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a b s t r a c t 

Several recent studies have shown that router FIB caching offers excellent hit rates with cache sizes that

are an order of magnitude smaller than the original forwarding table. However, hit rate alone is not

sufficient – other performance metrics such as memory accesses, robustness to cache attacks, queuing

delays from cache misses, etc., should be considered before declaring FIB caching viable.

In this paper we tackle several pragmatic questions about FIB caching. We characterize cache perfor- 

mance in terms of memory accesses and delay due to cache misses. We study cache robustness to pol- 

lution attacks and show that in order to evict the most popular prefixes an attacker must sustain packet

rates higher than the link capacity. We show that caching was robust even during a recent flare of NTP

attacks. We carry out a longitudinal study of cache hit rates over four years and show the hit rate is

unchanged over that duration. We characterize cache misses to determine which services are impacted

by FIB caching. We conclude that FIB caching is viable by several metrics, not just impressive hit rates.

© 2016 Published by Elsevier B.V.

1. Introduction 1 

The growth of forwarding table (FIB) sizes, fueled by factors 2 

such as multi-homing, traffic engineering, deaggregation and the 3 

adoption of IPv6 has led to a renewed interest in FIB caching meth- 4 

ods. Past work (including ours) has shown repeatedly that there is 5 

significant traffic locality in the Internet that makes FIB caching 6 

beneficial. However, FIB caching has not been implemented to 

Q2

7

practice. Part of the reason might be that past work has focused on 

Q3

8

demonstrating that FIB caching is beneficial, leaving several prac- 9 

tical and engineering questions unanswered. These include ques- 10 

tions like how should the cache be implemented in a modern line 11 

card? Who suffers most from cache misses and how? How long 12 

does it take for a miss to be serviced? What are the memory band- 13 

width requirements for cache updates? How easily can one attack 14 

the cache? In this paper we address such practical questions and 15 

show that FIB caching is not only highly beneficial, but also very 16 

practical. We hope that our work answers important engineering 17 

questions and leads to renewed interest in building routers with 18 

caches. 

Q4

19

Is FIB caching still relevant? Can’t Cisco already support a mil- 20

lion entries in their line cards? Opinions range from “it’s not an is- 21 

sue” to “the sky is falling”. We do not attempt to take a position in 22 
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this debate but seek only to inform. There are recent trends, how- 23

ever, that make the matter worth revisiting. One is the slow but 24

steady growth of IPv6, which steadily adds more prefixes in the 25

FIB. Another is the quest to build a Tb/s forwarding chip, which, 26

for packaging reasons, will have limited on-chip memory, a perfect 27

candidate for a cache. 28

In summary, we make the following contributions: 29

• We classify packets that cause cache misses according to their 30

type and protocol. 31

• We evaluate the effect of cache misses on delay and buffer 32

utilization. 33

• We evaluate the effect of caching on memory bandwidth 34

requirements. 35

• We examine the behavior of the system under a cache pollution 36

attack by someone who wants to replace popular with unpop- 37

ular prefixes. 38

To achieve fast cache updates we propose an architecture that 39

includes a cacheable FIB i.e. a FIB that does not suffer from the 40

cache hiding problem (explained later). The cacheable FIB is de- 41

rived from the standard FIB. 42

Briefly, our results are as follows: first, we confirm past ob- 43

servations that FIB caching is effective: with a cache size of 10K 44 

entries hit rates are in excess of 99.5%. Second, our classifica- 45

tion of cache misses shows that NTP and DNS queries are the 46

main culprits of cache misses. Not surprisingly, TCP control pack- 47

ets (SYNs, SYNACKs, FINs, FINACKs and RSTs) account for 70% of the 48

TCP misses. Data packets cause approximately only a third of the 49
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misses. Third, we show that very few packets need to be queued 50 

due to cache misses and they suffer insignificant queuing delays. 51 

Finally, we show that a cache recovers quickly when subjected to 52 

cache pollution attacks aiming to replace cache entries with un- 53 

popular prefixes. In our datasets, an attacker must send 1.2 billion 54 

packets/s over a 10G link to effectively disrupt the cache. 55 

Our data comes from a regional ISP and thus our observations 56 

are mainly from the edge of the network. However, our study can 57 

easily be repeated for the network core by someone with access to 58 

the appropriate packet traces. 59 

The rest of the paper is organized as follows. Section 2 intro- 60 

duces previous work that has looked into FIB scaling methods. 61 

In Section 3 we introduce our FIB caching solution. In Section 4 62 

we introduce the cache hiding problem. Next, we introduce our 63 

hole filling algorithm and evaluate it in Section 4.1 . In Section 5 64 

we describe the datasets used in our evaluation. We evaluate LRU 65 

caches in Section 6 and the effect of cache misses in Section 7 . In 66 

Section 8 we evaluate the robustness of our caching system when 67 

it is being attacked. Finally, we conclude in Section 9 . 68 

2. Related work 69 

Approaches to reduce the FIB size have been studied for more 70 

than a decade [3,6,8,10,13,17,18,23,25,29] . These approaches fall into 71 

two broad categories – caching-based and aggregation-based ap- 72 

proaches. Our work is independent of FIB aggregation techniques 73 

and hence we do not discuss these approaches in this work. There 74 

are other approaches that achieve FIB size reduction by reducing 75 

the RIB size [7,20,28] . We believe that our work is complementary 76 

to this work and the reduction of the RIB size will result in a more 77 

dramatic decrease in the cache size. 78 

The idea of using route caching was first proposed by Feldmeier 79 

in 1988 [8] , which was further extended by Kim et al. in [13] . 80 

Kim et al. introduce the cache hiding problem (discussed further 81 

in 82 

[1383 
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Fig. 1. Proposed caching system architecture. 

Previous work [9,19] has investigated the impact of various 114 

cache poisoning attacks on caches and has proposed methods of 115 

mitigating such attacks. However, the systems investigated were 116 

software systems (web proxies) that have a different set of con- 117 

straints than the hardware-based route caching system proposed in 118 

this work. Further, unlike previous work, we consider the impact 119 

of cache misses on the system performance not only in terms of 120 

hit rates achieved but also the types of requests resulting in cache 121 

misses and their implications for operators. 122 

3. Cache system design 123 

Fig. 1 shows our proposed FIB caching architecture. The RIB 124 

and FIB on the left are part of the standard hardware architec- 125 

ture. We add (a) a cacheable FIB , which resides in main memory, 126 

(b) a cache, which can take the place previously occupied by the 127 

FIB 28 

(d) 29 

rou 30 

com 31 

tion 32 

car 33 

the 34 

is o 35 

36 

FIB 37 

me 38 

late 39 
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41 
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the 44 

wit 45 

46 

FIB 47 

4. 48 

Pl

ht
Section 4 ). To solve the cache hiding problem, the approach in 

] splits the IPv4 address space into the constituent /24 prefixes. 

er approaches to handling the cache hiding problem include 

ating related prefixes as an atomic block so that all cache oper- 

ns (insertion, lookup and deletion) are carried out on the block 

a whole, using a complicated data structure with on-the-fly 

putation to remove interdependencies between prefixes [15] or 

ng genetic algorithms to allow the cache policy to evolve while 

cking the heavy hitter flows [27] . In this paper, we propose a 

e filling algorithm to address the cache hiding problem, similar 

the method proposed in [16] . While the algorithm presented in 

] generates the needed most-prefix on a per-packet basis, thus 

urring a per packet cost, our algorithm pre-computes the pre- 

to add. By adding these extra prefixes, we ensure that there are 

overlapping prefixes in the FIB. Consequently, a packet hitting a 

fix not in the cache will cause the correct route to be fetched 

m the full FIB, instead of an incorrect longest prefix match with 

overing prefix already in the cache. We discuss this algorithm in 

tion 4.1 . We show that the number of extra prefixes added to 

 FIB is only a small fraction of the total number of FIB entries. 

ther, by using this cacheable FIB , we show that we can forward 

 or more packets along the fast path with a cache size of the 

er of 10,0 0 0 entries. 
In [24] , the authors propose a traffic offloading strategy to 

erage the Zipf-like properties of Internet traffic. The proposed 

tem, Traffic-aware Flow Offloading (TFO) is a heavy hitter selec- 

 strategy that leverages the Zipf-like properties and the stabil- 

of the heavy hitters across various time scales. TFO maintains 

 set of current heavy hitter flows in fast memory and sends 

kets from flows not in the heavy hitter set to a slower path. 

ults show that TFO sends a few thousand packets/second to the 

w path. 

49 

hid 50 

cac 51 

the 52 

pre 53 
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los
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, (c) a queue to hold packets experiencing a cache miss, and 1

 the appropriate logic to handle cache updates and misses. The 1

ter processor handles incoming route information as usual and 1

putes the local RIB (routing table) and FIB as before. In a tradi- 1

al architecture the router would load the entire FIB in the line 1

d; in our architecture, the router derives the cacheable FIB from 1

 standard FIB and pushes just the cache in the line card, which 1

ne or two orders of magnitude smaller than the original FIB. 1

Our caching architecture may seem to keep two copies of the 1

, the original and cacheable FIB, which may seem a waste of 1

mory. However, the two FIBs are very similar as we will show 1

r and an implementor can easily use appropriate data struc- 1

es to avoid duplication. 1

Each incoming packet incurs a lookup in the cache using the 1

ndard longest prefix match algorithm. If there is a hit the packet 1

mmediately forwarded along the cached route. If there is a miss 1

 packet is queued in the line card until the cache is updated 1

h the appropriate prefix from the cacheable FIB. 1

Next, we elaborate on the need and derivation of a cacheable 1

. 1

The need for a cacheable FIB 1

Entries in the original FIB cannot be cached due to the cache 1

ing problem , which occurs when a less specific prefix in the 1

he hides a more specific prefix in the FIB. This is a result of 1

 fact that a route-caching system looks for the longest-matching 1

fix only in the cache, thus missing possible longer matches in 1
 full FIB. This can lead to incorrect forwarding, loops and packet 154 

ses. 155 

To further understand the problem, consider an empty cache 156 

 a full routing table that only has two prefixes: 10.13.0.0/16 157 

outer FIB caching, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.02.006


K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx 3 

ARTICLE IN PRESS 

JID: COMCOM [m5G; February 26, 2016;10:24 ] 
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he 176 
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x, 194 

IB 195 
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sk 197 

is 198 
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Table 2 

FIB size increase due to hole filling algorithm. The in- 

crease in FIB size due to hole filling is minimal. 

Table Original Cacheable Increase 

Regional ISP 441,778 468,095 5.96% 

Hurricane 4 4 4,977 470,911 8.51% 

Telstra 440,156 466,416 8.43% 

Level-3 436,670 462,966 8.41% 

AOL 438,719 464,988 8.40% 

NTT-A 439,078 465,536 8.38% 

ATT 438,265 464,662 8.37% 

SAVVIS 438,582 465,045 8.37% 

Sprint 438,634 465,079 8.37% 

VZWBIZX 436,821 463,220 8.35% 

SWISS-COM 169,861 173,636 8.27% 

KPNE 439,288 465,790 6.03% 

Tiscali 438,993 465,343 6.00% 

IIJ 440,196 466,505 5.98% 

to 200 

ld, 201 

e- 202 

203 

ty, 204 

rd 205 

206 

207 

is 208 

1 a 209 

1 c 210 

ef- 211 

212 

ch 213 

2] 214 

te 215 

er 216 

 is 217 

218 

219 

e- 220 

ed 221 

re 222 

to 223 

e- 224 

ch 225 

ed 226 

 3 227 

228 

on 229 

es 230 
Table 1 

Original non-cacheable FIB, after one iteration of hole filling algo- 

rithm and final cacheable FIB. 

Prefix OFF 

(a) Non-cacheable FIB 

10.13.0.0/16 1 

10.13.14.0/24 2 

(b) Non-cacheable FIB after one iteration of hole filling algorithm 

10.13.0.0/17 1 

10.13.128.0/17 1 

10.13.14.0/24 2 

(c) Cacheable FIB 

10.13.128.0/17 1 

10.13.64.0/18 1 

10.13.32.0/19 1 

10.13.16.0/20 1 

10.13.0.0/21 1 

10.13.8.0/22 1 

10.13.12.0/23 1 

10.13.14.0/24 2 

10.13.15.0/24 1 

associated with an output interface O1, and 10.13.14.0/24 asso

ated with an output interface O2. Suppose a packet arrives with

destination IP address of 10.13.2.3. The router will find the longe

matching prefix (LMP) for the destination IP address, which 

10.13.0.0/16, and will install the route [10.13.0.0/16 → O1] in t

cache. Assume that the next packet that arrives at the router h

a destination IP address of 10.13.14.5. The router will find the pr

viously installed route [10.13.0.0/16 → O1] in the cache and w

forward the packet along O1. However, this is incorrect, since t

correct LMP for 10.13.14.5 is 10.13.14.0/24 and the packet shou

have been forwarded on interface O2. 

Past work addressed the cache hiding problem by eith

caching only /24 prefixes [13] , by using a complex data structu

with on-the-fly computation to eliminate inter-dependencies b

tween prefixes [15] , by adding on-the-fly to the FIB the appropria

leaf node corresponding to the packet’s destination address [16] 

by treating a set of related prefixes as an atomic block and pe

forming cache actions (insertion, lookup and delete) on the atom

block instead of an individual prefix. Our approach is similar to t

approach presented in [16] , except that we pre-calculate the ent

cacheable FIB table. 

4.1. Generating a cacheable FIB 

We have previously seen that simply caching existing FIB e

tries would lead to incorrect forwarding due to the cache hidi

problem. In this section we describe an algorithm to generate

cacheable FIB , i.e. a FIB that is free from the cache hiding proble

We call it the hole filling algorithm because it starts with t

original FIB and fills in holes between related entries to produce

new FIB whose entries are cacheable. While the new FIB is larg

because the algorithm adds more entries, the increase is small, 

we will show later, and caching makes it irrelevant. 

The intuition behind the algorithm is as follows – if a pre

covers other prefixes in the table, we delete that prefix and a

its children to the FIB. We repeat this process until there are 

covering prefixes, at which point we are left with a cacheable FI

To better understand the algorithm, consider the FIB shown 

Table 1 a. This FIB is non-cacheable, since the 10.13.0.0/16 prefi

if present in the cache, will hide the 10.13.14.0/24 prefix. This F

needs to be transformed into a cacheable FIB. 

We first choose the prefix from the FIB with the smallest ma

length, which is 10.13.0.0/16 in this case. Then we check if th

prefix has any children. If the selected prefix has a child, we sp
Please cite this article as: K. Gadkari et al., Pragmat
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Table 3 

Trace statistics. We use trace T8 in our caching perfor- 

mance analysis and trace T9 in our cache robustness 

analysis. 

No. Date Time Link No. packets 

T1 3/31/09 27H 1G 7,620,972,889 

T2 8/17/09 24H 1G 3,821,714,756 

T3 8/3/10 24H 1G 2,084,398,007 

T4 8/3/10 24H 1G 2,050,990,835 

T5 12/14/11 12H 1G 625,547,727 

T6 04/13/12 12H 1G 3,729,282,487 

T7 2/14/13 12H 10G 22,622,946,036 

T8 3/20/13 12H 10G 21,998,786,996 

T9 2/21/14 12H 10G 18,435,172,172 

the prefix into its two children, otherwise we add the prefix 

the cacheable FIB. In this example, since 10.13.0.0/16 has a chi

10.13.14.0/24, we split the /16 into its two constituent /17s and r

move the original 10.13.0.0/16, as shown in Table 1 b. 

The process continues, until the non-cacheable FIB is emp

and the cacheable FIB contains the leaf nodes necessary to forwa

all packets correctly. Table 1 c shows the final, cacheable FIB. 

4.1.1. FIB inflation due to hole filling 

The hole filling algorithm produces a cacheable FIB that 

larger than the original. For example, the original FIB in Table 

has only two entries, while the cacheable FIB shown in Table 

has nine entries, an increase of 350%. We next investigate the 

fect of the algorithm on real FIBs. 

We measured inflation on a FIB from our regional ISP, whi

contains next hop information, and on FIBs from RouteViews [2

that do not contain next hop information, which we approxima

using the next hop AS. Table 2 shows at worst inflation is und

9%. Since the cacheable FIB resides in main memory the impact

very small. 

5. Data sets and trace statistics 

We used nine 12H and 24H packet traces taken at links b

tween our regional ISP and one of its tier-1 providers. We captur

traffic using specialized hardware [1] that ensured no packets we

dropped during capture and packet timestamps were accurate 

a nanosecond resolution. We then used a trie-based longest pr

fix matching algorithm to determine the matching prefix for ea

packet. The cacheable FIB was derived from the actual FIB obtain

from the router where the packet trace was captured. Table

shows the trace statistics. 

In an interesting twist, there was a sustained NTP reflecti

attack in trace T9. In this attack, several comprised machin
ic router FIB caching, Computer Communications (2016), 
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Fig. 2. Comparison of average overall bit rate and ntp bit rates per hour between a 
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LRU. Qualitatively our results confirm previous observations, but it 248 

is important to show them to establish a baseline. Fig. 3 a and b 249 

shows the performance of an LRU cache with varying cache sizes 250 

for trace T8 from Table 3 . We plot average cache hit rates at every 251 

5-min interval. 252 

From Fig. 3 a and b we see that both LRU and LFU consistently 253 

achieves very high hit rates. With a cache size of only 1K entries 254 

the hit rate is 98%. The hit rate increases with the cache size, 255 

reaching almost 99.9% with a cache of 10K entries. LRU achieves 256 

maximum hit rates of 99.26%, 99.74%, 99.91% and 99.96% with 257 

cache sizes of 1K, 2.5K, 5K and 10K respectively. Note that even 258 

with a cold cache the hit rate penalty is very small. For the rest 259 

of the paper, unless otherwise noted, we will use a cache size of 260 

10K. The reason is that even with 10K entries, this is a still a very 261 

small cache compared with the original FIB size (currently around 262 

500K). In the rest of the paper, we present results only for a LRU 263 

cache unless otherwise noted, since it clearly offers higher hit rates 264 

than LFU. 265 

6.2. Caching with delayed updates 266 

In this section, we examine the effects of an optimization of 267 

the caching strategy. Namely, instead of inserting a prefix P im- 268 

mediately after encountering a cache miss, the system waits until 269 

a certain pre-set threshold is crossed i.e. prefix P receives at least 270 

N packets in a given time interval T . This optimization targets the 271 

“bottom” of the cache i.e. transient prefixes that only receive a few 272 

hits – these mostly unpopular prefixes will be evicted from the 273 

cache thus resulting in cache churn. By not inserting these pre- 274 

fixes into the cache in the first place, we potentially save mem- 275 

ory lookups and cache updates. Fig. 4 shows the hit rates achieved 276 

with the delayed cache updates. 277 

78 
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rmal” trace and a trace with attack traffic. Trace T9 was captured during an NTP 

ck. 

onging to our ISP’s customers were used as amplifiers to attack 

er hosts on the Internet using a NTPD vulnerability [2] . Fig. 2 

ws the overall average bit rate per hour as well as the average 

P bit rate per hour. NTP traffic accounted for 1.3% of all traf- 

during the duration of the trace. In comparison, trace T8 has 

roximately the same byte rates as trace T9. However, NTP ac- 

nted for only 0.1% of all traffic in trace T8. 

For brevity, we show statistics from trace T8 only. Results from 

 other traces (except T9) are similar. We use trace T9 in our 

he robustness analysis in Section 8.3 . 

Results 

In this section we present results using FIB caching emulation, 

ng real traces to drive the emulator. 

 Cache system performance 

We begin by evaluating cache performance using two standard 

he replacement policies – least recently used (LRU) and least 

quently used (LFU). We observed that LFU performs worse than 

Fig. 3. LRU and LFU hit rates for ca
ease cite this article as: K. Gadkari et al., Pragmatic r
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Fig. 5 a and b shows the number of packets that are forwarded 2

ng the slow path and the fraction of total packets delivered 2

ng the slow path, respectively, during each of the intervals. As 2

ected from Fig. 4 , the number of packets sent along the slow 2

h varies inversely with the timeout value. Figs. 4 and 5 show 2

t the cache need not be updated every time a cache miss oc- 2

s. Instead, the cache can be updated in intervals with the in- 2

im misses being forwarded along the slow path without ad- 2

sely affecting the cache performance. 2

. Impact of route updates 2

Routers periodically receive route updates from their peers. 2

se updates may add new prefixes (announcements) to the table 2

zes varying from 1K to 10K . 
outer FIB caching, Computer Communications (2016), 
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Fig. 4. Hit rates for LRU cache with delayed updates. The cache size was 10K 

entries. 

Table 4 

Update statistics. 

Update Entries Announce Withdraw 

ch 290 

n- 291 

292 

a- 293 

IB. 294 
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w 326 

of 327 
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nd 329 

- 330 

ng 331 

he 332 

333 

er 334 

lar 335 

re 336 

et 337 

9, 338 

re 339 
U1 55,718 43,720 6,263 

U2 65,120 45,551 6,375 

U3 73,599 46,976 4,606 

Total 194,437 136,247 17,244 

or withdraw existing prefixes from the table (withdrawals). Ea

such update may cause one or more entries in the cache to be i

validated. 

To evaluate the effect of route updates we took a full RIB t

ble from a RouteViews [22] peer and generated a cacheable F

We again approximate next hop information using the next hop 

from the ASPATH attribute. Then, we applied updates for the sam

peer to the cacheable FIB and generated a new cacheable FIB. 

nally, we measured the difference between the original cacheab

FIB and the newly generated cacheable FIB. 

We show results for 3 sets of updates. Table 4 shows som

statistics about the updates applied to the cache. 

The size of the cacheable FIB generated from the original F

went up from 458,494 to 464,512, an increase of only 1.29%. 82.

of the prefixes in the cacheable FIB were the same as those in t
Fig. 5. Analysis of packe

Please cite this article as: K. Gadkari et al., Pragmat
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Table 5 

Expansion statistics. 

Data Updated Cacheable Growth Same 

FIB 458,494 465,512 1.29 82.5 

U1 458,725 458,763 0.008 99.97 

U2 458,715 458,755 0.009 99.97 

U3 458,890 458,974 0.018 99.97 

original FIB ( Table 5 ) . After subsequent updates were applied, t

size increase as well the number of prefixes that changed was ne

ligible – the average change in the size of the cacheable FIB w

only 0.0018%. 

Next, we count the number of prefixes that had next h

changes, since only these prefixes will have to be invalidated

present in the cache. Our results show that, on average, only 1

prefixes in each 15 min set of updates had a next hop change. T

insignificant change in the size of the cacheable FIB after app

ing updates, coupled with the fact that only a few hundred pr

fixes will have to be invalidated from the cache due to change 

forwarding state, suggest that routing updates will have very lit

impact on the cache state and forwarding performance. 

It should be noted that while this study is limited in scope 

tables and updates from only one RouteViews peer, we believe th

a more comprehensive study will yield similar results. Resear

shows that routing tables from different RouteViews peers have

very few differences [26] and hence we believe that our results a

applicable to other peers as well. 

6.4. Trends in cache size 

The global routing table has been growing steadily for the pa

several years. Measurements show that the routing table gre

from 150,0 0 0 entries in 20 03 to 517,802 entries at the time 

this writing, representing an increase of 245% in the last deca

alone [11] . Routers thus need increasing amounts of memory a

processing power [12] . The conventional wisdom that FIB mem

ory will scale at rates surpassing the rate of growth in the routi

information handled by core router hardware is not true for t

low-volume, customized hardware used in core routing [21] . 

Given the fast rate of increase of the global routing table ov

time, the natural question to ask is does a FIB cache face a simi

rate of growth? To get some insight into the answer we measu

the hit rates achieved with a cache size of 10K entries on pack

traces gathered from 2009 to 2014. These traces, except trace T

were collected at the same point in our ISP, so they truly captu
ts sent to the slow path. 

ic router FIB caching, Computer Communications (2016), 
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Fig. 6. Hit rates achieved by a 10 K entry cache remain almost constant from 2009 

to 2014. The 2014 trace contains the NTP attack traffic. 

the cache evolution over the last four years. Trace T9 was captured 340 

at another monitoring location in our ISP, but results show that 341 

the hit rates for trace T9 are similar to the hit rates for the other 342 

traces. 343 

Fig. 6 shows the results. While there is some minor variation, 344 

the hit rates achieved with a cache size of 10K are consistently 345 

higher than 99.95%, meaning that over the past four-year period 346 

the cache size did not need to change to maintain the same cache 347 

hit rate. Thus, while the global routing table has certainly changed, 348 

traffic locality has not changed sufficiently to affect the cache size. 349 
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nalysis of cache misses 

In our FIB caching system when a packet arrives and the ap- 

priate prefix is not in the cache, the packet is queued while 

ache update takes place. This introduces some delay before the 

ket is forwarded. Delay may affect packets in different ways. For 

mple, delaying video packets may result in dropped frames and 

ppy video. On the other hand, queuing DNS packets may result 

only a slightly longer resolution delay. In this section we char- 

erize the type of packets queued due to misses and the delay 

y experience. 

First, we classify the types of packets that cause cache misses 

determine which applications are affected. Second, we deter- 
e buffer requirements and queuing delays due to cache misses. 

ally, we analyze the impact of cache misses on memory band- 

th requirements in routers. We show results only for trace T8 

m Table 3 . Results for other traces are similar and have been 

itted due to space constraints. Since trace T9 was captured dur- 

 an ongoing NTP reflection attack, the cache misses in this trace 

re heavily influenced by the attack. We present the analysis for 

ce T9 later in Section 8.3 . 

 Classification of cache misses 

We classify packets causing cache misses as follows. First, we 

arate TCP and UDP packets. For TCP, we classified them as SYNs, 

ACKs, FINs, FINACKs, RSTs and DATA packets. Any TCP packet 

t was not a SYN, SYNACK, FIN, FINACK or RST is classified as 

ATA packet. Preliminary analysis of UDP packets shows that 

P and DNS packets suffered most misses. We therefore plot NTP 

 DNS packets separately, with the remaining packets classified 

“UDP Other ”. Fig. 7 shows the classification of packets causing 

he misses with an LRU cache. 
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Fig. 7. Classification of packets causing cache misses. 

We also see that the largest number of cache misses is caused 3

NTP packets. The reason is that while NTP requests are regular, 3

y are also infrequent. Thus, the prefixes required to forward the 3

P packets are regularly evicted from the cache, only to be re- 3

erted when the next NTP request occurs. In our dataset, NTP 3

kets were destined to 69,097 unique prefixes. 3

After NTP, DNS packets are responsible for the largest number 3

ache misses. This occurs due to a DNS query which needs to be 3

warded to the authoritative nameserver of the zone that owns 3

 prefix. If the prefix is not in the cache, the DNS query will re- 3

t in a cache miss. In our dataset, DNS packets hit 58,435 unique 3

fixes. 3

. Effects of cache misses on queuing 3

There are several ways of dealing with packets causing cache 3

ses. One possible strategy is to forward the packets along a 3

wer path until the appropriate route can be inserted into the 3

/cache [4] . If this strategy is employed, there is no need for 3

ues/buffers at the routers to store packets. However, the pack- 3

 causing a cache miss have to travel a longer path, thus expe- 3

cing longer delay and possible reordering. Another strategy is 3

queue the packets at the router until the route is inserted into 4

 cache. While the packets do not incur any longer paths (and 4

ce stretch), line cards must now have enough buffer space and 4

 appropriate logic to queue packets. In our analysis we assume 4
s strategy for several reasons: (a) it prevents packet reorder- 404 

, which router vendors try hard to avoid, (b) to the best of our 405 

wledge it has not been evaluated before, and (c) as our results 406 

w, the buffer requirements are modest and the queues can eas- 407 

fit in existing buffers. 408 

.1. Packet queuing emulator 409 

We built an emulator in order to measure queuing at the router 410 

ing cache misses. Fig. 8 shows the block diagram of our emu- 411 

r. We assume that it takes about 60 ns to update the cache 412 

e lookup time for DRAM) and that a packet needs to be queued 413 

ile the update is taking place. 414 

When a packet arrives we do a longest prefix match against the 415 

he. If there is a match the packet is forwarded and does not 416 

ur any additional delays. If there is no match against the cache 417 

 packet is queued. When it gets to the head of the queue, we 418 

a prefix fetch from the cacheable FIB, update the cache and for- 419 

rd the packet. 420 

We measure the maximum queue utilization during a given 421 

in interval. We also look at the maximum queuing delay in 422 

outer FIB caching, Computer Communications (2016), 
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Fig. 8. Queue utilization simulator. 
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Fig. 9. Max. queue

our emulator i.e. the time elapsed between when a packet enter

the queue and when it exited the queue. Let us assume that t

time required to perform a cache lookup is T C , the time requir

to perform a slow-memory lookup is T S and the current buffer si

is B . If a packet arrives at the queue at time T A the time the pack

departs the queue T D is given by: 

T D = T A + T C + (B ∗ T S ) 

The queuing delay D is then 

D = T D − T A 

7.2.2. Evaluation 

Fig. 9 a shows the maximum queue utilization during 48 5-m

intervals. In the first interval we see a startup effect due to t

cold cache. Since there are no entries in the cache, arriving packe

cause many cache misses and have to be queued, resulting in

maximum queue size of 73 packets. After this initial startup peri

the queue drains and queue utilization drops. The maximum que

utilization is only 1 packet, which means that assuming 1500 by

packets, we need only 1500 bytes of buffer space to buffer LR

cache misses. Even when the queue utilization peaks during t

cache warm-up period, only 73 packets are queued. To store the

packets, we will need only 110KB of buffer space. 

Fig. 9 b shows the maximum queuing delays for a LRU cac

during the same intervals as above. Packets queued after a LR

cache miss suffer virtually no queuing delay. This is due to t

small average queue size (1 packet per 5 min interval) and t
Please cite this article as: K. Gadkari et al., Pragmat
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tion and queuing delays. 

relatively fast cache updates (in the order of ns) which keep t

backlog small. 

While these numbers are specific to our dataset, we belie

that they generalize well in similar environments. Moreover, t

buffer requirements are in line with what is found in routers t

day, where the rule of thumb is that buffers should hold an RT

worth of data. 

7.3. Memory bandwidth requirements 

Another important benefit of FIB caching is a reduction in t

number of lookups that need to be performed on the full F

which is often kept in slow (DRAM) memory. Without caching o

lookup typically needs to be performed per packet. Moreover, t

next hop information is often only part of the lookup informatio

which may also include filtering, QoS, and other state, increa

ing the demand on memory bandwidth. With increasing FIB siz

and line speeds these lookups are nearing the bandwidth limit 

router memory. 

Caching has the potential to drastically reduce the number 

lookups to external memory. For example, one may envision a sy

tem where the cache is kept on-chip and the full RIB remains 

external slow DRAM. The latter needs to be accessed only when

cache miss occurs. The question then is, what are the savings 

terms of memory bandwidth if one uses an on-chip cache? 

Fig. 10 shows the average number of memory lookups requir

per second in each 5 min interval in the trace. Without cachin

the number of memory lookups is equal to the packet rate, sin
ic router FIB caching, Computer Communications (2016), 
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Fig. 10. Memory bandwidth requirements reduce by orders of magnitude when 

caching is employed. 

each packet requires a memory lookup. With caching, a memory 472 

lookup is required only in case of a cache miss. We see that the 473 

number of memory accesses required with caching is several or- 474 

ders of magnitude lower than the number of accesses required 475 

when no caching is deployed. If the cache uses a LRU replacement 476 

policy the memory accesses are on the order of 10 2 accesses per 477 

second and the rate stays almost constant. This is to be expected, 478 

since we see that the hit rates achieved with LRU stay constant 479 

throughout the duration of the trace. 480 

Caching offers an order of magnitude improvement in memory 481 

bandwidth when compared to no caching. Coupled with the fact 482 

that the required cache can easily fit on a chip and that the cache 483 

size appears to remain constant over time, caching virtually elimi- 484 

nates any memory bandwidth issues for current and potentially fu- 485 
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Fig. 11. Difference in cache hit rates with and without attack packets. Attack is in 

interval number 300. 

N unpopular prefixes. We assume a cache size of 10K entries and 510 

evaluate the performance of both a LRU cache. 511 

We begin our evaluation by taking a 20 min slice from the be- 512 

ginning of trace T8. Then we insert a stream of 20,0 0 0 attack pack- 513 

ets to 20,0 0 0 idle prefixes starting at 30 0 s into the trace. We used 514 

this attack trace as input for our caching system and measured the 515 

hit rate at 1 s intervals. 516 

Fig. 11 shows the difference between the hit rates observed 517 

with and without the attack packets. A negative difference implies 518 

that the hit rate observed during the attack was lower than the hit 519 

rate in the same interval, but without the attack packets present. 520 

For clarity, we present data for 25 intervals before and after the 521 

attack interval. 522 

As Fig. 11 shows, when the attack hits (at interval 300), the LRU 523 

cache hit rate reduces by almost 6%. Further, it takes 2 after the 524 
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e routing table sizes. This is significant for scaling future routers. 

Cache robustness 

The use of FIB caching, especially with LRU, exposes routers to 

ache pollution attack, where an attacker attempts to disrupt 

ket caching and increase the cache miss rate. An attacker can 

lute the cache by continuously sending packets to numerous 

opular prefixes that would not be otherwise cached, in an at- 

pt to evict legitimate prefixes. Depending on the attack rate, 

 attacker can either cause the cache to thrash, thus increasing 

 miss rate, or reduce the effectiveness of the cache by ensuring 

t at least part of it is always polluted with bogus entries. This 

ack will adversely affect the packet forwarding performance as 

ll, by substantially increasing the number of packets that need 

be queued while the new prefix is fetched, potentially leading 

packet loss. 

In this section we investigate cache pollution attacks and their 

sibility. We describe a generalized threat model where the at- 

ker tries to replace a subset of cache entries, and then estimate 

 attack rate required to adversely affect the cache. Next, we 

luate cache performance when subjected to a real NTP attack 

t happened to be present in trace T9. 

 Attacks against the cache 

In this section, we describe an idealized attack against a LRU 

he, in which an attacker inserts consecutive packets to at least 
ease cite this article as: K. Gadkari et al., Pragmatic r
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ack has stopped for the cache to recover. However, despite the 5

ack, the cache hit rate never drops below 93%. 5

Next, we measure the queue size and delay under the attack. 5

. 12 a shows the mean queue size with a LRU cache under attack. 5

rmally, the queue size is close to zero. However, when the attack 5

s (at interval 300), the queue peaks at 9121 packets. 5

Fig. 12 b shows the corresponding queuing delays suffered by 5

kets. Normally, the packets suffer no queuing delay, since very 5

 packets are queued under normal traffic conditions. However, 5

er attack, we see that packets suffer queuing delays of about 5

 μs. 5

It should be noted that the this attack is an idealized attack be- 5

se it assumes all attack packets arrive back-to-back. In reality it 5

ard for an attacker to inject such bursts into the normal packet 5

am unless traffic is sufficiently low. 5

. Generalized threat model 5

In this section we describe a generalized threat model to at- 5

k the cache, and determine the rate at which an attacker must 5

d packets to disrupt packet delivery. We assume that the at- 5

ker knows or can determine in advance the set of popular and 5

opular prefixes at a given vantage point. We also assume that 5

 attacker has the capability to send packets at high rate, up to 5

 capacity of the link, either from a single host or a botnet. We 5

o assume that the goal of the attacker is to replace legitimate 5

he entries with unpopular entries for the sole purpose of dis- 5

ting cache performance. In other words, we assume a deliberate 5
outer FIB caching, Computer Communications (2016), 
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Fig. 12. Comparison of buffer utilization and queuing delays under normal and attack conditions. Attack is in interval 300. 

attack on the cache and not a general attack on the infrastructure 551 

(e.g., DDoS). The latter will trigger other network defenses. 552 

To achieve the above goal the attacker still needs to send pack- 553 

ets at a high enough rate to evict legitimate prefixes quickly from 554 
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the cache. Thus, the attack cannot be stealthy since its packet ra

must compete head-to-head with legitimate traffic. Next, we es

mate the packet rate that would make such attack viable. 

8.2.1. Intensity of an effective attack 

To determine the rate at which the attacker must send pac

ets to affect cache performance we first rank prefixes accordi

with their popularity during a low- and high-traffic interval. Rec

that our measurement interval is 5 min . We chose to investiga

the per-interval behavior rather than average traffic over the e

tire 24H period in order to determine both high and low requir

attack rates. 

We estimate the required attack intensity. If an attacker wan

to hit the N th entry in the cache (and all the prefixes below it)

must send packets to enough prefixes to evict the i th entry and 

the other entries below it. So for example, if the attacker wants 

blow the entire cache, then the attacker must attack at P attack ra

which must be greater than the cache size N multiplied by P

which is the packet rate of the most popular prefix. To generali

the attack rate to evict the i bottom prefixes from the cache mu

be: 

P attack ≥ P ∗i i 

In the low traffic interval, the most popular prefix receiv

33,049,971 packets in five minutes for an average packet rate 

110,166 packets per second, whereas in the high traffic interval t

most popular prefix received 37,079,737 packets for an average 

123,599 packets per second. Thus, to replace just the most popu

prefix from the cache, the attacker needs to send packets at a ra

between 1,101,660,0 0 0 packets/s and 1,235,990,0 0 0 packets/s to 

idle prefix. For a 10 Gb/s link and 64 byte packets the maximu

packet rate possible is 19,531,250 packets/s , thus the required a

tack rate is not feasible as it far exceeds the capacity of the link

Note that such an attack can be easily detected by looking f

spikes in the cache miss rate. Once detected, one can imagine se

eral defenses against this type of attack, such as pinning down 

least part the historical prefix working set until the attack subsid

This poses little danger of false positives, since when prefixes su

denly become popular (as in the case of a flash crowd), they a

unlikely to do it in numbers in the order of the cache size. Th

we believe that practical attacks of this kind can only affect part

the cache and are easily weakened by reasonably over-engineeri

the cache. 
Please cite this article as: K. Gadkari et al., Pragmat
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Fig. 13. Comparison of LRU hit rates for all traffic and non-NTP traffic. The ca

size was set to 10 K entries. 

8.3. Cache performance under a real DDoS attack 

As described in Section 5 , trace T9 was captured during an o

going NTP reflection attack. Fig. 2 shows that overall, NTP traffi

accounted for approximately 1.3% of all traffic in the trace. 56

unique addresses from our regional ISP were the target of this a

tack [5] . Even though this was not an attack on the cache, we ta

advantage of this unfortunate incident to investigate the perfo

mance of a FIB cache under attack conditions and compare pe

formance with a version of the same trace that has NTP traffi

removed. 

Fig. 13 shows the hit rates achieved by a 10 K entry LRU cac

for all traffic in trace T9 as well as the hit rates for all non-N

traffic. 

As Fig. 13 shows, the cache performs well under this incide

The difference in the hit rates achieved by the cache do not dif

by more than 0.5% during the trace. Thus, caching remains robu

However, comparing Figs. 3 a and 13 , it is clear that the hit rat

for trace T9 are lower than of trace T8, although the difference

less than 1%. 

Next, we look at the breakdown of packets resulting in cac

misses as shown in Fig. 14 a. 

As expected, the NTP traffic accounts for a majority of t

packet misses. Out of a total of 114 ∗10 6 cache misses observ
ic router FIB caching, Computer Communications (2016), 
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Fig. 14. Comparison of cache misses for all traffic and non-NTP traffic. The cache size was set to 10 K entries. 

nd all non-NTP traffic. The cache size was set to 10 K entries. 
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9. Conclusions 647 

In this paper we take a look at some practical considerations 648 

in the implementation of FIB caching. We extend previous work 649 
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Fig. 15. Comparison of buffer usage and delays for all traffic a

ing the trace, NTP packets caused 55 ∗10 6 misses or 48%. The 

t highest number of misses were caused by TCP DATA packets, 

h 25 ∗10 6 misses (22%). NTP therefore caused 2.2 times more 

ses than the TCP DATA packets. Fig. 14 b shows a zoomed-in 

sion of Fig. 14 a, with the NTP traffic filtered out of the trace. 

 see that TCP DATA and DNS packets account for the bulk of 

 misses, similar to what we see in Fig. 7 . 

To further quantify the performance of the cache during the 

P incident, we measured the maximum buffer usage and queu- 

 delays incurred by packets during the ongoing NTP attacks. We 

pare these with the buffer usage and queuing delays with the 

P traffic filtered out. Fig. 15 a and b shows the results. 

As Fig. 15 a and b shows, the buffer usage and queuing delays 

h the attack traffic are not drastically different to those with 

 attack traffic filtered out. The maximum buffer usage with the 

ack traffic included is 6104 packets, compared to 3944 pack- 

 without the attack traffic. The corresponding maximum queu- 

 delays are 4.8 ms and 3.2 ms respectively. Thus we conclude 

t the NTP incident did not put undue strain on the caching 

tem. 

The difference in hit rates observed for traces T8 and T9 also re- 

ts in the buffer usage and buffering delays, as seen from Figs. 9 

 15 . Trace T9 and T8 were captured on different links and trace 

had more diversity in terms of the number of prefixes carrying 

kets than T8. In trace T8, the average number of unique prefixes 

rying packets in each 5 min interval we investigated was 15,310, 

pared to 24,965 prefixes for trace T9. In future work, we plan 

investigate traces T8 and T9 further to quantify the differences 

erved in the results. 
ease cite this article as: K. Gadkari et al., Pragmatic r
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ization of cache misses, queuing issues (buffer occupancy and 6

ay), memory bandwidth requirements and robustness against 6

he pollution attacks. We used traces collected at links from our 6

ional ISP to a Tier-1 ISP for our analysis. Our design uses a 6

heable FIB to avoid the cache hiding problem, and we presented 6

algorithm to convert a regular FIB to a cacheable FIB. 6

Our work has some limitations. First, we only look at packet 6

ces from a single regional ISP. We therefore cannot evaluate 6

he performance at core routers, where traffic may be more di- 6

se causing hit rates to drop. While we do n ot have access to 6

a from core routers to answer this question (we need a packet 6

ce and a simultaneous snapshot of the FIB at a core router), the 6

ls and methodology we developed are applicable to a core en- 6

nment and we plan to repeat the study once we have an ap- 6

priate dataset. 6

Are there trends that may invalidate the benefits of FIB 6

hing? On the contrary, recent trends such as traffic concentra- 6

 to major social networks, search engines that reside in data- 6

ters [14] and CDNs make caching even more likely to provide 6

efits. In these environments, traffic becomes more focused and 6

ly to hit a smaller set of prefixes, resulting into a more stable 6

rking set. 6

Other potential benefits of employing FIB caching include man- 6

cturing of cheaper router hardware and routers with longer 6
outer FIB caching, Computer Communications (2016), 
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service cycles. Future terabit/s forwarding chips may employ FIB 675 

caching for less on-chip memory or to allow the non-cached por- 676 

tion of the FIB to be more aggressively compressed. Finally, cur- 677 

rent architectures with the entire FIB on DRAM may also benefit 678 

by backing away from the looming memory bandwidth wall. 679 
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