
Computer Communications 83 (2016) 64–71

Contents lists available at ScienceDirect 

Computer Communications

journal homepage: www.elsevier.com/locate/comcom 

Improved particle filter based on WLAN RSSI fingerprinting and smart

sensors for indoor localization

Zheng Wu , Esrafil Jedari , Roberto Muscedere , Rashid Rashidzadeh 

∗

Electrical and Computer Engineering, University of Windsor, Ontario N9B 3P4, Canada

a r t i c l e i n f o 

Article history:

Received 3 August 2015

Revised 28 February 2016

Accepted 1 March 2016

Available online 12 March 2016

Keywords:

Indoor positioning system

Received Signal Strength Indicator (RSSI)

Fingerprinting

Inertial measurement unit (IMU)

Particle filter

a b s t r a c t 

Received Signal Strength Indicator (RSSI) is affected significantly by multi-path fading, building structure

and obstacles in indoor environments, which lead to similar fingerprints problem and noise. To improve

the performance of traditional fingerprinting method, the measurements provided by inertial sensors can

be leveraged. Particle filter (PF) method is a widely chosen algorithm for sensor fusion. However, the ini- 

tialization and weighting process are problematic in indoor positioning systems. This paper proposes a

new PF scheme which yield a smooth and stable localization experience. To differentiate similar finger- 

prints, a single-hidden layer feed-forward networks (SLFNs) is used to model the multiple probabilistic

estimations and improve the performance of the PF. Meanwhile, a new initialization algorithm using Ran- 

dom Sample Consensus (RANSAC) is presented to reduce the convergence time. Experimental measure- 

ments were carried out to determine the performance of the proposed algorithm. The results indicate

that the positioning error of proposed scheme falls to less than 1.2 m which is better than the error

reported in comparable approaches.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The demand for accurate positioning for indoor location based

services (LBS) is growing rapidly. The GPS technology cannot be

easily used for indoor positioning as the direct line of sight ob-

structed which reduces the positioning accuracy [1,2] . To overcome

the challenges of indoor positioning, many techniques have been

developed in the past few years. The reported indoor position-

ing methods fall into two main approaches. In the first approach,

wireless signals such as Bluetooth, Zigbee, RFID, Ultra-Wide Band

(UWB), Wireless Local Area Network (WLAN) [3] are leveraged

for indoor positioning in the second approach inertial sensors are

utilized [4] . 

Two methods are developed for positioning algorithms utiliz-

ing wireless signal techniques. In the first method, the distance is

estimated from Time of Flight (ToF), Time of Arrival (ToA)/Time

Difference of Arrival (TDoA), Angle of Arrival (AoA) or Received

signal Strength Indicator (RSSI) [3] . RSSI for ranging is highly de-

pendent on the environment structure and has limited accuracy

[5] . Time measurement based method supports high positioning

accuracy but it commonly requires extra infrastructure to accu-

rately measure the time difference. This requirement increases the
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ost of implementation. An infra-structure free solution which uti-

izes available wireless local area network (WLAN) have also been

eported [6] . In this method, it is assumed that each reference

oint has a unique RF signal strength vector, which is also called

ngerprint. The fingerprints of reference points in a building are

ollected ahead of time and stored in a database. Then, pattern

ecognition algorithms are used to match the on-line vector with

re-collected fingerprints. This approach is infrastructure-free but

abor-intensive [7] . Moreover, this system normally cannot pro-

ide a smooth location estimation because it suffers from prob-

ems such as similar fingerprints [8] , missing value and noisy RSSI

alue. 

In the sensor based indoor positioning method, the key task

s to estimate the travel distance and angle of humans or ob-

ects [4] . As the inertial measurement unit (IMU) which comprises

ccelerometer, gyroscope, compass and barometer is widely inte-

rated in portable devices, many researchers have dedicated their

ork to develop new IMU based solutions for indoor positioning.

he common algorithm of IMU assisted positioning is Pedestrian

ead Reckoning (PDR). In this method, a step sensor which is im-

lemented by accelerometer, is used to detect the displacement of

 user. Meanwhile, the gyroscope and/or compass are used to de-

ect the orientation [9] . The cost of this method is very low and

 smooth location estimation is achieved. However, as the classic

DR algorithm cannot calibrate itself, it suffers from cumulative er-

or problem. 

http://dx.doi.org/10.1016/j.comcom.2016.03.001
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Fig. 1. Scenario of similar fingerprints. Blue region and green region in each graph 

show similar fingerprints due to the deployment of APs and the building structure. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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To tackle this problem, algorithms that combine Wi-Fi finger-

rinting and IMU assisted positioning have been explored by re-

earchers. Inherited from robotics community, standard Kalman

ilter (KF), Particle Filter (PF) and their variants are introduced to

use the sensor information [10] . In general, KF is applicable to lin-

ar and Gaussian models. For complex noisy environments, PF is

idely chosen for its superiority in handling nonlinear system and

on-Gaussian noise [11] . The idea behind KF and PF is that these

lters take use of a series of noisy and inaccurate measurements

o produce the estimations of uncertain positions of a moving ob-

ect. The result is proved to be better than using a single inaccurate

easurement. 

Although, the results after combining fingerprinting and IMU

re smooth and self-calibrated, the accuracy is still restricted since

ngerprinting algorithm requires the assumption of unique finger-

rints [8] . In practice, due to the multi-path effect and the arrange-

ent of the location of access points (APs), two distant reference

oints may share very similar fingerprints. As a result, the pattern

ecognition algorithms cannot guarantee the correct estimation. An

naccurate position estimation can deteriorate the overall perfor-

ance. Meanwhile, the time required to initialize PF is also an im-

ortant factor. Global initialization has a slow convergence speed.

eploying extra hardware at entrances increases the total cost. 

There are two major contributions on improving particle filter

n this paper. First, RANSAC-based approach [12] is performed to

et rid of the inaccurate estimations from Wi-Fi fingerprinting dur-

ng initialization phase. It requires much less iterations to converge

ompared to global initialization. The algorithm selects the inliers

rom fingerprinting estimations by a Gaussian model established

y PDR data. Then take use of the inliers to estimate the initial

ocation. Experimental results show the proposed method reduces

equired initialization iterations by 8.1 and reduces 1.5 (m) error

istance. Second, to overcome the problem of wrong estimations

fter initialization, the weighting portion of the conventional PF is

mproved in the proposed method to model multiple fingerprint-

ng probabilities by SLFNs interpolation [13] . The probabilities of

ifferent reference points from Wi-Fi fingerprinting algorithm are

onsidered to minimize the error introduced by similar fingerprints

roblem. SLFNs interpolation is performed to interpolate the prob-

bility of multiple results and then the PF weighting based on

he interpolated model is started. Proposed method show 1 (m)

rror distance reduction compared to convention method in the

xperiments. 

The rest of the paper is organized as follows. A descrip-

ion of the related works and motivations is provided in the

ext section. Section 3 introduces the preliminaries of this paper.

ection 4 presents the RANSAC-based initialization approach and a

ovel particle filter weighting scheme by SLFNs interpolation. Sim-

lation and experimental results are demonstrated in Section 5 .

ection 6 concludes the paper. 

. Background 

.1. Related work 

For infrastructure-free indoor localization, fingerprinting based

ethod is very popular and well-studied. In fingerprinting based

ethods, deterministic approaches and probabilistic approaches

re two major approaches that utilize the pre-collected RSSI finger-

rints for location estimation. Deterministic approaches mainly ap-

ly the concept of classification or regression from pattern recog-

ition. Bahl and Padmanabhan proposed RADAR system [6] which

as based on the K-Nearest-Neighbor (KNN) and reported ac-

eptable accuracy. Support Vector Machines [14] were also imple-

ented due to its superb classification and regression ability for

on-linear problems. Probabilistic approaches improve the stabil-

ty against RSSI variation by modeling the RSSI distribution of cer-
ain APs. Youssef et al. proposed Horus system that implemented

uch approach that reported a higher accuracy and stability. How-

ver, very accurate RSSI distribution for each AP is not practical

o achieve and a biased distribution can degrade the accuracy. The

ain limitation of fingerprinting methods is the sensitivity to the

SSI variation caused by multi-path effect and large-scale fading

ffect [15] . 

PF has been implemented by many indoor positioning systems

o deal with the noise introduced by PDR algorithm. These sys-

ems mainly differ in the initialization phase of PF and the chosen

f landmarks. Travi-Navi [16] utilized PF to fuse the data from dif-

erent sensors and camera and received a good performance. How-

ver, for initialization phase, it only generates particles around the

ntrance of the indoor space. If a client starts from inside of the

uilding, it is unlikely for the system to get proper initialization.

t also took use of vision as a kind of landmark, which is heavy

ower consuming. System Zee [17] leveraged augmented particle

lter, which employ global initialization and map matching tech-

iques (turning around the corners and hallways). Global initial-

zation usually requires a large amount of particles which spread

round the whole indoor space. This method has a slow conver-

ence rate since it requires corner match on the map. It is also

omputational heavy when the map is large. 

Some calibration-free systems such as Travi-Navi, Zee [16–

8] have also been developed. These systems take use of PDR algo- 

ithms and other real-time sensor data to achieve calibration-free

urpose. These work has certain limitations as well. They rely on

he map information heavily. The system hinges on the Indoor en-

ironments that indeed offer the requisite number of landmarks.

his criterion is highly dependent on the specific environment. 

There are a few works dedicated to the fusion of fingerprinting

ethods and PDR algorithm. Leppäkoski et al. suggested Extended

alman Filter and PF for the fusion and got improved performance,

et the system requires a known initial point [10] . An upgraded PF

ith a fallback filter for particles initialization in which the filter

equires a heavy global state space search is proposed in [19] . The

ethod developed in [20] takes processed Wi-Fi RSSI for azimuth

stimation and PF initializes uniformly in particle space. None of

hese works specifies particular mechanism to handle the occa-

ional poor observation from fingerprinting. 

.2. Motivation 

The motivation of this paper is three-fold. Firstly, preferred

ethod should make sure that the PF does not miss the optimal

esult. Traditional fingerprinting methods only deliver one estima-

ion in terms of RSSI fingerprints. Because of the noisy indoor envi-

onment, missing value and the similarity among the fingerprints,

t might be distant from the correct estimation so that particles

ollow the wrong estimation. As shown in Fig. 1 , there is no means

hat fingerprinting methods can differentiate the blue region and
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Fig. 2. A new particle filter scheme by improved initialization phase and improved 

weighting process. 
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green region. When the system produces the wrong estimation,

the accuracy of predicted trajectory from PF degrades. Second mo-

tivation is how to weight the particles based on the solution from

fingerprinting methods. The weights for particles shall be smooth

and continuous so that the movement of particles can be smooth

in accordance with human activity. Thirdly, the method shall offer

accurate initial guess for PF without any aid from extra-hardware.

The accurate initial guess enables the system to acquire a faster

convergence rate and a more accurate location estimation. 

3. Preliminaries 

3.1. Indoor localization problem setting 

Particle filter based indoor localization problem is to find the

joint posterior p(v 1: t | z 1: t , u 1: t ; m ) about the trajectory v 1: t of user

in the indoor environment at time t . In this problem, the z 1: t =
z 1 , . . . , z t are the observations and u 1: t = u 1 , . . . , u t are the motion

odometry measurements. Map m is usually known in the system.

The motion odometry measurements are usually obtained by the

IMU module. PDR is a common methodology implemented for hu-

man navigation. There are multiple methods to get the observa-

tions including laser range finder, infrared, Wi-Fi fingerprinting etc.

In this paper, we mainly focus on the solution by Wi-Fi fingerprint-

ing. 

3.2. Particle filter with fingerprinting algorithm 

3.2.1. Sampling importance resampling particle filter 
Particle filter is a popular technique to localize robots with un-

known position. In particle filter, each particle is a pose hypoth-

esis of the current state. These states are randomly generated in

the estimated area. Based on the RSSI measurements, the parti-

cles are first given different weights. Then these particles are se-

lected according to the corresponding weight. This process filters

out those states with low probabilities. The remaining particles

are more likely to present the distribution of the actual position.

Proposed by Gordon et al. [21] , Sampling Importance Resampling

(SIR) particle filter is widely used because it keeps the diversity of

particles. A SIR filter processes the sensor observation and motion

odometry readings iteratively when the data is available. In every

iteration, it updates and resamples all the particles which repre-

sents the posterior of the trajectory. Each iteration can be demon-

strated by the following steps. 

• Sampling: Given the previous trajectory v t−1 , odometry mea-

surements u t , the observations z t , the map m and the number

of samples Q , for q = 1 , . . . , Q, the particles of next time slot

are obtained by drawing samples from the proposal distribu-

tion π(v (q ) 
t | v (q ) 

t−1 
, z t , u t ; m ) . 

• Importance weighting: All the particles are weighted by the im-

portance weights w 

(q ) 
t , calculated from 

w 

(q ) 
t = w 

(q ) 
t−1 

p 
(
z t | v (q ) 

t 

)
p 
(
v (q ) 

t | v (q ) 
t−1 

, u t 

)
π

(
v (q ) 

t | v (q ) 
t−1 

, z t , u t ; m 

) . (1)

Then the weights are normalized. Weighting has a major ef-

fect on the final performance. Incorporated with Wi-Fi fin-

gerprinting methods, traditionally the likelihood of observation

p(z t | v (q ) 
t ) is a Gaussian distribution on the observed location.

Unlike the observation made by sensors from robotics, this ob-

servation is not so accurate and stable. Special steps shall be

done to handle the unreliable observations. 

• Resampling: Resample q particles from existing particle set

with proportional to their weights. It is used to avoid the par-

ticle degeneracy. It is necessary to keep an adequate number of
particles to approximate the actual prior distribution. t
The role of PF in this system is to combine the PDR estima-

ion with fingerprinting estimation. Whereas it remains open about

ow to decide the likelihood of observation from fingerprinting

stimation. 

.2.2. Wi-Fi RSSI fingerprinting methods 

Wi-Fi RSSI fingerprinting methods are mainly used to deliver

he observation z 1: t = z 1 , . . . , z t to the system. The output can be a

rid or a set of coordinates, which corresponds to classification or

egression. As for classification, collect k samples with labels from

 reference points (RP) as the training data. For n ∈ [1 , 2 , . . . , N] ,

he label is denoted as l n = ( ̂  x n , ̂  y n ) . The parameters ˆ x n , ˆ y n are the

eographical coordinates of the corresponding RF. Suppose there

re m̄ Wi-Fi APs around the environment. In RSSI fingerprinting

roblem, z t is defined as a vector: z t = { SSI 1 , SSI 2 , . . . , SSI m̄ 

} ∈ R ̄

m .

ll the samples are used as RSSI fingerprints to construct the fin-

erprints database. The positioning problem is to find the label

 t ( ̂  x t , ̂  y t ) at time t , given the RSSI fingerprint z t . The interpretation

f regression is similar to the classification except that the regres-

ion requires the numeric solution, which are the user’s coordi-

ates on the map. 

. Particle filter with RANSAC-based initialization and 

mproved weighting scheme 

As depicted in Fig. 2 , the inputs of the system include Wi-Fi

SSI scans and IMU readings. Two major improvements are ap-

lied to traditional particle filter. Firstly, a RANSAC-based initial-

zation phase is introduced to the system. This method requires

everal scans from Wi-Fi module and a trajectory model made

y PDR algorithm. It filters out all the outliers by the trajectory

nd keeps the inliers for initialization, which increase the con-

ergence rate of the PF as well as the accuracy. After a normal

ampling phase, an improved importance weighting method is in-

roduced. This phase initially collects multiple fingerprinting esti-

ations with their probability. Then perform model fitting algo-

ithm to construct a Gaussian mixture model. Each particle obtains

 weight from the constructed model. Finally, resample the parti-

les based on the weights and calculate the average location from

he new particles. 
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.1. RANSAC-based Initialization 

Using RSSI fingerprinting to initialize the particle filter, there

s no requirement for extra hardware. A faster convergence speed

s available compared to global initialization. Normally, multiple

cans are required for obtaining stable estimations. Whereas be-

ause of the noisy indoor environment and the similarity among

ngerprints, outliers are always observed during the initialization

hase. There is even a small chance that the PF initializes in a com-

letely wrong area and therefore produces all wrong results. 

To tackle this issue, we introduced Random Sample Consensus

RANSAC) with PDR trajectory. As an iterative algorithm, RANSAC

s widely used in computer vision and regression problems [22] . It

arnesses regression techniques to generate models. It retains the

nliers that can be fit into the model while filter out the outliers.

nlike pure regression techniques, it has the ability to deal with

ontaminated dataset. It comprises two phases: model generation

nd model evaluation. In the model generation phase, it randomly

icks up a subset of data for multiple times then model each of

hem. The models are generated based on the prior of the applica-

ion. Then the model is evaluated and finally keeps the one with

he most inliers during the evaluation phase. 

The implementation of RANSAC is based on two assumptions:

utliers from the samples are minority and a model is available

o fit the inliers. Both of these assumptions are satisfied in indoor

ositioning scenario. Firstly, for fingerprinting algorithms, the re-

orted average error distance is in meter range, generally about

–5 m [23] . According to the error cumulative distribution func-

ion (CDF) of classic fingerprinting algorithms [6,24] , it is observed

hat the error distance of over 90% of the estimations are less than

–5 m, which means that majority of the estimations are inliers.

hese reported results meet the experimental results of this paper.

econdly, a natural model is given by the trajectory from PDR al-

orithm. The variables are ( ̂  x , ̂  y ) that determines the initial point

f the trajectory. 

Pseudo-code for RANSAC-based initialization is detailed in

lgorithm 1 . The input of this algorithm is a set of fingerprinting

stimations � . The model is constructed by PDR trajectory M PDR 

nd a few experienced parameters. Steps 2 and 3 are the model

eneration phase. The algorithm randomly selects min data points

o the set of inliers S ( ̄u ) from dataset � . With the given model,

t runs model fitting algorithm for data points S ( ̄u ) . Note that PDR
lgorithm 1 RANSAC-based initialization algorithm. 

NPUT: Data of fingerprinting estimations: �

NPUT: Model from PDR: M PDR 

NPUT: Maximum iterations: N 

NPUT: Minimum data points to fit the model: min 

NPUT: Model tolerance factor: E 

NPUT: Inlier threshold number: I th 

UTPUT: Inlier dataset S ( ̄u ) and fitted model M PDR ( ̂  x , ̂  y ) 

1: while iterations < N do 

2: Randomly select S ( ̄u ) from � , ū = min 

3: Fit d i to model M PDR ( ̂  x , ̂  y ) 

4: for d ∈ � − S ( ̄u ) do 

5: Calculate Er ror (d; M PDR ( ̂  x , ̂  y )) 

6: if Er ror (d; M PDR ( ̂  x , ̂  y )) < E then 

7: ū + + 

8: end if 

9: end for 

10: if u > I th then 

11: return M PDR ( ̂  x , ̂  y ) , S ( ̄u ) 

12: end if 

13: end while 
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D
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e
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L  
rajectory is a perfect model to be used since the error of IMU is

uite small in a short time interval. The parameter of the model is

ˆ  , ̂  y which denotes the initial point of user. Then the model evalua-

ion phase starts. The error distance of all the data points from set

− S ( ̄u ) are calculated and compared with model tolerance factor 

. Those with error distance smaller than ε are added to S . Finally,

f ū is greater than k , algorithm returns. Otherwise repeat all the

teps until reach the maximum iterations N . 

.1.1. Model generation 

To construct the PDR model, we first perform PDR for c itera-

ions. For each iteration, the relative position of user can be com-

uted by 

(x i +1 , y i +1 ) = (x i + L i ∗ sin (φi ) , y i + L i ∗ cos (φi )) (2)

here x i and y i are the coordinates, L i and φi are the stride length

nd heading at the i th step. Gaussian least squares fitting are lever-

ged to fit the trajectory to a Gaussian model G ( x ). Note that G ( x )

as certain domain x ∈ [ x min , x max ]. G ( x ) is described by 

 (x ) = 

ˆ n ∑ 

i =1 

a i e 
[ −( 

x −b i 
c i 

)] 2 
, x ∈ [ x min , x max ] (3)

here ˆ n is the number of terms, a i , b i , c i are the coefficients of

aussian model and x min , x max are the minimum and maximum

alues of the PDR trajectory. To shift the function to arbitrary po-

ition on the map, two coefficients of ( x ′ , y ′ ) are introduced to es-

imate the initial point. As a result, (3) is transformed to 

 PDR (x ′ , y ′ ; x, y ) = 

ˆ n ∑ 

i =1 

a i e 
[ −( 

x −x ′ −b i 
c i 

)] 2 + y ′ , (4)

here x ∈ [ x min , x max ]. In order to find ( ̂  x , ̂  y ) , the algorithm re-

uires to estimate the initial point by Wi-Fi fingerprinting during

nitialization period which minimize the estimation errors. Apply-

ng the selected min number of fingerprinting estimation S from

, ( ̂  x , ̂  y ) becomes 

rg min (x,y ) 

∑ 

d∈ S ( ̄u ) 
Distance (d; M PDR (x, y )) 

2 
, (5) 

here Distance (d; M a P DR (x, y )) is the distance between the in-

tance and the model. As M PDR ( x , y ) is a curved line segment, the

istance from point A ( x A , y A ) to a curve is calculated by 

 (x A , y A ) = 

√ 

(x − x A ) 2 + (y − y A ) 2 , (6)

et deviation of (6) equals to 0, then get the closest point o on the

urve ( x o , y o ). Finally calculate Distance (d; M a P DR (x, y )) by 

istance (d; M PDR (x, y )) 

= 

{√ 

(x o − x d ) 2 + (y o − y d ) 2 x o ∈ [ x min , x max ] 

C otherwise 
, (7) 

here C is the minimum value of the distances from d to the two

ndpoints. 

.1.2. Model evaluation 

RANSAC considers the evaluation problem as an optimization

roblem formulated as 

ˆ 
 PDR ( ̂  x , ̂  y ) = arg min 

M PDR ( ̂ x , ̂ y ) 

∑ 

d∈ �
Loss (Error(d; M PDR ( ̂  x , ̂  y ))) , (8)

here � is the data of fingerprinting estimations, M PDR ( ̂  x , ̂  y ) is the

enerated model with parameter ( ̂  x , ̂  y ) , Loss and Er ror are the loss

unction and error function respectively. In RANSAC, the loss func-

ion is defined as: 

oss (Error(d; M PDR ( ̂  x , ̂  y ))) = 

{
0 | Er ror (d; M PDR ( ̂  x , ̂  y )) | < ε

. (9)

1 otherwise 
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Fig. 3. (a) Traditional Gaussian distribution weighting. (b) Discrete probabilities on 

different reference points. (c) SLFNs interpolation weighting. 
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4.2. Modeling fingerprinting probabilities by SLFNs interpolation 

In Eq. (1) , it is mentioned that the likelihood p(z t | v (q ) 
t ) nor-

mally is approximated as Gaussian distribution around the refer-

ence point that has the highest probability. The probabilities of

other reference points are abandoned. In order to keep all the use-

ful information, the proposed method takes use of the probabilities

on all the reference points. 

Fingerprinting method is used to get the probability P (z t | ̂ x n , ̂  y n ) .

Different pattern recognition algorithms are able to achieve this

purpose by different methodologies. The most straightforward

methodology is the Bayesian scheme. Normally, this methodology

is to search the RF that gives the highest probability: 

arg max 
i ∈ [1: n ] 

P (z t | ̂  x i , ̂  y i ) . (10)

In proposed PF, the whole set of P ( z t | ̂ x n , ̂  y n ) is leveraged to keep

the entire information of fingerprinting method such that the par-

ticles are able to track the real location. In order to calculate the

probabilities, one can use probabilistic methods [24] or determin-

istic methods such as Support Vector Machines (SVMs) [25] . 

For probabilistic methods, the Gaussian distribution can be used

to approximate the distribution of RSSI of one AP at a certain loca-

tion. P ( z t | ̂ x n , ̂  y n ) is calculated by 
∏ l 

m =1 f m 

(SSI m 

;μm 

, σm 

) , where f m 

is Gaussian distribution of AP m with mean μm 

and variance σ 2 
m 

.

Mean and variance values are determined by training data. Finally,

probability P ( z t | ̂ x n , ̂  y n ) is normalized. 

For SVMs, a pairwise coupling method [26] from LIBSVM [27] is

widely used for probability estimation. As a two-class classifier,

SVMs requires pairwise coupling to extend the two-class prob-

ability scheme a ab = P (z t | i = a or b) to multi-class probability

P ( z t | ̂ x n , ̂  y n ) . Essentially, it is achieved by solving the optimization

problem given by 

min 

P 

N ∑ 

i =1 

∑ 

j : j � = i 
(a ji P (z t | ̂  x i , ̂  y i ) − a i j P (z t | ̂  x j , ̂  y j )) 

2 

subject to 

n ∑ 

i =1 

P (z t | ̂  x i , ̂  y i ) = 1 , P i ≥ 0 , ∀ i, (11)

where a i j + a ji = 1 , ∀ i � = j. P (z t | ̂ x n , ̂  y n ) is obtained by solving (11) . 

As given in Fig. 3 (a), the traditional weighting scheme is based

on Gaussian distribution on the RP with highest possibility. The

particles are weighted based on the distance to that RP. However,

when this estimation is with large error due to noise or similar

fingerprints issue, the results of particle weighting process are bi-

ased. It is preferred to keep the probabilities on all the RF, P ( z t | l n ).

The probabilities of different RFs are illustrated in Fig. 3 (b). It can

be seen that other RPs that also have high probabilities are kept

so that the particles are not biased to one single RP. As the fin-

gerprints are collected discretely, only those particles on the RPs

have probabilities values. A continuous weighting model is re-

quired. SLFNs interpolation is introduced to interpolate the possi-

bility model. The output is given in Fig. 3 (c). A continuous model

is produced by the interpolation technique. 
The reason why this process can deal with similar fingerprints

roblem is that it evaluates all the RFs and delivers all the corre-

ponding probabilities to the weighting process of PF. When there

re similar fingerprints that are distant from each other, parti-

les are able to differentiate them after the weighting and resam-

ling process. SLFNs based interpolation is selected for two rea-

ons. The first reason is that arbitrary target function is required

ince P ( z t | l n ) does not follow any certain distribution. Second, the

rror should be extremely small. Based on the literature [28] , the

LFNs are able to approximate any target distribution with arbi-

rary small error. It has been proved in [29] that SLFNs can inter-

olate samples with negligible error. 

The mathematical expression of SLFNs with N̄ hidden nodes

nd activation function f ( x ) on this interpolation problem is given

s 

 (z t | l n ) = P (z t | ̂  x n , ̂  y n ) = 

N̄ ∑ 

i =1 

δi f (w i · ( ̂  x n , ̂  y n ) + θi ) , (12)

here w i ∈ R 

2 and δi ∈ R are the input weight vector and output

eight vector that connect the i th hidden node with the input

nd output. θi ∈ R is the threshold of the i th hidden node. Note

hat ( ̂  x n , ̂  y n ) are two input nodes, and the interpolated probability

 (z t | ̂ x n , ̂  y n ) is the output node. The architecture of such SFLNs is

hown in Fig. 4 . 

To use SLFNs interpolation in real time applications, Extreme

earning Machine (ELM) is recommended. There are two major ad-

antages of ELM. (1) It has an extremely fast learning speed. The

raining time is in the range of miliseconds. (2) ELM network sup-

orts small training error for any given training set, while the hid-

en neurons is no larger than the number of training samples [30] .

he speed of ELM is fast mainly because it randomly generates the

idden neurons including the number and the weights. The details

f ELM is given in [31] and source code is also available. 

. Experimental results 

Simulations and experiments were conducted to verify the effi-

iency of the PF scheme at the second floor of Centre for Engineer-

ng Innovation of University of Windsor. PDR data and fingerprint-

ng data were collected. The experiment was conducted at a time

here people were inside the building and the RSSI samples were

ffected by environmental factors such as moving objects and peo-

le. Therefore, the RSSI fingerprinting based approach suffers from

ulti-path effect and moving objects significantly. This is similar

o a practical scenario case. The PDR algorithm is implemented on

ell phone using the data collected by IMU. We applied these data
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Fig. 5. Fitted model of RANSAC initialization. 
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Fig. 6. SFLNs interpolation on fingerprinting probabilities. 
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Table 1 

Initialization experiment results. 

Proposed method Fingerprinting initialization 

Average RMSE of PDR 

model fitting 

0.21 (m) –

Average number of outliers 4.2 –

Average initialization error 

distance 

1.1 (m) 2.7 (m) 

Maximum initialization 

error distance 

2.6 (m) 5.1 (m) 

Table 2 

Error distance of different methods. 

Methods Average error 

distance (m) 

Maximum error 

distance (m) 

SVM [14] 3.2 9 .3 

Probabilistic algorithm [24] 3.4 11 .2 

PDR and probabilistic algorithm 

fused by PF 

2.2 4 .1 

Proposed method using SVM 1.2 2 .9 

Proposed method using 

probabilistic algorithm 

1.3 3 
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o  
o test the initialization phase and the estimation accuracy of the

roposed PF scheme. For fingerprinting algorithm, a total of 84 ref-

rence points were selected with one meter interval in a 30 (m) by

5 (m) area. 30 fingerprints were collected at each reference point.

s comparison, SVM and probabilistic algorithm are selected. 

.1. Experiment on initialization phase 

To test the proposed initialization approach, we collected 10

atasets under initial condition at 10 different places with differ-

nt tracks. Each initial dataset includes 11 steps as well as 11 Wi-Fi

cans. We first examine the Gaussian model fitting on each dataset.

ig. 5 shows examples of the fitted model from PDR data. Number

f terms is determined by RMSE. We set the threshold of RMSE

o be 0.1 and select the lowest number of terms when satisfy the

hreshold. Then we apply the model to filter out the outliers of

i-Fi fingerprinting estimations. As denoted in Fig. 5 , inliers are

istinguished by the proposed RANSAC approach. Finally, the esti-

ated start point is marked on the graph. PF is initialized on the

urrent location of the acquired model. The simulation results of

his experiment are listed in Table 1 . RMSE of PDR model fitting

s used to test the precision of the model compared to PDR tra-

ectory. It is shown that the average RMSE is 0.21 (m). Number of

utliers demonstrates the effectiveness of the RANSAC approach. In
his experiment, proposed method filtered out 4.2 outliers in aver-

ge. Initialization error distance and maximum error distance illus-

rate the initialization accuracy. As a comparative algorithm, KNN

ased fingerprinting initialization is selected. Proposed method re-

uced the average error distance by 1.6 (m) and reduced maximum

rror distance by 2.6 (m). 

For convergence speed, proposed method only requires these

1 iterations to perform model fitting and RANSAC algorithm. As a

omparison, the global initialization requires 19.1 iterations in av-

rage to converge. 

.2. Experiments for testing proposed PF scheme 

In this experiment, all the algorithms use the same fingerprints

atabase and the same PDR data. Fig. 7 (a) shows the pedestrian

rajectory estimated by original fingerprinting method. Consecutive

stimations are connected by red lines. It can be seen that the

esults suffer from inconsistent observations and estimations. In

ome cases, the continuous estimations are distant from each other

ue to the missing value, noisy data or the similarity of the finger-

rints. Fig. 7 (b) demonstrates the trajectory from original PDR. In

his figure, each red dot represents one step. This approach per-

orms well during first three hallways and then accumulates large

rrors. Fig. 7 (c) shows the trajectory of proposed method, which

ombines the information from fingerprinting and PDR. It is shown

hat the algorithm fixes the noisy fingerprinting data and PDR data

nd improves the final performance. Proposed PF scheme lever-

ges SLFNs for probability distribution model construction shown

n Fig. 6 . This surface is employed to perform particles weighting

hase. Each particle is able to acquire a probability based on its

ocation. Those particles with higher probability are more likely to

e saved after resampling phase. 

As Table 2 shows, the average error distances of proposed

ethod with SVM and probabilistic algorithm are 1.2 (m) and

.3 (m) respectively. This value is about 1 (m) lower than the value

f PDR and probabilistic method fused by PF using classic Gaussian

eighting. It also shows great improvements on the maximum er-

or distance. As given in Fig. 7 (a), at some points the fingerprint-

ng algorithm provides distant estimations, which results in a high

aximum error distance. This phenomenon cannot be seen from

he trajectory of proposed method. 

Table 3 shows the comparison among proposed method and

ther localization systems. Proposed method has advantages on



70 Z. Wu et al. / Computer Communications 83 (2016) 64–71 

Fig. 7. Trajectories of (a) fingerprinting method (SVM), (b) PDR, (c) proposed method. 

Table 3 

Comparison with other localization methods. 

PF initialization Convergence time Method Accuracy Drawbacks 

Zee [17] Global initialization Require a few corners, 

up to a few minutes 

Magnetic field sensor, map 

info, Wi-Fi, PDR, PF 

Meters Slow convergence time, require 

map info, high complexity in 

big map 

Travi-Navi [16] Entrance 

initialization 

Require a few corners, 

up to a few minutes 

Magnetic field sensor, map 

info, Wi-Fi, PDR, PF, 

vision 

Meters Start point is limited, high 

power consumption, high 

complexity 

Unlock [18] N/A N/A Magnetic field sensor, map 

info, Wi-Fi, PDR 

1–2 (m) Require requisite landmark 

density, require map info 

Li et al. [32] Manual 

initialization 

N/A Map info, PF, PDR 1.5–2 (m) Manual initialization, require 

map info 

Proposed method RSS based 

initialization 

A few seconds Wi-Fi site survey, PF, PDR 1.2 (m) Require site survey 
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initialization, convergence time and accuracy (All the accuracy

values are taken from reference papers). Other systems suffer

from initialization method, complexity, require number of par-

ticles and environment dependency. Even though the proposed

method requires Wi-Fi RSSI site survey, it still can be cho-

sen for many scenario. For some indoor scenario, the site sur-

vey is already available since fingerprinting has been a popu-

lar method in recent years. Proposed particle filter can be an

effective algorithm to improve the performance of fingerprint-

ing method. A rapid auto-initialization phase is crucial since

the users only require a few minutes to arrive the destina-

tion in many scenario. Minutes of initialization time is not

acceptable. 

6. Conclusion 

In this paper, a new particle filter with a hardware-free ini-

tialization phase is presented to improve the accuracy of indoor

location positioning using received signal strength. The hardware-

free initialization is implemented by RANSAC algorithm. This al-

gorithm filters out outliers from the fingerprinting estimations by

a constructed PDR model. Inliers are remained to acquire the ini-

tial point and the current location. The PF is initializing based on

the current location. This initialization phase achieves 1.1 (m) av-

erage error distance in the experimental demonstration. For en-

hancing the fusion of fingerprinting and PDR, we proposed a SFLNs

based model fitting algorithm. The algorithm takes advantage of

the probabilities of all the reference points from fingerprinting

method. The algorithm fits a SFLNs model to the probabilities and

constructs a probability surface over the interested area. The par-

ticles are weighted by this continuous surface to reduce the error.

This approach makes sure that the particles would not suffer from

the similar fingerprints issue. The experimental results show about

1.2 (m) average error distance in compare to 2.2 (m) in compara-

tive methods. 
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