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A typical WiFi-based indoor localization technique estimates a device’s location by comparing received signal

strength indicator (RSSI) against stored fingerprints and finding the closest matches. However, the collection

of fingerprints is notoriously laborious and costly. It is challenging to reduce fingerprint collection and recover

missing data without introducing significant errors. In this article, a novel approach based on compressive

sensing is presented for recovering absent fingerprints. The hidden structure and redundancy characteristics

of fingerprints are revealed in a merging matrix. The spatial and temporal correlations of fingerprints result

in a small rank of the merging matrix. The Sparsity Rank Singular Value Decomposition (SRSVD) method is used

to effectively reduce the interference caused by the multipath effect of the WiFi signal. We further propose to

combine SRSVD with the K-Nearest Neighbor (KNN) algorithm to deal with missing columns or rows in the

matrix. Experimental results show that with only half of the fingerprints, our approach can recover all the

fingerprint information with error rate below 6.6%. Even with only 5% of the data, the approach can recover

the information with error rate below 14%, without loss of localization accuracy.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Numerous indoor localization systems are based on wireless local

rea networks (WLANs), which are ubiquitously deployed in public

laces [2]. The localization techniques underlying these systems can

e generally classified into two categories: deterministic [3–5] and

robabilistic [6,7]. In these systems, one has to measure received sig-

al strength indicator (RSSI) values from surrounding access points

APs) at each reference location to construct a fingerprint database,

hich is a tedious and time-consuming process. For example, in our

xperiments, it takes 10 h for us to collect the fingerprint data of an

ffice area of 1000 m2. This problem seriously affects the application

f indoor localization systems. In order to reduce the cost, several ap-

roaches [8,9] have been proposed. However, these approaches only

ttempt to reduce the number of reference points at which finger-

rints are collected. At each point, the same amount of time still

eeds to be spent on collecting a stable RSSI result as in the naive

pproach.

In this article, we focus on reducing fingerprint measurements in

oth the time and space domains, and recovering the absent data

aithfully. The main challenge is to keep a small localization er-

or while recovering the absent data. Intuitively, we can consider
✩ A preliminary version of this article appeared in Proceedings of the Eleventh IEEE

ireless Communications and Networking Conference (IEEE WCNC 2013) [1].
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he simple interpolation approach, such as the K-Nearest Neighbors

KNN) method. However, the relation between an absent data point

nd its neighbors is not easy to identify. Moreover, if a large number

f data points are missed, the KNN method will perform poorly be-

ause a point may not be able to find enough neighbors in range for

roper estimation.

We find that a compressive sensing based algorithm, namely Spar-

ity Rank-Singular Value Decomposition (SRSVD) [10] can solve the

roblem of recovering absent data. The challenge is how to model

ur problem and leverage the hidden structure and redundancy of

he collected data. We use the merging matrix [10] to merge and ar-

ange all the RSSI values collected at different locations and at dif-

erent times. In order to simplify the analysis, we use the rank of a

atrix to judge the sparsity in compressive sensing. We formulate

he problem as an optimization problem and try to find solutions.

SRSVD is a mathematical method to sparsity matrices. However,

he characteristic structure of a merging matrix tends to be uncertain,

ue to the complex indoor environments. In reality, it is possible that

everal columns or rows are absent in the matrix at the same time,

n which case SRSVD delivers quite low performance. We combine

he SRSVD algorithm with the K-Nearest Neighbor (KNN) algorithm

o address the problem. The approach interpolates only one element

n an absent column or row and recovers the rest of absent data in the

parse matrix.

The major contributions of this paper are as follows. First, we pro-

ose to use the merging matrix to find the hidden structure and re-

undancy characteristics of the fingerprints. Second, we propose a
ion for indoor localization, Computer Communications (2015),
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novel approach based on compressive sensing to recover the absent

data in the merging matrix. Third, we combine the SRSVD algorithm

with the K-Nearest Neighbor (KNN) algorithm to deal with missing

columns or rows in the matrix. Finally, we conduct experiments to

evaluate the performance of the methods. The results show that given

only half of the data, our approach can fully recover the fingerprint in-

formation with error rate below 6.6%. With merely 5% of the data, the

approach can still recover the information with error rate below 14%

and without loss of localization accuracy.

Organization: Section 2 introduces prior work on reducing finger-

print collection; Section 3 formulates the problem; Section 4 analyzes

the problem and describes the solution; experiments are conducted

in Section 5; and Section 6 concludes the paper.

2. Related work

One of the main methods of WiFi localization is based on RSSI. The

related techniques can be classified into two categories: propagation

model based and fingerprint based.

The propagation model based approach does not need signal fin-

gerprints. Ubicarse [11] leverages Synthetic Aperture Radar (SAR) on

hand-held devices that are twisted by their users along unknown

paths. Ubicarse combines RF localization with stereo-vision algo-

rithms to localize common objects with no RF source attached to

them. The method in [12] leverages such a model to estimate the dis-

tance between the user and APs. Then it uses the extended Kalman

filter to transform the distance to the user’s position. The technique

in [13] allows an organic positioning system to maintain its accu-

racy over time, based on outlier detection through clustering. A novel

technique is proposed in [14], which uses the Gaussian Process Latent

Variable Model (GPLVM) to relate RSS fingerprints and models of hu-

man movements (displacement, direction, etc.) as hidden variables.

Utilizing a probabilistic RSS model derived from indoor signal propa-

gation models that explicitly consider the effect of intervening walls

and the building plan, the scheme in [15] first estimates the distance

of the client to each of the APs and then obtains a location estimate

through trilateration.

Radio propagation models are not very accurate for distance and

position estimation, due to the multi-path effect and environmental

interference. In comparison, the fingerprint based algorithms (e.g.,

[3,16]) normally have higher localization accuracy. In this approach,

fingerprints collected with coordinate information are called labeled

data and those without coordinates unlabeled data. The Label Prop-

agation algorithm (LP-algorithm), by using semi-supervised learning

in [8], tries to reduce the effort of collecting labeled data. In sum-

mary, these algorithms can reduce the work of labeling data, but still

require collecting a large amount of unlabeled data.

In [17], a technique called the Signal-Distance Map (SDM) is pro-

posed. SDM uses a truncated singular value decomposition technique

to relate RSSI with geographical distance to the APs. Zee [18] and Un-

Loc [19] utilize WiFi and inertial sensors readings crowdsourced from

users to build the fingerprint training set. In [20], a method called

Walkie-Markie generates indoor pathway map by leveraging the lo-

cations of users when they pass WiFi marks. Furthermore, it uses

the direction and distance information retrieved from the user tra-

jectories to place the WiFi marks at real locations. Phaser [21] makes

phased array signal processing practical on many WiFi access points

deployed in the real world. In contrast, SpotFi [22] deployed on com-

modity WiFi infrastructure is able to achieve accuracy of 40 cm by

calculating AoA of multipath components.

Compressive sensing techniques have been considered for re-

ducing fingerprinting effort in a number of previous researches. In

[23,24], the authors use l1-minimization to solve the sparse signal

recovery problem and use the map-adaptive Kalman filter to im-

prove accuracy. Bayesian Compressive Sensing (BCS) based compres-

sive sensing is used in [25,26]. In these techniques, the systems make
Please cite this article as: Z. Gu et al., Reducing fingerprint collect

http://dx.doi.org/10.1016/j.comcom.2015.09.022
ull use of the relationship between the collected signals in the space.

n [27], a multivariate Gaussian model is used to average the mea-

urements of RSSI in the first step, and then compressive sensing is

sed to reduce the amount of information transmitted from a de-

ice in the second step. The Matrix Completion (MC) framework in

28] minimizes the number of RSSI fingerprints by sensing a subset

f the available channels in a WiFi network. It provides a paradigm

or reconstructing low-rank data matrices from a small number of

andomly sampled entries. In the project, Environmental Space Time

mproved Compressive Sensing (ESTI-CS) [29], real sensory data from

he Intel Indoor, GreenOrbs, and Ocean Sense data sets are analyzed

sing the Multi-Attribute Assistant (MAA) component for data recon-

truction.

Apart from RSSI-based methods, there are some other techniques

f localization that are often used in combination with WiFi. Proxim-

ty detection is perhaps the simplest localization method. In such a

ethod, the device estimates its location by simply detecting nearby

adio sources [30]. The triangulation method provides improved lo-

alization accuracy by measuring the device’s distance to multiple

eference points [31,32]. When radio signal is missed during the

ser’s navigation, dead reckoning is often used to fill in the gaps.

ead reckoning is a process of estimating the current position based

n last determined position and incrementing that position based on

nown or estimated speeds over elapsed time [33]. For improved ac-

uracy on real maps, the map matching techniques can be used. They

nclude topological analysis, pattern recognition, or advanced tech-

iques such as hierarchical fuzzy inference algorithms [19,34,35].

. Problem formulation

This section describes the localization model and formulates the

roblem of recovering absent fingerprint data.

.1. The system model

Normally, a WiFi-based localization system works in two phases:

ffline phase and online phase.

Offline phase: The indoor region of interest is divided into small

rids. At the center point of each grid (reference location), an RF re-

eiver collects the RSSI of each pre-deployed AP. At each reference

ocation, the ID, coordinates, as well as each AP’s RSSI, are recorded.

hese three elements together are called a fingerprint).

Online phase: The localization system estimates a device’s location

y comparing the measured RSSI against the fingerprints, and finding

he closest matches.

.2. Problem statement

In the offline phase, the device collects W RSSI values at each of

he N reference location. Every time it measures the RSSI of M APs.

et X be the merging matrix of fingerprints with dimensions W · M ×
. Also X = [E1 E2 . . . Ew]T, where (•)T is the transpose of a matrix, Ew

he wth (w = 1, 2, . . . ,W ) sub-matrix of X, and Ew(m, n) the RSSI of

he mth (m = 1, 2, . . . , M) AP at the nth (n = 1, 2, . . . , N) location. We

se an indicate matrix, A, and a measurement matrix, B, to represent

he problem.

B = A. ∗ X

A = [A(i, j)] =
{

0, if B(i, j) is absent

1, otherwise

(1)

here the symbol ‘.∗’ denotes the dot multiplication, which means

he multiplication of the corresponding elements in the matrix. The

ero elements in matrix A mean that the corresponding data ele-

ents in matrix B are absent.

Designing an algorithm to recover the fingerprint matrix X based

n the measurement matrix B with the absent elements can reduce

he efforts of data collection.
ion for indoor localization, Computer Communications (2015),
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Fig. 1. The floor plan of experimental field.
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. Problem analysis and algorithm design

The theoretical foundation of our system is compressive sensing,

hich enables reduction of fingerprint collection if the fingerprint

ata is structured, i.e., can be sparsely represented. Existing works

36] have identified that the RSSI values from an AP are highly au-

ocorrelated, which implies that the fingerprint data can be sparsely

epresented.

Since the fingerprint data are represented by a matrix, the prin-

ipal component analysis (PCA) [37] provides a way of revealing the

idden structure in the matrix. As the singular value decomposition

SVD) is a common tool to implement the PCA, we utilize SVD to dis-

over the hidden structure. Based on the theory of compressive sens-

ng, the problem of recovering absent data in the matrix is converted

nto an optimization problem. In the following, the concept of SVD

s first introduced, followed by a description of compressive sensing

nd its application to WiFi localization. Finally, a compressive sensing

ased solution is proposed.

.1. Singular value decomposition

Singular value decomposition (SVD) [38] decomposes a given a ×
(denoted as W · M × N) real matrix X into three matrices as follows.

= UDVT (2)

here U is an a × a unitary matrix (i.e., UTU = UUT = I, I is the unit

atrix), and V is a b × b unitary matrix, D is an a × b diagonal ma-

rix containing the non-zero singular values {σi|i = 1, 2, . . . , r} of X,

nd r is the rank of X. The singular values are sorted in descending

rder σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. Since D is a diagonal matrix, Eq. (2) is

ewritten as,

= UDVT =
min (n,m)∑

i=1

σiuivT
i (3)

here ui and vi are the columns of U and VT, respectively. Let X̂ de-

ote an approximation of X keeping only the r∗ largest singular values

n X, as follows.

ˆ =
r∗∑

i=1

σiY
μ
i
. (4)

he above X̂ is the best rank-r∗ approximation, where r∗ ≤ min (n,

), Y
μ
i

= ui × vT
i
, and the rank of Y

μ
i

is 1. Seeking solutions of X̂ is an
Please cite this article as: Z. Gu et al., Reducing fingerprint collect

http://dx.doi.org/10.1016/j.comcom.2015.09.022
ptimization problem formulated as,

minimize ‖X − X̂‖F

subject to rank(X̂) ≤ r
(5)

here ‖ · ‖F is the Frobenius norm, i.e., (‖X‖F �
√∑

i, j X(i, j)2)

Our experiment shows that SVD can be used to analyze the hidden

tructure of the merging matrix of fingerprints. We conduct our ex-

eriment in our office building, as depicted in Fig. 1, where the whole

oor is divided into 52 reference locations (grids), each associated

ith four orientations. In each location, 20 RSSI measurements of 9

iFi APs are recorded by a Motorola ME722 smartphone. So, the di-

ension of the merging matrix is 180 × 208. The singular value of

ach singular vector (σi, i = 1, 2, . . . , 180) associated with the merg-

ng matrix is depicted in Fig. 2, where the magnitude of each singular

alue is proportional to the information entropy of the corresponding

ingular vector.

Fig. 2 shows that the matrix’s information is primarily contained

n a few principal components, since the largest singular value is

uch larger than the others. It suggests that the matrix will have a

ood approximation when r is small according to Eq. (5). Thus, the

erging matrix can be sparse or compressible, which means col-

ecting a few fingerprints can safely recover most information of the

erging matrix.

.2. Compressive sensing

The compressive sensing theory provides a mathematical founda-

ion based on which a sparse collection of structured or redundant
ion for indoor localization, Computer Communications (2015),
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o

data can be used to recover the missing data. More specifically, com-

pressive sensing adopts a special non-adaptive linear matrix to trans-

form the original signal to a sparse one so that the hidden structure of

the original signal can be kept. Based on this transform, the original

signal can be sparsely sensed with a frequency much smaller than

the Nyquist frequency, and the sensed signal can be well restored

through certain optimization methods.

A vector is sparse if most of its elements are zero or nearly zero.

However, a matrix with a large number of zeros is not necessarily a

sparse matrix; instead, a matrix is sparse if it has a small rank.

Intuitively, our problem can be regarded as a matrix-completion

problem, where sparsely sampled matrix entries are utilized to com-

plete the rest of the matrix entries through compressive sensing.

Though the merging matrix loses its low-rank nature because of the

multipath effect, it is a sparse matrix in essence. Thus, the rank is an

adaptive condition to construct the matrix.

4.3. Algorithm design

The problem of recovering missing fingerprints is expressed in

Eq. (1). The measurement matrix B and the indicate matrix A are

known a prior in the process. The merging matrix X is a constraint

in the recovery process. The adaptive rank r represents the sparsity of

the merging matrix. Solving the problem in Eq. (5) is equal to solving

the following optimization problem:

minimize rank(X̂)

subject to A. ∗ X̂ = B
(6)

where X̂ is the matrix to be recovered. Minimizing its rank is difficult

since it is a non-convex problem. To simplify the problem, SVD can be

utilized,

X̂ = UDVT = LRT (7)

where L = UD1/2 and R = VD1/2
, which enable L and R to share com-

mon features such as dimension and rank. Previous works [10,38,39]

have shown that the optimization problem formulated in formula (6)

can be simplified under certain conditions. Specifically, when the re-

stricted isometry property holds [39], minimizing the nuclear norm

can achieve a minimum rank for a low-rank matrix. Formally, the

equivalent optimization problem associated with the formula (6) can

be formalized with the optimization objective to find L and R with

low ranks by minimizing the summation of their Frobenius norms, as

follows:

minimize ‖L‖2
F + ‖R‖2

F

subject to A. ∗ (LRT) = B.
(8)

In practice, it might not be possible to find accurate L and R under

the constraint of formula (8) due to three reasons. First, multipath

interferences exist in WiFi signals so that strict satisfaction may lead

to overfit of the approximation. Second, the merging matrix itself is

not strictly low rank. Third, the collected RSSI values are recorded as

integer values, which are not accurate enough themselves. Therefore,

an optimization method for formula (8) is proposed as follows:

minimize‖A. ∗ (LRT) − B‖2
F + λ(‖L‖2

F + ‖R‖2
F ) (9)

Let x = ‖A. ∗ (LRT) − B‖2
F
, y = λ(‖L‖2

F
+ ‖R‖2

F
), and c = x + y. For-

mula (9) can be rewritten as

min (c). (10)

The above solution seeks a low-rank approximation, but it does

not strictly enforce the constraint of Eq. (8). The parameter λ is a fac-

tor that balances between x and y. The above approach is referred to

as Sparsity Rank Singular Value Decomposition (SRSVD), which ex-

ploits both the sparsity nature of the fingerprints and the low-rank

property of the SVD method.
Please cite this article as: Z. Gu et al., Reducing fingerprint collect

http://dx.doi.org/10.1016/j.comcom.2015.09.022
We adopt the Lagrange multiplier method [10] to solve the opti-

ization problem in formula (9). Note that the matrices L and R are

wo independent unknown variables in Eq. (9). It is difficult to obtain

wo unknown variables through one equation. To address this issue,

n iteration method is adopted as follows: first, L and R are initialized

andomly, and one of them is fixed to obtain the optimal solution for

he other; second, their roles are switched to optimize the other with

he same procedure; the above iteration repeats until a minimum c is

etermined.

Due to the nature of Frobenius norms, variables x and y are greater

han or equal to 0. Assume that the variables x and y are equal to 0.

hen, the following expression is obtained,

A. ∗ (LRT)

RT

)
=

(
B

0

)
(11)

A contradiction exists in Eq. (11). According to the equation, RT is

qual to 0. Thus, B is also 0. However, it can be used to obtain the

olution of RT. In order to get a minimal c, two parameters λ and r

re introduced: λ is the tradeoff factor and r is the upper bound of X̂’s

ank. From the analysis above, the matrix X̂ can be well approximated

f r is close to the rank of X. At the same time, r is less or equal to the

ank of L and R.

The estimation error is introduced to control the iteration loop of

he algorithm. The values of the parameters λ and r have a direct im-

act on the algorithm’s performance. Thus, it is necessary to bound

hem. Since the merging matrix is structured and redundant, the rank

should not be large even though the matrix has a large dimension.

he lower bound of r obviously should be larger than 1, while its up-

er bound should be a small integer. The tradeoff factor λ is not easy

o determine. However, the order of magnitude can be first estimated

s the bound, which can be repeatedly narrowed down through pick-

ng the median of the bound until a proper λ is identified that can

inimize � (defined in Section 5).

The pseudocode of the solution discussed above is presented in

lgorithm 1. Since the exact values of λ and r in Algorithm 1 are

nknown, the algorithm searches for suitable values. In order to re-

uce the search time of λ, we select the median value of the bound

nd refresh it every time. Following the singular value decomposi-

ion, we use the minimum least square method to solve Eq. (11) in

VD.

.3.1. Combining the K-Nearest Neighbor algorithm

Due to environmental complexity, there might exist several empty

olumns or rows in the merging matrix. Algorithm 1 recovers these

olumns or rows by filling them with zeros to keep the rank of the

atrix low. Therefore, we introduce the K-Nearest Neighbor (KNN)

lgorithm to recover at least one element for each of empty columns

r rows.

The main idea of the KNN algorithm is to find K nearest neighbors

o recover the missing data, and the nearest neighbors are restricted

n a circle with radius d (set to 10 m in this article). To recover an

bsent data element X(i, j) in the merging matrix, the algorithm first

nds K nearest neighbors in the measurement matrix B by calculating

eographical distance. Then, the average value of these neighbors is

ssigned as the estimate of X(i, j).

For an empty column or row, we first use the KNN algorithm to

ecover one element. When there is no empty column or row left, we

hen execute Algorithm 1 to recover the remaining data elements in

he matrix. The details are described in Algorithm 2.

. Experiments and results

In this section, we first provide a metric to estimate the error rate

f the recovered data. To further evaluate the performance of the
ion for indoor localization, Computer Communications (2015),
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Algorithm 1 SRSVD.

Input: rl , ru : lower and upper bounds of the rank.

λl , λu : lower and the upper bounds of the tradeoff factor.

τ , ω : number of iterations and the termination condition

for λ.

Xm×n , B : measurement matrix and indication matrix.

c , � : variable define in Eq. (9) and Section 5, respectively

Output: X̂ : recovered matrix.

1: for r ← ri to r j do do

2: Xl ,�l ← SVD(r, λl , τ, X, B),�min ← �l;

3: Xu ,�u ← SVD(r, λu, τ, X, B);

4: λnext ← median(λl , λu);

5: while (|λnext − λprev| < ω) do

6: Xλnext
,�λnext

← SVD(r, λnext , τ, X, B);

7: X̂min,�min ← min (Xl , Xu, Xλnext
), min (�l ,�u,�rnext );

8: λprev ← λnext ;

9: λnext ← select two min of �l ,�u,�min, confirm new

λlnew
, λunew ,

10: median(λlnew
, λunew);

11: return X̂;

12: Function SVD(r,λ,τ ,X,B)

13: L ← random(L);

14: for i ← 1 to τ do do

15: R ← MINLEASTSQUARE([L;
√

λI], [X; 0])T ;

16: L ← MINLEASTSQUARE([RT ;
√

λI], [X; 0])T ;

17: if c < cnext then

18: Lnext ← L; Rnext ← R; cnext ← c;

19: return X̂ ← L ∗ RT and � (compute based on the definition);

20: Function minleastsquare(A,B)

21: Y ← AT A\ AB;

22: return Y;

Algorithm 2 SRSVD+KNN.

Input: rl , ru : lower and upper bounds of the rank.

λl , λu : lower and the upper bounds of tradeoff factor.

τ , ω : number of iterations and termination condition for λ.

Xm×n , B : measurement matrix and indication matrix.

c , � : variables defined in Eq. (9) and Section 5

Output: X̂m×n:Recovered matrix.

1: for i ← 1 to m do

2: if row[i] is absent then

3: j ← random(1 : n);

4: X(i, j) ← average {neighbors of X(i, j)};

5: for j ← 1 to n do

6: if column[ j] is absent then

7: i ← random(1 : m);

8: X(i, j) ← average {neighbors of X(i, j)};

9: X̂m×n ←SRSVD(rl , ru, λl , λu, τ,ω, X, B, c,�);

10: return X̂m×n;
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Table 1

Merging matrices of various sizes.

Index W M N Final size

1 −20 9 208 180 × 208

2 +20 9 208 9 × 4160

3 +208 9 20 9 × 4160

4 −208 9 20 1872 × 20

5 +9 20 208 20 × 1872

6 −9 20 208 180 × 208

7 +208 20 9 20 × 1872

8 −208 20 9 4160 × 9

9 +20 208 9 208 × 180

10 −20 208 9 4160 × 9

11 +9 208 20 208 × 180

12 −9 208 20 1872 × 20
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2

ecovering algorithm, we compare two algorithms: KNN, which uses

he mean of K nearest neighbors to interpolate, and Sparse Linear Al-

ebra (SLA) [40], which interpolates NaN elements in a 2-d array us-

ng non-NaN elements. SLA is investigated for image recovery in [41],

here the problem shares some common features with WiFi finger-

rint recovery. The performance of the SLA recovery depends on how

olumns are related to each other. Finally, the WKNN localization algo-

ithm [4] is employed to evaluate the localization accuracy based on

he recovered fingerprints.
Please cite this article as: Z. Gu et al., Reducing fingerprint collect
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.1. Error analysis methodology

We propose to use the normalized difference between the recov-

red matrix X̂ and the original matrix X as a metric to measure the

rror rate. The difference between the two matrices is defined as the

um of the absolute values of the difference of the corresponding el-

ments in these two matrices, i.e.∑
, j:A(i, j)==0

|X(i, j) − X̂(i, j)| (12)

hus, the normalized difference (error rate) is

=
∑

i, j:A(i, j)==0 |X(i, j) − X̂(i, j)|∑
i, j:A(i, j)==0 |X(i, j)| (13)

.2. Performance of merging matrix

In Section 3, the size of the merging matrix of the fingerprints X

s W · M × N, where W, M, N refers to the collecting times at each lo-

ation, the amounts of APs and the number of locations, respectively.

owever this is not the only way to construct the merging matrix.

ince SVD can be used to analyze the a matrix’s hidden structure, dif-

erent structures of a matrix make different contributions to its in-

er correlations, which will further influence the effectiveness of the

erging matrix. Hence, it is desirable to find a suitable matrix that

an be recovered most effectively.

To make it easy to understand, we retain the major structure of

· M × N, but change its meaning. The fingerprint data contains

he amounts of APs, geographic reference locations, and the times of

ecordings at each location, which are set as 9, 208, and 20, respec-

ively. The sign of W indicates the direction (“+” for horizontal and

−” for vertical) of generating the merging matrix. For example, if W

M × N is +20 · 9 × 208, then it means X = [E1 E2 . . . E20], where Ew

s the wth (w = 1, 2, . . . , 20) submatrix of X with size 9 × 208. We

ist all possible dimensions of the merging matrix in Table 1. We will

valuate their performance with different sizes in Section 5.2.

Out of the 12 ways to compose the merging matrix, we need to

nd the one with the best performance. In Fig. 3, the x-axis rep-

esents sample rate (i.e., 1 − η), and the y-axis is the magnitude of

. The error rates of these 12 matrices with different structures are

ostly influenced by the matrices’ final sizes, despite the transpose

elations between them. Matrices with final size 9 × 4160 (or 4160 ×
) perform worst. When the sample rate is more than 18%, matrices

f size 180 × 208 or 208 × 180 perform a little worse than those with

ize 20 × 1872 or 1872 × 20, where the difference is negligible. At

he same time it performs much better than the latter at a sample rate

elow 18%. For the sake of a lower sample rate, which means less ef-

ort of collection, to generate the merging matrix with size 180 × 208

r 208 × 180 is better than others, so that the structure of −20·9 ×
08 is desirable.
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Fig. 3. Error rates of matrices with different structures.

Fig. 4. HybridRandLoss sampling model.
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.3. Data preparing

We collect a complete set of fingerprints to compose the merging

atrix using a Motorola smartphone. The detail has been described

n Section 3.1. In order to evaluate the performance of different recov-

ring algorithms, we should sample the merging matrix at a certain

ate to obtain the relevant matrices for experiments. The process of

ngerprint collection is as follows: one stands at a reference point

ith a mobile phone in hand. The device records the RSSI of all avail-

ble APs at once. We compare the following models to simulate fin-

erprint reduction.

1. SimpleRandLoss: This is a simple random loss model. Due to the

complexity of indoor environments, data points are dropped in-

dependently at random with probability η (loss rate).

2. BlockRandLoss: In this model, data are lost at random times (e.g.,

during sampling or transmission). In these cases, we may lose

some random parts of the merging matrix X. We simulate the

losses by discarding some of the blocks in X randomly, and drop-

ping independent data points randomly with probability η.

3. HybridRandLoss: This model simulates a set of loss events, in

which some (less than half) random reference locations are

omitted when collecting fingerprints. At the same time some

other data samples are missed due to sampling or transmis-

sion errors. We simulate the losses by dropping random columns

and some random data points with probability η. Our algo-

rithm primarily considers this model. The model is depicted in

Fig. 4.

We make a comparison between algorithms for different loss

odels. Fig. 5 shows bar charts of the performance of the key

lgorithms for three models. It is obvious that SRSVD+KNN per-

orms significantly better across all loss models. In reality, we re-

uce collecting fingerprint in the HybridRandLoss model. Specif-

cally, the proposed algorithm will perform poorly when more

han half of reference locations are omitted in the HybridRandLoss

odel.
KNN     

SLA     

SRSVD   

SRSVD+KNN

dels with sample rate 0.2.
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.4. Data recovering performance

We compare SRSVD+KNN with other recovery methods in the Hy-

ridRandLoss model as we show in Section 5.3. In the experiments,

he sample rate increases from 5% to 95% with step size 5%. Fig. 6

hows the performance of each method. The higher the sample rate,

he lower the error rate. When the sample rate is high, all the meth-

ds have similar performances. However, SRSVD+KNN performs sig-

ificantly better than others at a low sample rate.

SLA works better than SRSVD or KNN. However, the combination

f SRSVD and KNN turns out to perform very well. The results show

hat SRSVD+KNN uses only 5% of the original data to recover all the

ngerprints with error rate less than 14%. When half of the original

ata are used, the error rate is within 6.6%.

.5. Localization using recovered fingerprints

A set of experiments are conducted to evaluate the accuracy of the

KNN localization algorithm with recovered fingerprints, in compar-

son with the effect of the original complete fingerprints.
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The WKNN algorithm is a weighted K-Nearest Neighbor method.

n the online phase, a user at an unknown location measures the RSSI

alues. Then the WKNN algorithm finds the best K matched loca-

ions in the fingerprints. Finally, the user is localized by calculating

he weighted average of the K neighbors’ coordinates.

In the experiment, RSSIs are measured at 10 different locations

ith known coordinates, and the measurement at each location is

epeated five times. The corresponding localization results and the

ssociated cumulative distribution function (CDF) for WKNN (K = 4

roves to be a good choice) based on the complete fingerprints, the

ecovered fingerprints through KNN, SLA, and SRSVD+KNN are calcu-

ated.

Fig. 7 shows the performance of localization. SRSVD+KNN-0.1,

LA-0.1 and KNN-0.1 represent the results of localization based on

ecovered fingerprints through SRSVD+KNN, SLA and KNN with η =
.9, respectively. Fig. 7 indicates that the curve of SRSVD+KNN-0.1 is

lose to the one that uses the original complete fingerprints.

. Conclusion

In this paper, a novel approach has been proposed to reduce the

easurement effort required for collecting WiFi fingerprints. All the

ollected data are merged into the merging matrix. The SVD method

eveals the hidden structure and redundancy characteristics via the

erging matrix, which makes it possible to apply the compressive

ensing technique for data reduction. The challenge is how to recover

he absent data in the merging matrix faithfully, while minimizing

he effort of data collection. Experimental results show that using 5%

f the original data, the proposed approach SRSVD+KNN can recover

ll the fingerprints with error rate less than 14%. The localization ac-

uracy with the recovered fingerprints is similar to the one with the

riginal complete fingerprints.
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