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a b s t r a c t 

Adaptive resource allocation arises naturally as a technique to optimize resource utilization in commu- 

nication networks with scarce resources under dynamic conditions. One prominent example is cellular 

communication where service providers seek to utilize the costly resources in the most effective way. In 

this work, we investigate an uplink resource allocation scheme that takes into account the buffer occu- 

pation at the transmitter to retain a given level of quality of service (QoS). First, we regard exact results 

for the class of Poisson traffic where we investigate the sensitivity of the resource adaptation and QoS 

level to the actuating variables. We show relevant resource savings in comparison with a static allocation. 

Further, we regard a queueing setting with general random arrival and service processes. In particular, we 

consider the service of wireless fading channels. We show two different resource adaptation mechanisms 

that depend on the strictness of different assumptions. Finally, we present simulation results that show 

substantial resource savings using the queue-aware scheduling scheme, where we provide insight on the 

implementation and operation of such an adaptive system. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Many components of communication networks are subject to

ariability. This includes the usage behavior of communicating par-

ies, as well as, the service provided by the network. While the

ser behavior translates to a variable resource demand, the pro-

isioned service is constricted by expenditure and the technologi-

al state-of-the-art. This inherent variability is the raison d’être for

any optimizations found in communication networks. An intrin-

ic difficulty in cellular wireless communication is the fading na-

ure of the channel which causes the transmission rate to vary over

ime. Hence, to better utilize the wireless channel, respectively,

o provide quality of service guarantees in cellular communication

etworks, a base station has to estimate the statistical properties

f the wireless fading channel. For example in LTE this estimate is

aptured in the channel quality indicator (CQI) [1] . 

In addition to channel quality estimates, current LTE systems of-

er a valuable source of information, i.e., buffer status reports (BSR)

2] , that can be exploited for adaptive resource allocation [3] . In

ig. 1 (a) we depict a user equipment (UE) that transmits BSRs in

plink direction to signal the buffer occupancy to the base station.
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he base station takes the buffer occupancy into account when

pdating the resource allocation to the UE. This is illustrated in

ig. 1 (a) as a variable amount of (shaded) time–frequency resource

locks that are granted to the UE. In addition, Fig. 1 comprises

he scheduling epoch �, i.e., the recurrence period of the resource

cheduling operation. 

Promising applications of adaptive resource allocation include

itter control, substantial radio resource savings, as well as, battery

avings on the UE side. Jitter, i.e., high delay variations, may arise

n wireless communications due to the fading characteristics of the

hannel. It is known that jitter has a strong adverse influence on

he quality of experience. Adaptive resource allocation can mitigate

he impact of the channel fading to reduce jitter at the receiver.

urther, adaptive resource control may achieve substantial resource

avings compared to static resource grants due to an effective use

f available information. 

Despite the expected benefits and the recent significant

rogress in the analysis of QoS metrics, few strategies are derived

hat use analytical models to consider adaptive resource optimiza-

ion under QoS constraints. In this work we provide an analyti-

al approach to adaptive resource allocation based on buffer occu-

ancy. We present a queue-aware scheduling scheme that adapts

he amount of resources provided to a single UE under probabilis-

ic QoS constraints. 

Consider the scenario in Fig. 1 (a) where traffic denoted A ar-

ives at a UE transmit buffer. The UE regularly signals BSRs that
eduling with stochastic guarantees, Computer Communications 
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Fig. 1. (a) Example of queue-aware scheduling in cellular networks. The base sta- 

tion decides on the amount of uplink service S depicted as a varying number of re- 

source blocks (gray) granted to a UE depending on its transmit buffer filling B . The 

scheduling epoch is denoted �. (b) Abstraction of queue-aware scheduling with a 

single user as a queueing system with an adaptive mean service rate μ( t ). The ser- 

vice rate is adjusted at scheduling epochs of length �, to maintain a small queue. 
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include the transmit buffer filling B to the base station, which in

turn seeks to adapt the service S , i.e., the uplink bandwidth re-

source grants, based on the knowledge of BSR and CQI. First, we

regard the abstraction in Fig. 1 (b) with a queuing system fed by

Poisson traffic arrivals of mean rate λ and a time-varying mean

service rate μ( t ). We present a study of exact results for Pois-

son traffic that clearly shows resource savings when queue-aware

scheduling is deployed. One desired property of adaptive resource

allocation is robustness with respect to variations of the actuating

variables. Hence, we present a sensitivity study that shows the im-

pact of actuating variables, as well as, the system robustness with

respect to misadaptation. In a practical scenario this would, for ex-

ample, capture imperfect CQI. For general arrival and service pro-

cesses we present an analytical framework to implement queue-

aware scheduling that is based on the stochastic network calculus.

We distinguish two regimes for the adaptive system that we de-

note frequent and infrequent adaptation. Consequently, we provide

a detailed analysis of two resource adaptation schemes showing

evaluation results and insight on the implementation and opera-

tion of such systems. We include a compact investigation of the

adaptive system in multi-user scenarios. The main contributions of

this paper are: 

• For the class of Poisson processes, we present exact results to

quantify best-case resource savings, i.e., given full knowledge of

the traffic and service statistics. 

• Our model reveals an important relation of the average traf-

fic arrival rate, the scheduling epoch length, and the target

queue constraint. We identify two regimes, one where adap-

tive scheduling is effective and one where it is not. The result

is significant as it shows in a mathematical, exact framework

that there are relevant cases where an adaptive system cannot

benefit from the additional information provided by BSRs. 

• Our results show that the adaptive system can stabilize the

queue even in case of a systematic service rate misadaptation.

This robustness is important, since in practice an adaptive sys-

tem can only estimate the number of radio resource blocks that

are required to achieve a target service rate. 

• Our mathematical treatment of queue-aware scheduling is ap-

plicable to a broad class of arrival and service processes known

in the stochastic network calculus. 

This work is an extended version of the work in [4] . Here we

provide a fundamentally different bounding method that is partic-

ularly adapted for the considered wireless channel model. We ap-

ply the new methodology to the so called infrequent adaptation

scheme in Section 5.2 and provide a comparison of the respec-

tive results showing that the performance using the new technique

matches the target criterion more closely and hence enables saving

more resources compared to [4] . Further, we expand here the de-

scription of queue aware scheduling techniques in multi-user sce-

narios in Section 5.3 and provide analytical formulations for the
Please cite this article as: A. Rizk, M. Fidler, Queue-aware uplink sch
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esource share that is given to each mobile user given a certain

cheduling discipline. 

The rest of this paper is structured as follows. In Section 2 we

iscuss related work on the analysis of adaptive resource alloca-

ion techniques and queueing systems with variable service rates.

ection 3 presents a study of exact results for Poisson traffic. In

ection 4 we introduce a model for wireless systems and provide

n introduction to the analytical framework. Sections 5.1 and 5.2

resent a description of the implementation of frequent and infre-

uent adaptation including evaluation results and insight on the

mplementation. In Section 5.3 we include simulation results for

ulti-user scenarios under different scheduling policies. We con-

lude the paper in Section 6 . 

. Related work 

We find that studies related to this work were mainly con-

ucted in the context of (i) the optimization of service policies for

ueueing systems and (ii) the optimization of power and rate con-

rol in cellular networks. First, we will review works with the first

bjective (i) showing the main difference to the work at hand. 

The authors of [5–7] consider a dynamic control approach

speed scaling) of the service rate of M | M |1, respectively M | GI |1

rocessor sharing queues, that depends on the queue state at each

ime instant. The service rate is optimized with respect to service

osts that are defined as a function of the queue length at each

ime point, as well as, the instantaneous service rate. The result

s a service policy, i.e., an optimization for entire service sample

aths with respect to a given criterion. For example, the authors of

5] provide recursive algorithms to minimize the average service

osts. General tradeoffs in the design of speed scaling controllers

or queues are shown in [8] , e.g., combining the response time

ith job energy consumption. The authors show that for certain

chedulers only two of the three attributes “optimality, fairness

nd robustness” can be achieved. The work in [9] studies multi-

lass M | G |1 queues with variable service rates. The authors show

cheduling policies that minimize service costs associated with the

nstantaneous service through convex functions. The authors of

10] consider an M | M |1 queue with time varying externally Markov

odulated server speed. Although not explicitly given, the authors

how a method to numerically obtain the average waiting time. In

11] the authors straightforwardly employ the Pollaczek–Khinchine

ormula in conjunction with a power model, that is known for net-

orks on-chip to minimize the average power consumption in an

 | G |1 queue. 

The work at hand differs basically from the related work above

n the analysis of an epoch based adaptation scheme that takes

eneral arrival and service processes into account. We consider a

robabilistic QoS constraint as optimization metric in contrast to

ervice cost functions. 

The second category of related works comprises rate and power

ptimization in cellular networks such as [12–15] . Typically, the

riterion for optimization is the average queueing delay. In [12]

he authors regard a transmitter with variable rate that serves a

ueue filled at a constant rate. The authors perform optimizations

ver power and rate policies for a single user scenario to minimize

he average delay under power constraints. The technique used is

ynamic programming which provides numerical solutions for a

redefined cost function that consists of a weighted sum of the

uffer length and the transmission power. Using a similar approach

he authors of [14] provide an optimal service policy for a finite

ervice sample path length. They assume a channel of Gilbert–

lliot type and a linear relationship of transmission power and

ate. The work in [15] considers a scenario with arrivals and ser-

ice processes given by Markov chains where data arriving from

igher layers is buffered until transmission. The authors provide
eduling with stochastic guarantees, Computer Communications 
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Fig. 2. Required service rate μ to satisfy the bound (1) depending on the initial queue state k at the beginning of the scheduling epoch. Influence of parameters: (a) bound 

on the queue length at the end of the epoch q max , (b) arrival rate λ, (c) violation probability ε, (d) scheduling epoch length �. Baseline (blue curve): q max = 10 , λ = 10 , ε = 

10 −2 , � = 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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esults on regulating the user transmission rate and power to con-

rol the average transmission power and average delay using con-

epts from Markov decision theory. Further, BSRs, respectively, the

ransmit queue length, have been used for scheduling optimiza-

ion in [3,16,17] . In [3] BSRs are used to improve packet drop rates

n OFDM downlink transmissions. In [16] the authors model the

olling service of an IEEE 802.16 network using a Markov model to

how the impact of queue length aware rate and bandwidth con-

rol on the average delay. In [17] BSRs are used in a scheduling

etric to distribute physical resource blocks over different UEs at

elay nodes. 

Key differences to the related work above are that we regard an

nline scheme that enables adapting the parameters for a schedul-

ng epoch during the runtime of the system. In contrast to objec-

ives in the related work such as minimizing the average delay or

 weighted sum of buffer length and the transmission power, we

dapt the resource allocation with respect to the tail of the queue

ize distribution. This provides a natural relation of the provided

uality of service during a scheduling epoch to the adaptively

llocated resources. 

. Exact results for Poisson traffic: Tradeoffs and sensitivity 

In this section, we develop a model of queue-aware scheduling

or Poisson traffic. We use this basic model to provide exact re-

ults that yield relevant insights. We will relax the assumptions in

ection 4 where we consider general arrival and service processes.

.1. Epoch-based resource allocation 

Next, we use the model of a single queue to express the adap-

ation of the mean service rate μ( t ) at multiples of the schedul-

ng epoch length � to provide a probabilistic bound on the queue

ength at the end of the scheduling epoch. The service rate μ( t ) is

hosen for a scheduling epoch � depending on the initial queue

ength at the start of the epoch, as well as, the arrival rate λ. With

espect to the wireless application scenario in Fig. 1 , the adaptive

ystem models a base station that decides on the amount of re-

ources it will provide to a UE during a scheduling epoch given

nowledge of the UE transmit buffer filling and its average arrival

ate. In the following, we investigate the tradeoffs and fundamental

imits of such a system and conduct a sensitivity analysis with re-

pect to misadaptation. We will show that queue-aware scheduling

chieves target QoS constraints and provides significant resource

avings. 

The service rate μ( t ) is adjusted based on the queue state k

t the beginning of the epoch. During the epoch � the average

ervice rate is fixed such that the probability that the queue is in
Please cite this article as: A. Rizk, M. Fidler, Queue-aware uplink sch
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 state higher than q max after � is bounded by ε, i.e., 

∞ ∑ 

= q max +1 

p kl (�) ≤ ε (1) 

ith p kl ( �) being the probability that the queuing system is in

tate l at time � after initially being in state k . The transient

ehavior of the M | M |1 queuing system has been investigated in

18,19] leading to the closed form solution 

p kl (�) = e −(λ+ μ)�
[ 
� 

l−k 
2 I l−k (z�) + � 

l−k −1 
2 I l+ k +1 (z�) 

+ (1 − � ) � 

l 
∞ ∑ 

j= l+ k +2 

� 

− j 
2 I j (z�) 

] 
(2) 

ith utilization � = λ/μ, z = 2 μ
√ 

� and the modified Bessel func-

ion of the first kind I (·) (·) . We denote this system as the adaptive

ystem, where we compute μ for the next epoch from (2) given

he queue size at the beginning of the epoch is k . External param-

ters are q max , λ, �, ε. 

First, we illustrate the operation of the adaptive system. Fig. 2

hows the required service rate μ given the queue state k at the

eginning of the scheduling epoch. This adaptive system may be

iewed as a controller with input parameter k and an actuating

ariable μ. Next we evaluate how the parameters of the adap-

ive system, q max , λ, ε and �, influence the adaptation of the ser-

ice rate μ. Fig. 2 (a)–(c) shows the required service rate, that in-

reases with the initial state k . It also shows the increase of the

equired service rate μ with tighter constraints, i.e., with decreas-

ng q max , increasing arrival rate λ or decreasing violation proba-

ility ε from (1) . Note that the curves are equidistant with linear

hange in q max and λ, respectively, with logscale change in ε. Also

ote the nonlinear behavior for boundary scenarios, i.e., small q max 

nd small initial k . Fig. 2 (d) shows the impact of the length of the

poch � on the required service rate. Smaller � cause a stronger

djustment. 

.2. Improvement on the static system 

Next, we compare the adaptive system to a static M | M |1 sys-

em with identical arrival rate λ and a fixed equivalent service rate

= E [ μ(t)] . We denote this system the static system and show re-

ults from discrete event simulations that compare its performance

o the adaptive system. Figs. 3 and 4 use the basic parameter set

= 10 , � = 1 , ε = 10 −2 and for the simulation results we consid-

red 10 4 epochs. First, consider the case q max = 10 in Fig. 3 (a). The

gure shows the complementary cumulative distribution function

CCDF) of the queue length at multiples of the scheduling epoch �

or the adaptive and for the static system. The adaptive system at-

ains the QoS requirement, i.e., the queue length exceeds q max = 10

t most with probability ε = 10 −2 , and outperforms the static sys-

em in terms of the queue length distribution. The reason behind
eduling with stochastic guarantees, Computer Communications 

http://dx.doi.org/10.1016/j.comcom.2016.02.014


4 A. Rizk, M. Fidler / Computer Communications 0 0 0 (2016) 1–10 

ARTICLE IN PRESS 

JID: COMCOM [m5G; March 14, 2016;7:54 ] 

a b

Fig. 3. (a) The regimes of adaptation: Different q max ∈ {5, 10, 15} with corresponding static equivalents. The adaptive M | M |1 system outperforms the equivalent system 

with constant μ. (b) Resource saving with adaptive allocation. The utilization increases with q max as the adaptive M | M |1 system makes efficient use of the variations of the 

service rate μ. In comparison we show the utilization for static scenarios that attain the same probabilistic bound on the queue length. The adaptive system runs at a higher 

utilization than the comparable static system and hence saves resources. 

a b

Fig. 4. (a) Robustness with respect to service rate misadaptation. The provided service rate at each scheduling epoch is a scaled version νμ of the required service μ. For ν

� = 1 the CCDF is shifted but the queue does not grow unbounded. (b) Robustness with respect to service rate limitation. The provided service rate is bounded by μmax . The 

CCDF is shifted with respect to the unconstrained scenario. 
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this performance difference is that the adaptive system reduces the

service rate for epochs with small initial queue fillings (and vice

versa for epochs with large initial queue fillings). Hence, the adap-

tive system continuously minimizes idle times where resources

would be effectively wasted. A downside is that data may wait

longer in the queue if the queue length is much smaller than q max .

The adaptive system allocates only low μ in case of a small initial

queue length, e.g., μ = 0 for k ≤ 2 and q max = 20 (see Fig. 2 (a)).

Data arriving during such a scheduling epoch wait longer in the

queue than in case of the static system. 

Next, we inspect the utilization of the adaptive system defined

as λ/ μ, i.e., the arrival rate divided by the average service rate of

the adaptive system. Fig. 3 (b) shows that the adaptive system runs

at a higher utilization with increasing q max . We find that a key

relation is the ratio of λ� to q max for a given ε, i.e., the average

amount of arrivals in one epoch vs. the bound on the queue length

at the end of the epoch. The figure shows that for increasing q max 

with respect to λ� the adaptive system may run under very high

utilization, while still maintaining the probabilistic bound (1) . The

figure also depicts the required utilizations for the static system

to provide the same probabilistic bound on the queue distribution.

The difference in Fig. 3 (b) reveals the substantial resource saving

provided by the adaptive system. Observe that the difference be-

tween the adaptive system and the static system is apparent for

q max � λ�. The adaptive system is aware of the queue length at

the beginning of the scheduling epoch, yet, the actual arrivals are

unknown in advance and may vary significantly. The information

on the initial queue length becomes less helpful if the unknown,

i.e., the traffic amount in �, predominates, i.e., if q max 	 λ�. This

is also reflected by the CCDFs for q max = { 5 , 15 } in Fig. 3 (a). Hence,

the adaptive system is favorable for q max � λ�. 
Please cite this article as: A. Rizk, M. Fidler, Queue-aware uplink sch
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.3. Robustness 

One desired property of such an adaptive system is robustness

ith respect to misadaptation, which we define as a queue that

oes not grow unbounded if the actual service rate is only a scaled

ersion νμ of the required service rate μ. This robustness prop-

rty is important in practice. For example, consider the cellular

ystem from Fig. 1 , where the base station uses CQI to estimate

he channel condition. It is desirable that an adaptive resource al-

ocation scheme is robust with respect to deviations of these es-

imates from actual channel conditions. For a static system an al-

ocation of νμ could lead to instability, hence, to an unbounded

ueue. Fig. 4 (a) shows the impact of misadaptation for different

alues of ν and q max = 10 . We observe that the queue length dis-

ribution is shifted for ν � = 1 and that the probabilistic bound is

iolated as expected for ν < 1. However, the queue length does

ot grow unbounded. 

A second requirement of practical implementations is that the

daptive service rate μ( t ) is upper bounded by some finite μmax .

e simulate the operation of the adaptive system under service

imitation and show the results in Fig. 4 (b). Note that the queue

ength distribution is shifted away with respect to the uncon-

trained scenario with stricter μmax . 

In this section, we provided a proof of concept for queue-aware

cheduling for the example of Poisson traffic. The adaptive sys-

em retains a given probabilistic bound on the queue length while

t may substantially save resources. Interesting though are con-

tellations, which we showed, that hardly comprise resource sav-

ngs. This reveals that the operation of queue-aware scheduling is

on-trivial and requires a careful analysis. The question of how to

xploit the potential resource savings in a wireless system that
eduling with stochastic guarantees, Computer Communications 
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eviates from the Poisson assumption is a difficult challenge. In

he next sections we will relax the Poisson traffic assumption and

resent implementations of queue-aware scheduling for wireless

ading channels and general traffic arrivals. 

. Modeling wireless systems 

Next, we will formulate a basic queueing model from the net-

ork calculus to include general arrival and service processes. We

ill adopt a basic channel model for wireless communication sys-

ems that is known from [20] . 

.1. Queueing model 

We apply concepts of the framework of the stochastic network

alculus [21–25] , and consider a discrete time, lossless and work-

onserving queueing system. Cumulative traffic arrivals to the sys-

em are denoted A ( τ , t ), i.e., the cumulative amount of bits arriv-

ng in the time interval ( τ , t ] for t ≥ τ ≥ 0. Hence, A (t , t ) = 0 for

ll t ≥ 0 and there are no arrivals for t ≤ 0. By convention we

se A ( t ) to denote the arrivals between (0, t ], where A ( t ) is a non-

egative non-decreasing random process that passes through the

rigin. Further, we use λ to denote the average arrival rate, i.e.,

= lim t→∞ 

A (t ) /t . The cumulative departures of the queuing sys-

em up to time t denoted D ( t ) are related to the arrivals through

he service provided by the system. The queuing model consid-

rs the service in ( τ , t ] as a random process S ( τ , t ) which is

on-increasing in τ and non-decreasing in t . Further, note that

(t , t ) = 0 for all t ≥ 0. 

For a work-conserving system with a time-varying service S ( τ ,

 ) it holds for all t ≥ τ ≥ 0 where τ , t fall into the same busy pe-

iod that D (t) ≥ D (τ ) + S(τ, t) [26,27] . This is referred to as strict

ervice. Systems offering strict service also provide a so-called

daptive service curve [23,27] such that for all t ≥ τ ≥ 0 it holds

hat 

 (t) ≥ min 

[ 
D (τ ) + S(τ, t) , inf 

u ∈ [ τ,t] 
{A (u ) + S(u, t) } 

] 
. (3)

he stochastic evaluation of queueing systems with respect to per-

ormance metrics, e.g., backlog and delay, frequently uses non-

andom lower bounding functions S(t − τ ) of the service process

 ( τ , t ) defined for all t ≥ τ ≥ 0 as 

 [ S(τ, t) ≥ S(t − τ ) ] ≥ 1 − ε p , (4) 

ith a violation probability ε p . For systems providing adaptive ser-

ice (3) we require, however, a bound on S ( τ , t ) that is valid for an

ntire interval to derive a probabilistic extension of (3) as defined

n [23] for t ≥ τ ≥ 0 as 

 

[ 
D (t) ≥ min 

[ 
D (τ ) + S(t − τ ) , 

inf 
u ∈ [ τ,t] 

{ A (u ) + S(t − u ) } 
] ] 

≥ 1 − ε s . (5) 

 bound on S ( τ , t ) for an entire interval is given as 

 [ S(u, t) ≥ S(t − u ) , ∀ u ∈ [ τ, t] ] ≥ 1 − ε s (6) 

or t ≥ τ ≥ 0. It is known as an ε-effective service curve in [23,28] .

or a function S(t) satisfying (4) with ε p we find that it satisfies

6) with ε s = (t − τ ) ε p . This is directly obtained by using Boole’s

nequality as 

 [ ∃ u ∈ [ τ, t] : S(u, t) < S(t − u ) ] 

≤
t−1 ∑ 

u = τ
P [ S(u, t) < S(t − u ) ] = 

t−1 ∑ 

u = τ
ε p = (t − τ ) ε p = ε s . (7) 

We used this technique (7) in [4] to provide stochastic bounds

or general service processes S ( τ , t ). While the general technique
Please cite this article as: A. Rizk, M. Fidler, Queue-aware uplink sch

(2016), http://dx.doi.org/10.1016/j.comcom.2016.02.014 
bove is applicable to a number of service processes, we illustrate

 refined method in Section 5.2 that provides better bounding ac-

uracy. In the following, we review a known model of the Rayleigh

ading channel including a corresponding bound in the sense of (6)

n its service process S ( τ , t ). 

.2. Wireless channel model 

We adopt the basic concept of a wireless transmission over a

ading channel from [20] . We estimate the capacity in one time

lot in a block fading model from the Shannon capacity formula

s C = W log 2 (1 + γi ) with channel bandwidth W and γ i denoting

he signal-to-noise ratio (SNR) in the i th block. We consider a time

lotted service process with a slot length that is congruent with

he block length in the block fading model. The service process is

omposed of iid increments c i that are given, using the shorthand

otation β = W δ/ ln 2 , as 

 i = β ln (1 + γi ) , (8)

ith random γ i and a fixed time slot length that is denoted δ.

he iid assumption is reasonable if the time slot duration is large

nough compared to the channel coherence time [20] . Here, c i 
resents the number of bits that can be served in the i th slot. Con-

idering a Rayleigh fading channel, it follows that γ i is exponen-

ially distributed with parameter η and average SNR E[ γ ] = 1 /η.

he service process S ( τ , t ) is given as S(τ, t) = 

∑ t 
i = τ+1 c i , for 0 ≤ τ

 t . Given the service process S ( τ , t ) for a Rayleigh fading channel

ith SNR parameter 1/ η, the function 

(t) = 

1 

θ
( ln (ε p ) − t[ η + θβ ln (η) + ln ((1 − θβ, η))]) (9)

atisfies the condition (4) with violation probability ε p . Here, θ >

 is a free parameter that can be optimized and ( ·, ·) denotes the

ncomplete gamma function. The derivation of (9) is given as 

 [ S(τ, t) < S(t − τ )] ≤ e θS(t−τ ) M S (−θ, t − τ ) 

= e θS(t−τ ) ( M c i (−θ ) ) 
t−τ

:= ε p . (10) 

n the first step, we used Chernoff’s lower bound with the Laplace

ransform M S (−θ, t − τ ) of S ( τ , t ) for θ ≥ 0. In the second step,

e used the iid property of the increments of S ( τ , t ) and equated

he expression with ε p . We obtain S(t) by inserting the Laplace

ransform of one increment M c i (−θ ) [29] which is evaluated as 

 c i (−θ ) = 

∫ ∞ 

0 

e −θβ ln (1+ t) ηe −ηt dt 

= e ηηθβ(1 − θβ, η) , (11) 

here the result follows by transformation of the integration vari-

ble. Solving for S(t) in (10) yields the function in (9) . In the next

ection we will use the channel and queueing model to implement

wo queue-aware scheduling schemes. 

. Implementation of queue-aware scheduling 

In this section we will show two implementations of queue-

ware scheduling that we denote frequent and infrequent adap-

ation, respectively. We will draw conclusions on the require-

ents and operation of such adaptive systems. In addition, we will

resent a study of deploying the adaptive system in a multi-user

ellular network showing performance results for different types

f schedulers. 

.1. Frequent adaptation 

First, we present queue-aware scheduling with frequent adap-

ation. Here, we assume a small epoch length � in the sense of

� 	 b max , where b max is the desired backlog bound at the end
eduling with stochastic guarantees, Computer Communications 
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of the scheduling epoch that may be exceeded at most with prob-

ability ε. The system is the Rayleigh fading channel as described in

Section 4 . 

Generally, the backlog of a queueing system at time t is de-

fined as B (t) = A (t) − D (t) . In the following, we will denote the

start of the current epoch by τ if not stated otherwise. Given

the epoch (τ, τ + �] with arrivals A (τ, τ + �) and initial back-

log B ( τ ) we calculate the required resources, e.g., bandwidth, such

that P [ B (τ + �) ≤ b max ] ≥ 1 − ε is attained. Taking the definition

of backlog, it follows directly for systems offering strict service

D (t) ≥ D (τ ) + S(τ, t) for t ≥ τ ≥ 0 where τ , t fall into the same

busy period that 

B (t) ≤ B (τ ) + A (τ, t) − S(τ, t) , 

i.e., a basic relation of the backlog at time τ and at time t given

the arrivals A ( τ , t ) and the service S ( τ , t ). Let τ be the beginning

of the epoch and t = τ + � be the end of it. We substitute S(�)

from (4) for S(τ, τ + �) to find 

P [ B (τ + �) ≤ B (τ ) + A (τ, τ + �) − S(�)] ≥ 1 − ε, 

with ε being the violation probability from (4) . Given the non-

trivial case B (τ ) + A (τ, τ + �) > b max , we equate B (τ ) + A (τ, τ +
�) − S(�) with b max and solve for 

S(�) = B (τ ) + A (τ, τ + �) − b max (12)

that is the required service to ensure b max with violation proba-

bility ε. Finally, we substitute the service characterization of the

Rayleigh fading channel (9) for S(�) in (12) to compute the re-

quired resource allocation β given average SNR 1/ η. 

A refinement of the implementation above is to include an ad-

ditional statistical delay constraint. As a secondary effect, such a

delay constraint ensures that small backlogs which may not en-

danger the backlog bound b max will eventually be cleared. Overall

the system allocates the service to fulfill both of the following con-

ditions: 

§1 The backlog at the end of the epoch is statistically bounded

by b max , i.e., P [ B (τ + �) ≤ b max ] ≥ 1 − ε. 

§2 The backlog at the beginning of the scheduling epoch is

cleared within a given delay bound d = v � with v ≥ 1 . 

In a practical implementation of a cellular uplink transmission

the base station possesses the required information, i.e., BSR and

the received data amounts D ( t ), to implement the above rules for

uplink resource allocation. Using the backlog definition, the base

station is able to infer arrivals within any epoch A (τ, τ + �) for all

epoch starts τ using B (τ ) , B (τ + �) together with D (τ, τ + �) to

enforce §2. 

As the base station cannot know the exact arrivals a priori,

we make use of the condition λ� 	 b max that permits neglect-

ing the arrivals A (τ, τ + �) in (12) such that we can approximate

the required service during �. In this case, the obtained bound

for B (τ + �) would comprise an error of roughly the ε-quantile

A 

ε of A (τ, τ + �) . We denote this queue-aware scheduling with-

out knowledge of the arrivals as “blind adaptation.” It shows how

the lack of arrival information impacts the system performance.

Given information on A (τ, τ + �) , e.g., a bound on its distribution,

or given A 

ε , the adaptive system can compute a more precise esti-

mate of the service required in the next scheduling epoch. Similar

considerations are made in Section 5.2 . 

Next, we consider an implementation of our frequent adapta-

tion scheme (§1 and §2) in a baseline scenario of an LTE cellular

system with 10 MHz channel bandwidth comprising 50 available

resource blocks each of 180 kHz width and δ = 0 . 5 ms length [1,2] .

We use the Rayleigh wireless channel model with average SNR

of 1 /η = 3 dB. The base station receives BSRs B ( n �) with n ∈ N

and adapts β which is the bandwidth (amount of resource blocks)
Please cite this article as: A. Rizk, M. Fidler, Queue-aware uplink sch
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ranted to the UE for the upcoming scheduling epoch n + 1 . Using

QI, the base station has channel state information that permits

stimating the SNR. 

For a numerical evaluation, we consider � = 10 slots and mem-

ryless arrivals. We normalized the system parameters such that

 [ c i ] = 1 . 33 with β = 1 and average arrival rate of λ = 0 . 65 . The

acklog bound is b max = 50 and the delay bound for the com-

ined algorithm is d = 5�, both with violation probability ε =
0 −2 . Fig. 5 shows backlog and delay CCDFs with a sole backlog

onstraint §1 compared to the backlog and delay constraint combi-

ation §1 and §2. The simulation length is 10 5 slots. Observe that

ue to “blind adaptation” the CCDF for the system using only §1

eviates at ε = 10 −2 by roughly the ε-quantile of A (τ, τ + �) , i.e.,

 

ε = 25 . Fig. 5 (b) shows larger delays if only using §1 compared to

he combination of §1 and §2. Adding a delay constraint substan-

ially improves the performance. The additional constraint leads to

ncreased resource grants as the base station complies with the

ighter condition of §1 and §2. 

Fig. 5 (c) shows the resource savings of queue-aware schedul-

ng given a fixed QoS constraint, i.e., b max with ε = 10 −2 . First, we

un a static version of the queue-aware scheduling system to find

he amount of fixed resource blocks β that attains the QoS con-

traint, i.e., b max at ε (dashed line). We compare the static system

o the adaptive one given the same QoS constraint, i.e., b max and

. We plot the average amount of resource blocks granted (average

) for different b max (solid line). The adaptive system is efficient

s it provides substantial resource savings (high utilizations) for a

ide range of QoS constraints. 

.2. Infrequent adaptation 

In this section we regard large scheduling epochs �, in the

ense that λ� is in the order of b max . Here, the amount of ar-

ivals during the epoch � is non-negligible. Hence, we use bounds

n the arrivals together with (6) to obtain a probabilistic bound on

he backlog at the end of the epoch. 

First, we use the formulation (5) together with an ε-effective

ervice curve (6) that is violated with probability ε s and some

lgebraic manipulations to express the backlog at the end of a

cheduling epoch B (τ + �) given the backlog at the beginning of

he scheduling epoch B ( τ ) as 

P 

[ 
B (τ + �) ≤ max 

[ 
B (τ ) + A (τ, τ + �) − S(�) , 

sup 

 ∈ [ τ,τ+�] 

{ A (u, τ + �) − S(τ + � − u ) } 
] ] 

≥ 1 − ε s . (13)

quipped with (13) we implement a queue-aware scheduling that

egulates S(t) to ensure that 

 [ B (τ + �) ≤ b max ] ≥ 1 − ε s . (14)

quation (13) establishes the following requirements on S(t) for

he scheduling epoch: 

(�) ≥ B (τ ) + A (τ, τ + �) − b max , and (15)

(τ + �−u ) ≥ A (u, τ + �) − b max , ∀ u ∈ [ τ, τ + �] . (16)

he adaptive system takes the following input: (i) the queue size

t the beginning of the scheduling epoch B ( τ ), (ii) the target back-

og bound b max with violation probability ε s , and (iii) the arrivals

etween τ and τ + �. In the cellular scenario B ( τ ) is available

hrough BSRs. The arrivals of the upcoming epoch are, however,

ot known a priori. Since in case of infrequent adaptation the ar-

ivals cannot be neglected, we use upper envelope functions E ( t )

s an estimate. These arrival envelopes can be either deterministic
eduling with stochastic guarantees, Computer Communications 
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Fig. 5. Performance of frequent adaptation: (a) and (b) The adap tiv e sy stem uses either a backlog constraint or a combined backlog and delay constraint to grant resources 

to the transmitter in every scheduling epoch. (c) Amount of resource blocks β required to retain a given backlog bound b max and ε = 10 −2 . The static system has a fixed β . 

For the adaptive system we plot the average β . The adaptive system saves resources by running at a high utilization. 
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27] , i.e., A (u, τ + �) ≤ E(τ + � − u ) for all u ∈ [ τ, τ + �] or prob-

bilistic of the form [21,22,30] 

 

[
sup 

u ∈ [ τ,τ+�] 

{ A (u, τ + �) − E(τ + � − u ) } > 0 

]
≤ ε (17) 

ith a violation probability ε. Arrival envelopes can be constructed

or a wide range of traffic models [21,24] , they can be computed

rom traffic traces, or they can be enforced, e.g., by a traffic shaper.

e substitute the arrivals in (15) , and (16) by the envelope E ( t )

o obtain valid requirements on S . In case we use a probabilistic

ound on the arrivals as in (17) we can upper bound the violation

robability in (13) by the sum of ε s of the ε-effective service curve

6) and ε of (17) . 

In the following, we show the calculation for an LTE cellular

ystem assuming a Rayleigh wireless channel model as given in

ection 4 . The formulation (9) , which satisfies (4) , has two param-

ters, the average SNR 1/ η and the granted bandwidth β . We con-

ider an adaptive system that manipulates the bandwidth grants β
o retain the backlog bound (14) . A direct extension based on adap-

ive power regulation through η is also possible. For the evaluation,

e assume leaky bucket constrained arrivals with known envelope

(t) = σ + �t . In the sequel, we will use the envelope E ( t ) instead

f the actual arrivals A (τ, τ + t) for the requirements (15) and (16) .

iven b max and the epoch � we fix S(t) = �[ t − ζ ] + as a latency-

ate function with latency term ζ = 

b max −σ
� , where [ x ] + denotes

ax { x , 0}. Note that b max > σ . The latency-rate shape of S(t) is

hosen in congruence with the shape of E ( t ) such that the vertical

eviation between both is constant and equal to b max . The ratio-

ale is that we are looking for the minimum resource allocation

hat retains the specified QoS bound. First, we consider the condi-

ion on S(�) that follows from (15) . We use an envelope formu-

ation E(t) = B (τ ) + σ + �t = σ ′′ + �t set t = τ + � and calculate

 [ S(τ, τ + �) < S(�) ] ≤ ε ′′ p similar to (10) . Then, we insert the la-

ency rate function S(�) = �[ t − ζ ′′ ] + with ζ ′′ = 

b max −σ ′′ 
� and the

aplace transform M c i (−θ ) from Section 4.2 to relate β to ε ′′ p . 

Now, we turn to condition (16) and calculate the violation prob-

bility in (6) given channel resources β . In [4] we provided a cal-

ulation that was based on a classical combination of Boole’s in-

quality and Chernoff’s bound as illustrated in (7) . The following

ounding technique is more adapted to the considered wireless

hannel model while providing better bounding accuracy. The fol-

owing theorem provides a solution to (6) for the introduced

ayleigh wireless channel model. The proof is given in Appendix

nd it goes along a technique known from [31,32] . 

heorem 1 (Bound on the finite interval Rayleigh wireless chan-

els service) . Given a Rayleigh fading channel that is described by a

ervice process S(τ, t) = 

∑ t 
i = τ+1 c i with iid increments c i from (8) and
Please cite this article as: A. Rizk, M. Fidler, Queue-aware uplink sch
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arameters β and η. A bound on the service provided by the channel

or a finite interval � is given as 

 [ ∃ u ∈ [ τ, τ + �] : S(u, τ + �) < S(τ + � − u ) ] ≤ e −θκ , (18) 

ith S(t) = [ �t − κ] + , the free parameters ϱ, κ > 0 and with θ equal

o the unique positive solution of 

 c 1 (−θ ) e θ� = 1 . (19)

he stability condition 

 < E [ c 1 ] = βe η(0 , η) (20)

uarantees the existence of a unique solution to (19) . 

Now, given b max and �, we substitute κ in Theorem 1 by

 max − σ, to obtain a bound that relates to the requirement

16) . Recall the definition of E ( t ) as σ + �t . Hence, the events

 �k − ∑ k 
i =1 c i > (b max − σ ) } and { E(k ) − ∑ k 

i =1 c i > b max } are identi-

al. The relation between β and the violation probability ε ′ s in (18)

s established through θ that is the solution of (19) . An expanded

ersion of this relation is given in (26) in Appendix . Further, we

hoose β to ensure that the stability condition (20) holds for the

ayleigh wireless channel. Finally, we obtain a bound on the viola-

ion probability ε s of the backlog bound in (14) as the sum of ε ′′ p 

nd ε ′ s from above, i.e., using the combination of the requirements

15) and (16) . 

In the following we present simulation results for queue-aware

cheduling with infrequent adaptation in an LTE scenario as de-

icted in Fig. 1 . The baseline scenario remains unchanged with

espect to Section 5.1 except for � = 100 slots and b max = 65 ,

.e., λ� = b max where λ = 0 . 65 as before and the violation prob-

bility ε s = 10 −2 . An arrival envelope with parameters σ = 10 and

 = 0 . 66 is enforced on Poisson traffic with mean rate λ. We ap-

ly a numerical binary search to find β that satisfies (18) for a

iven ε s . 
Fig. 6 (a) shows the adaptive system successfully providing the

onfigured probabilistic bound on the backlog at the end of the

cheduling epoch. The figure also compares the bound provided

y the calculation in [4] and the martingale bounding technique

n Section 5.2 . The performance of queue-aware scheduling using

he new bounds is closer to the target criterion of a queue length

f 65 at ε = 10 −2 and hence enables saving resources compared to

4] . It is worth noting that the difference between both calculations

rows with longer periods �. In Fig. 6 (b) we observe lower delays

sing the technique from [4] as it allocates slightly more resources

han the new bounding methodology from above. We also observe

n Fig. 6 (b) a base level of delays after which the CCDF shows a

harp bend. The intuition behind this is that the adaptation algo-

ithm saves resources by leaving a residual amount of backlog not
eduling with stochastic guarantees, Computer Communications 
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a b

Fig. 6. Infrequent adaptation: The system retains the probabilistic backlog bound. (a) The martingale technique provides a more accurate performance bound, i.e., queue 

length of 65 at ε = 10 −2 . The technique in [4] allocates slightly more resources per scheduling period leading to some degree to shorter queues in (a) and smaller delays in 

(b). 

a b

Fig. 7. Impact of the burstiness constraint σ . Bursts occur only rarely, as can be seen from (b) that shows the CCDF of the amount of data arrivals in each scheduling 

epoch (solid lines). The adaptive system provisions resources for bursts of up to σ . Hence, most of the time it maintains a smaller queue size if σ is increased, see the 

staggered CCDFs of the queue length in (a). The effect of actual burst arrivals is visible in the tail of the CCDFs in (a). (b) also shows the amount of service that is available 

in each scheduling period (dashed lines). Since for larger σ the system mostly maintains a correspondingly smaller queue size, the resources that are required for the next 

scheduling epoch are similar for different σ and differ only in the tail, if the queue size increased due to an actual burst arrival. 
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cleared if it does not threaten to violate the QoS constraint. Ob-

serve that in Fig. 6 (b) the delay variation (jitter) is small with re-

spect to the base level of delays. In Fig. 7 (a) we fix the Poisson

arrival traffic and the previously noted leaky bucket rate ρ while

varying its maximum burst size σ . The adaptive system allocates

comparable resources in the majority of the scheduling periods as

larger bursts arrive rarely. This is shown in Fig. 7 (b) where we de-

pict the CCDF of the cumulative arrivals and the amount of service

that is available per scheduling period. 

The decision whether to use infrequent or frequent adaptation

strongly depends on the length of the scheduling epoch � and the

relation of b max to the amount of traffic which is expected in �.

Given base stations that do not have any information on the ar-

rivals at the UE (except for the average rate) the choice would be

frequent adaptation. Given more information on the arrivals, e.g.,

a probabilistic/deterministic bound for the time span �, the base

station can deploy the more refined algorithm of infrequent adap-

tation over longer scheduling epochs, which reduces signaling and

can save computational resources at the base station. 

5.3. Multi-user scheduling 

We conclude this section with a concise evaluation of queue-

aware scheduling for a system serving multiple users with over-

all resource constraints. We utilize the infrequent adaptation algo-

rithm with unchanged parameters as above. For ease of exposition,

we consider M homogeneous and statistically independent UEs in

a cell, each signaling BSRs to the base station. The heterogeneous

case follows at the expense of additional notation. The base station

deploys the infrequent adaptation system to provide each UE with

resource blocks for every scheduling epoch. For a given epoch, the
Please cite this article as: A. Rizk, M. Fidler, Queue-aware uplink sch
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mount of resource blocks that are required for user j according to

he adaptive system is denoted β j . For convenience, we drop the

poch index in the following notation. Naturally, the base station

s constrained by the overall amount of resource blocks βs that are

vailable at each epoch. Hence, the resource amount received by a

ser j , i.e., ˆ β j , depends on the required amount β j and a schedul-

ng policy implemented at the base station to distribute the avail-

ble amount of resource blocks βs . In general, the overall amount

f resources received by the users is constrained by βs , i.e., 

M 

 

j=1 

ˆ β j ≤ βs , 

hile the resource amount the individual users receive is con-

trained by β j , i.e., 

ˆ 
j ≤ β j for j ∈ { 1 , . . . , M} . 

In the sequel, we consider three different scheduling algo-

ithms that run on top of the queue-aware scheduling. The ratio-

ale behind this is to additionally provide a mechanism for ser-

ice differentiation. We consider the following notions of schedul-

ng: (i) deterministic (FDMA), (ii) priority, and (iii) proportional fair

cheduling. 

In the first case, the deterministic scheduler divides the avail-

ble resources βs evenly over M users while taking into account

heir respective resource requirements β j that are provided by the

daptive system. The resource share of user j of the available re-

ources βs is hence 

ˆ 
j = min { β j , βs /M} , (21)
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Fig. 8. Multi-user scenario: Backlogs in the adaptive system under different scheduling algorithms. Notable difference only at very high utilizations. 
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.e., the minimum of the amount required by the adaptive system

nd the even share of βs . This rule is simply implementable into

he base station logic. 

In the second case, we consider a priority scheduler with M or-

ered priority classes. For notational simplicity, we consider here

 one-to-one mapping of M users to M priority classes. The exten-

ion of multiple users per class is, however, straightforward. Under

riority scheduling, the user in class j receives 

ˆ 
j = min 

{ 

β j , βs −
j−1 ∑ 

k =1 

ˆ βk 

} 

, (22) 

here we adopt the convention 

∑ 0 
k =1 

ˆ βk = 0 . Here, the higher the

riority of a user, i.e., smaller j , the more resources may it receive

f the overall amount βs given that the higher priority user re-

uirements are satisfied. 

The last case concerns what we denote as proportional fair

cheduling where we basically employed the resource distribution

f the priority scheduling given in (22) , however, we reorder the

riority list at the beginning of every scheduling epoch based on

 proportionality score that is calculated for each user j similar to

he definition in [33] . Here, the score of the j th user reflects the

roportion of the expected service during the upcoming epoch in

elation to the user average send rate over the last epochs. In par-

icular, the score of the j th user is given as S j (τ, τ + �) / (D j (τ ) /τ ) ,

.e., the amount of service that user j expects in the scheduling

poch divided by the average transmission rate of the user up to

he beginning of the scheduling epoch τ . 

We consider a simulation of the multiuser system with the

ollowing parameters: σ = 10 , b max = 65 , ε = 0 . 05 , � = 100 slots,

 = 10 users, and a simulation length of 10 5 slots. Fig. 8 shows the

erformance of the multi-user system under different utilizations.

or the priority scheduler the CCDF of the first priority user re-

ains unchanged through all considered utilizations. The priority

cheduler may starve low priority classes to provide high priority

lasses with enough resources to attain the QoS constraint. In case

f proportional fair scheduling and deterministic scheduling the re-

ources are “fairly” distributed such that either none or all UEs are

rovided with the QoS constraint. The backlog CCDFs for all UEs

re identical such that we display only one for the proportional

air case and one for the deterministic case. An interesting obser-

ation is that the CCDF of the backlog for a single user scenario

ithout the overall resource constraint βs matches the CCDF of the

riority user #1 in Fig. 8 . The adaptive system shows strong per-

ormance providing the QoS constraint to all UEs. The deterministic

cheduler behaves similarly to the single user case in Section 5.2

s the users’ uplinks can be regarded as parallel independent sys-

ems. Yet, it relates through the condition on 

ˆ β j to the study of

xed service rate constraints in Section 3 . For the priority sched-

ler the system benefits from statistical multiplexing effects when
Please cite this article as: A. Rizk, M. Fidler, Queue-aware uplink sch

(2016), http://dx.doi.org/10.1016/j.comcom.2016.02.014 
istributing the overall available resources βs . In case of propor-

ional fair scheduling βs is evenly distributed such that all UEs are

rovided with comparable QoS level. 

. Conclusions 

In this work, we presented an adaptive resource allocation

cheme that provides probabilistic quality of service guarantees

ased on transmit buffer occupation. Adaptive resource allocation

nables the optimization of the resource utilization in communica-

ion networks under dynamic conditions. First, we used exact for-

ulae for the class of Poisson traffic to show substantial resource

avings under certain conditions compared to static resource al-

ocations. We also showed the robustness of the adaptive system

ith respect to misadaptation and resource limitation. Motivated

y the exact results we provided a general framework for imple-

enting queue-aware scheduling that takes as input general traf-

c arrival and service processes. We considered a wireless channel

odel and described two algorithms for adaptive resource alloca-

ion. Using the example of a cellular network we presented sim-

lation results that show the performance gain with queue-aware

cheduling. The adaptive system saves resources, while retaining a

iven QoS level. We showed a brief example of the performance

f the adaptive system in multi-user scenarios together with in-

ight and recommendations for the operation of queue-aware

cheduling. 
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ppendix 

roof of Theorem 1. We assume a common filtered probability

pace 
(
�, F , ( F k ) k , P 

)
and that the service increment process ( c k ) k 

s adapted. Next, we insert the expressions for S(u, τ + �) and for

(τ + � − u ) from the theorem into (18) . Since S(u, τ + �) ≥ 0 for

ll u , τ , � we rewrite (18) as 

 

[ 

max 
0 ≤k ≤�

{ 

�k −
k ∑ 

i =1 

c i 

} 

> κ

] 

≤ ε ′ s , (23) 

here we made use of the reversibility property of the increment

rocess and used a variable substitution for the time index. We

dopt the convention 

∑ 0 
i =1 c i = 0 . 
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First, we prove that the process e θ (k�−∑ k 
i =1 c i ) is a martingale

with respect to F k which is the filtration corresponding to the his-

tory of the process ( c k ) k . This is directly obtained given the iid

property of the increment process, i.e., 

E [ e θ (k�−∑ k 
i =1 c i ) |F k −1 ] = E [ e θ (�−c k ) ] e θ ((k −1) �−∑ k −1 

i =1 c i ) 

= e θ ((k −1) �−∑ k −1 
i =1 c i ) , (24)

under the condition (19) on θ . The existence and uniqueness of the

solution of (19) given the stability condition (20) is proven through

the monotonicity of the Laplace transform M c 1 (−θ ) and the func-

tion e −θ� similar to a technique in [32] . 

In the sequel, we use the following stopping time T for the pro-

cess e θ (k�−∑ k 
i =1 c i ) to derive a bound as in (6) : 

T := min 

{ 

min 

{ 

k ≥ 0 : k� −
k ∑ 

i =1 

c i > κ

} 

, �

} 

, 

where min { k ≥ 0 : k� − ∑ k 
i =1 c i ) > κ} is also the first point in time

where the event { e θ (k�−∑ k 
i =1 c i ) > e θκ } occurs. Using T we invoke

Doob’s maximal inequality [34] to find the upper bound ε ′ s in (23)

as 

P 

[ 
max 

0 ≤k ≤�
e θ (k�−∑ k 

i =1 c i ) > e θκ
] 

≤ E 

[
e θ (�−c 1 ) 

]
e −θκ

= e −θκ := ε ′ s , (25)

where we used the condition (19) in the second line. Now, we can

determine θ in (25) after inserting ϱ and the Laplace transform of

c 1 from (11) into the condition (19) as the solution of 

η + θ ( β ln (η) + � ) + ln ((1 − θβ, η)) = 0 . (26)

The stability condition (20) ensures the existence of the unique

solution to (19) . We calculate E [ c 1 ] as follows 

E [ c 1 ] = βη

∫ ∞ 

0 

ln (1 + x ) e −ηx dx 

= βη

[[
−e −ηx 

η
ln (1 + x ) 

]∞ 

0 

+ 

∫ ∞ 

0 

e −ηx 

(1 + x ) η
dx 

]
= βe η(0 , η) . 

In the first step, we did an integration by parts. In the second step,

we evaluate the first term and use a variable transformation in the

second term to obtain the incomplete gamma function. �
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