we describe a RSS dynamic

easure called KL-divergence. 

.1. Link model 

Human presence attenuates wireless signals of sensors de-

loyed in the surveillance field. Based on the fact, RTI ‘images’

he attenuation caused by human presence. In RTI, an elliptical

odel [2,14] characterizes the relation between the attenuation of

 wireless link and position of a person near the link. With RSS

ynamic measures of many wireless links and the elliptical model,

e can locate the person in the surveillance field. Next, we for-

ally introduce the linear formulation of RTI. 

A wireless sensor network with n sensor nodes is deployed in

he surveillance field. In the network, the total number of wireless

inks is M = n (n − 1) . As human presence in the surveillance field

ttenuates wireless links in the network, RSS readings of wireless

inks will change. Let Y i denote the RSS dynamic value of the i th

ireless link and Y = [ Y 1 , Y 2 , . . . , Y M 

] denote RSS dynamic values of

ll links. To locate a person, the surveillance field is first discretized

nto N voxels. Let X i denote the attenuation introduced by a person

tanding at voxel i and X = [ X 1 , X 2 , . . . X N ] denote the attenuation of

ll voxels in the surveillance field. Since positions of N voxels are

nown beforehand, the position where the attenuation occurs in

he surveillance field can be determined once X is calculated. RSS
cient device-free localization, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.01.010
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Fig. 1. EE-Loc modules. 
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f  
ynamic of a wireless link is contributed by attenuation at voxels

ear the wireless link, and the relationship between X and Y is

haracterized by the following linear formulation: 

 = W X + noise, (1)

here noise denotes the noise in the RSS readings. W represents

he elliptical model that will be introduced next. 

W is a weight matrix of size M × N . As the attenuation at

ach voxel contributes differently to RSS dynamic values of differ-

nt wireless links, a weight is proposed to compensate for the dif-

erence. The attenuation matrix W is formally defined as follows:

 i j = 

1 √ 

d 

{
1 , if d i s j + d i r j < d + λ
0 , otherwise 

, (2) 

here d i s j is the distance between the j th voxel and the sender of

he i th link and d i r j is the distance between the j th voxel and the

eceiver of the i th link. d is the distance between the sender and

eceiver of the i th link. λ is the excess path length in the elliptical

odel, which is used to tune the width of the eclipse. This equa-

ion explains why the weight model is called the elliptical model.

n the elliptical model, voxels in the ellipsoid with foci at two sen-

ors of a wireless link are assumed to attenuate the link, and vox-

ls outside the ellipsoid do not attenuate the wireless link. Given

he weight matrix W and RSS dynamic vector Y , RTI is to estimate

he attenuation image X and locate the person. 

.2. RSS histogram and KL-divergence 

In this section we first describe how to get an RSS histogram

rom RSS readings. We then define KL-divergence to measure the

ifference between two RSS histograms. 

For a particular link in the wireless sensor network, the receiver

f the link periodically gets the RSS reading denoted as r i . Accord-

ng to the TelosB datasheet [7] , RSS readings from a sensor node

re integers ranging from −90 dBm to 0 dBm. Thus there is a finite

et of RSS readings returned by sensors and we can construct a RSS

istogram with 91 = 0 − (−90) + 1 bins (the bin width is 1 dBm)

rom several RSS readings in a specific time interval. For example,

or a particular link in the sensor surveillance system, the receiver

f the link reports a RSS reading periodically. Assume the period is

 , we denote by r k the RSS reading reported by the receiver at time

 = kT . So at time t = nT , we can construct a RSS histogram H from

SS readings reported in the time window [(n − s + 1) T , nT ] . Here,

e denote by s the length of the time window. The i th elements

f H counts how many times RSS readings valued (−90 + i ) dBm

n the time window. When no person is present, the RSS histogram
Please cite this article as: P. Wu et al., A few bits are enough: Energy effi

http://dx.doi.org/10.1016/j.comcom.2016.01.010 
alculated from RSS readings is denoted as the background RSS his-

ogram. When a person appears in the ellipsoid with foci at two

ensors of a wireless link, the RSS histogram calculated from RSS

eadings is denoted as the ‘RSS histogram with person’. 

Note that the RSS histogram with person contains both the

ackground information and the foreground information intro-

uced by human presence. In order to get the foreground in-

ormation, we need to ‘subtract’ the ‘empty-room RSS histogram’

rom the ‘RSS histogram with person’. KL-divergence is often used

o measure the information difference between two probability

istributions in probability theory. Therefore, we adopt the KL-

ivergence as the RSS dynamic measure brought by human pres-

nce. The RSS dynamic value can be obtained by calculating the

L-divergence between the RSS histogram with person H d and the

ackground RSS histogram H b . KL-divergence can be calculated as

ollows: 

 KL (H d || H b ) = 

∑ 

i 

ln 

(
ˆ H d (i ) 

ˆ H b (i ) 

)
ˆ H d (i ) , (3)

here 

ˆ 
 d (i ) = 

max (ε, H d ( j)) ∑ 

j max (ε, H d ( j)) 

nd 

ˆ 
 b (i ) = 

max (ε, H b ( j)) ∑ 

j max (ε, H b ( j)) 
. 

is a small number ( 10 −6 ) that avoids divide-by-zero and log 0. 

. EE-Loc overview 

In this section, we present an energy efficient device free local-

zation and tracking system called EE-Loc. EE-Loc takes RSS read-

ngs from sensors as input, and outputs the location of the person

hen a person appears in the surveillance field. At a high level,

E-Loc is comprised of three modules shown in Fig. 1 : data collec-

ion module, RSS dynamic calculation module and localization and

racking module. The data collection module collects background

SS readings of all wireless links in the sensor network without

uman presence during the offline phase and collects real-time

SS readings of all links during the online phase. For each link,

he RSS dynamic calculation module compares RSS readings in the

wo phases and produces a RSS dynamic measure. With the real-

ime RSS dynamics of all wireless links, the localization and track-

ng module locates and tracks the person in a real-time fashion. 

Different from existing works on device free localization, we

ocus on energy efficiency in EE-Loc. There are two main energy
cient device-free localization, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.01.010
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Fig. 2. The sketch for the indoor scene. 
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efficient mechanisms in EE-Loc. In existing works [2,6,9] , RSS read-

ings in the wireless sensor network are first transmitted to a base

station, and are then processed into RSS dynamics on the PC. The

RSS dynamics are later fed as input to the localization and tracking

module. In EE-Loc, we design a new RSS dynamic measure (KLDB)

for each wireless link with only one bit and implement the RSS

dynamic calculation locally in the wireless sensor network. Com-

pared with other DFL systems, EE-Loc reduces the payload size of

each packet and implements the data collection and RSS dynamic

calculation in a more energy efficient way. The second energy

efficient mechanism comes from our observation that feedback

from the tracking module helps reduce unnecessary links mea-

surements in the data collection module. EE-Loc adopts Kalman

filter to predict the possible region of human presence. With the

person’s spatial distribution calculated in the tracking module,

EE-Loc can infer the person’s possible region with a certain confi-

dence level. Thus EE-Loc can deactivate many unnecessary links in

the data collection module to reduce energy consumption. 

5. EE-Loc design 

We first present our empirical study of KL-divergence, and

show that KL-divergence is a RSS dynamic measure compatible

with the elliptical link model. Then, we derive a new RSS dynamic

measure KLDB to indicate the human presence, and show how to

locate a stationary person by radio tomographic imaging with one

bit information. Then we define the related links of the person and

show how Kalman filter can be incorporated to track a person with

fewer active links. Finally we describe implementation details of

EE-Loc. 

5.1. Empirical study of KL-divergence 

In this subsection, we report our empirical study on KL-

divergence. We first introduce the experimental setup. Then we

show that KL-divergence is compatible with the elliptical link

model in our experiments and can be used as an indicator to de-

tect whether a person is near the LOS of a link. Then we give

some explanations of why KL-divergence might be a suitable RSS

dynamic measure. 
Please cite this article as: P. Wu et al., A few bits are enough: Energy effi

http://dx.doi.org/10.1016/j.comcom.2016.01.010 
In our single link experiment, we use two TelosB nodes which

se the 2.4 G IEEE 802.15.4 standard for communication. We con-

uct the experiments in the indoor environment. The sketch for

he indoor scene is shown in Fig. 2 . Sensor S and sensor R are

laced 3.6 m apart from each other and mounted on the tripods

ith height 0.9 m. 42 dots in Fig. 2 represent 42 predetermined

ositions where a person stands in the experiment. The distance

etween sensor S and position 4 is 0.3 m and the distance be-

ween position 39 and sensor R is 0.3 m. The length of all other

ine segments in Fig. 2 is 0.6 m. Sensor S broadcasts packets peri-

dically and sensor R logs RSS readings of received packets. When

o person is present, sensor R logs the background RSS readings.

hen the person stands in the predetermined positions, sensor

 logs the RSS readings with person. In each predetermined posi-

ions, we collect 500 RSS readings with the person facing four di-

ections: north, northwest, west and southwest. For each position

nd each orientation, KL-divergence of all wireless links in the net-

ork can be calculated with collected RSS readings. When calcu-

ating KL-divergence of the wireless link, we construct background

SS histogram from 50 0 0 background RSS readings and construct

nline RSS histogram with person from the three latest RSS read-

ngs. The reason why we use only three RSS readings is as follows.

e will show later in Section 6 that the sampling period is about

5.11 ms for a network with 16 sensors. This indicates the time

nterval during which three RSS readings are sampled is on the or-

er of 195 ms. Considering the fact that the average human walk-

ng speed is about 1 m/s, we set s to a small value to ensure the

erson move a short distance away (19.5 cm) and all RSS readings

ampled are useful for localization. 

In our experiment, we find that KL-divergence is compatible

ith the elliptical link model. In the elliptical model, a person

tanding outside the ellipsoid with foci at two sensors of a link has

ittle influence on the wireless link and the person standing inside

he ellipsoid of the link attenuates the wireless link. Fig. 3 illus-

rates a contour map of mean KL-divergences of a typical wireless

ink with a person standing at 42 predetermined positions. Clearly,

L-divergence with person near the wireless link is larger than

L-divergence with person away from the wireless link, which is

argely compatible with the elliptical model. In Fig. 4 , we plot time

eries of KL-divergences of the wireless link when a person stands

till in two representative positions (position 11 and position 17 in

ig. 2 ) and faces north. We can see from Fig. 2 that position 11

s on the LOS of the wireless link, while position 17 deviates from
cient device-free localization, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.01.010
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OS of the link. Fig. 4 shows that KL-divergences calculated in posi-

ion 11 are always larger than KL-divergences calculated in position

7. Therefore, with a proper threshold for the link, KL-divergence

an be used as a RSS dynamic measure to indicate whether the

erson is in the ellipsoid of the wireless link in this case. 

In fact, KL-divergence can be viewed as a combination of two

raditional RSS dynamic measures, mean RSS readings and vari-

nce of RSS readings. To see this, assume noise in RSS readings of a

ireless link follows Gaussian distribution [4] . Under this assump-

ion, the ‘RSS with person’ readings when a person shadows the

ireless link follow a normal distribution with expectation μ1 and

ariance σ 2 
1 (the distribution is denoted by p(x ) = N(μ1 , σ

2 
1 ) ) and

he background RSS readings when the surveillance area is vacant

ollow a normal distribution with expectation μ2 and variance σ 2 
2 

 q (x ) = N(μ2 , σ
2 
2 ) ). According to the definition of KL-divergence,

e can calculate the KL-divergence between the distribution of RSS

eadings with person and the distribution of background RSS read-

ngs as 

D KL (p|| q ) = 

∫ 
[ log(p(x )) − log(q (x ))] p(x ) dx 

= 

(μ1 − μ2 ) 
2 

2 σ 2 
2 

+ 

1 

2 

(
σ 2 

1 

σ 2 
2 

− 1 − log 
σ 2 

1 

σ 2 
2 

)
. 

(4) 

s mentioned in [6] , in terms of measuring the RSS dynamic

aused by human presence near the wireless link, the difference of

ean RSS readings performs well in LOS environment and variance

f RSS readings works well in non-LOS environment. And we can

ee from the above equation, the KL-divergence actually incorpo-

ates both the difference between means (μ1 − μ2 ) 
2 and variance

f RSS readings 
σ 2 

1 

σ 2 
2 

. Thus KL-divergence is a suitable RSS dynamic

easure to quantify the attenuation of a wireless link caused by

uman presence. 

.2. Radio tomographic imaging with one-bit information 

In this subsection, we first introduce the KL-divergence based

adio tomographic imaging. Then we present our modifications to

L-divergence based radio tomographic imaging in EE-Loc. We re-

lace KL-divergence in radio tomographic imaging with a one-bit

SS dynamic (KLDB) derived from KL-divergence and prove that ra-

io tomographic imaging with KLDB is sufficient to locate a person.

The relationship between the RSS dynamic value and human

resence information is characterized by a linear model: Y = W X +
oise, which is adopted in many RTI systems [2,6] . As mentioned in
Please cite this article as: P. Wu et al., A few bits are enough: Energy effi

http://dx.doi.org/10.1016/j.comcom.2016.01.010 
ection 3 , the voxel i of the radio tomographic image X i contains

uman presence information on voxel i . When the KL-divergence

s adopted as the RSS dynamic measure, Y i represents the KL-

ivergence between the ‘RSS histogram with person’ and the ‘back-

round RSS histogram’. In order to get a high resolution image, the

oxel number N is sometimes set to a large value, which is larger

han the number of wireless links M . This means the number of

ows is less than the number of columns in W . Therefore, the ra-

io tomographic imaging problem that computes X from an RSS

ynamic vector Y is an ill-posed problem. The commonly adopted

ethod of solving the ill-posed problem is Tikhonov regularization.

n order to get X , this ill-pose problem is replaced by an equivalent

ptimization problem 

rgmin X || W X − Y || 2 + δ|| X || 2 , (5)

here δ is a parameter that controls the tradeoff between norm

f error W X − Y and norm of X . The solution of the optimization

roblem is: X = V D 

+ 
δ

U 

T Y, where D 

+ 
δ

= diag( 
d 1 

d 2 
1 
+ δ , . . . , 

d min (M,N) 

d 2 
min (M,N) 

+ δ ) ,

here U and V are derived from singular value decomposition of

 ( W = UDV T ) and d i is i th the diagonal element of D . Note that

n practice V D 

+ 
δ

U 

T can be calculated offline once and stored on a

C for later computations. After the KL-divergence vector Y is cal-

ulated on a PC from RSS readings reported by sensors, X can be

alculated online with time complexity O ( MN ). The magnitude of

he i th element X i in X represents the likelihood of human pres-

nce on the i th voxel. With the mapping between voxel’s index and

he voxel’s location L i , the person’s location can be inferred with a

eighted average method. For ease of description, assume X is al-

eady sorted in descending order, the location of the person can

e estimated by the weighted average of the first T elements’ loca-

ion 

 person = 

T ∑ 

i =1 

| X 

′ 
i | L i . 

Instead of KL-divergence vector Y , we use a bit vector Y ′ com-

osed of binarized KL-divergence (KLDBs) in EE-Loc. The j th ele-

ent of Y ′ , denoted by Y ′ 
j 
, is derived from KL-divergence of link j

ith ‘thresholding’. Y ′ 
j 

is equal to 0 when Y j ≤ threshold , otherwise

 

′ 
j 

is equal to 1. The parameter threshold can be determined by ex-

erimental data. Take the data in Fig. 4 for example. Position 11

epresents the KL-divergence near LOS with mean 21.66 and po-

ition 17 represents the KL-divergence away from LOS with mean

.11. The threshold is set to 21 . 66+1 . 11 
2 = 11 . 385 . Y ′ 

j 
indicates whether

 person is in the ellipsoid of wireless link i . We show in the fol-

owing theorem that if wireless links report correct KLDB values,

adio tomographic imaging with one-bit KLDB is sufficient to lo-

ate the person. 

heorem 1. Suppose matrix W is defined according to Eq. (2) , and

 ∈ [0, 1] N is a vector indicating the likelihood of human pres-

nce in the surveillance field, where N denotes the total number of

oxels. Assume a person can stand at a voxel at a time. Let Y ′ ∈
0, 1} M denote binarized KL-divergence vector such that Y ′ 

j 
= 1 if

nd only if the person stands at voxel i in the ellipsoid of wire-

ess link j , where M is the number of wireless links. Let d min denote

he shortest link length. Then, after solving the optimization prob-

em argmin X∈ [0 , 1] N || W X − Y ′ || 2 + δ|| X|| 2 where δ ≥ M·N 2 
d 2 

min 

, the voxel

 where the person stands has the highest X i value. 

roof. Suppose voxel i is in the ellipsoid of wireless links

 1 , l 2 , . . . , l s . Let voxel j be away from the person’s location and

n the ellipsoid of wireless links l ′ 
1 
, l ′ 

2 
, . . . , l ′ t . As voxel i is the

oxel where the person stands, the items which contain X i in

he objective function || W X − Y ′ || 2 + δ|| X|| 2 can be written as
cient device-free localization, Computer Communications (2016), 
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( 1 √ 

d l 1 

X i + 

1 √ 

d l 1 

X j + · · · − 1) 2 + · · · + ( 1 √ 

d l s 
X i + 

1 √ 

d l s 
X k + · · · − 1) 2 + 

δX 2 
i 

. As voxel j is away from the position where the person stands,

the items which contain X j in the objective function can be writ-

ten as ( 1 √ 

d 
l ′ 
1 

X i + 

1 √ 

d 
l ′ 
1 

X j + · · · − 1) 2 + · · · + ( 1 √ 

d 
l ′ 
t 

X j + 

1 √ 

d 
l ′ 
t 

X p + · · · −

0) 2 + δX 2 
j 

. Suppose that X j is larger than X i in the optimal solution

X , then we can construct a new solution X 

′ from X by swapping X i 

and X j . In the following, we show that the objective value of X 

′ is

smaller than that of X , which leads to a contradiction. 

Notice that links covering voxel j with KLDB 1 is a subset of

links covering voxel i . For links covering both voxel i and voxel j ,

swapping the two elements will not change the value of ( 1 √ 

d l 1 

X i +
1 √ 

d l 1 

X j + · · · − 1) 2 . Similarly, the value of δX 2 
i 

+ δX 2 
j 

will not change

after swapping X i and X j . For links covering voxel j only, take the

link covering voxel j and voxel p as an example, swapping the

two elements decreases the value of ( 1 √ 

d 
l ′ 
t 

X j + 

1 √ 

d 
l ′ 
t 

X p + · · · − 0) 2 .

For links covering voxel i only, take the link covering voxel i and

voxel k as an example, if we can prove that the value of ( 1 √ 

d l s 
X i +

1 √ 

d l s 
X k + · · · − 1) 2 decreases after we swap X i and X j , then we de-

rive a contradiction that X is not optimal. When δ ≥ M·N 2 
d 2 

min 

, elements

in X are less than 

d min 
N and increasing X i will decrease the value of

( 1 √ 

d l s 
X i + 

1 √ 

d l s 
X k + · · · − 1) 2 . However, this contradicts the original

assumption that X is optimal, which completes the proof. �

Using the new RSS dynamic measure KLDB can save energy due

to reduced packet payload size. The underlying reason why we can

use binary KLDB values in the RTI is that we do not need the exact

X i value in Eq. (5) to locate the person in the surveillance field.

Only the ranking of X i matters. To this end, binary KLDB values

of wireless links provide sufficient information to distinguish the

ranking of X i . 

5.3. Tracking with fewer active links 

Different from directly using Kalman filter to smooth the trace

of the person, we utilize Kalman filter to improve energy efficiency

of the DFL system. When the person is moving in the surveillance

area, the next possible region of human presence can be predicted

beforehand by Kalman filter. With the predicted region of human

presence, only links related to the next possible region of the per-

son are involved in logging the RSS measurements and RSS mea-

surements of other links are not necessary. In this way, we can

achieve tracking with fewer active links. 

In our online DFL system, sensors in the surveillance system

send packets one after another in a round-robin mode. When one

sensor is broadcasting a packet, all other sensors in the system log

the RSS measurements and calculate the KL-divergences of wire-

less links. After all sensors reports the RSS dynamic values to the

base station at time t , the KL-divergence based RTI can be utilized

to locate the person. Thus, by time t we have a time series of per-

son’s locations L i = < x i , y i >, i = 1 . . . t . Assuming that the unknown

location of human presence follows a linear Gaussian distribution,

we can apply Kalman filter to the time series of the person’s loca-

tion. The temporal model used with Kalman filter is formally listed

as follows: 

P (L t+1 | L t ) = N(F L t , �L )(L t+1 ) (6)

P (L ′ t | L t ) = N(HL t , �L ′ )(L ′ t ) , 

where F and �L describe the linear transition model and noise

covariance in the transition model and H and �L ′ describe the
Please cite this article as: P. Wu et al., A few bits are enough: Energy effi

http://dx.doi.org/10.1016/j.comcom.2016.01.010 
easurement model and noise covariance in the measurement

odel. With Eq. (6) , the possible region of human presence at time

 + 1 can be predicted at time t . With the possible region of human

resence predicted by Kalman filter, RSS measurements of wireless

inks unrelated to the possible region can be omitted. Here we call

 wireless link is unrelated when voxels in the possible region of

uman presence do not intersect the ellipsoid of the wireless link.

s unrelated links offer no benefits to locate the person, RSS mea-

urements of the unrelated links can be safely eliminated. In our

FL system, prior to a round of RSS measurements, the base sta-

ion first broadcasts a packet indicating which links are involved in

he following round of RSS measurements. Receivers of the unre-

ated links are able to turn off their radios to save energy in the

ext round. In this way, the base station may receive meaningless

SS dynamic values of unrelated links as the receivers do not make

he RSS measurements. This issue can be easily fixed by the fol-

owing trick. After collecting the RSS dynamic values of all sensors,

LDBs of the unrelated links in the RSS dynamic vector Y ′ are set

o 0 since the base station knows which links are involved in the

ound. 

We need to mention that there is a trade-off between localiza-

ion accuracy and energy efficiency. In the extreme case that the

erson changes speed and direction abruptly, it is difficult to pre-

ict the next possible region and we need to activate all wireless

inks. Fortunately, in most cases, it is possible to predict the next

ossible region of a person, so we can safely reduce unnecessary

ink measurements to save energy. 

.4. Protocol and implementation 

In this subsection, we first describe the superframe structure

nd the flow chart of our protocol. Then implementation details of

E-Loc are given. 

Fig. 5 illustrates the format of the superframe structure. There

re three parts in superframe, namely a beacon part, an active part

nd an inactive part. In the beacon part, sensors in the network

eceive packets from the base station, which indicate the related

inks. The active part is further divided into n slots ( n is the num-

er of sensors). Assume we assign IDs 1 . . . n to sensors, Sensor i is

cheduled to send a broadcast packet containing KLDBs of links in

lot i . In Slot i , other sensors log the RSS readings of the broadcast

acket and calculate KLDB of corresponding links from RSS read-

ngs. In the meantime, the base station can overhear the broad-

ast packet and collect the KLDB values contained in the broadcast

acket. In the inactive part all sensors are scheduled to enter the

ow power mode. Repeating the superframe structure, we actually

perate sensors in a duty-cycling work mode. If the duration of the

nactive part is 0, the sensor network is always in the active part.

herefore, sensors in the system take turns to send a broadcast

acket one by one. Fig. 6 illustrates the flow chart of the protocol,

hich shows the interaction between the base station and sensors

n the sensor network. When tracking a moving person, the base

tation can predict the possible region of the person in the next

ime step and broadcasts the related links to sensors in the net-

ork. During the active part of the superframe, the receiver of the
cient device-free localization, Computer Communications (2016), 
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Fig. 6. Interaction between the base station and sensors. 
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Fig. 7. Indoor test field. 

Fig. 8. Outdoor test field. 
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ink can choose to receive the broadcast packet or to enter the low

ower mode depending on whether it is receiver of a related link. 

We implement EE-Loc based on Spin [2] . We make three

odifications to the Spin protocol. The first modification is that

e change the data type of RSS[ N UM _ N ODES] into nx _ int8 _ t .

x _ int16 _ t used in the original Spin will increase the payload

f the packet and is not necessary since the return type of

C 2420 Packet . getRssi is nx _ int8 _ t . Since TDMA is adopted in our

rotocol, the random backoff before CCA (clear channel assess-

ent) is unnecessary. Therefore, the second modification is that

e use the interface RadioBackoff of C C 2420 Acti v eMessageC to elim-

nate the initial backoff before CCA. The third modification is

hat sensors calculate the RSS dynamic vector locally and trans-

it KLDBs instead of raw RSS readings. As we know, calculating

og function in the TelosB platform is time consuming. One con-

ern of KLDB is the high computation cost of KL-divergence. For

implicity, we calculate the log values beforehand and store them

n a table for future table lookup. 

. Experiments 

We first present our experimental setup. We then evaluate the

nergy efficiency of EE-Loc in terms of sweep latency. Despite of

he fact that EE-Loc transmits less bits and uses less links, our ex-

erimental results show that the performance of EE-Loc is compa-

able to the accuracy of the state-of-the-art DFL systems. 

.1. Experimental setup 

The sensor nodes used in our experiments are TelosB sen-

or nodes with 2.4 GHz IEEE 802.15.4 compliant CC2420 radio

ransceivers. IEEE 802.15.4 specifies 16 channels within the 2.4 GHz

and, numbered 11–26. We use the 26th channel (central fre-

uency is 2.48 GHz) for wireless transmission. We conduct our ex-

eriments in both indoor and outdoor environments. The indoor

xperiment comprises a wireless sensor network with 16 TelosB

ensors deployed on adjustable tripods with height 0 . 9 m along

he perimeter of 3.6 m × 3.6 m square. The distance between ad-

acent sensors is 0.9 m. The 16 sensors broadcast a packet one af-

er another with default transmission power 0 dBm. A base station

verhears all wireless transmissions, and then feeds the packets to
Please cite this article as: P. Wu et al., A few bits are enough: Energy effi

http://dx.doi.org/10.1016/j.comcom.2016.01.010 
 computer via a USB port. The computer then runs the localiza-

ion and tracking algorithms to locate and track the person. The

hoto of the experiment setup is shown in Fig. 7 . Similarly, in the

utdoor experiment, we deploy a wireless sensor network on 16

djustable tripods with height 0.9 m along the perimeter of 8 m ×
 m square. The distance between adjacent sensors is 2 m. The

hotograph of the experimental scene is shown in Fig. 8 . 

.2. Sweep latency 

The sweep latency depends on how much time for sensors in

 DFL system to sweep the surveillance area once. Indeed, the

weep latency is the duration of the active part in the superframe.

onsequently, if we shorten the sweep latency, we can reduce

he duration of active part. In other words, shorter sweep latency

eads to a lower duty cycle for DFL systems. In the following,

e compare KLDB with Spin 

∗> , an enhanced version of Spin [2] ,

n terms of the sweep latency. The sweep latency is directly

elated to the payload size of packets. In our experiments, we

ave 16 sensors in the wireless sensor network. If we use the

pin 

∗> protocol to collect data, the packet payload length is 17

ytes (nx_int8_t nodeid and nx_int8_t RSSI[NUM_NODES] ). But in

E-Loc, we can reduce the payload length from 17 bytes to 3 bytes

nx_int8_t nodeid and nx_uint16_t KLDB ). Here, nodeid is the id

f the receiver. The i th element of RSSI[NUM_NODES] is received

ignal strength measured at the receiver when sensor i broadcasts

 packet. The i th bit of KLDB is an indicator indicating whether

he wireless link between sensor i and the receiver is attenuated

r not. Generally, when the number of nodes is n , EE-Loc can

educe the payload size from n + 1 bytes to � n 8 	 + 1 bytes. As the

ayload size is greatly shortened, we expect the latency of collect-

ng KLDBs in EE-Loc is shorter than collecting raw RSS readings

n Spin 

∗. 

Spin collects RSS readings using a token passing protocol. For a

air comparison, we make the first two modifications to the Spin

s we do in EE-Loc. We refer to the modified Spin as Spin 

∗> . To

ssess the overhead of calculating KLDBs, we comment out the

art of computing KL-divergences in the KLDB code. We denote

he KLDB without calculating KL-divergence as KLDB 

∗> . We im-

lement the three protocols in the testbed and run the protocols
cient device-free localization, Computer Communications (2016), 
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Table 1 

Parameters used in the evaluation. 

Parameter Value 

λ in the elliptical model 0.03 

ε in KL-divergence 1 e − 6 

side length of a voxel 0.15 

δ in the Tikhonov regularization 5 

T in the localization algorithm 10 
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S  
10 0 0 rounds respectively. We show the sweep latency of the three

protocols in Fig. 9 . Mean of sweep latency of Spin 

∗> is 89 . 25 ms

and mean of sweep latency of KLDB is 65 . 11 ms. KLDB shortens the

sweep latency of Spin 

∗> by 27.05%. In Fig. 9 , we can see that the

sweep latency of KLDB 

∗> is slightly lower than KLDB, which shows

the computation of KL-divergences is efficiently implemented with

the table lookup. 

If Spin 

∗ is used in a DFL system and the length of the inactive

part of a superframe is 0, shortening the sweep latency of Spin 

∗>
with KLDB means lowering the duty cycle of wireless sensor net-

work by 27.05% without harming the sample rate of RSS in the DFL

system. As KLDB is adopted, the inactive part of a superframe in-

creases. Thus compared with Spin 

∗> , KLDB improves the energy

efficiency by 27.05% in each round. 

6.3. Localization accuracy in indoor environments 

To evaluate the localization performance, we mark 12 locations

in the surveillance area. We have a person stand still with 8

different orientations in the 12 locations and log the RSS mea-

surements of all links in the PC. The 12 locations are showed

in Fig. 10 . For comparison, we implement three additional algo-

rithms: link difference based RTI (ldRTI) [2] , KLD [6] , CMMS [19] .

All four algorithms share a common model: they adopt the same

linear model characterizing the relationship between the RSS

dynamic vector and attenuation on the voxels. The difference

lies in how to solve the linear equation and the choice of the

RSS dynamic measure. In ldRTI, KLD and our algorithm (KLDB

for short), Tikhonov regularization is utilized to solve the linear

equation. While in CMMS, the unknown attenuation positions

are deemed as the sparse signals and a lightweight compressive

sensing based RTI is utilized to recover the sparse signal. As for
Please cite this article as: P. Wu et al., A few bits are enough: Energy effi

http://dx.doi.org/10.1016/j.comcom.2016.01.010 
he choice of the RSS dynamic measure, the RSS dynamic measure

n our algorithm is KLDB. In ldRTI and CMMS, the RSS dynamic

alue of a link is characterized by difference between mean RSS

eadings in a short time window and mean RSS readings in a

alibration step when the surveillance area is vacant. With the

ogged RSS measurements of all links, we use the 4 algorithms to

ocate the person. As we know the exact position of 12 locations,

he metric used in the evaluation is mean localization error, which

s defined as the Euclidean distance between the ground truth and

he estimated position. In Fig. 11 , we plot the mean localization

rror of 4 algorithms in 12 test positions (A–L). Some important

arameters used in the algorithms are listed in Table 1 . T is equal

o 1 in CMMS and Threshold in KLDB is set to 17. We can see

rom Fig. 11 that KLD and KLDB outperform ldRTI and CMMS in

ost test positions. The performance of KLDB is roughly the same

s that of KLD. Note that in KLDB, sensors are required to send

-bit indicator variable instead of the raw 8-bit RSS reading of

ach wireless link to the base station. Taking the payload length of

he transmitting packets into consideration, KLDB is much better

han KLD. 

.4. Tracking performance in outdoor environments 

To verify the tracking performance of KLDB and the Kalman fil-

er based related links scheme, we have a person walk around a

quare at a constant speed in the surveillance area. During the

xperiment we collect 296 RSS dynamic vectors. Since we know

he walking path of the person, the actual position of the person

ground truth) when the RSS vector is collected can be obtained

y interpolation. With the RSS dynamic vectors, we can infer the

ocation of the person when the RSS dynamic vector is sampled.

he localization error is defined as the deviation between the es-

imated position and the ground truth. Mean localization error is

efined as the mean of 296 localization errors. In Fig. 12 , we show

he results of two estimated paths (use KL-divergence and KLDB

s the RSS dynamic measure separately) of the person with EE-

oc. We can see that the estimated trace generally agrees with the

round truth. The mean localization error of KLD is 0 . 66 m and

TD of estimated errors of 296 predictions is 0 . 41 m. The mean
cient device-free localization, Computer Communications (2016), 
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ocalization error of KLDB, which outperforms KLD, is 0 . 54 m and

TD of estimated errors is 0 . 32 m. As EE-Loc can predict the re-

ated links before the actual link measurements, some link mea-

urements can be saved in the next round of RSS measurements.

he receivers not involved in the link measurements can turn off

heir radio module to save energy. Fig. 13 shows the histogram of

ercentage of saved measurements in 296 rounds of RSS measure-

ents. The x -axis of Fig. 13 denotes the percentage of link mea-

urements which can be saved in a round of RSS measurements.

he mean of the saved link measurements percentage is 41.91%

ith EE-Loc. 

. Conclusions 

In this paper, we propose EE-Loc to locate and track a person

n the surveillance area. By reducing the payload of packets with a

ew RSS dynamic measure KLDB and deactivating unrelated links

ith Kalman filter, we improve the energy efficiency of DFL sys-
Please cite this article as: P. Wu et al., A few bits are enough: Energy effi

http://dx.doi.org/10.1016/j.comcom.2016.01.010 
ems. Two experiments are conducted in both indoor and outdoor

nvironments. The indoor experiment shows that the localization

ccuracy of EE-Loc is comparable to the state-of-the-art while re-

ucing the length of packet payload. With the payload reduction,

E-Loc improves the energy efficiency of DFL systems by 27.05%

ompared with Spin 

∗> . In the outdoor experiment, EE-Loc further

educes the necessary link measurements in a round by 41.91%. In

ur future work, we will consider multiple target tracking with EE-

oc, as well as investigate our system for localization and tracking

n more challenging indoor and outdoor scenarios, where foreign

bstacles are included inside the surveillance field. 
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