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A Device Free Localization (DFL) system can locate and track people wearing no wireless devices, due
to the fact that a person standing at different locations attenuates wireless links differently. Since the
DFL system usually consists of battery-powered sensors, energy efficiency is a critical issue. However,
existing works mainly focus on improving localization accuracy by designing various metrics to charac-
terize wireless link attenuation, and none of them considers energy efficiency, specifically. We present
EE-Loc, an energy efficient localization system, for locating and tracking people with higher energy ef-
ficiency and comparable localization accuracy compared to the state-of-the-art DFL systems. EE-Loc has
two main energy efficient components. First, EE-Loc has a radio tomographic imaging (RTI) component
that uses only one bit information to describe link attenuation. The one bit information is derived from
the Kullback-Leibler divergence (KL-divergence) of Received Signal Strength (RSS), and we prove that RTI
with this one bit information is sufficient for localization. Second, EE-Loc has a tracking component that
deactivates many unnecessary links through predicting the person’s location with Kalman filter to reduce
energy consumption. We build a test-bed of EE-Loc using 16 sensors. The experimental results indicate
that EE-Loc improves energy efficiency by 27.05% compared to Spin*> for locating a person, and reduces
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link measurements by 41.91% for tracking a person, without compromising the localization accuracy.

© 2016 Published by Elsevier B.V.

1. Introduction

Device free localization (DFL) with wireless sensor networks
can be applied to many scenarios including future healthcare,
smart building and security applications [1,2]. DFL technologies are
distinct from traditional localization methods in that they do not
assume the targets wear any electronic devices such as RFID tags.
This ‘noninvasive’ property is especially useful for surveillance sys-
tems where the intruders might be device-less. Typically, DFL tech-
nologies utilize the attenuation of wireless links caused by human
presence to locate people. The attenuation of a wireless link can
be characterized by the Received Signal Strength (RSS) change. DFL
with wireless sensors can be implemented conveniently because
RSS can be easily measured from most sensor platforms.

Existing DFL systems [2-5] mainly target at high localization ac-
curacy. Therefore, various RSS dynamic measures have been pro-
posed to characterize the attenuation caused by human presence,
such as difference of mean RSS readings [2], variance of RSS read-
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ings [3] and the Kullback-Leibler divergence (KL-divergence) of
two RSS reading distributions [6]. A better measure for RSS dy-
namic values leads to a better localization accuracy. However, to
calculate the proposed RSS dynamic values, raw RSS readings from
all links should be sent to the base station. Higher traffic con-
sumes the energy of every sensor much more quickly, resulting in
a shorter network lifetime. Unfortunately, this important issue has
not been addressed in existing DFL systems.

We aim at improving the energy efficiency of DFL systems with-
out sacrificing the localization accuracy. This is achieved through
the following observations. First, RSS readings in most platforms
(such as the TelosB platform [7]) are represented by an 8-bit in-
teger. We can finish a round of RSS collection much more quickly
and put the network in sleep mode if the RSS dynamic values can
be calculated locally in sensors and represented by fewer bits. Sec-
ond, not all wireless links are necessary in tracking a moving per-
son since a person can only attenuate a few links of the system.
Accordingly, many sensors can turn off their radio modules to save
energy if we can predict the location of the person.

We design EE-Loc, an energy efficient DFL system based on the
above observations. EE-Loc contains two energy efficient mecha-
nisms: radio tomographic imaging with binarized KL-divergence
(referred to as KLDB in this work) and reducing unnecessary link
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measurements with Kalman filter when tracking a person. In ra-
dio tomographic imaging with KLDB, we derive one bit KLDB from
KL-divergence of a wireless link to represent the RSS dynamic of
the link and implement the RSS dynamic calculation locally in the
wireless sensor network. Compared with other DFL systems, sen-
sors in EE-Loc only report one bit KLDB, instead of 8-bit raw RSS
reading, for each wireless link. This reduces the payload size of
packets in EE-Loc. With the decrease of the payload size, the time
consumption of data collection module in EE-Loc is only 65.11ms,
which is 27.05% shorter than that of Spin*>, an improved version
of Spin [2]. Our indoor and outdoor experiments demonstrate that
EE-Loc does not compromise its localization accuracy compared to
the existing work although it transmits less bits. For tracking a per-
son, EE-Loc uses Kalman filter to predict next possible region of
the person, and turns off receivers of unrelated links to save en-
ergy. Our experiments show that this mechanism reduces the link
measurements by about 41.91% in each round of data collection.
The rest of the paper is organized as follows. Section 2 presents
the related works. Section 3 introduces the background of device
free localization. We give an overview of EE-Loc in Section 4, and
present our design of EE-Loc in Section 5. Section 6 presents the
experimental results and Section 7 concludes the paper.

2. Related works

Localization in wireless sensor networks has long been an
important research issue [2,3,5,6,8-12]. Since [3,8] introduce the
concept of RF-based device-free localization, several RF-based DFL
systems have been implemented with wireless sensor networks.
In this section we examine existing research related to RF-based
DFL systems.

Fingerprinting is widely used tool in indoor localization. In
[1,13], fingerprinting has been successfully applied for locating peo-
ple in DFL systems. A passive radio map is constructed offline.
With the map, distance in signal strength space is used as the RSS
dynamic value to locate people. Moreover, Kalman filter is used
to improve the tracking performance [13]. A more advanced tool,
namely Support Vector Regression (SVR), is utilized to build a real-
time and scalable DFL system [12]. The surveillance field is divided
into many triangular areas. SVR is then used to locate people in
each triangular area. Both fingerprint-based method and SVR-based
method are required to collect a large amount of labeled training
data, which is a time consuming step for DFL systems. One way to
get rid of the burden of collecting labeled training data is to derive
link model from training data. In [3,14], Zhang et al. propose a link-
centric coverage model and design several geometric algorithms to
locate and track targets. A more accurate fade-level skew-Laplace
signal strength model is introduced in [15]. Based on experimen-
tal data, the new link model is characterized by the skew-Laplace
distribution, which takes the fade level into consideration.

Radio Tomographic Imaging (RTI) [2] images the attenuation
caused by human presence in the surveillance field. Wilson and
Patwari propose a linear model for using RSS difference to obtain
images of moving targets in a RTI system. In their later work [9],
the variance of RSS readings is used as a new RSS dynamic mea-
sure to detect human motion. Considering the inaccuracy of RSS
readings, Zhao and Patwari [16] propose a subspecies decomposi-
tion method to eliminate noise in RSS readings. They show that us-
ing RSS readings projected onto the extrinsic subspace has a better
accuracy in location and tracking. Recently, Zhao et al. [6] adopt
the kernel distance as an RSS dynamic measure to locate and track
both stationary and moving people without calibration.

Besides RTI, there exist other methods to locate and track
people in RF-based DFL systems. Chen et al. [4] utilize a se-
quential Monte Carlo (SMC) method for tracking targets and
design an online EM algorithm to find location for sensors. In this

way, an RSS-based DFL system can be deployed rapidly. Zheng
and Men [17] model the RSS distribution of a wireless link as a
mixture of Gaussians. They propose an online learning algorithm
to update the model and detect the affected links to locate a
person. In [5,18], Xu et al. design a device-free localization method
based on probabilistic classification and extend the DFL techniques
to count and locate multiple targets in the surveillance field.
In [19,20], compressive sensing is introduced to recover the sparse
‘signal’ in the DFL problem. Considering the high computation cost
of compressive sensing based recovery, Yang et al. [19] propose a
lightweight compressed maximum matching select algorithm. The
notion of the correlated link is introduced to reduce the number
of necessary RSS measurements.

Different from existing works that focus on improving the accu-
racy of DFL systems, we exploit some merits of KL-divergence and
prediction of human presence to improve the energy efficiency of
DFL systems. To achieve energy efficiency, we propose two energy
saving mechanisms in our DFL system EE-Loc. The first mechanism
is to save energy by efficiently reducing packet payload size. We
notice that in some RTI systems [2,6] RSS readings of sensors are
first transmitted to a base station, and are then processed into RSS
dynamics on the PC. The RSS dynamics are later fed as input to
the RTI algorithm. In our method, computation of RSS dynamics
can be done locally in the wireless sensor network and RSS dy-
namics, other than raw RSS readings, are transmitted to the base
station. We provide a new metric called KLDB derived from KL-
divergence to represent the RSS dynamic of a wireless link with
only one bit. Our method reduces the payload size of each packet
compared with other DFL systems. Meanwhile, we show that the
new metric can be efficiently implemented in commercial off-the-
shelf sensors. The second mechanism is to save energy by decreas-
ing the number of link measurements when tracking a person. In
EE-Loc, we adopt Kalman filter to predict the possible region of
the person and then turn off receivers of unrelated links to save
energy, which is different from predicting possible regions with
maximum speed of the person [19].

3. Background

DFL systems are characterized by link model and RSS dynamic
measures adopted in these systems. In this section, we first revisit
a classical link model in RTI, and then we describe a RSS dynamic
measure called KL-divergence.

3.1. Link model

Human presence attenuates wireless signals of sensors de-
ployed in the surveillance field. Based on the fact, RTI ‘images’
the attenuation caused by human presence. In RTI, an elliptical
model [2,14] characterizes the relation between the attenuation of
a wireless link and position of a person near the link. With RSS
dynamic measures of many wireless links and the elliptical model,
we can locate the person in the surveillance field. Next, we for-
mally introduce the linear formulation of RTI.

A wireless sensor network with n sensor nodes is deployed in
the surveillance field. In the network, the total number of wireless
links is M = n(n —1). As human presence in the surveillance field
attenuates wireless links in the network, RSS readings of wireless
links will change. Let Y; denote the RSS dynamic value of the ith
wireless link and Y = [Y7,Y,, ..., Y] denote RSS dynamic values of
all links. To locate a person, the surveillance field is first discretized
into N voxels. Let X; denote the attenuation introduced by a person
standing at voxel i and X = [Xj, X5, ... Xy] denote the attenuation of
all voxels in the surveillance field. Since positions of N voxels are
known beforehand, the position where the attenuation occurs in
the surveillance field can be determined once X is calculated. RSS
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Fig. 1. EE-Loc modules.

dynamic of a wireless link is contributed by attenuation at voxels
near the wireless link, and the relationship between X and Y is
characterized by the following linear formulation:

Y = WX + noise, (1)

where noise denotes the noise in the RSS readings. W represents
the elliptical model that will be introduced next.

W is a weight matrix of size M x N. As the attenuation at
each voxel contributes differently to RSS dynamic values of differ-
ent wireless links, a weight is proposed to compensate for the dif-
ference. The attenuation matrix W is formally defined as follows:

if djsj"'dj,,j <d+A
otherwise

1)1,
Wij = ﬁ {0, ’ @)
where d; ; is the distance between the jth voxel and the sender of
the ith link and d;,; is the distance between the jth voxel and the
receiver of the ith link. d is the distance between the sender and
receiver of the ith link. A is the excess path length in the elliptical
model, which is used to tune the width of the eclipse. This equa-
tion explains why the weight model is called the elliptical model.
In the elliptical model, voxels in the ellipsoid with foci at two sen-
sors of a wireless link are assumed to attenuate the link, and vox-
els outside the ellipsoid do not attenuate the wireless link. Given
the weight matrix W and RSS dynamic vector Y, RTI is to estimate
the attenuation image X and locate the person.

3.2. RSS histogram and KL-divergence

In this section we first describe how to get an RSS histogram
from RSS readings. We then define KL-divergence to measure the
difference between two RSS histograms.

For a particular link in the wireless sensor network, the receiver
of the link periodically gets the RSS reading denoted as r;. Accord-
ing to the TelosB datasheet [7], RSS readings from a sensor node
are integers ranging from —90 dBm to 0 dBm. Thus there is a finite
set of RSS readings returned by sensors and we can construct a RSS
histogram with 91 = 0 — (-90) + 1 bins (the bin width is 1 dBm)
from several RSS readings in a specific time interval. For example,
for a particular link in the sensor surveillance system, the receiver
of the link reports a RSS reading periodically. Assume the period is
T, we denote by r; the RSS reading reported by the receiver at time
t = kT. So at time t = nT, we can construct a RSS histogram H from
RSS readings reported in the time window [(n — s+ 1)T, nT]. Here,
we denote by s the length of the time window. The iy, elements
of H counts how many times RSS readings valued (-90 + i) dBm
in the time window. When no person is present, the RSS histogram

calculated from RSS readings is denoted as the background RSS his-
togram. When a person appears in the ellipsoid with foci at two
sensors of a wireless link, the RSS histogram calculated from RSS
readings is denoted as the ‘RSS histogram with person’.

Note that the RSS histogram with person contains both the
background information and the foreground information intro-
duced by human presence. In order to get the foreground in-
formation, we need to ‘subtract’ the ‘empty-room RSS histogram’
from the ‘RSS histogram with person’. KL-divergence is often used
to measure the information difference between two probability
distributions in probability theory. Therefore, we adopt the KL-
divergence as the RSS dynamic measure brought by human pres-
ence. The RSS dynamic value can be obtained by calculating the
KL-divergence between the RSS histogram with person H; and the
background RSS histogram Hj. KL-divergence can be calculated as
follows:

Db ) = Y (Zzgg)ﬁd(n, 3)
where

A oo max(e,Hy(j))

Ha®) = 5= maxte. Hy (i)

and

A,(i) = max (e, Hy(j))

> jmax(e, Hy(j))

€ is a small number (10-%) that avoids divide-by-zero and log0.
4. EE-Loc overview

In this section, we present an energy efficient device free local-
ization and tracking system called EE-Loc. EE-Loc takes RSS read-
ings from sensors as input, and outputs the location of the person
when a person appears in the surveillance field. At a high level,
EE-Loc is comprised of three modules shown in Fig. 1: data collec-
tion module, RSS dynamic calculation module and localization and
tracking module. The data collection module collects background
RSS readings of all wireless links in the sensor network without
human presence during the offline phase and collects real-time
RSS readings of all links during the online phase. For each link,
the RSS dynamic calculation module compares RSS readings in the
two phases and produces a RSS dynamic measure. With the real-
time RSS dynamics of all wireless links, the localization and track-
ing module locates and tracks the person in a real-time fashion.

Different from existing works on device free localization, we
focus on energy efficiency in EE-Loc. There are two main energy
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Fig. 2. The sketch for the indoor scene.

efficient mechanisms in EE-Loc. In existing works [2,6,9], RSS read-
ings in the wireless sensor network are first transmitted to a base
station, and are then processed into RSS dynamics on the PC. The
RSS dynamics are later fed as input to the localization and tracking
module. In EE-Loc, we design a new RSS dynamic measure (KLDB)
for each wireless link with only one bit and implement the RSS
dynamic calculation locally in the wireless sensor network. Com-
pared with other DFL systems, EE-Loc reduces the payload size of
each packet and implements the data collection and RSS dynamic
calculation in a more energy efficient way. The second energy
efficient mechanism comes from our observation that feedback
from the tracking module helps reduce unnecessary links mea-
surements in the data collection module. EE-Loc adopts Kalman
filter to predict the possible region of human presence. With the
person’s spatial distribution calculated in the tracking module,
EE-Loc can infer the person’s possible region with a certain confi-
dence level. Thus EE-Loc can deactivate many unnecessary links in
the data collection module to reduce energy consumption.

5. EE-Loc design

We first present our empirical study of KL-divergence, and
show that KL-divergence is a RSS dynamic measure compatible
with the elliptical link model. Then, we derive a new RSS dynamic
measure KLDB to indicate the human presence, and show how to
locate a stationary person by radio tomographic imaging with one
bit information. Then we define the related links of the person and
show how Kalman filter can be incorporated to track a person with
fewer active links. Finally we describe implementation details of
EE-Loc.

5.1. Empirical study of KL-divergence

In this subsection, we report our empirical study on KL-
divergence. We first introduce the experimental setup. Then we
show that KL-divergence is compatible with the elliptical link
model in our experiments and can be used as an indicator to de-
tect whether a person is near the LOS of a link. Then we give
some explanations of why KL-divergence might be a suitable RSS
dynamic measure.

oo

N A O
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Fig. 3. The contour plot of mean KL-divergences.

In our single link experiment, we use two TelosB nodes which
use the 2.4 G IEEE 802.15.4 standard for communication. We con-
duct the experiments in the indoor environment. The sketch for
the indoor scene is shown in Fig. 2. Sensor S and sensor R are
placed 3.6 m apart from each other and mounted on the tripods
with height 0.9 m. 42 dots in Fig. 2 represent 42 predetermined
positions where a person stands in the experiment. The distance
between sensor S and position 4 is 0.3 m and the distance be-
tween position 39 and sensor R is 0.3 m. The length of all other
line segments in Fig. 2 is 0.6 m. Sensor S broadcasts packets peri-
odically and sensor R logs RSS readings of received packets. When
no person is present, sensor R logs the background RSS readings.
When the person stands in the predetermined positions, sensor
R logs the RSS readings with person. In each predetermined posi-
tions, we collect 500 RSS readings with the person facing four di-
rections: north, northwest, west and southwest. For each position
and each orientation, KL-divergence of all wireless links in the net-
work can be calculated with collected RSS readings. When calcu-
lating KL-divergence of the wireless link, we construct background
RSS histogram from 5000 background RSS readings and construct
online RSS histogram with person from the three latest RSS read-
ings. The reason why we use only three RSS readings is as follows.
We will show later in Section 6 that the sampling period is about
65.11 ms for a network with 16 sensors. This indicates the time
interval during which three RSS readings are sampled is on the or-
der of 195 ms. Considering the fact that the average human walk-
ing speed is about 1 m/s, we set s to a small value to ensure the
person move a short distance away (19.5 cm) and all RSS readings
sampled are useful for localization.

In our experiment, we find that KL-divergence is compatible
with the elliptical link model. In the elliptical model, a person
standing outside the ellipsoid with foci at two sensors of a link has
little influence on the wireless link and the person standing inside
the ellipsoid of the link attenuates the wireless link. Fig. 3 illus-
trates a contour map of mean KL-divergences of a typical wireless
link with a person standing at 42 predetermined positions. Clearly,
KL-divergence with person near the wireless link is larger than
KL-divergence with person away from the wireless link, which is
largely compatible with the elliptical model. In Fig. 4, we plot time
series of KL-divergences of the wireless link when a person stands
still in two representative positions (position 11 and position 17 in
Fig. 2) and faces north. We can see from Fig. 2 that position 11
is on the LOS of the wireless link, while position 17 deviates from
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Fig. 4. Time series of KL-divergences.

LOS of the link. Fig. 4 shows that KL-divergences calculated in posi-
tion 11 are always larger than KL-divergences calculated in position
17. Therefore, with a proper threshold for the link, KL-divergence
can be used as a RSS dynamic measure to indicate whether the
person is in the ellipsoid of the wireless link in this case.

In fact, KL-divergence can be viewed as a combination of two
traditional RSS dynamic measures, mean RSS readings and vari-
ance of RSS readings. To see this, assume noise in RSS readings of a
wireless link follows Gaussian distribution [4]. Under this assump-
tion, the ‘RSS with person’ readings when a person shadows the
wireless link follow a normal distribution with expectation p; and
variance 012 (the distribution is denoted by p(x) = N(u1, (712)) and
the background RSS readings when the surveillance area is vacant
follow a normal distribution with expectation p, and variance 022
(q(x) =N(M2,022)). According to the definition of KL-divergence,
we can calculate the KL-divergence between the distribution of RSS
readings with person and the distribution of background RSS read-
ings as

D (pllq) = / [log(p(x)) —log(q(x))]p(x)dx

202 2\ o} o3
As mentioned in [6], in terms of measuring the RSS dynamic
caused by human presence near the wireless link, the difference of
mean RSS readings performs well in LOS environment and variance
of RSS readings works well in non-LOS environment. And we can
see from the above equation, the KL-divergence actually incorpo-

rates both the difference between means (it — i42)? and variance
2

of RSS readings 3—12 Thus KL-divergence is a suitable RSS dynamic
2

measure to quantify the attenuation of a wireless link caused by

human presence.

5.2. Radio tomographic imaging with one-bit information

In this subsection, we first introduce the KL-divergence based
radio tomographic imaging. Then we present our modifications to
KL-divergence based radio tomographic imaging in EE-Loc. We re-
place KL-divergence in radio tomographic imaging with a one-bit
RSS dynamic (KLDB) derived from KL-divergence and prove that ra-
dio tomographic imaging with KLDB is sufficient to locate a person.

The relationship between the RSS dynamic value and human
presence information is characterized by a linear model: Y = WX +
noise, which is adopted in many RTI systems [2,6]. As mentioned in

method of solving the ill-posed problem is Tikhonov regularization.
In order to get X, this ill-pose problem is replaced by an equivalent
optimization problem

argminy |[WX —Y||? + 8]|1X||2, (5)

where § is a parameter that controls the tradeoff between norm
of error WX —Y and norm of X. The solution of the optimization

o v _uptyT + _ dige( 41 _dminn)
problem is: X =VD;UTY, where D] _dlag(d%w,..., drznm(m,m”)’

where U and V are derived from singular value decomposition of
W (W =UDVT) and d; is ith the diagonal element of D. Note that
in practice VD;UT can be calculated offline once and stored on a
PC for later computations. After the KL-divergence vector Y is cal-
culated on a PC from RSS readings reported by sensors, X can be
calculated online with time complexity O(MN). The magnitude of
the iy, element X; in X represents the likelihood of human pres-
ence on the iy, voxel. With the mapping between voxel’s index and
the voxel’s location L;, the person’s location can be inferred with a
weighted average method. For ease of description, assume X is al-
ready sorted in descending order, the location of the person can
be estimated by the weighted average of the first T elements’ loca-
tion

T
Lperson = Z |X{|L,‘.
i=1

Instead of KL-divergence vector Y, we use a bit vector Y com-
posed of binarized KL-divergence (KLDBs) in EE-Loc. The jy, ele-
ment of Y, denoted by Yj/ , is derived from KL-divergence of link j
with ‘thresholding’. Y]f is equal to 0 when Y; < threshold, otherwise
YJf is equal to 1. The parameter threshold can be determined by ex-
perimental data. Take the data in Fig. 4 for example. Position 11
represents the KL-divergence near LOS with mean 21.66 and po-
sition 17 represents the KL-divergence away from LOS with mean
1.11. The threshold is set to 2166111 — 11385, Y/ indicates whether
a person is in the ellipsoid of wireless link i. We show in the fol-
lowing theorem that if wireless links report correct KLDB values,
radio tomographic imaging with one-bit KLDB is sufficient to lo-
cate the person.

Theorem 1. Suppose matrix W is defined according to Eq. (2), and
X € [0, 1]N is a vector indicating the likelihood of human pres-
ence in the surveillance field, where N denotes the total number of
voxels. Assume a person can stand at a voxel at a time. Let Y ¢
{0, 1}M denote binarized KL-divergence vector such that Yj/ =11if
and only if the person stands at voxel i in the ellipsoid of wire-
less link j, where M is the number of wireless links. Let d,,;, denote
the shortest link length. Then, after solving the optimization prob-

lem argminy o | [WX = Y'|[2 + 8||X||> where § > Y5\ " the voxel

min

i where the person stands has the highest X; value.

Proof. Suppose voxel i is in the ellipsoid of wireless links
li, L, ..., L. Let voxel j be away from the person’s location and
in the ellipsoid of wireless links I{,L;.....l[. As voxel i is the
voxel where the person stands, the items which contain X; in
the objective function |[WX —Y’||2+§||X||? can be written as
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(A X+ X+ =12+ L X+ =12+
J g G

(SXiZ. As voxel j is away from the position where the person stands,
the items which contain X; in the objective function can be writ-

ten as (—=Xi+ —=X;+ - =12+ 4+ (=X + =X, +
i

G

0)% + (SX].Z. Suppose that X; is larger than X; in the optimal solution
X, then we can construct a new solution X’ from X by swapping X;
and X;. In the following, we show that the objective value of X’ is
smaller than that of X, which leads to a contradiction.

Notice that links covering voxel j with KLDB 1 is a subset of
links covering voxel i. For links covering both voxel i and voxel j,
swapping the two elements will not change the value of ( \/LTX +

h

—A-X; +--—1)2. Similarly, the value of 6X? + SXJ? will not change

Vi
after swapping X; and X;. For links covering voxel j only, take the
link covering voxel j and voxel p as an example, swapping the
two elements decreases the value of (—=X;+ —=Xp +---—0)2.
For links covering voxel i only, take the link covering voxel i and
voxel k as an example, if we can prove that the value of (\/%Xi +
Is
1
7i

rive a contradiction that X is not optimal. When § > d

Xi + - —1)? decreases after we swap X; and X;, then we de-

, elements

min

in X are less than ',’3;” and increasing X; will decrease the value of
(—=X; + =X, + --- — 1)2. However, this contradicts the original
NC f K

assumption that X is optimal, which completes the proof. O

Using the new RSS dynamic measure KLDB can save energy due
to reduced packet payload size. The underlying reason why we can
use binary KLDB values in the RTI is that we do not need the exact
X; value in Eq. (5) to locate the person in the surveillance field.
Only the ranking of X; matters. To this end, binary KLDB values
of wireless links provide sufficient information to distinguish the
ranking of X;.

5.3. Tracking with fewer active links

Different from directly using Kalman filter to smooth the trace
of the person, we utilize Kalman filter to improve energy efficiency
of the DFL system. When the person is moving in the surveillance
area, the next possible region of human presence can be predicted
beforehand by Kalman filter. With the predicted region of human
presence, only links related to the next possible region of the per-
son are involved in logging the RSS measurements and RSS mea-
surements of other links are not necessary. In this way, we can
achieve tracking with fewer active links.

In our online DFL system, sensors in the surveillance system
send packets one after another in a round-robin mode. When one
sensor is broadcasting a packet, all other sensors in the system log
the RSS measurements and calculate the KL-divergences of wire-
less links. After all sensors reports the RSS dynamic values to the
base station at time t, the KL-divergence based RTI can be utilized
to locate the person. Thus, by time t we have a time series of per-
son’s locations L; =< x;,y; >,i=1...t. Assuming that the unknown
location of human presence follows a linear Gaussian distribution,
we can apply Kalman filter to the time series of the person’s loca-
tion. The temporal model used with Kalman filter is formally listed
as follows:

P(LeyqlLe) = N(FLe, 1) (Letq) (6)
P(L{|Ly) = N(HL;, ) (Ly),

where F and X; describe the linear transition model and noise
covariance in the transition model and H and X, describe the

\Beacon | |
| | |
o M
1\2\3\\\\\\\\\\\HHHHHq |
L Superframe duration | J
| |

Fig. 5. Supperframe structure.

measurement model and noise covariance in the measurement
model. With Eq. (6), the possible region of human presence at time
t +1 can be predicted at time t. With the possible region of human
presence predicted by Kalman filter, RSS measurements of wireless
links unrelated to the possible region can be omitted. Here we call
a wireless link is unrelated when voxels in the possible region of
human presence do not intersect the ellipsoid of the wireless link.
As unrelated links offer no benefits to locate the person, RSS mea-
surements of the unrelated links can be safely eliminated. In our
DFL system, prior to a round of RSS measurements, the base sta-
tion first broadcasts a packet indicating which links are involved in
the following round of RSS measurements. Receivers of the unre-
lated links are able to turn off their radios to save energy in the
next round. In this way, the base station may receive meaningless
RSS dynamic values of unrelated links as the receivers do not make
the RSS measurements. This issue can be easily fixed by the fol-
lowing trick. After collecting the RSS dynamic values of all sensors,
KLDBs of the unrelated links in the RSS dynamic vector Y’ are set
to 0 since the base station knows which links are involved in the
round.

We need to mention that there is a trade-off between localiza-
tion accuracy and energy efficiency. In the extreme case that the
person changes speed and direction abruptly, it is difficult to pre-
dict the next possible region and we need to activate all wireless
links. Fortunately, in most cases, it is possible to predict the next
possible region of a person, so we can safely reduce unnecessary
link measurements to save energy.

5.4. Protocol and implementation

In this subsection, we first describe the superframe structure
and the flow chart of our protocol. Then implementation details of
EE-Loc are given.

Fig. 5 illustrates the format of the superframe structure. There
are three parts in superframe, namely a beacon part, an active part
and an inactive part. In the beacon part, sensors in the network
receive packets from the base station, which indicate the related
links. The active part is further divided into n slots (n is the num-
ber of sensors). Assume we assign IDs 1...n to sensors, Sensor i is
scheduled to send a broadcast packet containing KLDBs of links in
Slot i. In Slot i, other sensors log the RSS readings of the broadcast
packet and calculate KLDB of corresponding links from RSS read-
ings. In the meantime, the base station can overhear the broad-
cast packet and collect the KLDB values contained in the broadcast
packet. In the inactive part all sensors are scheduled to enter the
low power mode. Repeating the superframe structure, we actually
operate sensors in a duty-cycling work mode. If the duration of the
inactive part is 0, the sensor network is always in the active part.
Therefore, sensors in the system take turns to send a broadcast
packet one by one. Fig. 6 illustrates the flow chart of the protocol,
which shows the interaction between the base station and sensors
in the sensor network. When tracking a moving person, the base
station can predict the possible region of the person in the next
time step and broadcasts the related links to sensors in the net-
work. During the active part of the superframe, the receiver of the
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link can choose to receive the broadcast packet or to enter the low
power mode depending on whether it is receiver of a related link.

We implement EE-Loc based on Spin [2]. We make three
modifications to the Spin protocol. The first modification is that
we change the data type of RSS[NUM_NODES] into nx_int8_t.
nx_int16_t used in the original Spin will increase the payload
of the packet and is not necessary since the return type of
CC2420Packet.getRssi is nx_int8_t. Since TDMA is adopted in our
protocol, the random backoff before CCA (clear channel assess-
ment) is unnecessary. Therefore, the second modification is that
we use the interface RadioBackoff of CC2420ActiveMessageC to elim-
inate the initial backoff before CCA. The third modification is
that sensors calculate the RSS dynamic vector locally and trans-
mit KLDBs instead of raw RSS readings. As we know, calculating
log function in the TelosB platform is time consuming. One con-
cern of KLDB is the high computation cost of KL-divergence. For
simplicity, we calculate the log values beforehand and store them
in a table for future table lookup.

6. Experiments

We first present our experimental setup. We then evaluate the
energy efficiency of EE-Loc in terms of sweep latency. Despite of
the fact that EE-Loc transmits less bits and uses less links, our ex-
perimental results show that the performance of EE-Loc is compa-
rable to the accuracy of the state-of-the-art DFL systems.

6.1. Experimental setup

The sensor nodes used in our experiments are TelosB sen-
sor nodes with 2.4 GHz IEEE 802.15.4 compliant CC2420 radio
transceivers. IEEE 802.15.4 specifies 16 channels within the 2.4 GHz
band, numbered 11-26. We use the 26th channel (central fre-
quency is 2.48 GHz) for wireless transmission. We conduct our ex-
periments in both indoor and outdoor environments. The indoor
experiment comprises a wireless sensor network with 16 TelosB
sensors deployed on adjustable tripods with height 0.9 m along
the perimeter of 3.6 m x 3.6 m square. The distance between ad-
jacent sensors is 0.9 m. The 16 sensors broadcast a packet one af-
ter another with default transmission power 0 dBm. A base station
overhears all wireless transmissions, and then feeds the packets to

Fig. 8. Outdoor test field.

a computer via a USB port. The computer then runs the localiza-
tion and tracking algorithms to locate and track the person. The
photo of the experiment setup is shown in Fig. 7. Similarly, in the
outdoor experiment, we deploy a wireless sensor network on 16
adjustable tripods with height 0.9 m along the perimeter of 8 m x
8 m square. The distance between adjacent sensors is 2 m. The
photograph of the experimental scene is shown in Fig. 8.

6.2. Sweep latency

The sweep latency depends on how much time for sensors in
a DFL system to sweep the surveillance area once. Indeed, the
sweep latency is the duration of the active part in the superframe.
Consequently, if we shorten the sweep latency, we can reduce
the duration of active part. In other words, shorter sweep latency
leads to a lower duty cycle for DFL systems. In the following,
we compare KLDB with Spin*>, an enhanced version of Spin [2],
in terms of the sweep latency. The sweep latency is directly
related to the payload size of packets. In our experiments, we
have 16 sensors in the wireless sensor network. If we use the
Spin*> protocol to collect data, the packet payload length is 17
bytes (nx_int8_t nodeid and nx_int8_t RSSI[NUM_NODES]). But in
EE-Loc, we can reduce the payload length from 17 bytes to 3 bytes
(nx_int8_t nodeid and nx_uint16_t KLDB). Here, nodeid is the id
of the receiver. The ith element of RSSIINUM_NODES] is received
signal strength measured at the receiver when sensor i broadcasts
a packet. The ith bit of KLDB is an indicator indicating whether
the wireless link between sensor i and the receiver is attenuated
or not. Generally, when the number of nodes is n, EE-Loc can
reduce the payload size from n+ 1 bytes to [§]+ 1 bytes. As the
payload size is greatly shortened, we expect the latency of collect-
ing KLDBs in EE-Loc is shorter than collecting raw RSS readings
in Spin*.

Spin collects RSS readings using a token passing protocol. For a
fair comparison, we make the first two modifications to the Spin
as we do in EE-Loc. We refer to the modified Spin as Spin*>. To
assess the overhead of calculating KLDBs, we comment out the
part of computing KL-divergences in the KLDB code. We denote
the KLDB without calculating KL-divergence as KLDB*>. We im-
plement the three protocols in the testbed and run the protocols
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Fig. 10. Position of sensors and markers.

1000 rounds respectively. We show the sweep latency of the three
protocols in Fig. 9. Mean of sweep latency of Spin*> is 89.25 ms
and mean of sweep latency of KLDB is 65.11 ms. KLDB shortens the
sweep latency of Spin*> by 27.05%. In Fig. 9, we can see that the
sweep latency of KLDB*> is slightly lower than KLDB, which shows
the computation of KL-divergences is efficiently implemented with
the table lookup.

If Spin* is used in a DFL system and the length of the inactive
part of a superframe is 0, shortening the sweep latency of Spin*>
with KLDB means lowering the duty cycle of wireless sensor net-
work by 27.05% without harming the sample rate of RSS in the DFL
system. As KLDB is adopted, the inactive part of a superframe in-
creases. Thus compared with Spin*>, KLDB improves the energy
efficiency by 27.05% in each round.

6.3. Localization accuracy in indoor environments

To evaluate the localization performance, we mark 12 locations
in the surveillance area. We have a person stand still with 8
different orientations in the 12 locations and log the RSS mea-
surements of all links in the PC. The 12 locations are showed
in Fig. 10. For comparison, we implement three additional algo-
rithms: link difference based RTI (IdRTI) [2], KLD [6], CMMS [19].
All four algorithms share a common model: they adopt the same
linear model characterizing the relationship between the RSS
dynamic vector and attenuation on the voxels. The difference
lies in how to solve the linear equation and the choice of the
RSS dynamic measure. In IdRTI, KLD and our algorithm (KLDB
for short), Tikhonov regularization is utilized to solve the linear
equation. While in CMMS, the unknown attenuation positions
are deemed as the sparse signals and a lightweight compressive
sensing based RTI is utilized to recover the sparse signal. As for

calibration step when the surveillance area is vacant. With the
logged RSS measurements of all links, we use the 4 algorithms to
locate the person. As we know the exact position of 12 locations,
the metric used in the evaluation is mean localization error, which
is defined as the Euclidean distance between the ground truth and
the estimated position. In Fig. 11, we plot the mean localization
error of 4 algorithms in 12 test positions (A-L). Some important
parameters used in the algorithms are listed in Table 1. T is equal
to 1 in CMMS and Threshold in KLDB is set to 17. We can see
from Fig. 11 that KLD and KLDB outperform IdRTI and CMMS in
most test positions. The performance of KLDB is roughly the same
as that of KLD. Note that in KLDB, sensors are required to send
1-bit indicator variable instead of the raw 8-bit RSS reading of
each wireless link to the base station. Taking the payload length of
the transmitting packets into consideration, KLDB is much better
than KLD.

6.4. Tracking performance in outdoor environments

To verify the tracking performance of KLDB and the Kalman fil-
ter based related links scheme, we have a person walk around a
square at a constant speed in the surveillance area. During the
experiment we collect 296 RSS dynamic vectors. Since we know
the walking path of the person, the actual position of the person
(ground truth) when the RSS vector is collected can be obtained
by interpolation. With the RSS dynamic vectors, we can infer the
location of the person when the RSS dynamic vector is sampled.
The localization error is defined as the deviation between the es-
timated position and the ground truth. Mean localization error is
defined as the mean of 296 localization errors. In Fig. 12, we show
the results of two estimated paths (use KL-divergence and KLDB
as the RSS dynamic measure separately) of the person with EE-
Loc. We can see that the estimated trace generally agrees with the
ground truth. The mean localization error of KLD is 0.66 m and
STD of estimated errors of 296 predictions is 0.41 m. The mean
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localization error of KLDB, which outperforms KLD, is 0.54 m and
STD of estimated errors is 0.32 m. As EE-Loc can predict the re-
lated links before the actual link measurements, some link mea-
surements can be saved in the next round of RSS measurements.
The receivers not involved in the link measurements can turn off
their radio module to save energy. Fig. 13 shows the histogram of
percentage of saved measurements in 296 rounds of RSS measure-
ments. The x-axis of Fig. 13 denotes the percentage of link mea-
surements which can be saved in a round of RSS measurements.
The mean of the saved link measurements percentage is 41.91%
with EE-Loc.

7. Conclusions

In this paper, we propose EE-Loc to locate and track a person
in the surveillance area. By reducing the payload of packets with a
new RSS dynamic measure KLDB and deactivating unrelated links
with Kalman filter, we improve the energy efficiency of DFL sys-

tems. Two experiments are conducted in both indoor and outdoor
environments. The indoor experiment shows that the localization
accuracy of EE-Loc is comparable to the state-of-the-art while re-
ducing the length of packet payload. With the payload reduction,
EE-Loc improves the energy efficiency of DFL systems by 27.05%
compared with Spin*>. In the outdoor experiment, EE-Loc further
reduces the necessary link measurements in a round by 41.91%. In
our future work, we will consider multiple target tracking with EE-
Loc, as well as investigate our system for localization and tracking
in more challenging indoor and outdoor scenarios, where foreign
obstacles are included inside the surveillance field.
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