
ARTICLE IN PRESS
JID: COMCOM [m5G; February 26, 2016;10:24]

Computer Communications xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Pragmatic router FIB caching

Kaustubh Gadkari ∗, M. Lawrence Weikum , Dan Massey , Christos Papadopoulos Q1

Department of Computer Science, Colorado State University, Fort Collins, CO , United States

a r t i c l e i n f o

Article history:

Received 19 September 2015

Revised 7 February 2016

Accepted 13 February 2016

Available online xxx

Keywords:

Computer networks

Network architecture

a b s t r a c t

Several recent studies have shown that router FIB caching offers excellent hit rates with cache sizes that

are an order of magnitude smaller than the original forwarding table. However, hit rate alone is not

sufficient – other performance metrics such as memory accesses, robustness to cache attacks, queuing

delays from cache misses, etc., should be considered before declaring FIB caching viable.

In this paper we tackle several pragmatic questions about FIB caching. We characterize cache perfor-

mance in terms of memory accesses and delay due to cache misses. We study cache robustness to pol-

lution attacks and show that in order to evict the most popular prefixes an attacker must sustain packet

rates higher than the link capacity. We show that caching was robust even during a recent flare of NTP

attacks. We carry out a longitudinal study of cache hit rates over four years and show the hit rate is

unchanged over that duration. We characterize cache misses to determine which services are impacted

by FIB caching. We conclude that FIB caching is viable by several metrics, not just impressive hit rates.

© 2016 Published by Elsevier B.V.

1. Introduction 1

The growth of forwarding table (FIB) sizes, fueled by factors 2

such as multi-homing, traffic engineering, deaggregation and the 3

adoption of IPv6 has led to a renewed interest in FIB caching meth- 4

ods. Past work (including ours) has shown repeatedly that there is 5

significant traffic locality in the Internet that makes FIB caching 6

beneficial. However, FIB caching has not been implemented to

Q2

7

practice. Part of the reason might be that past work has focused on

Q3

8

demonstrating that FIB caching is beneficial, leaving several prac- 9

tical and engineering questions unanswered. These include ques- 10

tions like how should the cache be implemented in a modern line 11

card? Who suffers most from cache misses and how? How long 12

does it take for a miss to be serviced? What are the memory band- 13

width requirements for cache updates? How easily can one attack 14

the cache? In this paper we address such practical questions and 15

show that FIB caching is not only highly beneficial, but also very 16

practical. We hope that our work answers important engineering 17

questions and leads to renewed interest in building routers with 18

caches.

Q4

19

Is FIB caching still relevant? Can’t Cisco already support a mil- 20

lion entries in their line cards? Opinions range from “it’s not an is- 21

sue” to “the sky is falling”. We do not attempt to take a position in 22

∗ Corresponding author. +1 9702611699.

E-mail addresses: kaustubh@cs.colostate.edu (K. Gadkari),

lawrencemq@gmail.com (M.L. Weikum), massey@cs.colostate.edu (D. Massey),

christos@cs.colostate.edu (C. Papadopoulos).

this debate but seek only to inform. There are recent trends, how- 23

ever, that make the matter worth revisiting. One is the slow but 24

steady growth of IPv6, which steadily adds more prefixes in the 25

FIB. Another is the quest to build a Tb/s forwarding chip, which, 26

for packaging reasons, will have limited on-chip memory, a perfect 27

candidate for a cache. 28

In summary, we make the following contributions: 29

• We classify packets that cause cache misses according to their 30

type and protocol. 31

• We evaluate the effect of cache misses on delay and buffer 32

utilization. 33

• We evaluate the effect of caching on memory bandwidth 34

requirements. 35

• We examine the behavior of the system under a cache pollution 36

attack by someone who wants to replace popular with unpop- 37

ular prefixes. 38

To achieve fast cache updates we propose an architecture that 39

includes a cacheable FIB i.e. a FIB that does not suffer from the 40

cache hiding problem (explained later). The cacheable FIB is de- 41

rived from the standard FIB. 42

Briefly, our results are as follows: first, we confirm past ob- 43

servations that FIB caching is effective: with a cache size of 10K 44

entries hit rates are in excess of 99.5%. Second, our classifica- 45

tion of cache misses shows that NTP and DNS queries are the 46

main culprits of cache misses. Not surprisingly, TCP control pack- 47

ets (SYNs, SYNACKs, FINs, FINACKs and RSTs) account for 70% of the 48

TCP misses. Data packets cause approximately only a third of the 49

http://dx.doi.org/10.1016/j.comcom.2016.02.006

0140-3664/© 2016 Published by Elsevier B.V.

Please cite this article as: K. Gadkari et al., Pragmatic router FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

http://dx.doi.org/10.1016/j.comcom.2016.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
mailto:kaustubh@cs.colostate.edu
mailto:lawrencemq@gmail.com
mailto:massey@cs.colostate.edu
mailto:christos@cs.colostate.edu
http://dx.doi.org/10.1016/j.comcom.2016.02.006
http://dx.doi.org/10.1016/j.comcom.2016.02.006

2 K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

misses. Third, we show that very few packets need to be queued 50

due to cache misses and they suffer insignificant queuing delays. 51

Finally, we show that a cache recovers quickly when subjected to 52

cache pollution attacks aiming to replace cache entries with un- 53

popular prefixes. In our datasets, an attacker must send 1.2 billion 54

packets/s over a 10G link to effectively disrupt the cache. 55

Our data comes from a regional ISP and thus our observations 56

are mainly from the edge of the network. However, our study can 57

easily be repeated for the network core by someone with access to 58

the appropriate packet traces. 59

The rest of the paper is organized as follows. Section 2 intro- 60

duces previous work that has looked into FIB scaling methods. 61

In Section 3 we introduce our FIB caching solution. In Section 4 62

we introduce the cache hiding problem. Next, we introduce our 63

hole filling algorithm and evaluate it in Section 4.1 . In Section 5 64

we describe the datasets used in our evaluation. We evaluate LRU 65

caches in Section 6 and the effect of cache misses in Section 7 . In 66

Section 8 we evaluate the robustness of our caching system when 67

it is being attacked. Finally, we conclude in Section 9 . 68

2. Related work 69

Approaches to reduce the FIB size have been studied for more 70

than a decade [3,6,8,10,13,17,18,23,25,29] . These approaches fall into 71

two broad categories – caching-based and aggregation-based ap- 72

proaches. Our work is independent of FIB aggregation techniques 73

and hence we do not discuss these approaches in this work. There 74

are other approaches that achieve FIB size reduction by reducing 75

the RIB size [7,20,28] . We believe that our work is complementary 76

to this work and the reduction of the RIB size will result in a more 77

dramatic decrease in the cache size. 78

The idea of using route caching was first proposed by Feldmeier 79

in 1988 [8] , which was further extended by Kim et al. in [13] . 80

Kim et al. introduce the cache hiding problem (discussed further 81

in 82

[1383

Oth84

tre85

atio86

as 87

com88

usi89

tra90

hol91

to 92

[1693

inc94

fix 95

no 96

pre97

fro98

a c99

Sec100

the101

Fur102

99%103

ord104

105

lev106

sys107

tion108

ity 109

the110

pac111

Res112

slo113

Fig. 1. Proposed caching system architecture.

Previous work [9,19] has investigated the impact of various 114

cache poisoning attacks on caches and has proposed methods of 115

mitigating such attacks. However, the systems investigated were 116

software systems (web proxies) that have a different set of con- 117

straints than the hardware-based route caching system proposed in 118

this work. Further, unlike previous work, we consider the impact 119

of cache misses on the system performance not only in terms of 120

hit rates achieved but also the types of requests resulting in cache 121

misses and their implications for operators. 122

3. Cache system design 123

Fig. 1 shows our proposed FIB caching architecture. The RIB 124

and FIB on the left are part of the standard hardware architec- 125

ture. We add (a) a cacheable FIB , which resides in main memory, 126

(b) a cache, which can take the place previously occupied by the 127

FIB 28

(d) 29

rou 30

com 31

tion 32

car 33

the 34

is o 35

36

FIB 37

me 38

late 39

tur 40

41

sta 42

is i 43

the 44

wit 45

46

FIB 47

4. 48

Pl

ht
Section 4). To solve the cache hiding problem, the approach in

] splits the IPv4 address space into the constituent /24 prefixes.

er approaches to handling the cache hiding problem include

ating related prefixes as an atomic block so that all cache oper-

ns (insertion, lookup and deletion) are carried out on the block

a whole, using a complicated data structure with on-the-fly

putation to remove interdependencies between prefixes [15] or

ng genetic algorithms to allow the cache policy to evolve while

cking the heavy hitter flows [27] . In this paper, we propose a

e filling algorithm to address the cache hiding problem, similar

the method proposed in [16] . While the algorithm presented in

] generates the needed most-prefix on a per-packet basis, thus

urring a per packet cost, our algorithm pre-computes the pre-

to add. By adding these extra prefixes, we ensure that there are

overlapping prefixes in the FIB. Consequently, a packet hitting a

fix not in the cache will cause the correct route to be fetched

m the full FIB, instead of an incorrect longest prefix match with

overing prefix already in the cache. We discuss this algorithm in

tion 4.1 . We show that the number of extra prefixes added to

 FIB is only a small fraction of the total number of FIB entries.

ther, by using this cacheable FIB , we show that we can forward

 or more packets along the fast path with a cache size of the

er of 10,0 0 0 entries.
In [24] , the authors propose a traffic offloading strategy to

erage the Zipf-like properties of Internet traffic. The proposed

tem, Traffic-aware Flow Offloading (TFO) is a heavy hitter selec-

 strategy that leverages the Zipf-like properties and the stabil-

of the heavy hitters across various time scales. TFO maintains

 set of current heavy hitter flows in fast memory and sends

kets from flows not in the heavy hitter set to a slower path.

ults show that TFO sends a few thousand packets/second to the

w path.

49

hid 50

cac 51

the 52

pre 53

the

los

and

ease cite this article as: K. Gadkari et al., Pragmatic r

tp://dx.doi.org/10.1016/j.comcom.2016.02.006
, (c) a queue to hold packets experiencing a cache miss, and 1

 the appropriate logic to handle cache updates and misses. The 1

ter processor handles incoming route information as usual and 1

putes the local RIB (routing table) and FIB as before. In a tradi- 1

al architecture the router would load the entire FIB in the line 1

d; in our architecture, the router derives the cacheable FIB from 1

 standard FIB and pushes just the cache in the line card, which 1

ne or two orders of magnitude smaller than the original FIB. 1

Our caching architecture may seem to keep two copies of the 1

, the original and cacheable FIB, which may seem a waste of 1

mory. However, the two FIBs are very similar as we will show 1

r and an implementor can easily use appropriate data struc- 1

es to avoid duplication. 1

Each incoming packet incurs a lookup in the cache using the 1

ndard longest prefix match algorithm. If there is a hit the packet 1

mmediately forwarded along the cached route. If there is a miss 1

 packet is queued in the line card until the cache is updated 1

h the appropriate prefix from the cacheable FIB. 1

Next, we elaborate on the need and derivation of a cacheable 1

. 1

The need for a cacheable FIB 1

Entries in the original FIB cannot be cached due to the cache 1

ing problem , which occurs when a less specific prefix in the 1

he hides a more specific prefix in the FIB. This is a result of 1

 fact that a route-caching system looks for the longest-matching 1

fix only in the cache, thus missing possible longer matches in 1
 full FIB. This can lead to incorrect forwarding, loops and packet 154

ses. 155

To further understand the problem, consider an empty cache 156

 a full routing table that only has two prefixes: 10.13.0.0/16 157

outer FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx 3

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

ci- 158

 a 159

st- 160

is 161

he 162

as 163

e- 164

ill 165

he 166

ld 167

168

er 169

re 170

e- 171

te 172

or 173

r- 174

ic 175

he 176

ire 177

178

179

n- 180

ng 181

 a 182

m. 183

he 184

 a 185

er 186

as 187

188

fix 189

dd 190

no 191

B. 192

in 193

x, 194

IB 195

196

sk 197

is 198

lit 199

Table 2

FIB size increase due to hole filling algorithm. The in-

crease in FIB size due to hole filling is minimal.

Table Original Cacheable Increase

Regional ISP 441,778 468,095 5.96%

Hurricane 4 4 4,977 470,911 8.51%

Telstra 440,156 466,416 8.43%

Level-3 436,670 462,966 8.41%

AOL 438,719 464,988 8.40%

NTT-A 439,078 465,536 8.38%

ATT 438,265 464,662 8.37%

SAVVIS 438,582 465,045 8.37%

Sprint 438,634 465,079 8.37%

VZWBIZX 436,821 463,220 8.35%

SWISS-COM 169,861 173,636 8.27%

KPNE 439,288 465,790 6.03%

Tiscali 438,993 465,343 6.00%

IIJ 440,196 466,505 5.98%

to 200

ld, 201

e- 202

203

ty, 204

rd 205

206

207

is 208

1 a 209

1 c 210

ef- 211

212

ch 213

2] 214

te 215

er 216

 is 217

218

219

e- 220

ed 221

re 222

to 223

e- 224

ch 225

ed 226

 3 227

228

on 229

es 230
Table 1

Original non-cacheable FIB, after one iteration of hole filling algo-

rithm and final cacheable FIB.

Prefix OFF

(a) Non-cacheable FIB

10.13.0.0/16 1

10.13.14.0/24 2

(b) Non-cacheable FIB after one iteration of hole filling algorithm

10.13.0.0/17 1

10.13.128.0/17 1

10.13.14.0/24 2

(c) Cacheable FIB

10.13.128.0/17 1

10.13.64.0/18 1

10.13.32.0/19 1

10.13.16.0/20 1

10.13.0.0/21 1

10.13.8.0/22 1

10.13.12.0/23 1

10.13.14.0/24 2

10.13.15.0/24 1

associated with an output interface O1, and 10.13.14.0/24 asso

ated with an output interface O2. Suppose a packet arrives with

destination IP address of 10.13.2.3. The router will find the longe

matching prefix (LMP) for the destination IP address, which

10.13.0.0/16, and will install the route [10.13.0.0/16 → O1] in t

cache. Assume that the next packet that arrives at the router h

a destination IP address of 10.13.14.5. The router will find the pr

viously installed route [10.13.0.0/16 → O1] in the cache and w

forward the packet along O1. However, this is incorrect, since t

correct LMP for 10.13.14.5 is 10.13.14.0/24 and the packet shou

have been forwarded on interface O2.

Past work addressed the cache hiding problem by eith

caching only /24 prefixes [13] , by using a complex data structu

with on-the-fly computation to eliminate inter-dependencies b

tween prefixes [15] , by adding on-the-fly to the FIB the appropria

leaf node corresponding to the packet’s destination address [16]

by treating a set of related prefixes as an atomic block and pe

forming cache actions (insertion, lookup and delete) on the atom

block instead of an individual prefix. Our approach is similar to t

approach presented in [16] , except that we pre-calculate the ent

cacheable FIB table.

4.1. Generating a cacheable FIB

We have previously seen that simply caching existing FIB e

tries would lead to incorrect forwarding due to the cache hidi

problem. In this section we describe an algorithm to generate

cacheable FIB , i.e. a FIB that is free from the cache hiding proble

We call it the hole filling algorithm because it starts with t

original FIB and fills in holes between related entries to produce

new FIB whose entries are cacheable. While the new FIB is larg

because the algorithm adds more entries, the increase is small,

we will show later, and caching makes it irrelevant.

The intuition behind the algorithm is as follows – if a pre

covers other prefixes in the table, we delete that prefix and a

its children to the FIB. We repeat this process until there are

covering prefixes, at which point we are left with a cacheable FI

To better understand the algorithm, consider the FIB shown

Table 1 a. This FIB is non-cacheable, since the 10.13.0.0/16 prefi

if present in the cache, will hide the 10.13.14.0/24 prefix. This F

needs to be transformed into a cacheable FIB.

We first choose the prefix from the FIB with the smallest ma

length, which is 10.13.0.0/16 in this case. Then we check if th

prefix has any children. If the selected prefix has a child, we sp
Please cite this article as: K. Gadkari et al., Pragmat

http://dx.doi.org/10.1016/j.comcom.2016.02.006
Table 3

Trace statistics. We use trace T8 in our caching perfor-

mance analysis and trace T9 in our cache robustness

analysis.

No. Date Time Link No. packets

T1 3/31/09 27H 1G 7,620,972,889

T2 8/17/09 24H 1G 3,821,714,756

T3 8/3/10 24H 1G 2,084,398,007

T4 8/3/10 24H 1G 2,050,990,835

T5 12/14/11 12H 1G 625,547,727

T6 04/13/12 12H 1G 3,729,282,487

T7 2/14/13 12H 10G 22,622,946,036

T8 3/20/13 12H 10G 21,998,786,996

T9 2/21/14 12H 10G 18,435,172,172

the prefix into its two children, otherwise we add the prefix

the cacheable FIB. In this example, since 10.13.0.0/16 has a chi

10.13.14.0/24, we split the /16 into its two constituent /17s and r

move the original 10.13.0.0/16, as shown in Table 1 b.

The process continues, until the non-cacheable FIB is emp

and the cacheable FIB contains the leaf nodes necessary to forwa

all packets correctly. Table 1 c shows the final, cacheable FIB.

4.1.1. FIB inflation due to hole filling

The hole filling algorithm produces a cacheable FIB that

larger than the original. For example, the original FIB in Table

has only two entries, while the cacheable FIB shown in Table

has nine entries, an increase of 350%. We next investigate the

fect of the algorithm on real FIBs.

We measured inflation on a FIB from our regional ISP, whi

contains next hop information, and on FIBs from RouteViews [2

that do not contain next hop information, which we approxima

using the next hop AS. Table 2 shows at worst inflation is und

9%. Since the cacheable FIB resides in main memory the impact

very small.

5. Data sets and trace statistics

We used nine 12H and 24H packet traces taken at links b

tween our regional ISP and one of its tier-1 providers. We captur

traffic using specialized hardware [1] that ensured no packets we

dropped during capture and packet timestamps were accurate

a nanosecond resolution. We then used a trie-based longest pr

fix matching algorithm to determine the matching prefix for ea

packet. The cacheable FIB was derived from the actual FIB obtain

from the router where the packet trace was captured. Table

shows the trace statistics.

In an interesting twist, there was a sustained NTP reflecti

attack in trace T9. In this attack, several comprised machin
ic router FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

4 K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

Fig. 2. Comparison of average overall bit rate and ntp bit rates per hour between a

“no

atta

bel231

oth232

sho233

NT234

fic 235

app236

cou237

238

the239

cac240

6. 241

242

usi243

6.1.244

245

cac246

fre247

LRU. Qualitatively our results confirm previous observations, but it 248

is important to show them to establish a baseline. Fig. 3 a and b 249

shows the performance of an LRU cache with varying cache sizes 250

for trace T8 from Table 3 . We plot average cache hit rates at every 251

5-min interval. 252

From Fig. 3 a and b we see that both LRU and LFU consistently 253

achieves very high hit rates. With a cache size of only 1K entries 254

the hit rate is 98%. The hit rate increases with the cache size, 255

reaching almost 99.9% with a cache of 10K entries. LRU achieves 256

maximum hit rates of 99.26%, 99.74%, 99.91% and 99.96% with 257

cache sizes of 1K, 2.5K, 5K and 10K respectively. Note that even 258

with a cold cache the hit rate penalty is very small. For the rest 259

of the paper, unless otherwise noted, we will use a cache size of 260

10K. The reason is that even with 10K entries, this is a still a very 261

small cache compared with the original FIB size (currently around 262

500K). In the rest of the paper, we present results only for a LRU 263

cache unless otherwise noted, since it clearly offers higher hit rates 264

than LFU. 265

6.2. Caching with delayed updates 266

In this section, we examine the effects of an optimization of 267

the caching strategy. Namely, instead of inserting a prefix P im- 268

mediately after encountering a cache miss, the system waits until 269

a certain pre-set threshold is crossed i.e. prefix P receives at least 270

N packets in a given time interval T . This optimization targets the 271

“bottom” of the cache i.e. transient prefixes that only receive a few 272

hits – these mostly unpopular prefixes will be evicted from the 273

cache thus resulting in cache churn. By not inserting these pre- 274

fixes into the cache in the first place, we potentially save mem- 275

ory lookups and cache updates. Fig. 4 shows the hit rates achieved 276

with the delayed cache updates. 277

78

alo 79

alo 80

exp 81

pat 82

tha 83

cur 84

ter 85

ver 86

6.3 87

88

The 89

che si

Pl

ht
rmal” trace and a trace with attack traffic. Trace T9 was captured during an NTP

ck.

onging to our ISP’s customers were used as amplifiers to attack

er hosts on the Internet using a NTPD vulnerability [2] . Fig. 2

ws the overall average bit rate per hour as well as the average

P bit rate per hour. NTP traffic accounted for 1.3% of all traf-

during the duration of the trace. In comparison, trace T8 has

roximately the same byte rates as trace T9. However, NTP ac-

nted for only 0.1% of all traffic in trace T8.

For brevity, we show statistics from trace T8 only. Results from

 other traces (except T9) are similar. We use trace T9 in our

he robustness analysis in Section 8.3 .

Results

In this section we present results using FIB caching emulation,

ng real traces to drive the emulator.

 Cache system performance

We begin by evaluating cache performance using two standard

he replacement policies – least recently used (LRU) and least

quently used (LFU). We observed that LFU performs worse than

Fig. 3. LRU and LFU hit rates for ca
ease cite this article as: K. Gadkari et al., Pragmatic r

tp://dx.doi.org/10.1016/j.comcom.2016.02.006
Fig. 5 a and b shows the number of packets that are forwarded 2

ng the slow path and the fraction of total packets delivered 2

ng the slow path, respectively, during each of the intervals. As 2

ected from Fig. 4 , the number of packets sent along the slow 2

h varies inversely with the timeout value. Figs. 4 and 5 show 2

t the cache need not be updated every time a cache miss oc- 2

s. Instead, the cache can be updated in intervals with the in- 2

im misses being forwarded along the slow path without ad- 2

sely affecting the cache performance. 2

. Impact of route updates 2

Routers periodically receive route updates from their peers. 2

se updates may add new prefixes (announcements) to the table 2

zes varying from 1K to 10K .
outer FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx 5

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

Fig. 4. Hit rates for LRU cache with delayed updates. The cache size was 10K

entries.

Table 4

Update statistics.

Update Entries Announce Withdraw

ch 290

n- 291

292

a- 293

IB. 294

AS 295

e 296

Fi- 297

le 298

299

e 300

301

IB 302

5% 303

he 304

he Q5
305

g- 306

as 307

308

op 309

 if 310

44 311

he 312

ly- 313

e- 314

in 315

tle 316

317

to 318

at 319

ch 320

 a 321

re 322

323

324

st 325

w 326

of 327

de 328

nd 329

- 330

ng 331

he 332

333

er 334

lar 335

re 336

et 337

9, 338

re 339
U1 55,718 43,720 6,263

U2 65,120 45,551 6,375

U3 73,599 46,976 4,606

Total 194,437 136,247 17,244

or withdraw existing prefixes from the table (withdrawals). Ea

such update may cause one or more entries in the cache to be i

validated.

To evaluate the effect of route updates we took a full RIB t

ble from a RouteViews [22] peer and generated a cacheable F

We again approximate next hop information using the next hop

from the ASPATH attribute. Then, we applied updates for the sam

peer to the cacheable FIB and generated a new cacheable FIB.

nally, we measured the difference between the original cacheab

FIB and the newly generated cacheable FIB.

We show results for 3 sets of updates. Table 4 shows som

statistics about the updates applied to the cache.

The size of the cacheable FIB generated from the original F

went up from 458,494 to 464,512, an increase of only 1.29%. 82.

of the prefixes in the cacheable FIB were the same as those in t
Fig. 5. Analysis of packe

Please cite this article as: K. Gadkari et al., Pragmat

http://dx.doi.org/10.1016/j.comcom.2016.02.006
Table 5

Expansion statistics.

Data Updated Cacheable Growth Same

FIB 458,494 465,512 1.29 82.5

U1 458,725 458,763 0.008 99.97

U2 458,715 458,755 0.009 99.97

U3 458,890 458,974 0.018 99.97

original FIB (Table 5) . After subsequent updates were applied, t

size increase as well the number of prefixes that changed was ne

ligible – the average change in the size of the cacheable FIB w

only 0.0018%.

Next, we count the number of prefixes that had next h

changes, since only these prefixes will have to be invalidated

present in the cache. Our results show that, on average, only 1

prefixes in each 15 min set of updates had a next hop change. T

insignificant change in the size of the cacheable FIB after app

ing updates, coupled with the fact that only a few hundred pr

fixes will have to be invalidated from the cache due to change

forwarding state, suggest that routing updates will have very lit

impact on the cache state and forwarding performance.

It should be noted that while this study is limited in scope

tables and updates from only one RouteViews peer, we believe th

a more comprehensive study will yield similar results. Resear

shows that routing tables from different RouteViews peers have

very few differences [26] and hence we believe that our results a

applicable to other peers as well.

6.4. Trends in cache size

The global routing table has been growing steadily for the pa

several years. Measurements show that the routing table gre

from 150,0 0 0 entries in 20 03 to 517,802 entries at the time

this writing, representing an increase of 245% in the last deca

alone [11] . Routers thus need increasing amounts of memory a

processing power [12] . The conventional wisdom that FIB mem

ory will scale at rates surpassing the rate of growth in the routi

information handled by core router hardware is not true for t

low-volume, customized hardware used in core routing [21] .

Given the fast rate of increase of the global routing table ov

time, the natural question to ask is does a FIB cache face a simi

rate of growth? To get some insight into the answer we measu

the hit rates achieved with a cache size of 10K entries on pack

traces gathered from 2009 to 2014. These traces, except trace T

were collected at the same point in our ISP, so they truly captu
ts sent to the slow path.

ic router FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

6 K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

Fig. 6. Hit rates achieved by a 10 K entry cache remain almost constant from 2009

to 2014. The 2014 trace contains the NTP attack traffic.

the cache evolution over the last four years. Trace T9 was captured 340

at another monitoring location in our ISP, but results show that 341

the hit rates for trace T9 are similar to the hit rates for the other 342

traces. 343

Fig. 6 shows the results. While there is some minor variation, 344

the hit rates achieved with a cache size of 10K are consistently 345

higher than 99.95%, meaning that over the past four-year period 346

the cache size did not need to change to maintain the same cache 347

hit rate. Thus, while the global routing table has certainly changed, 348

traffic locality has not changed sufficiently to affect the cache size. 349

7. A350

351

pro352

a c353

pac354

exa355

cho356

in 357

act358

the359

360

to 361

min362

Fin363

wid364

fro365

om366

ing367

we368

tra369

7.1.370

371

sep372

SYN373

tha374

a D375

NT376

and377

as 378

cac379

80

by 81

the 82

NT 83

ins 84

pac 85

86

of c 87

for 88

the 89

sul 90

pre 91

7.2 92

93

mis 94

slo 95

FIB 96

que 97

ets 98

rien 99

to 00

the 01

hen 02

the 03

Pl

ht
nalysis of cache misses

In our FIB caching system when a packet arrives and the ap-

priate prefix is not in the cache, the packet is queued while

ache update takes place. This introduces some delay before the

ket is forwarded. Delay may affect packets in different ways. For

mple, delaying video packets may result in dropped frames and

ppy video. On the other hand, queuing DNS packets may result

only a slightly longer resolution delay. In this section we char-

erize the type of packets queued due to misses and the delay

y experience.

First, we classify the types of packets that cause cache misses

determine which applications are affected. Second, we deter-
e buffer requirements and queuing delays due to cache misses.

ally, we analyze the impact of cache misses on memory band-

th requirements in routers. We show results only for trace T8

m Table 3 . Results for other traces are similar and have been

itted due to space constraints. Since trace T9 was captured dur-

 an ongoing NTP reflection attack, the cache misses in this trace

re heavily influenced by the attack. We present the analysis for

ce T9 later in Section 8.3 .

 Classification of cache misses

We classify packets causing cache misses as follows. First, we

arate TCP and UDP packets. For TCP, we classified them as SYNs,

ACKs, FINs, FINACKs, RSTs and DATA packets. Any TCP packet

t was not a SYN, SYNACK, FIN, FINACK or RST is classified as

ATA packet. Preliminary analysis of UDP packets shows that

P and DNS packets suffered most misses. We therefore plot NTP

 DNS packets separately, with the remaining packets classified

“UDP Other ”. Fig. 7 shows the classification of packets causing

he misses with an LRU cache.

thi

ing

kno

sho

ily

7.2

dur

lato

(th

wh

cac

inc

the

do

wa

5 m

ease cite this article as: K. Gadkari et al., Pragmatic r

tp://dx.doi.org/10.1016/j.comcom.2016.02.006
Fig. 7. Classification of packets causing cache misses.

We also see that the largest number of cache misses is caused 3

NTP packets. The reason is that while NTP requests are regular, 3

y are also infrequent. Thus, the prefixes required to forward the 3

P packets are regularly evicted from the cache, only to be re- 3

erted when the next NTP request occurs. In our dataset, NTP 3

kets were destined to 69,097 unique prefixes. 3

After NTP, DNS packets are responsible for the largest number 3

ache misses. This occurs due to a DNS query which needs to be 3

warded to the authoritative nameserver of the zone that owns 3

 prefix. If the prefix is not in the cache, the DNS query will re- 3

t in a cache miss. In our dataset, DNS packets hit 58,435 unique 3

fixes. 3

. Effects of cache misses on queuing 3

There are several ways of dealing with packets causing cache 3

ses. One possible strategy is to forward the packets along a 3

wer path until the appropriate route can be inserted into the 3

/cache [4] . If this strategy is employed, there is no need for 3

ues/buffers at the routers to store packets. However, the pack- 3

 causing a cache miss have to travel a longer path, thus expe- 3

cing longer delay and possible reordering. Another strategy is 3

queue the packets at the router until the route is inserted into 4

 cache. While the packets do not incur any longer paths (and 4

ce stretch), line cards must now have enough buffer space and 4

 appropriate logic to queue packets. In our analysis we assume 4
s strategy for several reasons: (a) it prevents packet reorder- 404

, which router vendors try hard to avoid, (b) to the best of our 405

wledge it has not been evaluated before, and (c) as our results 406

w, the buffer requirements are modest and the queues can eas- 407

fit in existing buffers. 408

.1. Packet queuing emulator 409

We built an emulator in order to measure queuing at the router 410

ing cache misses. Fig. 8 shows the block diagram of our emu- 411

r. We assume that it takes about 60 ns to update the cache 412

e lookup time for DRAM) and that a packet needs to be queued 413

ile the update is taking place. 414

When a packet arrives we do a longest prefix match against the 415

he. If there is a match the packet is forwarded and does not 416

ur any additional delays. If there is no match against the cache 417

 packet is queued. When it gets to the head of the queue, we 418

a prefix fetch from the cacheable FIB, update the cache and for- 419

rd the packet. 420

We measure the maximum queue utilization during a given 421

in interval. We also look at the maximum queuing delay in 422

outer FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx 7

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

Fig. 8. Queue utilization simulator.

 utiliza

ed 423

he 424

ed 425

ze 426

et 427

428

429

430

in 431

he 432

ts 433

 a 434

od 435

ue 436

te 437

U 438

he 439

se 440

441

he 442

U 443

he 4 4 4

he 445

he 446

447

ve 448

he 449

o- 450

T’s 451

452

453

he 454

IB, 455

ne 456

he 457

n, 458

s- 459

es 460

of 461

462

of 463

s- 464

on 465

 a 466

in 467

468

ed 469

g, 470

ce 471
Fig. 9. Max. queue

our emulator i.e. the time elapsed between when a packet enter

the queue and when it exited the queue. Let us assume that t

time required to perform a cache lookup is T C , the time requir

to perform a slow-memory lookup is T S and the current buffer si

is B . If a packet arrives at the queue at time T A the time the pack

departs the queue T D is given by:

T D = T A + T C + (B ∗ T S)

The queuing delay D is then

D = T D − T A

7.2.2. Evaluation

Fig. 9 a shows the maximum queue utilization during 48 5-m

intervals. In the first interval we see a startup effect due to t

cold cache. Since there are no entries in the cache, arriving packe

cause many cache misses and have to be queued, resulting in

maximum queue size of 73 packets. After this initial startup peri

the queue drains and queue utilization drops. The maximum que

utilization is only 1 packet, which means that assuming 1500 by

packets, we need only 1500 bytes of buffer space to buffer LR

cache misses. Even when the queue utilization peaks during t

cache warm-up period, only 73 packets are queued. To store the

packets, we will need only 110KB of buffer space.

Fig. 9 b shows the maximum queuing delays for a LRU cac

during the same intervals as above. Packets queued after a LR

cache miss suffer virtually no queuing delay. This is due to t

small average queue size (1 packet per 5 min interval) and t
Please cite this article as: K. Gadkari et al., Pragmat

http://dx.doi.org/10.1016/j.comcom.2016.02.006
tion and queuing delays.

relatively fast cache updates (in the order of ns) which keep t

backlog small.

While these numbers are specific to our dataset, we belie

that they generalize well in similar environments. Moreover, t

buffer requirements are in line with what is found in routers t

day, where the rule of thumb is that buffers should hold an RT

worth of data.

7.3. Memory bandwidth requirements

Another important benefit of FIB caching is a reduction in t

number of lookups that need to be performed on the full F

which is often kept in slow (DRAM) memory. Without caching o

lookup typically needs to be performed per packet. Moreover, t

next hop information is often only part of the lookup informatio

which may also include filtering, QoS, and other state, increa

ing the demand on memory bandwidth. With increasing FIB siz

and line speeds these lookups are nearing the bandwidth limit

router memory.

Caching has the potential to drastically reduce the number

lookups to external memory. For example, one may envision a sy

tem where the cache is kept on-chip and the full RIB remains

external slow DRAM. The latter needs to be accessed only when

cache miss occurs. The question then is, what are the savings

terms of memory bandwidth if one uses an on-chip cache?

Fig. 10 shows the average number of memory lookups requir

per second in each 5 min interval in the trace. Without cachin

the number of memory lookups is equal to the packet rate, sin
ic router FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

8 K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

Fig. 10. Memory bandwidth requirements reduce by orders of magnitude when

caching is employed.

each packet requires a memory lookup. With caching, a memory 472

lookup is required only in case of a cache miss. We see that the 473

number of memory accesses required with caching is several or- 474

ders of magnitude lower than the number of accesses required 475

when no caching is deployed. If the cache uses a LRU replacement 476

policy the memory accesses are on the order of 10 2 accesses per 477

second and the rate stays almost constant. This is to be expected, 478

since we see that the hit rates achieved with LRU stay constant 479

throughout the duration of the trace. 480

Caching offers an order of magnitude improvement in memory 481

bandwidth when compared to no caching. Coupled with the fact 482

that the required cache can easily fit on a chip and that the cache 483

size appears to remain constant over time, caching virtually elimi- 484

nates any memory bandwidth issues for current and potentially fu- 485

tur486

8. 487

488

a c489

pac490

pol491

unp492

tem493

the494

the495

tha496

att497

we498

to 499

to 500

501

fea502

tac503

the504

eva505

tha506

8.1.507

508

cac509

Fig. 11. Difference in cache hit rates with and without attack packets. Attack is in

interval number 300.

N unpopular prefixes. We assume a cache size of 10K entries and 510

evaluate the performance of both a LRU cache. 511

We begin our evaluation by taking a 20 min slice from the be- 512

ginning of trace T8. Then we insert a stream of 20,0 0 0 attack pack- 513

ets to 20,0 0 0 idle prefixes starting at 30 0 s into the trace. We used 514

this attack trace as input for our caching system and measured the 515

hit rate at 1 s intervals. 516

Fig. 11 shows the difference between the hit rates observed 517

with and without the attack packets. A negative difference implies 518

that the hit rate observed during the attack was lower than the hit 519

rate in the same interval, but without the attack packets present. 520

For clarity, we present data for 25 intervals before and after the 521

attack interval. 522

As Fig. 11 shows, when the attack hits (at interval 300), the LRU 523

cache hit rate reduces by almost 6%. Further, it takes 2 after the 524

att 25

att 26

27

Fig 28

No 29

hit 30

31

pac 32

few 33

und 34

650 35

36

cau 37

is h 38

stre 39

8.2 40

41

tac 42

sen 43

tac 44

unp 45

the 46

the 47

als 48

cac 49

rup 50

Pl

ht
e routing table sizes. This is significant for scaling future routers.

Cache robustness

The use of FIB caching, especially with LRU, exposes routers to

ache pollution attack, where an attacker attempts to disrupt

ket caching and increase the cache miss rate. An attacker can

lute the cache by continuously sending packets to numerous

opular prefixes that would not be otherwise cached, in an at-

pt to evict legitimate prefixes. Depending on the attack rate,

 attacker can either cause the cache to thrash, thus increasing

 miss rate, or reduce the effectiveness of the cache by ensuring

t at least part of it is always polluted with bogus entries. This

ack will adversely affect the packet forwarding performance as

ll, by substantially increasing the number of packets that need

be queued while the new prefix is fetched, potentially leading

packet loss.

In this section we investigate cache pollution attacks and their

sibility. We describe a generalized threat model where the at-

ker tries to replace a subset of cache entries, and then estimate

 attack rate required to adversely affect the cache. Next, we

luate cache performance when subjected to a real NTP attack

t happened to be present in trace T9.

 Attacks against the cache

In this section, we describe an idealized attack against a LRU

he, in which an attacker inserts consecutive packets to at least
ease cite this article as: K. Gadkari et al., Pragmatic r

tp://dx.doi.org/10.1016/j.comcom.2016.02.006
ack has stopped for the cache to recover. However, despite the 5

ack, the cache hit rate never drops below 93%. 5

Next, we measure the queue size and delay under the attack. 5

. 12 a shows the mean queue size with a LRU cache under attack. 5

rmally, the queue size is close to zero. However, when the attack 5

s (at interval 300), the queue peaks at 9121 packets. 5

Fig. 12 b shows the corresponding queuing delays suffered by 5

kets. Normally, the packets suffer no queuing delay, since very 5

 packets are queued under normal traffic conditions. However, 5

er attack, we see that packets suffer queuing delays of about 5

 μs. 5

It should be noted that the this attack is an idealized attack be- 5

se it assumes all attack packets arrive back-to-back. In reality it 5

ard for an attacker to inject such bursts into the normal packet 5

am unless traffic is sufficiently low. 5

. Generalized threat model 5

In this section we describe a generalized threat model to at- 5

k the cache, and determine the rate at which an attacker must 5

d packets to disrupt packet delivery. We assume that the at- 5

ker knows or can determine in advance the set of popular and 5

opular prefixes at a given vantage point. We also assume that 5

 attacker has the capability to send packets at high rate, up to 5

 capacity of the link, either from a single host or a botnet. We 5

o assume that the goal of the attacker is to replace legitimate 5

he entries with unpopular entries for the sole purpose of dis- 5

ting cache performance. In other words, we assume a deliberate 5
outer FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx 9

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

Fig. 12. Comparison of buffer utilization and queuing delays under normal and attack conditions. Attack is in interval 300.

attack on the cache and not a general attack on the infrastructure 551

(e.g., DDoS). The latter will trigger other network defenses. 552

To achieve the above goal the attacker still needs to send pack- 553

ets at a high enough rate to evict legitimate prefixes quickly from 554

te 555

ti- 556

557

558

k- 559

ng 560

all 561

te 562

n- 563

ed 564

565

ts 566

 it 567

all 568

to 569

te, 570

 top 571

ze, 572

st 573

574

ed 575

of 576

he 577

of 578

lar 579

te 580

an 581

m 582

t- 583

. 584

or 585

v- 586

at 587

es. 588

d- 589

re 590

us, 591

 of 592

ng 593

594

che

595

n- 596

c 597

59 598

t- 599

ke 600

r- 601

r- 602

c 603

604

he 605

TP 606

607

nt. 608

fer 609

st. 610

es 611

 is 612

613

he 614

615

he 616

ed 617
the cache. Thus, the attack cannot be stealthy since its packet ra

must compete head-to-head with legitimate traffic. Next, we es

mate the packet rate that would make such attack viable.

8.2.1. Intensity of an effective attack

To determine the rate at which the attacker must send pac

ets to affect cache performance we first rank prefixes accordi

with their popularity during a low- and high-traffic interval. Rec

that our measurement interval is 5 min . We chose to investiga

the per-interval behavior rather than average traffic over the e

tire 24H period in order to determine both high and low requir

attack rates.

We estimate the required attack intensity. If an attacker wan

to hit the N th entry in the cache (and all the prefixes below it)

must send packets to enough prefixes to evict the i th entry and

the other entries below it. So for example, if the attacker wants

blow the entire cache, then the attacker must attack at P attack ra

which must be greater than the cache size N multiplied by P

which is the packet rate of the most popular prefix. To generali

the attack rate to evict the i bottom prefixes from the cache mu

be:

P attack ≥ P ∗i i

In the low traffic interval, the most popular prefix receiv

33,049,971 packets in five minutes for an average packet rate

110,166 packets per second, whereas in the high traffic interval t

most popular prefix received 37,079,737 packets for an average

123,599 packets per second. Thus, to replace just the most popu

prefix from the cache, the attacker needs to send packets at a ra

between 1,101,660,0 0 0 packets/s and 1,235,990,0 0 0 packets/s to

idle prefix. For a 10 Gb/s link and 64 byte packets the maximu

packet rate possible is 19,531,250 packets/s , thus the required a

tack rate is not feasible as it far exceeds the capacity of the link

Note that such an attack can be easily detected by looking f

spikes in the cache miss rate. Once detected, one can imagine se

eral defenses against this type of attack, such as pinning down

least part the historical prefix working set until the attack subsid

This poses little danger of false positives, since when prefixes su

denly become popular (as in the case of a flash crowd), they a

unlikely to do it in numbers in the order of the cache size. Th

we believe that practical attacks of this kind can only affect part

the cache and are easily weakened by reasonably over-engineeri

the cache.
Please cite this article as: K. Gadkari et al., Pragmat

http://dx.doi.org/10.1016/j.comcom.2016.02.006
Fig. 13. Comparison of LRU hit rates for all traffic and non-NTP traffic. The ca

size was set to 10 K entries.

8.3. Cache performance under a real DDoS attack

As described in Section 5 , trace T9 was captured during an o

going NTP reflection attack. Fig. 2 shows that overall, NTP traffi

accounted for approximately 1.3% of all traffic in the trace. 56

unique addresses from our regional ISP were the target of this a

tack [5] . Even though this was not an attack on the cache, we ta

advantage of this unfortunate incident to investigate the perfo

mance of a FIB cache under attack conditions and compare pe

formance with a version of the same trace that has NTP traffi

removed.

Fig. 13 shows the hit rates achieved by a 10 K entry LRU cac

for all traffic in trace T9 as well as the hit rates for all non-N

traffic.

As Fig. 13 shows, the cache performs well under this incide

The difference in the hit rates achieved by the cache do not dif

by more than 0.5% during the trace. Thus, caching remains robu

However, comparing Figs. 3 a and 13 , it is clear that the hit rat

for trace T9 are lower than of trace T8, although the difference

less than 1%.

Next, we look at the breakdown of packets resulting in cac

misses as shown in Fig. 14 a.

As expected, the NTP traffic accounts for a majority of t

packet misses. Out of a total of 114 ∗10 6 cache misses observ
ic router FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

10 K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

Fig. 14. Comparison of cache misses for all traffic and non-NTP traffic. The cache size was set to 10 K entries.

nd all non-NTP traffic. The cache size was set to 10 K entries.

dur618

nex619

wit620

mis621

ver622

We623

the624

625

NT626

ing627

com628

NT629

630

wit631

the632

att633

ets634

ing635

tha636

sys637

638

flec639

and640

T9 641

pac642

car643

com644

to 645

obs646

9. Conclusions 647

In this paper we take a look at some practical considerations 648

in the implementation of FIB caching. We extend previous work 649

in significant ways by looking at practical issues, such as charac- 650

ter 51

del 52

cac 53

reg 54

cac 55

an 56

57

tra 58

cac 59

ver 60

dat 61

tra 62

too 63

viro 64

pro 65

66

cac 67

tion 68

cen 69

ben 70

like 71

wo 72

73

ufa 74

Pl

ht
Fig. 15. Comparison of buffer usage and delays for all traffic a

ing the trace, NTP packets caused 55 ∗10 6 misses or 48%. The

t highest number of misses were caused by TCP DATA packets,

h 25 ∗10 6 misses (22%). NTP therefore caused 2.2 times more

ses than the TCP DATA packets. Fig. 14 b shows a zoomed-in

sion of Fig. 14 a, with the NTP traffic filtered out of the trace.

 see that TCP DATA and DNS packets account for the bulk of

 misses, similar to what we see in Fig. 7 .

To further quantify the performance of the cache during the

P incident, we measured the maximum buffer usage and queu-

 delays incurred by packets during the ongoing NTP attacks. We

pare these with the buffer usage and queuing delays with the

P traffic filtered out. Fig. 15 a and b shows the results.

As Fig. 15 a and b shows, the buffer usage and queuing delays

h the attack traffic are not drastically different to those with

 attack traffic filtered out. The maximum buffer usage with the

ack traffic included is 6104 packets, compared to 3944 pack-

 without the attack traffic. The corresponding maximum queu-

 delays are 4.8 ms and 3.2 ms respectively. Thus we conclude

t the NTP incident did not put undue strain on the caching

tem.

The difference in hit rates observed for traces T8 and T9 also re-

ts in the buffer usage and buffering delays, as seen from Figs. 9

 15 . Trace T9 and T8 were captured on different links and trace

had more diversity in terms of the number of prefixes carrying

kets than T8. In trace T8, the average number of unique prefixes

rying packets in each 5 min interval we investigated was 15,310,

pared to 24,965 prefixes for trace T9. In future work, we plan

investigate traces T8 and T9 further to quantify the differences

erved in the results.
ease cite this article as: K. Gadkari et al., Pragmatic r

tp://dx.doi.org/10.1016/j.comcom.2016.02.006
ization of cache misses, queuing issues (buffer occupancy and 6

ay), memory bandwidth requirements and robustness against 6

he pollution attacks. We used traces collected at links from our 6

ional ISP to a Tier-1 ISP for our analysis. Our design uses a 6

heable FIB to avoid the cache hiding problem, and we presented 6

algorithm to convert a regular FIB to a cacheable FIB. 6

Our work has some limitations. First, we only look at packet 6

ces from a single regional ISP. We therefore cannot evaluate 6

he performance at core routers, where traffic may be more di- 6

se causing hit rates to drop. While we do n ot have access to 6

a from core routers to answer this question (we need a packet 6

ce and a simultaneous snapshot of the FIB at a core router), the 6

ls and methodology we developed are applicable to a core en- 6

nment and we plan to repeat the study once we have an ap- 6

priate dataset. 6

Are there trends that may invalidate the benefits of FIB 6

hing? On the contrary, recent trends such as traffic concentra- 6

 to major social networks, search engines that reside in data- 6

ters [14] and CDNs make caching even more likely to provide 6

efits. In these environments, traffic becomes more focused and 6

ly to hit a smaller set of prefixes, resulting into a more stable 6

rking set. 6

Other potential benefits of employing FIB caching include man- 6

cturing of cheaper router hardware and routers with longer 6
outer FIB caching, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.02.006

K. Gadkari et al. / Computer Communications xxx (2016) xxx–xxx 11

ARTICLE IN PRESS

JID: COMCOM [m5G; February 26, 2016;10:24]

service cycles. Future terabit/s forwarding chips may employ FIB 675

caching for less on-chip memory or to allow the non-cached por- 676

tion of the FIB to be more aggressively compressed. Finally, cur- 677

rent architectures with the entire FIB on DRAM may also benefit 678

by backing away from the looming memory bandwidth wall. 679

References 680

[1] Endace, http://www.endace.com . Q6 681
[2] SANS ISC, NTP Reflection Attack – Internet Securitys, SANS ISC. https://isc.sans. 682

edu/forums/diary/NTP+reflection+attack/17300 . 683
[3] How to choose the best router switching path for your network, 2005. http: 684

//www.cisco.com/warp/public/105/20.pdf . Q7 685
[4] H. Ballani, P. Francis, T. Cao, J. Wang, Making routers last longer with viaggre, 686

in: Proceedings of the 6th USENIX Symposium on Networked Systems Design 687
and Implementation, NSDI’09, USENIX Association, Berkeley, CA , USA , 2009, 688
pp. 453–466. 689

[5] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, M. Karir, Taming 690
the 800 pound gorilla: the rise and decline of NTP DDOS attacks, in: Proceed- 691
ings of the 2014 Internet Measurement Conference, IMC’14, ACM, New York, 692
NY, USA, 2014, pp. 435–448, doi: 10.1145/2663716.2663717 . 693

[6] R. Draves, C. King, S. Venkatachary, B. Zill, Constructing optimal IP routing ta- 694
bles, in: Proceedings of the Eighteenth Annual Joint Conference of the IEEE 695
Computer and Communications Societies, INFOCOM’99, vol. 1, 1999, pp. 88–97, 696
doi: 10.1109/INFCOM.1999.749256 . 697

[7] D. Farinacci, V. Fuller, D. Meyer, D. Lewis, Locator/ID Separation Protocol (LISP), 698
draft-ietf-lisp-08.txt, 2010. 699

[8] D. Feldmeier, Improving gateway performance with a routing-table cache, in: 700
Proceedings of the INFOCOM’88. Networks: Evolution or Revolution? Proceed- 701
ings of the Seventh Annual Joint Conference of the IEEE Computer and Com- 702
muncations Societies, 1988, pp. 298–307, doi: 10.1109/INFCOM.1988.12930 . 703

[9] Y. Gao, L. Deng, A. Kuzmanovic, Y. Chen, Internet cache pollution attacks and 704
countermeasures, in: Proceedings of the 2006 IEEE International Conference 705
on Network Protocols, ICNP ’06, IEEE Computer Society, Washington, DC, USA, 706
2006, pp. 54–64, doi: 10.1109/ICNP.2006.320198 . 707

[10] W. Herrin, Opportunistic topological aggregation in the RIB-FIB calculation?. 708
http://www.ops.ietf.org/lists/rrg/20 08/msg01880.html , 20 08. 709

[11] G. Huston, BGP analysis reports. http://bgp.potaroo.net/index-bgp.html . Q8 710
[12] G. Huston, G. Armitage, Projecting future IPV4 router requirements from trends 711

in dynamic BGP behaviour, in: Proceedings of the Australian Telecommunica- 712
tion Networks and Applications Conference (ATNAC), 2006. 713

[13] C. Kim, M. Caesar, A. Gerber, J. Rexford, Revisiting route caching: the world 714
should be flat, in: Proceedings of the 10th International Conference on Passive 715
and Active Network Measurement, PAM’09, 2009. 716

[14] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, F. Jahanian, Internet 717
inter-domain traffic, in: Proceedings of the ACM SIGCOMM 2010 Conference, 718
2010. 719

[15] H. Liu, Routing prefix caching in network processor design, in: Proceedings 720
of the Tenth International Conference on Computer Communications and Net- 721
works, 2001, pp. 18–23, doi: 10.1109/ICCCN.2001.956214 . 722

[16] Y. Liu, S.O. Amin, L. Wang, Efficient FIB caching using minimal non-overlapping 723
prefixes, SIGCOMM Comput. Commun. Rev. 43 (1) (2012) 14–21, doi: 10.1145/ 724
2427036.2427039 . 725

[17] Y. Liu, L. Wang, B. Zhang, FIFA: fast incremental FIB aggregations, in: Proceed- 726
ings of the 32nd IEEE International Conference on Computer Communications, 727
INFOCOM, 2013. 728

[18] Y. Liu, X. Zhao, K. Nam, L. Wang, B. Zhang, Incremental forwarding table ag- 729
gregation, in: Proceedings of the GlobeCom Conference, 2010. 730

[19] V. Manivel, M. Ahamad, H. Venkateswaran, Attack resistant cache replacement 731
for survivable services, in: Proceedings of the 2003 ACM Workshop on Surviv- 732
able and Self-regenerative Systems in association with 10th ACM Conference 733
on Computer and Communications Security, SSRS’03, ACM, New York, NY, USA, 734
2003, pp. 64–71, doi: 10.1145/1036921.1036928 . 735

[20] D. Massey, L. Wang, B. Zhang, L. Zhang, Proposal for scalable internet routing 736
and addressing. draft-wang-ietf-efit-00.txt, 2007. 737

[21] D. Meyer, L. Zhang, K. Fall, Report From the IAB Workshop on Routing and 738
Addressing, 2007. Q9 739

[22] University of Oregon, The Route Views Project, Advanced Network Topology 740
Center and University of Oregon. http://www.routeviews.org/ . 741

[23] S. Richardson, Vertical aggregation: a strategy for FIB reduction, 1996. 742
[24] N. Sarrar, T.U.B. T-labs, S. Uhlig, R. Sherwood, Leveraging Zipf’s law for traffic 743

offloading 42 (1) (2012) 17–22. Q10 744
[25] Z.A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang, P. Fran- 745

cis, SMALTA: practical and near-optimal FIB aggregation, in: Proceedings of the 746
Seventh Conference on emerging Networking Experiments and Technologies, 747
CoNEXT’11, 2011, pp. 29:1–29:12, doi: 10.1145/2079296.2079325 . 748

[26] H. Yan, B. Say, B. Sheridan, D. Oko, C. Papadopoulos, D. Pei, D. Massey, IP reach- 749
ability differences: myths and realities, in: Proceedings of the 2011 IEEE Con- 750
ference on Computer Communications Workshops (INFOCOM WKSHPS), 2011, 751
pp. 834–839, doi: 10.1109/INFCOMW.2011.5928928 . 752

[27] M. Zadnik, M. Canini, Evolution of cache replacement policies to track heavy- 753
hitter flows, in: Proceedings of the 12th International Conference on Passive 754
and Active Network Measurement, PAM’11, 2011, pp. 21–30. 755

[28] X. Zhang, P. Francis, J. Wang, K. Yoshida, Scaling IP routing with the core 756
router-integrated overlay, in: Proceedings of the 2006 IEEE International Con- 757
ference on Network Protocols, ICNP’06, 2006, pp. 147–156. http://dx.doi.org/10. 758
1109/ICNP.2006.320208 . 759

[29] X. Zhao, Y. Liu, L. Wang, B. Zhang, On the aggregatability of router forwarding 760
tables, in: Proceedings of the IEEE INFOCOM 2010 Conference, 2010. 761
Please cite this article as: K. Gadkari et al., Pragmat

http://dx.doi.org/10.1016/j.comcom.2016.02.006
ic router FIB caching, Computer Communications (2016),

http://www.endace.com
https://isc.sans.edu/forums/diary/NTP+reflection+attack/17300
http://www.cisco.com/warp/public/105/20.pdf
http://dx.doi.org/10.1145/2663716.2663717
http://dx.doi.org/10.1109/INFCOM.1999.749256
http://dx.doi.org/10.1109/INFCOM.1988.12930
http://dx.doi.org/10.1109/ICNP.2006.320198
http://www.ops.ietf.org/lists/rrg/2008/msg01880.html
http://bgp.potaroo.net/index-bgp.html
http://dx.doi.org/10.1109/ICCCN.2001.956214
http://dx.doi.org/10.1145/2427036.2427039
http://dx.doi.org/10.1145/1036921.1036928
http://www.routeviews.org/
http://dx.doi.org/10.1145/2079296.2079325
http://dx.doi.org/10.1109/INFCOMW.2011.5928928
http://dx.doi.org/10.1109/ICNP.2006.320208
http://dx.doi.org/10.1016/j.comcom.2016.02.006

	Pragmatic router FIB caching
	1 Introduction
	2 Related work
	3 Cache system design
	4 The need for a cacheable FIB
	4.1 Generating a cacheable FIB
	4.1.1 FIB inflation due to hole filling

	5 Data sets and trace statistics
	6 Results
	6.1 Cache system performance
	6.2 Caching with delayed updates
	6.3 Impact of route updates
	6.4 Trends in cache size

	7 Analysis of cache misses
	7.1 Classification of cache misses
	7.2 Effects of cache misses on queuing
	7.2.1 Packet queuing emulator
	7.2.2 Evaluation

	7.3 Memory bandwidth requirements

	8 Cache robustness
	8.1 Attacks against the cache
	8.2 Generalized threat model
	8.2.1 Intensity of an effective attack

	8.3 Cache performance under a real DDoS attack

	9 Conclusions
	 References

