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a b s t r a c t 

Mobile data traffic is increasing rapidly and wireless spectrum is becoming a more and more scarce 

resource. This makes it highly important to operate mobile networks efficiently. In this paper we are 

proposing a novel lightweight measurement technique that can be used as a basis for advanced resource 

optimization algorithms to be run on mobile phones. Our main idea leverages an original packet disper- 

sion based technique to estimate per user capacity. This allows passive measurements by just sampling 

the existing mobile traffic. Our technique is able to efficiently filter outliers introduced by mobile net- 

work schedulers and phone hardware. In order to asses and verify our measurement technique, we apply 

it to a diverse dataset generated by both extensive simulations and a week-long measurement campaign 

spanning two cities in two countries, different radio technologies, and covering all times of the day. The 

results demonstrate that our technique is effective even if it is provided only with a small fraction of 

the exchanged packets of a flow. The only requirement for the input data is that it should consist of a 

few consecutive packets that are gathered periodically. This makes the measurement algorithm a good 

candidate for inclusion in OS libraries to allow for advanced resource optimization and application-level 

traffic scheduling, based on current and predicted future user capacity. 

© 2016 Published by Elsevier B.V. 

1. Introduction 1 

Even though spectrum efficiency is improving thanks to the 

Q2 

2 

fifth generation [1] of mobile networks, the wireless medium is 3 

becoming a scarcer and scarcer resource, due to the ever increas- 4 

ing demand for mobile communication. Recently, a number of pa- 5 

pers addressed improved resource allocation mechanisms based on 6 

capacity prediction techniques. For instance, [2–4] propose to use 7 

resources when they are more abundant and cheap, and to refrain 8 

from or to limit communication when it is more expensive (e.g., 9 

lower spectral efficiency, higher congestion, etc.) by exploiting per- 10 

fect knowledge of the future capacity. 11 

In [5] , we surveyed the state of the art on mobile capacity pre- 12 

diction techniques and built a model for both short and medium to 13 

long term prediction errors in order to be able to quantify the im- 14 

pact of prediction uncertainties in resource allocation. Most short 15 
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term prediction techniques [6,7] rely on time series filtering solu- 16 

tions, such as moving average and autoregressive (ARMA) or au- 17 

toregressive conditional heteroskedasticity (ARCH) modeling. Thus, 18 

in order to allocate resources on a given time granularity, pre- 19 

diction must be available with the same granularity and, conse- 20 

quently, mobiles must be able to measure capacity with the same 21 

granularity [8] . 22 

Mobile capacity measurement is a well investigated topic in the 23 

literature, but, to the best of our knowledge, no lightweight or pas- 24 

sive technique allows mobiles to collect frequent measures of their 25 

capacity. To fill this gap, this paper proposes a simple technique 26 

which is able to measure the fast variations of the per user capac- 27 

ity and, from those, the expected end-to-end throughput. 28 

In order to do so we adapt packet train dispersion techniques 29 

by applying an adaptive filtering mechanism, which we show is 30 

effective in removing the impact of outliers due to bursty arrival 31 

and jitter, which are very prevalent in mobile environments. We 32 

validate the effectiveness of the solution through extensive simula- 33 

tion and “real world” measurement campaigns: our technique can 34 

achieve an accurate throughput estimate with as few as 5 % of the 35 

packets needed by other solutions, while making an error smaller 36 

than 20 %. 37 

http://dx.doi.org/10.1016/j.comcom.2016.02.005 
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Our goal is to provide a simple tool that evaluates passively or 38 

with minimum impact the per user capacity variations over time 39 

in a mobile environment. This enables filter based prediction tech- 40 

niques and, consequently, prediction based resource allocation op- 41 

timization. Source code for the tool can be found in the repository 42 

of the EU project eCOUSIN. 1 43 

In the following sections we propose a lightweight measure- 44 

ment technique of the per user cell capacity. Our proposal adapts 45 

earlier packet train dispersion techniques and allows to collect re- 46 

liable measurements on a mobile device despite the complexities 47 

introduced by the wireless link and the phone hardware. Also, we 48 

have evaluated our technique on both simulations and actual mo- 49 

bile network data collected during a measurement campaign. 50 

The rest of the paper is structured as follows. Related work and 51 

some mobile network fundamentals are discussed in Sections 2 52 

and 3 , respectively. We present our measurement technique in 53 

Section 4 , in Section 5 a first evaluation of our technique based on 54 

simulations, and in Section 6 we describe how we collected “real 55 

world” data to validate it. The results are discussed in Section 7 . 56 

Finally, Section 8 summarizes our conclusions. 57 

2. Related work 58 

A number of approaches exist to estimate mobile capacity. The 59 

most popular of which is Ookla’s mobile application, Speedtest [9] , 60 

which computes the maximum end-to-end throughput achievable 61 

by two long lived TCP connections with the closest measurement 62 

server (according to our tests the measurement lasts for either 20 s 63 

or after 30 MB have been downloaded, whichever happens first). 64 

Then, it derives throughput samples and aggregates them into 20 65 

bins (each one has about 5% of the samples), applies some post 66 

processing to remove measurement artifacts and, finally, estimates 67 

the average of the bins. Huang et al. [10] proposed to use 3 paral- 68 

lel TCP connections in order to remove the effects of packet losses, 69 

TCP receive window limitations and overloaded servers, while ig- 70 

noring any data collected during the slow-start phase of TCP. The 71 

calculated throughput is given by the median of the collected sam- 72 

ples, in order to reduce the effect of outliers. Recently, Xu et al. 73 

[11] analyzed the use of UDP to compute the end-to-end through- 74 

put availability, also accounting for packet interarrival times and 75 

the impact of mobile scheduling. All these techniques are active, 76 

use long data transfers and thus, incur a high overhead. 77 

Conversely, passive monitoring techniques aim at estimating 78 

similar information by analyzing ongoing mobile communica- 79 

tions, without triggering any dedicated activity. Gerber et al. [12] 80 

achieved quite accurate results just by relying on selected types 81 

of applications (i.e., video streaming), which provide more reli- 82 

able throughput measurements as they are more likely to exploit 83 

the full cell capacity. In order to study transport protocols in LTE, 84 

[13] developed a passive measurement scheme, which monitors 85 

the sending rate over a given time window that ensures the full 86 

exploitation of the capacity. PROTEUS [14] combines passive mon- 87 

itoring with linear prediction to estimate the achievable through- 88 

put. Other solutions worth mentioning in this category are [15] , 89 

where the authors try to identify bottleneck links in the core net- 90 

work of an operator by conducting large scale passive measure- 91 

ments of TCP performance parameters and [16] , where network 92 

“footprints” (generated by counting the number of packets and the 93 

number of retransmissions of all the users of a network) were used 94 

to identify capacity bottlenecks. However, these solutions cannot 95 

be directly applied to mobile phones. We conclude that none of the 96 

aforementioned solutions allow for frequent throughput measure- 97 

ments, nor do they provide estimates of the per user cell capacity 98 

1 https://ecousin.cms.orange-labs.fr/sites/ecousin/files/lightmeasure.zip . 

on the client side (mobile device) to allow for effective capacity 99 

prediction and resource allocation. 100 

Lai [17] attempts to actively measure the link capacity (which 101 

in [17] is called bandwidth) of a path by taking advantage of 102 

the packet pair property of FIFO-queuing networks. Dovrolis [18] 103 

further refines the packet pair technique and demonstrates that 104 

packet pair dispersion rate has a multimodal distribution, whose 105 

modes in turn depend on the capacity and the cross traffic at each 106 

of the links composing the sender-receiver path. Also, the authors 107 

devise a method to estimate the capacity of the bottleneck link in 108 

the path, based on the fact that the average throughput measured 109 

by packet trains converges to the asymptotic dispersion rate, from 110 

which an estimate of the bottleneck capacity can be computed. As 111 

we will discuss later though, it is unsuitable for use over mobile 112 

networks. CapProbe [19] proposed a technique based on packet 113 

pairs dispersion and delays to devise a reliable capacity estimation 114 

technique, aimed at mobile networks. Both techniques are meant 115 

to measure the capacity of the bottleneck link of a path. Instead, 116 

we are interested in measuring the per user capacity at a given 117 

moment. 118 

We have recently proposed a passive technique that is able to 119 

provide an estimation of the per user capacity range by monitor- 120 

ing the packet arrival pattern that takes place during the TCP slow 121 

start phase [20] . In this current work, we are interested in a more 122 

accurate per user capacity measurement that is based on periodic 123 

samples of the exchanged traffic, taken during the whole duration 124 

of the flow. 125 

3. Mobile networks characteristics 126 

In this section we provide a brief overview of the components 127 

and characteristics of mobile networks that have an effect on ca- 128 

pacity measurement. In the rest of the paper, we will use termi- 129 

nology and network architecture components of LTE, but the ideas 130 

and the algorithm can be applied to any recent mobile network 131 

technology like 3G. 132 

The user equipment (UE), which can be any device with mo- 133 

bile communication capabilities, connects to the operator network 134 

through any of the multiple base stations (BS) that the operator 135 

controls, as shown in Fig. 1 . BSs are in turn connected to the core 136 

network (CN) of the operator. This set of BS can be collectively 137 

called Radio Access Network (RAN). They form the interface be- 138 

tween the UE and the operator. 139 

The transmission of data from the BS to the multiple UEs con- 140 

nected to it is regulated by a scheduler, which periodically al- 141 

locates resources and transmits packets to the associated UEs. 142 

This period, called Transmission Time Interval, (TTI) largely dif- 143 

fers among mobile telecommunication systems, with more recent 144 

Fig. 1. Some of the LTE network components that a file has to traverse in order to 

reach a mobile client. 
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Fig. 2. Time-sequence graphs presenting the arrival of packets to a smartphone, as they were captured by the traffic sniffing tool tcpdump. The time values represent time 

since the first packet of the download arrived and when the related packets were captured by tcpdump. 

technologies having lower values. It can be as short as 1 ms for 145 

LTE or at least 10 ms for UMTS. Thus, the UEs receive data in a 146 

way such that a burst of data is transmitted to them, during TTIs 147 

in which they have been allocated resources and receive nothing 148 

during TTIs in which they have not been allocated resources. The 149 

scheduling process is usually based on a fairness scheme that takes 150 
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segment of it is encapsulated in a TB. The TB is then sent to 176 

the UE. 177 

The mechanisms above are illustrated in Fig. 2 a, which shows 178 

the arrival of packets to an LTE smartphone, as captured by the 179 

sniffing tool tcpdump. In this experiment we are saturating the 180 

link and observe its behavior during TCP steady state. Note that 181 
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 193 
nto account the data requirements and channel quality of all the

Es served by the same BS. A very popular such scheme is the

proportionally fair” scheduling [21] . It tries to weight the past al-

ocation of resources and the current potential throughput of all

he competing users. This way it finds a balance between providing

dequate resources to all users, regardless of their channel quality,

nd maximizing the overall throughput of the base station. Thus,

n contrast to wired networks, which usually serve traffic based on

 FIFO scheme, the incoming traffic at the antenna is distributed

o user specific queues and the outgoing is shaped by the sched-

ler. So, the nature of the competing traffic (UDP/TCP or short/long

ows) does not greatly affect the speed of each user. On the other

and, factors that may have an effect include policies (e.g., whether

 user is a virtual or host network subscriber [22] ) and the specific

ervice that generates the traffic (e.g., VoLTE traffic has the highest
riority in an LTE network). 

When a packet is transmitted to a UE, it travels from the Inter- 

et to the operator’s core network which forwards it to the base 

tation that the UE is connected to. The packet is then stored at 

he base station in a buffer dedicated to the recipient UE. The 

acket remains in the dedicated buffer until the scheduler decides 

o allocate resources to the recipient UE. Upon allocation and de- 

ending on the signal quality, it is either grouped alongside other 

ackets present in the buffer to a Transport Block (TB) or, in cases 

f a bad signal and/or a small amount of allocated resources, a 
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he TTI of LTE is fixed to 1 millisecond. It is easily observable that

he packets arrive in groups that have about the same duration as

he TTI. Between these groups of packets, the smartphone is not

llocated resources, thus nothing is received. The size and tempo-

al spacing of the groups depend on the channel quality of the UE

nd the congestion level at the BS. 

.1. Measurement artifacts 

In our traces we frequently observed measurement artifacts

hat are unrelated to the scheduler and are due to the following

easons. 

.1.1. Small congestion window values during the slow start 

The servers that transmit data over TCP send bursts of pack-

ts to the client and wait for the related acknowledgments be-

ore sending more. This behavior is very prominent during the

low start phase of the transmission when the congestion window

as small values. The gap in the transmission at the server side

ay cause an analogous gap in the transmission at the base sta-

ion. During this time, the base station is not sending data to the
ecipient UE, because there are not data in the dedicated buffer. 200 

his is visible in Fig. 2 b, which illustrates the delivery of the first 201 

ackets of a TCP flow over LTE. In two occasions, consecutive TBs 202 

re received with a delay on the order of tens of ms. We also 203 
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 310 

hardware make the use of traditional packet pair techniques infea- 311 

sible. Any two packets that would make a packet pair are in either 312 

of the following cases. 313 

Transmitted in the same TB. In this case the packets arrive 314 

more or less at the same time to the UE, since all the information 315 

included in the TB is transmitted in parallel using multiple carrier 316 

frequencies. The lower protocol layers of the UE ensure that they 317 

are delivered to the higher layers in the right order, while also as- 318 

signing them slightly different timestamps. Consequently, sniffing 319 

tools like tcpdump perceive them as arriving with a tiny time dif- 320 

ference, in the order of a few hundreds of microseconds. A capacity 321 

estimation based on these packet pairs would greatly over-estimate 322 

the real value of the capacity. 323 

Transmitted in different TBs. In this case, the packet pair con- 324 

sists of the last packet of a TB and the first packet of the following 325 
observe in this example, that the total number of packets deliv-

ered in the groups that arrive at about 75 ms is bigger than the

number of packets in the first set of groups (the second group has

just one packet) at 0 ms. This is caused by the exponential growth

of the congestion window. Eventually, the congestion window is

large enough that the we observe a continuous stream of incom-

ing packets and this effect diminishes. Since the Round Trip Time

(RTT) is larger in 3G networks, the impact of this TCP behavior is

slightly more pronounced. 

3.1.2. Infrequent polling for incoming packets 

IP packets arrive at the UE as part of a TB alongside other IP

packets. An ideal method to measure the downlink speed then

would require the registering of the exact size and timestamp of

each TB. However, this is unfeasible. The related information is

only available at the eNodeB, to which a client side tool as the

one we propose has no access, or at the Network Interface Card

(NIC) of the mobile device. Accessing such NIC information would

require specialized drivers, that vendors are very hesitant to re-

lease for public usage. The lowest level from which we can extract

network information is the kernel, where we register the time and

size of all the IP packets. Thus, our view of the network is limited

to what is known to the kernel. The exact timing of packet arrivals

at the kernel is affected by the capabilities of the phone and the

capture software. 2 Usually packets are registered at the kernel with

a noticeable delay, compared to their arrival at the NIC. In [23]

the delay between the WiFi interface and the kernel is measured,

which the authors believe should be comparable with the “Mobile

NIC-kernel” delay. They note that the TCP data packets, the pack-

ets we are interested in, have the lowest possible delay, compared

to ICMP and other TCP packets. The delay, which depends on the

NIC ranges from being insignificant to being a few ms. According

to [11] , both delays are related to the polling frequency of the NIC

from the OS. 

We have conducted a small scale experiment to assess the ef-

fect of polling on several phones, when both the WiFi and the LTE

interface are used. When the LTE interface is active, packets are

reported in groups similar to the ones visible in Fig. 2 a, in all of

the phones. The pattern is always similar with some minor vari-

ations on the size and spacing of the groups, depending on how

powerful the hardware is. For the WiFi experiment we use 802.11g

without packet coalescing, to ensure that each MAC frame encap-

sulates exactly one IP packet and there is no grouped transmission

of packets. We also set up a sniffer, which provides more accu-

rate timestamps to monitor the exchanged traffic and provide the

groundtruth. In Fig. 2 d and e, we show the traces captured by the

sniffer and the phones during high speed downloads. We observe

that different phones may exhibit a very different behavior. The

sniffer always reports a continuous delivery of packets “in the air”.

Some phones report the packets in the same grouped fashion as

above, whereas others report continuous delivery of packets. Based

on these observations, we conclude that the pattern of packet ar-

rival on WiFi seems to be greatly dependent on the phone speci-

fications. The arrival pattern in the LTE case is determined by the

grouped delivery of packets in the physical layer, but the times-

tamping accuracy of each packet is related to the phone hardware.

More powerful phones are less affected by the polling problem, but

even in this case, the delay shows slight variations. Since this delay

is very small, it is not significantly affecting our technique, whose

adaptive and statistical nature tries to countermeasure it. 

3.1.3. Weak or busy phone hardware 

It is quite common for packets to be delivered to the phone
but not delivered to the higher layers until several milliseconds 

2 http://www.tcpdump.org/faq.html#q8 [Last access: 2015-03-24]. 
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ater, alongside all the other packets that have been received in the

eantime. This is usually observed in cases of high capacity and/or

igh CPU utilization. This behavior is very evident in Fig. 2 , which

epicts the TCP steady state of a 3G download. According to the

erver side trace of this download, the server transmitted all the

ackets that are visible in the figure almost “back-to-back”. Also,

he phone trace showed a steady rate in the delivery of packets.

ut at times 5175 and 5215 ms we observe a gap in the delivery of

ackets and then the delivery of an impossibly large group. Packets

ere actually delivered during these gaps, but were registered all

ogether when the CPU was able to process them. 

.1.4. Slower speed during the first packets of a flow 

We have noticed that when a UE may achieve very high speed,

here is a significant difference in the arrival rate of the first few

undred packets of a flow and the arrival rate of the rest of that

ow’s packets. The difference is present even if we take into ac-

ount the reduced rate of the slow start phase of TCP, in case the

ow is TCP. We have observed this phenomenon in traces gath-

red in the networks we used to evaluate our tool, as well as other

uropean mobile networks. In order to get more insight, we have

one a small experiment in a Spanish LTE network, where we send

onstant bit-rate UDP traffic and monitor the arrival rate as re-

orted by the mobile. When the server transmits traffic at a rate

maller than 25 Mbps, there is no difference in the arrival rate at

ifferent parts of the flow. If the rate of the server is higher than

5 Mbps, the first part of the flow (usually the first 150 to 300

ackets) has an arrival rate 25 –50% lower compared to other parts

f the same flow. For the flow presented in Fig. 2 , the arrival rate

f the packets located on the left side of the vertical line (first 178

ackets) is almost half the rate of the rest of the packets on the

ight side of the vertical line. If the transmission pauses for a few

ens of ms, the same effect is observed upon restart. Even though

e did not perform a dedicated experiment for a 3G network, our

races indicate that this phenomenon is even more prominent in

G. An independent team of researchers [24] , who conducted mea-

urements in the same German network we used to collect our

races, observed that the first packets of a flow experience a con-

iderably higher delay compared to the rest, when the rate at the

erver is higher than 20 Mbps. This effect causes reduced speed

uring the first part of the flow. While we are unable to investi-

ate this phenomenon further, due to we lack of physical layer or

obile network specific information, we believe that it can be at-

ributed to an operator configuration. 

.2. Packet pairs issue 

The previous characteristics of mobile networks and phone
B. Thus, the capacity value is greatly underestimated, since the 326 

easured dispersion is the dispersion between the TBs and each 327 

B is very likely to be able to encapsulate more than one IP packet, 328 
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which is not reflected in the measurement. If there is exactly one 329 

packet per TB, then an accurate estimation is possible, but we ob- 330 

served that in the majority of the cases each TB contains multiple 331 

packets. 332 

3.3. Packet trains issue 333 

Packet trains are also problematic. They cannot be used in a 334 

passive scenario because the server transmits packets on the re- 335 

ceipt of ACKs and the application requirements, so the trains will 336 

have variable length. The number of packets in each TB may be dif- 337 

ferent, which results in similar problems to the ones described in 338 

the “packet pair” scenario. On some occasions all the packets will 339 

be transferred in the same TB and on others in multiple TBs. 340 

It is clear that long-established packet dispersion techniques 341 

that were developed to detect the bottleneck link capacity in wired 342 

networks are not suitable for mobile networks, especially in re- 343 

gards to detecting the per user capacity. In the sequel, we will 344 

present the necessary modifications to this approach for it to pro- 345 

vide reliable capacity estimations in mobile scenarios. 346 

4. Mobile capacity estimation 347 

In the literature, the term “link capacity” refers to the trans- 348 

mission rate of a link, “path capacity” is the minimum transmis- 349 

sion rate among all the links of the path and finally “link available 350 

bandwidth” refers to the spare link capacity (capacity not used by 351 

other traffic) [18] . Instead, we are interested in estimating the max- 352 

imum capacity that the scheduler of an eNodeB could allocate to a 353 

target user if he requested saturation traffic under a specific bearer. 354 

This metric is specific to cellular networks, we call it “per user ca- 355 

pacity” and we symbolize it as C U . For brevity, in the rest of the 356 

paper we refer to it as “capacity”. To the best of our knowledge, 357 

traffic flow templates are not used for generic browsing and multi- 358 

media traffic, which is the scope of this work. Thus, we can safely 359 
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Fig. 3. Dispersion of IP packets over the Internet. First, they are sent back-to-back 

from the server (1). After experiencing dispersion on the Internet, they arrive on 

the BS (eNodeB) (2). Finally, they are received in groups by the UE (3). The timelines 

(1–3) happen sequentially, one after the other, not in parallel. The horizontal arrows 

represent TBs allocated to the recipient UE. 

uler allocates a TB (marked with horizontal arrows in the plot) to 391 

the receiving UE (3), as many packets as possible are encapsulated 392 

in it. Therefore, all the packets that are scheduled together arrive 393 

within the same TTI at the UE. As a consequence, the inter-packet 394 

interval can be greatly reduced (packets A and B) or greatly mag- 395 

nified (packets B and C). 396 

Considering the set of “back-to-back” transmitted packets cross- 397 

ing the path in Fig. 3 , we can distinguish their arrival rate R A at the 398 

antenna from their transmission rate from the antenna to the user, 399 

which can have a maximum value of C U . Both metrics are dynamic 400 

and are affected by the same parameters that affect R . Thus, if we 401 

sample them for a specific period of time, we may notice the fol- 402 

lowing relationship between them. If R A > C U , the set of packets 403 

arrives at the BS with a delay which is inversely proportional to 404 
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ssume that all the measured traffic is using the default bearer, al-

owing us to ignore this variable. As we will analyze in the sequel,

n practice, the measured C U will often be less than the maximum

apacity a user could be allocated. For this reason, the measured

alue represents the greatest lower bound of the user’s capacity.

e will show that this value is very close to the actual maximum,

hus causing a slight underestimation of the true maximum per

ser capacity. 

The wireless link is the last hop of a downlink path and the

 U of all the connected users is dependent on the cell congestion,

he channel quality, the channel’s bandwidth and the scheduling

lgorithm. It is usually the link of a path with the lowest capacity,

hat also contributes the most to the delay. On the other hand, the

verage end-to-end TCP throughput R , depends on the capacities

nd the cross traffic of all the links in the path, as well as possi-

le rate adaptations at the server side, caused by the TCP mecha-

isms. The end-to-end TCP throughput is primarily determined by

he link with the minimum spare link capacity, which in a mobile

cenario is usually the RAN. We are interested in measuring C U ,

ince it is the metric that affects all the connections that the user

s going to have in the future and is usually the bottleneck. 

Fig. 3 illustrates the packet dispersion due to the transmission

ver links at different link capacities. This example is based on LTE,

ut similar effects are observed in various mobile technologies. Ini-

ially, (1) the server sends a burst of IP packets (A-H in the exam-

le) back to back. The number of packets in the burst varies since

t depends on a number of factors like the state of TCP connec-

ion, the specifics of the application and the server that generates

t. Subsequently, (2) the base station (eNodeB) receives the packets,

hich have suffered variable delays due to the different link capac-
ties and cross traffic encountered along the path. When the sched- m  433 
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 A and shorter than the average time needed for the BS to serve

ll but the last packet. Since the arrival rate is higher than the de-

arting rate at the base station, the dispersion of the set is caused

y the last link. Also, depending on the scheduling strategy, the set

ay be served within the same transport block or multiple trans-

ort blocks by the BS. Conversely, if R A < C U the set of packets

rrives at the BS separated by a delay which is longer than the av-

rage serving time of the BS. We thus have three cases (excluding

he problematic cases of Section 3 ): 

(i) Bursty arrival [11,13] (e.g.: set of packets E-F), if R A > C U and

packets are in the same transport block. 

(ii) Wireless link capacity, if R A > C U and packets are in different

transport blocks (e.g.: set of packets A-D). 

(iii) The bottleneck link being in the server-BS path and/or the

server transmitting at a very low rate (e.g. TCP slow start), if

R A < C U . 

In order to estimate C U , we have to filter both i ) and iii ) cases,

s well as take into account the behavior of sets of packets when

ransmitted over mobile networks as presented in Section 3 . In

rief, our approach has two components: (a) generating capac-

ty estimation samples which are not significantly affected by the

bove and (b) the statistical processing of those samples in order

btain a C U value. 

.1. Capacity estimation samples 

The input data for our passive measurement tool are the times-

amps and sizes of all the received data packets of a smartphone.

e ignore packets related to connections establishment such as

CP and TLS handshakes, since they can not saturate even mo-

entarily the wireless link. This information can be collected on
measurements for mobile networks, Computer Communications 
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Fig. 4. Scatterplots of c W (left of each pair) and its statistical distribution (right of e

is computed on windows larger than the TTI, t T > t S , the distribution gets more sta

the OS level by monitoring the stack. In our experiments, we

use rooted Android smartphones and tcpdump to capture all the

incoming traffic. Ultimately this functionality could be included

in the mobile OS as an on-demand lightweight measurement

service. 

We consider a set of N packets sent from a server and re-

ceived at the UE so that the i th packet is received at time t i , with

i = { 1 , . . . , N} . A key metric used by our algorithm is the “inter-

packet interval”, the time difference between the arrival of two

consecutive packets ( t i +1 − t i ). Obviously, in a group containing N

packets, there are N − 1 intervals. W represents the unit-less num-

ber of such intervals that we take into account when we gener-

ate the capacity estimation samples. For each packet in the set we

define the dispersion time d W 

(i ) = t i + W 

− t i , and the per user ca-

pacity sample c W 

(i ) = ( 
∑ i + W −1 

j= i L j ) /d W 

(i ) , for a given value of W ,

where L i is the length of i th packet. 

In detail, the c W 

( i ) value of packet i is derived by adding the

sizes of W consecutive packets, starting from i and then dividing by

the time duration of W consecutive inter-packet intervals, starting

from [ t i +1 − t i ] . Packet i + W contributes only to the denominator.

For example, in Fig. 3 , c W =2 (A ) is computed by dividing the sum

of sizes of the packets A and B by the dispersion time d W =2 (A ) =
 C − t A . 

The three arrival cases above contribute to the distribution of

the capacity samples in different ways. Arrivals of type (i) cause

a tiny d W 

and, thus, skew the distribution to the right (over-

estimation of C U ). At the same time, type (iii) events, which show

larger d W 

(under-estimation of C U ) skew the distribution towards

the left. To better visualize what is discussed next, Fig. 4 shows

a set of scatterplots of c W 

and histograms of its distribution com-

puted on a single download performed using the Speedtest appli-

cation [9] over a HSPA connection. The X-axis of the scatterplots

represents the arrival time of packet i and the Y-axis its c W 

value. 

The impact of type i ) arrivals can by limited by setting W ap-

propriately. The idea is to include in each measurement packets

belonging to different TBs in order to make sure that the highest

throughput c W 

we can measure is only related to the cell capac-

ity and not to bursty packet arrivals, as it would have happened
had we chosen W = 1 in the example of Fig. 3 . In order to achieve 

that, it is sufficient to study groups that, starting from any packet 

i , contain W i intervals so that the minimum dispersion time d W 

( i ) 

o  505 

m  506 

t  507 
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ir) computed for t T = { 1 , 5 , 10 , 30 } ms from left to right. When the dispersion time

s longer than the maximum TTI of the scheduler, abbreviated t S :

 i = { min (W ) | min 

W 

(d W 

(i )) > t S } (1)

his guarantees that at least two packets within the W i window

re scheduled in two different transport blocks, since t i + W i 
− t i =

 W i 
(i ) > t S . In other words, we are averaging the burstiness over

wo transport blocks. An effect of Eq. (1) is that each packet i has a

ifferent W i value, depending on the spacing of packets that were

eceived after it. 

It is important to select the minimum value of W for the

reation of the c W i (i ) value for packet i that has the property

in (d W i 
(i )) > t S . As discussed in Section 3 , the “slow start” be-

avior of TCP introduces noticeable gaps in packet delivery. Thus,

amples that include these gaps in their calculation of d W 

, gener-

te c W 

values that are significantly smaller and not representative

f the C U . A high value of W increases the probability of a sample

o include such gaps. 

.2. Statistical processing of the samples 

Now that type (i ) events are filtered, we ensure that each

et spans across at least two TBs. The minimum dispersion time

in d W i 
(i ) for every packet i of the flow cannot be smaller than

he minimum time needed for a set of packets to cross the wire-

ess link, which corresponds to the maximum per user cell capac-

ty. Thus, C U can be found as the maximum of the distribution of

 W 

, which is equivalent to the maximum value of c W 

. 

 U = max 
i ∈ [1 , ... ,P] 

c W i 
(i ) (2)

 is the total number of data packets of a flow. Note that, with

q. (1) we are filtering the effect of type (i) arrivals (min ) and with

q. (2) the delays introduced by type (iii) arrivals (max ). 

Ideally, we would like to sample c W 

until its distribution is sta-

le, but C U is varying because of both user movements and fast

ading. Hence we can only obtain an estimate C U 
( p ) of it from a set

f p consecutive estimation samples, where p < P . Although esti-

ating the distribution from a limited number of samples reduces

he accuracy of our measurement, we can at least guarantee that
measurements for mobile networks, Computer Communications 
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Fig. 6. Coefficient of variation of the normalized root mean square error ε C of the 
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ig. 5. Ratio �( t T ), varying t T ∈ [2 , . . . , 50] ms. The measurements get stable from

 T > t S = 10 ms. 

e are not overestimating C U : 

 U 
(p) = max 

i ∈ [1 , ... ,p] 
c W i 

(i ) ≤ max 
i ∈ [1 , ... ,P] 

c W i 
(i ) = C U (3)

his follows from the probability of the distribution of a sampled

andom process to contain the maximum of the theoretical dis-

ribution of the process, which is increasing with the number of

ollected samples: 

lim 

p→∞ 

C U 
(p) = C U (4) 

.3. Capacity measurement 

This section describes the feasibility of lightweight active and

assive measurements of per user capacity C U based on dispersion

amples of packet sets. It also explores the effect different values

f some parameters have on our technique. We compute the dis-

ersion time by using an adaptive window W i intervals long for

very packet i such that: 

 i = { min (W ) | t i + W 

− t i > t T } , (5)

here t T ∈ [1 , . . . , 50] ms, for all the values of t T . The estimation

ample of the i th packet is composed of all packets following i until

he first packet which arrived at least t T ms later than i . This allows

o satisfy Eq. (1) a posteriori if the TTI duration is not known. 

We exemplify the dispersion time in Fig. 4 based on data ob-

ained by time-stamping the arrival time of the packets of a 6 MB

SPA download. The figure presents the evolution of the scatter-

lots of c W 

and the corresponding histograms of the c W 

distribu-

ion for various characteristic values of t T . 

During the slow start phase of a TCP connection an increasing

umber of packets are sent back to back from the server, and af-

er a few RTTs the congestion window is large enough to allow the

ransmission of packet trains long enough to measure capacity as

igh as 100 Mbps. In fact, C U should be proportional to the max-

mum number of packets that can be scheduled in a single trans-

ort block and, if Eq. (1) is satisfied and t T > t S , the impact of out-

iers due to bursty arrivals is removed. With reference to Fig. 4 , it

an be seen that the maximum of c W 

is approaching a stable value

f about 10 Mbps when t T ≥ 15 ms. Due to limited space, we do

ot present the related plots of other downloads. Based on the rest

f our dataset, a stable value is reached for values of t T between 10

nd 20 ms. 
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apacity estimate computed over a fraction f = k/K of continuous samples for vary-

ng bin sizes ({0.1 s, 0.2 s, 0.5 s, 1 s}). 

Moreover, Fig. 5 shows the stability of the maximum of the ca-

acity by plotting the ratio �( t T ), computed between the maxi-

um value obtained with windows of [ t T ] and [ t T − 1] : 

(t T ) = 

| C W | t T − C W | t T −1 | 
C W | t T −1 

(6) 

deally, the ratio �( t T ) should stabilize to 0 as soon the schedul-

ng outliers are filtered ( t T > t S ) and further increasing t T should

nly make the distribution smoother. However, in actual experi-

ents increasing t T makes it more difficult to obtain a sample of

he maximum capacity which is consistent over different transport

locks. In this preliminary example, we can see that �( t T ) becomes

table for t T > 20 ms, which is in line with the HSPA TTI of 2 –

0 ms. 

Next, we divide the time duration of a download into fixed

ized bins. We apply the above method taking into account only

 percentage f = k/K of consecutive capacity samples in each bin.

n this case, K is the total number of samples inside each bin and

 is the number of consecutive samples that we consider for every

in. Fig. 6 shows the coefficient of variation of the normalized root

ean square error – CV(NRMSE) – of the estimate ε C , by varying

 : 

 C = 

√ ∑ 

bins (C 
(k ) − C (K) ) 2 

N b E[ C (K) ] 2 
, (7) 

here N b is the number of bins in a flow. The computations have

een repeated for different bin sizes varying in {1, 0.5, 0.2, 0.1}

econds (dotted, dash-dotted, dashed and solid lines, respectively).

t can be seen that the error decreases below 20 % when more than

0 % of the samples are used. 

Fig. 6 can also be interpreted as the width of the probability

istribution of having an exact measurement using f % of the sam-

les. In particular, it is easy to see that when we use all the sam-

les, the distribution should collapse into a delta function (zero

idth), while the fewer samples we use, the wider the distribu-

ion. The real value can only be larger than the measured one, be-

ause of Eq. (3) that shows max i ∈ [1 , ... ,k ] c W i 
(i ) ≤ max i ∈ [1 , ... ,K] c W i 

(i ) .

hus, this distribution has non-zero width for values smaller than

he actual measurement only. 

To complete this preliminary evaluation of our measurement

echnique, Fig. 7 shows the variation of the per user capac-

ty C ( K ) ( t ) measured every 500 ms and its estimates C ( k ) ( t )
U U 
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Fig. 7. Time plot of the capacity variation C U 
( k ) ( t ) computed every 500 ms and its 

different estimates computed with f = { 10 , 20 , 50 , 100 } %. 
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Parameter Value 

Number of resource blocks (Mhz) 25 (5), 50 (10), 75 (15), 100 (20) 

Number of competing UEs in the cell [0 , 1 , 2 . . . , 10] 

Distance between UE and BS in m [0 , 50 , 100 . . . , 450] 

Number of interfering BS [0 , 1 , 2 . . . , 6] 

Type of scenario “static”, “urban walking”, “vehicular”

computed with f = k/K = { 10 , 20 , 50 , 100 } % (dotted, dash-dotted,

dashed and solid lines, respectively). Although with 10% of samples

the estimates are quite different from the actual capacity values,

we will be showing next that it is possible to exploit these coarse

estimates to obtain a sufficiently accurate capacity estimate. 

5. Simulation campaign 

We have performed an extensive simulation campaign in order

to evaluate our proposed technique in a controlled environment.

We use a modified version of ns-3.23 [25] and its LTE module

LENA [26] . We focus on LTE due to its increasing popularity. In all

simulations the monitored user uses TCP, since it is both the most

challenging and the most popular [13] transport layer protocol of

mobile phones. The variable parameters of the simulations are pre-

sented in Table 1 . The fixed parameters are: (1) the simulation lasts

for 22 seconds and (2) the BS uses a proportionally fair scheduler.

For each set of parameters we run the simulation multiple times

with a different seed, generating in total 18,570 flows. 

Next we investigate the effect of polling on the accuracy of the

measurements. The simulation results do not suffer from polling,

thus the packet arrival time reported in the logs is the actual ar-

rival time at the NIC. In order to simulate the polling effect we

manipulate the logs so that we check for incoming packets every

t P ± 10%, where t P ∈ [1, 3, 10, 30, 100] ms. We add the 10% devia-

tion in the timing of each polling because based on our traces and

the literature, polling does not have a fixed frequency. We also add

a tiny inter-packet delay (in the range of 0.1 ms) between the pack-

ets that are reported together by the polling function, in a fashion

similar to the one we observe in our “real life” traces. Please note

that the polling delay (if present) is usually within 10 ms under

normal circumstances. 

Fig. 8 shows the CV(NRMSE) ε P between traces that have the
original timestamps and processed ones. We calculate the ε P as we t  624 
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ig. 9. Deviation of the sampling estimations ( k = 5% ) for various average polling

eriods t P from the ideal case ( k = 100% , t P = 0 ). 

id for the ε C in Eq. (7) . 

 P = 

√ ∑ 

bins (C 
(t P ) − C (0) ) 2 

N b E[ C (0) ] 2 
(8)

t can be seen that the error is at most 20% for most cases (up to

0 ms of delay). 

Subsequently, we examine how the combination of sampling

nly 5% of the available estimators and polling affects the accuracy

f the results. We divide every flow to 100 ms bins and for every

in we calculate the C U 
(100%) and the C U 

(5%) for various t P values.

he speed of each flow is the average of the measured capacity of

ll its bins E[ C U 
( k ) ]. As a groundtruth, against which we compare

he rest of the results, we suppose the case where t P = 0 (ideal

olling) and k = K. Fig. 9 depicts the Empirical CDF of the percent

eviation D S computed by the formula: 

 S = 

| E[ C U 
(5%)(t P ) ] − E[ C U 

(100%)(0) ] | 
E[ C U 

(100%)(0) ] 
(9)

y comparing the ideal line of t P = 0 with the rest, we conclude

hat even though polling does have a negative effect in the mea-
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surements, the dominant cause of error is the sampling. Also, we 625 

observe that for the most common t P values ( t P < 10 ms) the de- 626 

viation for 90% of the cases is less than 30%. 627 

6. Measurement campaign 628 

In order to validate our measurement technique over many dif- 629 

ferent “real life” scenarios and configurations, we organized a mea- 630 

surement campaign that covers two cities in two different coun- 631 

tries, Darmstadt (Germany) [27] and Madrid (Spain), for 24 h a day 632 

lasting 7 days. During this time, 5 people per city moved around 633 

as they normally do, carrying one measuring device each and per- 634 

forming their usual tasks involving mobile networking on the mea- 635 

suring devices. In order to be able to compare results of both pas- 636 

sive and active measurements, we also perform automated periodic 637 

file downloads. 638 

All the devices were running a simple Android application, 639 

which was periodically sampling the available capacity by start- 640 

ing two download types: short downloads of 500 KB to study the 641 
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Fig. 10. Scatterplot of the average estimate of per user capacity computed using 

all available information E[ C U 
( K ) ] against the estimate computed 5 % of the available 

information E[ C U 
(k ) ] , k = K/ 20 . 
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CP slow start phases and long downloads of 2 MB to measure

CP steady state throughput. The two types were organized in a

equence with a long download, preceded by two small down-

oads and later succeeded by another two. We use tcpdump on

he measurement devices to monitor the arrival time and size of

ll incoming packets. The download sequence was repeated every

0 min . Additionally, we log other related phone parameters: GPS,

ell ID, Channel Quality Indicators (ASU, dBm) and network tech-

ology (2G, 3G, LTE). 

The phones used in the campaign were the following: 5 Nexus

, located in Germany, and 4 Sony Xperia Miro and 1 Samsung

alaxy S3, located in Spain. Also, while the Nexus 5 phones are

TE capable, the other phones only support radio technologies up

o HSPA. 

. Results and discussion 

We verified our measurement technique by analyzing more

han 30 0 0 unique TCP flows extracted from the communication of

he phones participating in the campaign. As before, we split each

ow into 100 ms bins and calculate the C U 
(100%) and C U 

(5%) metrics,

nd assume that their average is the speed of each flow. Note that

n these measurements we neither have control over the polling,

or we can distinguish it from the scheduling behavior. 

Fig. 10 shows a scatterplot where the abscissa and the ordi-

ate of each rectangular point are the sampled and non-sampled

ersions of C U , respectively. Further we add in the same plot the

elated simulation results for t P = 3 ms as diamonds. As expected

rom Eq. (3) all the data points are above the y = x line. Thus, we

erify that our algorithm may only underestimate the capacity. The

act that all the points are so close to the y = x line proves that

he values derived by just 5% of the samples are good estimators

f C U 
(100%) . As a consequence, this measurement can be safely used

s a lower bound in resource optimization problems. We also plot

he linear regression of only the actual measurement results as a

ashed line. The regression line would allow us to build an even

etter estimator with lower error. 

The figure is plotted in double logarithmic scale in order to em-

hasize that the relationship between C U 
(100%) and C U 

(5%) can be

bserved over all the measured connection rates and there is an

lmost constant ratio between the estimate and the actual value.

lthough outliers are visible, we can obtain quite an accurate esti-

ate of C U by exploiting as few as 5 % of the packets sent during

 TCP connection. This allows for quite an effective passive mon-

toring technique as, even by monitoring small data exchanges, it

s possible to obtain frequent and accurate mobile per user capac-

ty measurements necessary for user throughput prediction and re-
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ource allocation. The linear regression line seems to deviate from

he measurement “cloud” for low values of capacity, because of the

ouble logarithmic scale used in the plot, which highlights the re-

ression offset for low values (500 Kbps and less). Further, we ob-

erve that for high values, the regression line has an almost fixed

ertical distance from the y = x line (constant percentage error).

his represents the error of the estimate and, since it is constant,

n the double logarithmic plot, appears as a fixed deviation on the

 -axis from the y = x line. 

Unfortunately, using very low rate background traffic is impos-

ible. The rates of such traffic are on the order of 4 packets over

00 ms, which do not allow for reliable capacity measurements.

lso, a big number of the APPs use the Google Cloud Messaging

GCM) service, which minimizes their notification related traffic. In

he case of GCM, if there is an update a few packets are sent just to

enerate a notification. When the user interacts with the notifica-

ion, a larger number of packets are downloaded. In this scenario,

e can use that download to get an estimation. 

In the experiments, we use rooted Android phones and tcp-

ump to perform the measurements. Given the very low complex-

ty and resources that are required by our approach, the C U esti-

ation is generated at virtually no cost. Therefore, we believe that

t may be included in the OS as a service to applications that may

pt-in to use it. For example, the flow-id, the timestamp and the

ize of a packet could be registered as part of the standard ker-

el packet processing procedure. Since these values do not contain

ny sensitive information, there are no privacy concerns and af-

er a short period to time, when this information is irrelevant it

an be deleted. Upon application request, the OS could generate a

 U estimation, if there are sufficient data stored. The knowledge of

he flow-id can help distinguish the state of a TCP flow (slow-start,

teady-state etc.). If it is possible to use small values of t T , it is

ossible to generate accurate estimators even during the late part

f slow start, when the congestion/receive windows have relatively

igh values, since then the dispersion time can be smaller than the

ime required by the antenna to transmit a server burst. In case of

 TCP flow that stops very early, it can be difficult to remove both

he slow start and the scheduling artifacts. In such cases, the re-

ulting value will be significantly lower than the truth, but this is

asy to detect and filter (e.g., requiring a flow to generate at least

5 downlink packets in order to be used). 
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Fig. 11. Contour graph of ε C varying t T and f for a bin size of 200 ms. 

Table 2 

Average C U and average optimal t T per technology. 

Technology UMTS HSPA HSPA + LTE 

C U (Mbps) 10.83 1 .4 10.74 24.3 

Optimal t T (ms) 19 23 17 16 

As a side note, our technique is also able to estimate fast per 728 

user capacity variations. However, it obtains a lower accuracy since 729 

a larger fraction of samples are needed to estimate the maximum 730 

of the c W 

distribution. Nonetheless, it is often sufficient to use 20 % 731 

of the samples collected in a bin to achieve a reasonable estimate 732 

of C U . In fact, with the smallest bin size and as few as 20 % of the 733 
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 767 

activity and therefore we will briefly discuss the uplink case. Our 768 

algorithm cannot be directly applied to the uplink due to uplink 769 

communication characteristics. For instance, if we attempt to per- 770 

form a measurement on the phone side we can gather very lim- 771 

ited information. Without accessing the transceiver firmware, we 772 

can only observe how fast packets appear in the kernel, instead 773 

of how fast the NIC successfully transmits them at the medium, 774 

which is the metric we are interested in. It is possible that pack- 775 

ets may remain in the buffer of the NIC for a relatively long time 776 

after they appear in the kernel, leading to wrong estimations. On 777 

the other hand, applying our algorithm to measurements collected 778 

on the server side will fail to measure the cell capacity, since many 779 

intermediate hops may be between the eNodeB and the server. An 780 

alternative approach would be to infer clues of the speed indirectly 781 

at the phone side. If a UDP socket is blocking, it can be an indi- 782 

cation that the rate at which an application is generating packets 783 

(which we can detect) is higher than the link capacity, thus deriv- 784 

ing an upper limit of the speed. In the case of TCP traffic, the ACKs 785 

can be analyzed to infer whether the rate that the application is 786 

generating traffic is above or below the link capacity. Further ana- 787 

lyzing the uplink scenario is beyond the scope of the present paper 788 

and we leave it for future work. 789 

8. Conclusions 790 

We presented a lightweight measurement technique that lever- 791 

ages adaptive filtering over the packet dispersion time. This allows 792 

to estimate the per user capacity in mobile cellular networks. Ac- 793 

curate estimates can be achieved exploiting as few as 5 % of the 794 

information obtained from TCP data flows. Given that this solution 795 

can support dense throughput sampling, it is ideal for capacity pre- 796 

diction and optimized resource allocation. In fact, if the future ca- 797 

pacity availability is known, it is possible to predict when it is best 798 

to communicate by doing so when it is cheaper (i.e., more capacity 799 

available). In addition, our solution is able to estimate the fast ca- 800 

pacity variations from a mobile terminal by monitoring the traffic 801 

generated under normal daily usage. 802 

We validated our technique over a week-long measurement and 803 

an extensive simulation campaign. We achieved good estimation 804 

accuracy even when using only short lived TCP connections. Since 805 

our technique is based on simple post-processing operations on 806 

the packet timestamps, it is possible to easily integrate it in back- 807 

ground processes or OS routines. 808 

We are planning to extend our measurement application with 809 

filter based prediction capabilities in order to provide mobile 810 
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samples have an error ε C < 0.2, which means the actual capacity

should not be larger than 120% of the estimated value. 

In addition, t T must be taken slightly longer than the TTI to

avoid the measurement being impacted by many bursty arrivals.

In line with Eq. (1) of Section 4 , �( t T ) approaches zero for t T >

15 ms for most of the recorded flows. 

Fig. 11 shows the CV(NRMSE) for various combinations of t T and

f of the measurement campaign flows. The bin size is set to 200 ms

to give an example of this technique’s results when it collects very

frequent measurements. As expected ε C decreases when t T and f

increase. For values of t T ≥ 15 ms and f ≥ 20 %, the error is small

enough for the model to give trustworthy results ( ε C ≤ 15 %). 

Finally, Table 2 shows some of the overall evaluation of the

traces obtained by the measurement campaign with f = 25 % aver-

aged over the bin size and using the optimal t T (min t T | �( t T ) → 0).

Optimal t T and C U are computed as described in Section 4 and then

averaged over all the traces. While some of the flows are transmit-

ted using 2G EDGE data, the results are not included since there

are too few such flows for statistical significance. 

The measurements are based on the data reported by the An-

droid OS. Note that HSPA and HSPA + are a family of enhancements

to UMTS, that greatly increase its speed. The high average speed of

UMTS is related to networks that support the HSDPA enhancement

for improved downlink speed, but not all the enhancements that

would classify them as HSPA or HSPA + . The very big differences

in speed between the HSPA, HSPA + and LTE technologies can be

explained by the following reasons. More recent technologies can

achieve higher speeds. Smartphones tend to use the best technol-

ogy possible for their channel quality. Thus, they use HSPA only

when their signal is too bad to use a better technology and in turn

the bad signal greatly affects speed. 

Our approach is designed for downlink measurements, which

account for the vast majority of the smartphone generated traffic

[13] . Recent trends, though, show an increase in uplink related user
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hones with a complete capacity forecasting tool, which, in

urn, will allow for advanced resource allocation mechanisms. Fi-

ally, we are planning additional measurement campaigns in or-

er to further extend these encouraging results on passive and

ightweight measurement tools. 
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