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a b s t r a c t 

Security tools have evolved dramatically in the recent years to combat the increasingly complex nature of 

attacks. However, these tools need to be configured by experts that understand network protocols thor- 

oughly to be effective. In this paper, we present a system called FieldHunter , which automatically extracts 

fields and infers their types. This information is invaluable for security experts to keep pace with the 

increasing rate of development of new network applications and their underlying protocols. FieldHunter 

relies on collecting application messages from multiple sessions. Then, it performs field extraction and 

inference of their types by taking into consideration statistical correlations between different messages 

or other associations with meta-data such as message length, client or server IP addresses. We evaluated 

FieldHunter on real network traffic collected in ISP networks from three different continents. FieldHunter 

was able to extract security relevant fields and infer their types for well documented network proto- 

cols (such as DNS and MSNP) as well as protocols for which the specifications are not publicly available 

(such as SopCast). Further, we developed a payload-based anomaly detection system for industrial con- 

trol systems using FieldHunter. The proposed system is able to identify industrial devices behaving oddly, 

without any previous knowledge of the protocols being used. 

© 2016 Published by Elsevier B.V. 

1. Introduction 1 

In recent years attacks against networks have become more 

Q2 

2 

complicated. To defend against these complex attacks, network se- 3 

curity systems have also evolved to use more sophisticated mech- 4 

anisms. For instance, firewalls have moved from using simple 5 

packet-filtering rules to using application level rules that need 6 

deeper understanding of the protocols being used by network ap- 7 

plications. Similarly, intrusion detection systems are increasingly 8 

using vulnerability based signatures [1] that contain information 9 

specific to network protocols. Access control mechanisms are also 10 

evolving from IP address based policies to fine-grained policies 11 

which use protocol objects such as users and message types. 12 

It is clear that configuring all of the above applications requires 13 

a deeper understanding of the network protocols, which is done 14 

through reading protocol specifications. However, comprehending 15 

protocol specifications is a very tedious task. Moreover, many of 16 
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the proprietary protocols specifications are not publicly available. 17 

The traditional approach of manual reverse engineering a proto- 18 

col cannot cope with the rate at which new benign or malicious 19 

applications are made available and brought into workplace. As a 20 

result, security administrators have to configure security applica- 21 

tions with very limited visibility into the network protocol space; 22 

thus adversely affecting the efficacy of these tools in securing the 23 

network. 24 

The above technology challenge has led to a growing interest 25 

in the research community in the development of techniques for 26 

automating the reverse-engineering process for extracting proto- 27 

col specifications, which consists of inferring message formats and 28 

underlying protocol state machines. The state-of-the-art techniques 29 

can be classified in two categories: reverse-engineering through bi- 30 

nary code analysis [2–6] and from network traffic [7–13] . In this 31 

work, we present an automatic reverse-engineering system of the 32 

second category, i.e. it infers protocol specifications from just net- 33 

work traffic data. Reverse-engineering using network traffic has an 34 

advantage over techniques using binary analysis, because applica- 35 

tion binaries are not always available to the security operators. 36 

Our approach to the problem of protocol reverse engineering 37 

aims to extract field boundaries and field protocol types from net- 38 

work traces that belong to the protocol. As compared to previous 39 
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works in this area, we are able to extract richer protocol informa- 40 

tion in terms of (i) extracting diverse field types, and (ii) handling 41 

binary and textual protocols in an uniform framework. We study 42 

well known protocols and identify a set of field types that can be 43 

used in a multitude of security applications. We focus on identify- 44 

ing: (i) Message Type (MSG-Type), such as flags in DNS protocol or 45 

GET/POST keywords in HTTP, (ii) Message Length (MSG-Len), usu- 46 

ally found in TCP protocols to delimit application messages in a 47 

stream, (iii) Host Identifier (Host-ID) such as Client ID and Server 48 

ID, (iv) Session Identifier (Session-ID) such as cookies, (v) Transac- 49 

tion Identifier (Trans-ID) such as sequence/acknowledgment num- 50 

bers, and (vi) Accumulators such as generic counters and times- 51 

tamps. We note that a protocol may not have all the above types 52 

of fields. 53 

We built a system called FieldHunter, that uses a two step 54 

methodology: (i) Field extraction: here we extract fields from the 55 

protocol messages. (ii) Field type inference: here we infer the type 56 

of the fields extracted in the previous step. The key contribution 57 

of our work is the development of various heuristics based on ob- 58 

served statistical properties for inferring the different field types. 59 

In our evaluation, we used real network traces from three different 60 

Internet Service Providers (ISPs) to validate the ability to extract 61 

various field types from well known protocols such as Real Time 62 

Protocol (RTP), as well as protocols without any publicly available 63 

specification such as SopCast’s protocol. 64 

Next, to illustrate the use of FieldHunter in building end-to- 65 

end security applications, we developed a payload-based anomaly 66 

intrusion detection system for industrial control systems. Indus- 67 

trial Control Systems (ICS) encompass several types of control sys- 68 

tems used in industrial production, including Supervisory Control 69 

and Data Acquisition (SCADA) systems, Distributed Control Sys- 70 

tems (DCS), and other smaller control system configurations such 71 

as Programmable Logic Controllers (PLC). Due to their use in the 72 

industrial sectors and critical infrastructures, they are a prime tar- 73 

get for attackers and the cost of successful attacks is tremendous 74 

to the victims. Typically, the attackers targeting ICS are sophisti- 75 

cated, and have a lot of resources; sometimes even being state 76 

sponsored. They are able to avoid detection by traditional defense 77 

mechanisms [14] . To make matters worse, there has been a trend 78 
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Fig. 1. Terminology diagram. 

as the server, and identify hosts by their IP address. Messages con- 100 

sist of different pieces of information enclosed in fields . As we 101 

show in Fig. 1 , conversations evolve horizontally over time (t) and 102 

messages can be compared vertically across multiple conversa- 103 

tions. 104 

To enable the analysis of a collection, the messages in the 105 

conversations can be grouped together in the following ways: (i) 106 

Grouping messages based on their position in conversations, e.g., 107 

all third messages in C2S direction. (ii) Grouping together all the 108 

messages of a conversation. This essentially captures session-like 109 

information. (iii) Grouping together messages by direction, e.g., all 110 

C2S messages. We note that (i) and (ii) are very similar to vertical 111 

and horizontal sub-collections as defined by Kreibich et al. [16] . 112 

Message grouping is instrumental for FieldHunter to find patterns 113 

in the collections. If these groups do not contain enough message 114 

diversity, FieldHunter cannot unveil the field types it is designed 115 

for. 116 

It is worth mentioning that the formation of protocol collec- 117 

tions used by FieldHunter is beyond the scope of this work. How- 118 

ever, we suggest two alternatives for the same. One way is to use 119 
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increasing number of attacks on critical infrastructure as evi- 

ced by the rapid increase in the number of reported attacks on 

 from 91 k in 2012 to over 675k in 2014 [15] . To the best of 

 knowledge, our system is the first payload-based anomaly de- 

tion system that handles legacy proprietary protocols commonly 

d in ICS networks. 

The rest of the paper is organized as follows. Section 2 defines 

 terminology used throughout the paper, Section 3 provides de- 

s about the core algorithms used by FieldHunter. Performance 

luation and parameter tuning are presented in Section 4 . We 

cribe the anomaly detection system for ICS in Section 5 . We dis- 

s about assumptions and limitations in Section 6 , related works 

Section 7 and finally conclude this work in Section 8 . 

Terminology 

Fig. 1 shows a pictorial representation of the terminology used 
oughout this work. Our system uses as input a set of conversa- 

s 1 of a particular application. We refer to such a set as col- 

ion . Conversations consist of exchanged messages between two 

ts. Messages from client to server are denoted as C2S (dark- 

ored) and from server to client as S2C (light-colored). We con- 

er the initiator of the conversation as the client, the other end 

A conversation is formed of the two flows in opposite directions, where a flow 

efined by the 5-tuple (Layer-4 Protocol, Source IP, Source Port, Destination IP, 

tination IP). 

nen 37 

bin 38 

wa 39 

toc 40 

3. 41 

two

fere
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est-bed in which the application is executed while the traffic 1

hanged is being captured. Alternatively, the collection can be 1

racted from passive observation of actual traffic by the means 1

network classifiers, i.e., by filtering all conversations involving 1

ell-known port (see Section 5 ), or by relying on a behavioral 1

ffic classifier classifier [17] . 1

Application conversations are transported by TCP/UDP segments 1

 are extracted by FieldHunter using the following methodology: 1

for messages transported over UDP it is assumed that each seg- 1

nt contains one application message, and (ii) for TCP it is as- 1

ed that TCP PUSH flags delimits the beginning of a new appli- 1

ion message from the end of another one. An accurate message 1

raction can be done once the MSG-Len field has been identified 1

FieldHunter. 1

We make a distinction between textual and binary protocols as 1

ows: Textual protocols use human readable words and symbols 1

structure data, and they look more like a text document. Expo- 1

ts of textual protocols are HTTP and SMTP. On the other hand, 1

ary protocols encode data on bits rather than symbols and the 1

y that data is structured is quite rigid. Examples of binary pro- 1

ols are DNS and DNP. 1

Design 1
In this section, we describe the system design and discuss the 142 

 components of FieldHunter(i) Field Extractor (ii) Field Type In- 143 

nce Engine. These components are run in sequence to obtain 144 

protocol field inference, Computer Communications (2016), 
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to be delimiter candidates d . Then from among all the candidates it 183 

chooses only one ( D f = d), such that it splits up any protocol mes- 184 

sage into valid key-value pairs and singletons. Validity of key-value 185 

pairs and singletons is checked by comparing common prefixes and 186 

exact matches respectively. 187 

Key- value pair delimiter inference. Once D f has been detected, mes- 188 

sages are split into fields from which we need to identify key- 189 

values along with D k −v , and singletons. The identification of D k −v 190 

is performed in three steps: (i) FieldHunter clusters fields of the 191 

same type by using the Longest Common Prefix ( LCP ); (ii) by 192 

re-clustering the clusters, FieldHunter cleans up possible outliers 193 

caused by two or more keywords sharing a common prefix. E.g., 194 

Port: and Point: have Po in common, and finally (iii) we 195 

choose the D k −v as the non-alphanumeric suffix part of the LCP of 196 

each group. In the case that all the LCPs are identical for a group, 197 

then we say that the field contained by the group is a singleton 198 

and we do not search for a delimiter. 199 
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Fig. 2. FieldHunter system diagram. 

Table 1 

Common text-based protocols and their observed de- 

limiters. GAME: team fortress (game), TEL: Telnet, CS: 

counter strike (game), GNU: Gnutella. 

Prot. D f D k −v Prot. D f D k −v 

HTTP \ r \ n ‘:’, ‘ ’ FTP \ r \ n ‘ ’ 

SMTP \ r \ n ‘:’, ‘ ’, ‘-’ TFTP 0x1D 0x1E 

POP3 \ r \ n ‘:’, ‘ ’ CS 0x5C 0x5C 

RTSP \ r \ n ‘:’ GNU \ r \ n ‘:’, ‘ ’ 

SIP \ r \ n ‘:’, ‘ ’ RTP \ r \ n ‘:’, ‘ ’ 

GAME 0x00 0x00 MSN \ r \ n ‘ ’ 

TEL \ r \ n ‘:’, ‘ ’ 

a field summary report (which describes the identified fields a

their types) as shown in Fig. 2 . 

3.1. Field extractor 

Textual and binary protocols differ greatly in the way fields a

delimited. Textual protocols typically use delimiters such as “: ”
“\ r \ n ” (carriage-return and line-feed pair) to separate fields. On t

other hand in binary protocols, fields either have fixed offset a

size or offsets and lengths that are specified in some precedi

fields. Hence we have developed different techniques for textu

and binary protocols. Next, we explain each of these techniqu

separately. 

3.1.1. Textual protocols 

Field extraction for textual protocols boils down to identifyi

field delimiters. However, this is a non-trivial task as many pr

tocols use multiple delimiters for different purposes. For instan

consider a message such as TIME-OUT: 60 # PORT: 5400
In this message, “#” is used to separate out the fields, while 

is used to separate out the key and the value in a field. Hence, w

categorize delimiters into two types: (i) Field delimiter (D f ) : sep

rates the different fields of a message, e.g., the “#” character in t

above example. (ii) Key-value delimiter ( D k −v ) : separates the k

from its corresponding value, e.g., the “:” in the same example. 

Commonly used D f and D k −v delimiters are shown in Table 

These delimiters are obtained from the documentation of the list

protocols, and are actually observed in our data sets. As we se

there are popular delimiters, such as \ r \ n , as well as non-standa

delimiters, such as 0x00 (null), 0x1D , and 0x5C . 
Generally speaking, FieldHunter identifies delimiters usi

three key observations: (i) Delimiters are non-alphanumeric s

quences of 1 or 2 characters. (ii) Delimiters have a high horizo

tal and vertical frequency compared to other non-alphanume

sequences in a textual protocol. (iii) There is only one 

that splits up the messages into key-value pairs ( UID: 1234
Content-length: 872 ) or singleton keywords fields ( HELO
LOGOUT, OK, FAILED ). FieldHunter first identifies D and th
f 

proceeds with the D k −v if fields are key-value paired. 

Field delimiter inference. FieldHunter finds frequent sequences of 

non-alphanumeric characters in the protocol which are considered 

s- 241 

es. 242 

w- 243 

th 244 
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3.1.2. Binary protocols 

In binary protocols, fields represent serialization of variables 

they are structured in memory. To parse these fields, message r

cipients need to know the structure of the data, i.e. the offset a

length of the fields. The challenge for FieldHunter is that the me

sage data structure is initially unknown. Therefore messages a

split into n-grams which are used by Field Type Inference Engin

We observe that for most of the field types, the n-grams formi

the field also show similar characteristics to the field. For instan

in a protocol that has a 32-bit Host ID field, the four 8-bit n-gram

also exhibit similar statistical properties as Host ID. In such cas

we identify the field type for the single n-gram and then che

whether consecutive n-grams can be merged into a larger field 

the same type. 

We note that this assumption does not always hold. For i

stance, a 32-bit Accumulator field may increment by one eve

time. But given the number of samples that we may consider 

our collection (say order of thousands), the most significant b

may show up as constants and not accumulators. This issue is c

cumvented for fields such as Message Length and Accumulato

(numerical representations) by considering n-grams of larger si

first, say 32-bit n-gram, and then iteratively reducing n-gram si

till the whole n-gram fits the field. Moreover, we handle byt

endianness for fields that contain numerical representations by r

peating the heuristics separately for both little-endianness and b

endianness. This is not the case for fields that can be interpret

as categorical representations. 

3.2. Field type inference engine 

Our approach is based on the following key observatio

Fields with different types change differently over specific su

collections. For instance, a field that consistently takes a distin

value for each IP address may represent a Host-ID. Similarly, fiel

that increment by one over sequential messages of a conversati

may be part of a message counter. 

FieldHunter assigns types to fields by using different statistic

tests that are further explained. The techniques for FTI are simi

for both textual and binary protocols. In the rest of the paper w

use the term “n-gram” to interchangeably to mean “binary n-gram

or “textual field” for ease of exposition. For example, when w

state “n-gram entropy is computed ”, we actually mean that eith

“binary n-gram entropy is computed” or “textual field entropy

computed”. We use specific statistical tests based on different a

sociations between observed variables to infer different field typ

The association between two variables ( a , b ) can be of the follo

ing types: (i) “numerical correlation” ( a ⇔ b ), e.g., message leng
atic protocol field inference, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.02.015
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Fig. 3. MSG-Type (left), MSG-Len (ce

d is numerically correlated to the observed length of the mes- 

e, (ii) “categorical correlation” ( a ∈ A ⇔ b ∈ B ), e.g., user IDs cor- 

te categorically with IP addresses and (iii) “causality correla- 

” ( a ⇒ b ), e.g., certain type of message will result in a particular 

ponse from server. 

The labeling process works by making a hypothesis that a given 

d is of a certain type. When the hypothesis holds, i.e., the field 

ibits the statistical behavior of the field type, FieldHunter la- 

s the field as such. We note here that a field may be labeled 

multiple field types. For instance, an acknowledgment number 

d could be labeled as both Transaction ID as well as an Accu- 

lator. 

In Fig. 3 the more complex heuristics are illustrated using 

ck-diagrams. Blocks in the diagrams represent different tests; 

izontal/vertical arrow inside a block defines horizontal/vertical 

-collection analysis and thresholds are highlighted in italic. 

re details on parameter selection are given in Section 4.4 . 

.1. Message type (MSG-Type) 

MSG-Type contains information about the underlying protocol 

te machine and its values represent the semantic of the whole 

ssage. Thus, the content of MSG-Type field is used by the re- 

ver to understand what type of message is received, for example 

equest, a status update, or an error message. 

The process of finding MSG-Types is based on two key observa- 

s: (i) MSG-Type takes values from a well defined small static 

; and (ii) represents transitions in an underlying protocol state 

chine. Hence, by pairing request/response messages, there is a 

h probability that their corresponding MSG-Type fields are re- 

d. The leftmost diagram in Fig. 3 describes the MSG-Type la- 

ing process. 

Using observation (i) above, FieldHunter first looks for n-grams 

t vertically are neither random nor constant. Randomness of a 

ram x can be measured using the entropy H ( x ) metric. Let p i 
the probability of having the n-gram take the value i . Then 

 ) = −∑ 

i p i log 2 p i , where 0 · log (0) = 0 . By definition for 1-byte 

rams (8-bits) H ( x ) takes values between 0 (constant) and 8 

rfectly random). Then n-grams that are unlikely to be part of 

SG-Type field are discarded. Once some candidate fields are 
ease cite this article as: I. Bermudez et al., Towards automatic 

tp://dx.doi.org/10.1016/j.comcom.2016.02.015 
and Trans-ID (right) modules. 

ntified, according to observation (ii), we check for n-grams that 2

e a causal relationship with n-grams in the response messages. 2

re FieldHunter uses categorical correlation metric. Towards this 2

, FieldHunter measures causality using the information theo- 2

ic metric I ( q ; r )/ H ( q ), where I(q ; r) = H(q, r) − H(q | r) − H(r| q ) is 2

 mutual information, that measures the information shared by 2

equest ( Q ) and a response ( R ) [18] . 2

FieldHunter takes n-grams for which causality is greater than a 2

eshold, say 0.8, as MSG-Type candidates. For the case of binary 2

tocols, if multiple n-grams are candidate, these are grouped to- 2

her and causality is checked again. Thus, if a group coincides 2

h the actual MSG-Type field, then the whole candidate group 2

uld also satisfy the initial hypothesis of causality. For example, 2

pose n-grams at byte offset 1, 5, 6 show a large causality such 2

t q 1 ⇒ r 1, q 5 ⇒ r 5, q 6 ⇒ r 6. Then we check whether the groups 2

, q 5, q 6) ⇒ ( r 1, r 5, r 6) holds the causality. If this holds, the field 2

taining n-grams at offsets (1, 5, 6) are returned as the MSG- 2

e field. 3

.2. Message length (MSG-Len) 3

Our goal here is to find fields that contain indication of the ap- 3

ation message length. As such, we expect the MSG-Len field is 3

arly correlated with the actual physical message size. We use 3

 different tests for identifying linear correlations in order to 3

e higher confidence on our results. 3

The complete MSG-Len test algorithm is depicted in the central 3

gram in Fig. 3 . This heuristic does not use the typical 1-byte n- 3

m and for textual protocols it decodes the content of the field 3

a number. The reason why 1-byte n-grams do not provide good 3

ults is that Most Significant Byte and Least Significant Byte are 3

 correlated in this case. Hence, FieldHunter iteratively selects n- 3

m windows of size 32, 24, 16-bits that are shifted at a step of 3

its. Such windows sizes are the standard sizes used to represent 3

egers in computer memory. At each iteration Pearson correla- 3

 coefficient tells whether the numeric values of the fields are 3

ociated with the length of the messages. Notice that the compu- 3

ion of this correlation could be affected by biases due to some 3

ular messages in the collection of the same size, for instance, if 3

 out of 1 0 0 0 of collection messages are 40 bytes long. We avoid 3
protocol field inference, Computer Communications (2016), 
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Fig. 4. n-gram correlation with MSG-Len for SopCast. 

such biases by stratifying messages by length, creating in this way 321 

a size-heterogeneous collection not affected by the bias problem. 322 

We select all the fields for which the coefficient is above a certain 323 

threshold as MSG-Len candidates. We empirically found 0.6 to be 324 

a good threshold. 325 

Fig. 4 shows the results of applying the Pearson correlation to 326 

the SopCast protocol collection obtained from one of our traces. 327 

In this example, we use 16-bit n-gram. Pearson coefficient values 328 

span from zero to one, where zero indicates no correlation and one 329 

represents a strong correlation. In Fig. 4 there are two clear spikes, 330 

one at offset 88-bit and the other at 168-bit that suggests the pres- 331 

ence of a MSG-Len field (see Section 4.2 ). We cross-verified these 332 

results using DPI signature rules for UDP SopCast found in OpenDPI 333 

[19] , an open source packet inspection engine. 2 334 
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Fig. 5. n-gram correlation with Client IP (Vuze DHT). 
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Fig. 6. The n-gram entropy for Vuze DHT over a C2S vertical sub-collection. 

adoption of statistical tests, such as correlation, makes the algo- 370 

rithms robust to handle noise in the data, such as when NAT is 371 
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Once the candidates are found, the next step is to conduct a te

to verify that the candidates indeed are carrying information r

garding the length of the message. The hypothesis is that the me

sage length expresses the length of the message in an unit of me

surement, such as bytes or words, and that it describes the leng

of data starting from a given byte offset. In other words, we sta

that the message length is ruled by the following linear equatio

MSG len = a · F IELD v alue + b, such that MSG len ∈ N is the observab

message length, F IELD v alue is the value taken by candidate fie

a > 0 accounts for the unit of measurement and b ∈ N is the sta

ing offset of the data described by the field. To verify the assum

tion, the linear equation is solved and ( a , b ) are obtained. Th

process is repeated taking all possible message pairs with diffe

ent lengths. Finally a candidate is considered as a true MSG-L

field if for most of the pairs ( > 90%) the solution is acceptab

( a > 0 ∧ b ∈ N ). 

3.2.3. Host identifier (Host-ID) 

Host I dentifiers are used to identify a particular host or devi

beyond the boundaries of the local network. For instance, in pee

to-peer applications, the “Peer-ID” field uniquely identifies a sp

cific peer/host in the whole overlay, even when the peer is behi

a Network Address Translation (NAT) device or is moving over mu

tiple networks. 

The heuristic assumes that all the messages sent by the sam

host carry the same Host-ID, i.e., for a given source IP, me

sages are likely to have the same Host-ID. Then Host-ID shou

be strongly correlated with the IP address of the sender. Based 

this assumption, FieldHunter computes the categorical correlati

R (x, y ) = I(x ; y ) /H(x, y ) ∈ [0 , 1] of n-grams x with the sender IP a

dress y , where H ( x , y ) is the joint entropy (that measures the t

tal amount of information that x and y jointly carry). That is, f

each x ∈ X , there is a different y ∈ Y , and vice-versa. N-grams w

correlation coefficient greater than certain threshold, say 0.9, a

selected as candidates. Finally, consecutive candidate n-grams a

merged into fields of at least a length of 4 bytes . Notice that t

2 OpenDPI project has since been discontinued. 
Please cite this article as: I. Bermudez et al., Towards autom
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used. 

Fig. 5 shows the categorical correlation between n-grams in

vertical collection and the corresponding source IP address for t

Vuze DHT collection [20] . Note how R ( x , y ) is very close to o

(high correlation) for n-grams that represent the Client Addre

and the Client-ID. However, we also observe that the first n-gram

of the Session-ID are also correlated with the sender IP addre

The explanation for this protocol peculiarity is found in the Vuz

specification. Vuze’s Session-ID is an application’s global count

randomly initialized at the start-up and incremented by 1 for ea

new conversation. Hence, the most significant bits in the Sessio

ID are likely to be the same for all messages sent by the sam

sender. By imposing a minimum length constraint, FieldHunter c

discard such fields. 

3.2.4. Session Identifier (Session-ID) 

Session Identifier keeps track of application-level sessions th

span over multiple conversations. Semantically, it is similar to t

use of Cookies in HTTP. Since the Session-ID remains consta

between a pair of endpoints, FieldHunter correlates the n-grams 

the pair of client and server IP addresses. Then we proceed usi

the same categorical correlation as we do for Host-ID. 

3.2.5. Transaction Identifier (Trans-ID) 

The algorithm we use to detect Trans-IDs is illustrated in t

rightmost diagram in Fig. 3 . It is assumed that Trans-ID are ra

domly picked by the transaction creator and then copied back 

the replies. Therefore, we first search for n-grams that appear ra

dom across both vertical and horizontal collections. Randomness

measured using entropy as before. 

Fig. 6 shows the entropy of n-grams for the Vuze DHT prot

col. The figure shows the entropy of the first 36 n-grams (report

on the x -axis at the corresponding offset) in the C2S vertical su

collection. On the top, the protocol field names are reported as e

tracted from documentation. In this example, n-grams with hi

entropy are good candidates for the Trans-ID field. 

Next, all consecutive request/response messages are paired a

for each of them, it is checked whether the n-grams/fields ta

the same values. If the check passes, then the pair of n-grams a
atic protocol field inference, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.02.015


6 I. Bermudez et al. / Computer Communications xxx (2016) xxx–xxx 

ARTICLE IN PRESS 

JID: COMCOM [m5G; March 4, 2016;11:33 ] 

added to a set of Trans-ID candidates. Note that request/response 409 

message formats can change and Trans-ID may appear at different 410 

offsets (for instance in Vuze DHT). Therefore, the heuristic does not 411 

assume the protocol message formats are the same in both direc- 412 

tions. 413 

Finally, FieldHunter measures the consistency of these can- 414 

didates over all the conversations, i.e., n-gram candidates with 415 

enough support, say > 0.8, are finally marked as such. Minimum 416 

support allows some degree of mismatch, for example, caused by 417 

message reordering or re-transmission in the collection. Finally, 418 

consecutive n-grams are merged to form a field of at least 2 bytes. 419 

For textual protocols such n-gram merging is not needed. 420 
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Table 2 

Summary of the traces we use. 

Name Location Network location Date Duration (h) 

TR1-2012 Europe Edge 04–2012 24 

TR2-2009 S. America Backbone 10-2009 4 

TR3-2007 Asia Backbone 01–2007 7 

Table 3 

Summary of the results from running FieldHunter on the 

binary-based protocols. 

Protocol Discovered/GT [bits] Cov/AoC 

C2S S2C C2S S2C 

Vuze DHT 288/240 200/208 0.87/1 0.85/0.87 

DNS 48/32 56/32 0.75/1 1/1 

uTP 88/96 200/96 0.75/1 0.67/0.87 

RTP 80/88 80/88 0.82/1 0.82/1 

ED2K 128/16 16/16 1/1 1/1 

KADEMLIA 352/16 104/16 1/1 1/1 

STUN 256/160 184/160 0.9/0.83 0.85/0.88 

SOPCAST 128/? 152/? ?/? ?/? 

PPLIVE 0/? 32/? ?/? ?/? 

Table 4 

Summary of the results from running FieldHunter on the textual proto- 

cols. 
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.6. Accumulators 

Accumulators are fields that have increasing values over consec- 

e message within the same conversation. These fields typically 

resent message sequence numbers, acknowledgment numbers 

timestamps. To identify such fields, we calculate the difference, 

oted as �, between values of n-grams in two subsequent mes- 

es. We expect � to be positive and fairly constant. Notice that 

erences are not required to be perfectly constant. For instance 

yte-wise counter in a protocol of variable size messages would 

e variable �. 

We search for accumulators in C2S and S2C directions indepen- 

tly of each other. As with the MSG-Len field, here we start with 

d size n-grams. We assume accumulators are encoded in fields 

a given field length , for example, 64, 32 and 16 bits. For each 

d offset, we compute the vector of increments ( �) considering 

h consecutive message pair in each conversation. In order to 

 one threshold that captures the variations among �s of differ- 

 scales (such as sequential counters vs millisecond timers), we 

press � using a logarithmic function; ˆ � = ln �. Next, we an- 

ze ˆ � and select those that have relatively low entropy, i.e., ˆ �

ks “fairly constant”. 

. Field summary 

FieldHunter provides information of the field type extracted au- 

atically out of protocols as the final result. It provides two 

arate reports (corresponding to each direction of messages) for 

h protocol. The report contains the set of fields for which the 

es have been inferred. Note that we may not identify the type 

 some of the fields and will skip them in the report. 

Evaluation of FieldHunter 

In this section we evaluate the efficacy of FieldHunter in infer- 

g protocol specification of known protocols. We use TSTAT [17] , 

PI tool that classifies traffic and feeds FieldHunter with proto- 

 collections. In general, each collection presents different char- 

eristics. For instance, some may contain wrongly classified flows 

sed by DPI false positives. Other may present little diversity, 

 example, showing only conversation exchanged with a handful 

servers. Different traces generate different collections that are 

arately analyzed (for cross verification purpose). We consider a 

tocol collection as valid only if it has at least 200 conversations 

 textual or 2,0 0 0 for binary protocols; see Section 4.4 for more 

ails. 

The subset of protocols for which we present results are sum- 

rized in Tables 3 and 4 for binary and textual protocols, respec- 

ly. Both straightforward and challenging cases are considered 

our evaluation. 

 Datasets 
We evaluate FieldHunter using three different ISP traces 

ble 2 ). Data was collected from different geographical regions 

3 

with

app

ease cite this article as: I. Bermudez et al., Towards automatic 
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Protocol #Fields K-V CMD IDs FP-IDs 

C2S/S2C C2S/S2C C2S/S2C C2S/S2C C2S/S2C 

STUN 3/3 2/2 1/1 1/1 0/0 

FTP 19/18 12/17 7/1 2/1 0/0 

HTTP 9/14 9/14 0/0 3/0 1/0 

POP3 9/28 5/24 4/4 2/0 0/0 

SMTP 19/9 15/9 5/0 1/1 0/0 

MSNP 3/4 3/4 0/0 2/0 0/0 

RTSP 9/25 9/18 0/7 3/6 0/2 

GAME ∗/17 ∗/15 ∗/2 ∗/2 ∗/0 

RSP 3/ ∗ 2/ ∗ 1/ ∗ 1/ ∗ 0/ ∗

ia, Europe, and South America), between the years 2007 to 4

2. All traces contain full payload from network connections. 4

en the large size of the TR1-2012 trace we limit the payload 4

 connection to the first 1048 bytes 3 . Although, all our parame- 4

 selection is made using TR1-2012, we tested FieldHunter on all 4

ee traces. 4

. Evaluation of binary protocols 4

Table 3 reports the number of Discovered and Ground-Truth 4

) bits, for both C2S and S2C collections, the Coverage (Cov) and 4

 Accuracy over Coverage (AoC). Cov is the ratio between Discov- 4

d bits of the GT and the GT bits; while AoC is the ratio between 4

rectly discovered bits over the total number of discovered bits. 4

The first seven protocols in the table have known specifications, 4

 the latter two do not have. Note that for some protocols, the 4

ber of discovered bits is larger than the GT bits. This happens 4

ause many protocols carry other protocols on top of them, such 4

ED2K. FieldHunter does not differentiate the header from the 4

tocol’s payload, resulting in identifying the fields of the trans- 4

ted (inner) protocol as well. 4

The average Accuracy over Coverage (AoC) is 0.83 in the worst 4

e. We observe that typical inaccuracies are due to the Accumu- 4

r type. For counters that span over large fields (for instance, a 4

We did not observe this to cause any notable problems. Only for some protocols 

 long payloads, such as HTTP, portions of the payload and rarely portions of the 

lication-layer header were not fully captured. 
protocol field inference, Computer Communications (2016), 
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Fig. 7. Parameter sensitivity for the MSG-Type. 

Host-ID, this is a right interpretation for the field type because the 551 

field behaves the same as Session-ID. 552 

4.3.2. Real- time streaming protocol (RTSP) 553 

The S2C direction of this protocol returns 6 inferred ID fields. 554 

Out of these, four are correctly labeled and two are false posi- 555 

tives. The latter occur when some fields that are supposed to take 556 

different values actually always take the same value for a given 557 

conversation, behaving similar to a Session-ID. The false positive 558 

fields are Last-Modified and Cache-Control . For instance, 559 

Last-Modified is the timestamp of the last modification for 560 

a given content. Since a single object is requested using multiple 561 

RTSP conversations, its modification time appears constant across 562 

conversations. Similarly, the Cache-Control field tends to al- 563 

ways take the same value among conversations used to retrieve 564 

the same content as well. In general, we observe that the original 565 

collection may be biased toward some specific subset of protocol 566 

fields and values. This is challenging for FieldHunter, and, in gen- 567 

eral, any field inference algorithm that relies on traffic data. 568 

4.4. Sensitivity analysis and parameter tuning 569 

We evaluate the sensitivity of FieldHunter to different param- 570 

eters and to external factors, such as the collection size. As men- 571 

nd 572 

w 573 

574 

er, 575 

or 576 

l- 577 

ng 578 

h- 579 

o- 580 

d. 581 

er 582 

ge 583 

at 584 

G- 585 

e 586 

587 

i- 588 

ct 589 

es. 590 

l- 591 

ed 592 

e 593 

of 594 

d- 595 

ered, we identify 85% of all the fields, with 97% AoC. Overall, using 596 

large enough collections, we always identify the D f delimiter for 597 

all tested protocols. Most of the mis-labeling happens due to chal- 598 

lenges in inferring the D for some fields. 599 
32-bit long number), FieldHunter easily identifies the less signi

cant bits, but tends to miss the most significant ones, which a

identified as “constant”. From the results shown in the table, w

discuss the details for three interesting case studies. 

4.2.1. ED2K and KADEMLIA 

ED2K and KADEMLIA eMule messages are preceded by a com

mon header which is used as GT. FieldHunter correctly identifi

such common header. Moreover, it discovers additional fields, th

sum up to a total of 128 bits in the C2S EDK2 collection. Aft

manual inspection, we observed those fields to correctly inclu

Session-ID, and Host-ID. 

4.2.2. SopCast 

SopCast is a proprietary and closed protocol used for P2P-

broadcasting. Unveiling information about the message format 

such protocols is one of the motivations for developing Fiel

Hunter. 

Specifically, this protocol represents a large fraction in the TR

2007 trace. FieldHunter identifies 128 bits corresponding to: MS

Len, Trans-ID, Session-ID, Host-ID (we hypothesize it is used f

NAT traversal since it uses 64 bits, 32 of which correspond typ

cally to private IP addresses, and 32 are identical to the Host pub

IP address) and some accumulators of 16, 32 and 64 bits (possib

used to reorder video/audio chunks). 

4.2.3. Domain name service (DNS) 

For DNS in the TR1-2012 trace, FieldHunter successfully ide

tifies the Trans-ID and a MSG-Type field, each of 16 bits. We e

pected parsing DNS in this trace to be challenging due to the b

in the collection. First, most of the C2S messages are “DNS R

quests” messages. Second, requests are directed to the most pop

lar DNS resolvers (in the TR1-2012 trace customers use the ISP D

server). Despite this, FieldHunter is able to identify some protoc

fields. 

Interestingly, in the C2S messages, FieldHunter reports the pre

ence of a 16 bit accumulator in the DNS Trans-ID field. We ma

ually verified this, and discovered that some implementations 

DNS clients generate a “random” Trans-ID by using a local count

FieldHunter captured this peculiar but common behavior, exposi

more details about the protocol. 

4.3. Evaluation of textual protocol 

Table 4 reports overall results for textual protocols. It repo

the number of inferred fields, the number of key-value pairs (K-

and singletons (most of them MSG-Type) for each direction (wi

the exception of the last two protocols for which the DPI provid

just one direction of the conversation). In addition, we report tho

fields that we label as being identifiers (IDs), highlighting tho

that proved to be False Positives (FP). Here, by IDs we mean Ho

IDs, Session-IDs, and Trans-IDs. Overall, from the 26 fields label

as IDs, 22 are verified as correct and only three are false positiv

In general, we observe that the majority of the fields of textu

protocols are successfully inferred in both the C2S and S2C dire

tions. Similar to the binary protocols, we pick two interesting te

tual protocols as case studies. 

4.3.1. Microsoft notification protocol (MSNP) 

The MSN protocol is present in all three traces. FieldHunter co

rectly finds that the field called USR field carries a Host-ID a

which indeed is the MSN’s user name. Similarly, the CVR fie

which is used to send specific information about the client and 

OS to the server. This field is captured by FieldHunter since sy

tem settings are different for each MSN user, but consistent duri

the communication with the server. Although CVR is not an actu
Please cite this article as: I. Bermudez et al., Towards autom

http://dx.doi.org/10.1016/j.comcom.2016.02.015 
tioned before, we perform parameter tuning using one trace, a

then we evaluate FieldHunter on all three traces. Next we sho

how the design proved to be robust to parameter tuning. 

First we focus on one of the most challenging fields to inf

the MSG-Type for binary protocols. We consider all collections f

those protocols that have available ground truth. Then for each co

lection, the MSG-Type algorithm is executed manifold by tweaki

the thresholds ( Min. Correlation and Max. Entropy ). For each thres

old pair, the product between Coverage and AoC is computed, pr

viding a coefficient from 0 to 1, where values close to 1 are desire

The results are reported in Fig. 7 . The darker the block, the bett

FieldHunter performs. As can be clearly seen, there is a large ran

of good parameters that yield scores above 0.8, which means th

in most cases FieldHunter was able to correctly pinpoint the MS

Type field. We repeat the experiment for other field types and w

observed qualitatively similar results. 

We now evaluate the effect of the collection size for both b

nary and textual protocols. For textual protocols, we first sele

nine protocols for which we know all fields present in our trac

Then, we randomly extract a subset of conversations from the co

lections and run FieldHunter over the subset. Results are compar

against ground truth to compute the Coverage and AoC ( Fig. 8 ). W

see that FieldHunter performs well even with limited number 

textual conversations. In fact, when 50 conversations are consi
k −v 

atic protocol field inference, Computer Communications (2016), 
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Fig. 9. Temporal patterns shown in ICS communications. 
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 8. Coverage and AoC versus the number of conversations. text-based protocol 

); DNS and Vuze DHT binary-based protocols (bottom). 

For binary protocols, we perform similar evaluation, but focus 

two challenging protocol cases, DNS and Vuze DHT. The results 

 shown in the bottom plot of Fig. 8 . As we can see FieldHunter 

y require a bigger collection sizes to produce the best results. 

 believe that the heuristics apply differently on textual and bi- 

y protocols as textual protocols are less sensitive to diversity. 

ze DHT represents the protocol for which we had highest di- 

sity in our dataset, with many end-points exchanging a variety 

messages. Conversely, DNS (from TR1-2012) represented a chal- 

ging scenario due to little diversity in the collections: typically 

y one MSG-Type (DNS requests) was found, and conversations 

re very short (a single request/response). As we see, eventually 

 achieved very good results for DNS, but it required as many as 

 0 conversations. 

Application 

In this section, we present an end-to-end security application 

t uses FieldHunter. Specifically, we focus on intrusion detection 

tems (IDS) which are a common defense mechanism for many 

ical infrastructures. IDS can be categorized into anomaly detec- 

 systems or signature based systems based on the detection 

chanisms used. Anomaly detection systems work by learning 

 normal , also called baseline , behavior of any system and flag- 

g any deviation from this as anomaly , which can be considered 

indicator of malicious behavior. This is in contrast with signa- 

e based systems which use signatures of known threats. The ad- 

tage of anomaly detection systems over signature based ones is 

t they can detect previously unknown attacks, i.e. zero-day at- 

ks. However, anomaly detection systems can suffer from higher 

e positives. 

In this work, we develop a payload-based anomaly detection 

tem for Industrial Control System (ICS) networks. Most of the 

rent solutions rely on statistical features such as volume of traf- 

for creating baseline [21] . Such systems are ineffective against 

althy attacks that work by modifying the protocol behavior 

hout causing discernible change in statistical properties of the 

ffic. There are a few systems that offer payload based anomaly 

ection, but they rely on the protocol specifications which are 

 available for many of the legacy protocols that are used quite 

en [22] . 
ease cite this article as: I. Bermudez et al., Towards automatic 
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FieldHunter forms the core of the anomaly detection system. It 6

rs protocol fields from the ICS network being monitored. These 6

tocol field summaries are converted to policy rules which form 6

 baseline of the system. Any deviation in network protocol pay- 6

d from these rules are flagged as anomalies. This allows us to 6

ect attacks which modify the protocol messages or introduce 6

 types of messages which are not part of the protocol. There 6

 direct mapping between the human readable field summaries 6

 the policy rules generated. This is greatly beneficial to any an- 6

st analyzing the root cause of alerts generated by the anomaly 6

ection system. 6

 ICS networks 6

ICS networks typically consists of a set of devices such as sen- 6

s or controllers and a central monitoring/administrative unit. 6

se networks differ from other networks such as enterprise or 6

 networks in many respects. ICS network traffic contains a large 6

tion of proprietary protocols which are unknown or not well 6

umented along with a few well known protocols such DNS or 6

MP. These proprietary protocols are predominantly binary based. 6

 communication patterns in these networks are quite determin- 6

c as only a handful of devices communicate with each other ac- 6

ding to configurations that are set statically. Moreover, many of 6

 connections are long-lived, often lasting for hours or days. 6

These characteristics present some unique challenges for Field- 6

nter. First challenge is the lack of diversity in the traffic, which 6

ders some of the heuristics such as detection of Host-IDs inef- 6

tive. However, this is not a big limitation as our goal is to de- 6

t anomalous behavior and not protocol understanding. Hence, 6

n if we incorrectly label a Host-ID field as a Constant, this field 6

 be used to detect violations when the attacker intentionally 6

nges the “Constant” value. 6

Second challenge is the presence of long-lived network flows. 6

ny of the thresholds for various heuristics are set assuming 6

t the input to FieldHunter contains multiple flows. We analyzed 6

g-lived ICS connections and observed that often these connec- 6

s show repeating patterns which indicate some conversations 6

pen with a specific frequency. Hence, multiple conversations 6

ur serially within a single flow. Therefore, we can break up a 6

gle flow into multiple conversation by computing the frequency 6

communication. Fig. 9 depicts packet payload sizes in a window 6

e of 10 seconds for a very long conversation. We observe that 6

 devices involved in the communication send burst of protocol 6

ssages at a frequency of approximately 1 second. 6

. Design 6

The payload-based anomaly detection system ( Fig. 10 ) has two 6

des of operation: Training and Detection. In Training mode, the 6

tem generates network protocol profiles associated with specific 6

/UDP ports used by the physical devices for communication. 6

ring this phase, FieldHunter plays a critical role, since it learns 6
protocol field inference, Computer Communications (2016), 
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Fig. 10. Payload Based Anomaly Detection System diagram. 

the protocol field summaries used as baselines by the next step. 688 

In Detection mode, the anomaly detector uses rules to determine 689 

flow by flow if any baseline policy rule has been violated. For in- 690 

stance, the detection mode can verify whether a flow contains the 691 

particular value that a specific field is supposed to take as per the 692 

policy rule. Otherwise, the system raises an alarm of violation. 693 

5.2.1. Training mode 694 

Network traffic is intercepted using a tap, that listens to net- 695 

work communications of devices connected to the ICS network. 696 
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Table 5 

Network captures used for evaluation of the payload-based anomaly detection 

system. 

Trace Duration (h) #Flows #Messages #Malicious #Endpoints 

flows 

TPC 2 176 46,503 0 5 

MPC 2 180 31,274 2 5 

5.2.2. Detection mode 739 

In a nutshell, detection mode can be described by the interac- 740 

tion of three different modules: the Rule Database, the Traffic La- 741 

beler and the Anomaly Detector. Our system has two inputs in de- 742 
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TCP/UDP payloads are extracted and grouped properly, forming t

protocol collections required by FieldHunter to create function

protocol descriptions. 

Traffic Labeler, accomplishes the fundamental job of creati

the protocol collections. Since this IDS is profiling network pr

tocols running in a particular mode on industrial devices, traffi

is labeled by their associated triplets (Layer-4 protocol, destinati

port, destination IP address). For instance, packets going through

bi-directional TCP network connection, in which IP 192.168.1.101

sending packets to 192.168.1.202, using source port 9988 and de

tination port 1822, has two triplets associated with it: (TCP, 998

192.168.1.101) and (TCP, 1822, 192.168.1.202). 

The Conversation Reconstruction module reassembles convers

tions. The Conversation Collector groups them by label (triple

until we get enough number of packets associated to a triplet i

greater than a pre-defined threshold. The dataset associated to

label is the protocol collection for FieldHunter (See Section 2 ) a

the threshold tells how much data is enough to start field infe

ence from the collection. 

The Sub-conversation Splitter module is used in to handle ve

long-lived connections. This module splits the long conversatio

into multiple small conversations when strong temporal patter

in the traffic are observed (see Fig. 9 ). To do this, the module 

tificially increments the number of connections associated with

collection such that there is one for each direction of the conve

sation. 

FieldHunter uses these conversations to generate protocol sum

maries. The protocol summaries are converted to policy rules in

straight-forward manner. The type of the field determines the n

ture of the rule. We have a pre-determined way of converting ea

field type to a rule. The key idea behind this conversion is th

each rule specifies how a field should behave, for instance, wh

values it can take or how the value correlates to something e

such as message length. As an example, the rule for MSG-Type fie

specifies which opcodes to expect in the flows. These rules are p

into the Rule Database. 

The duration of the training mode depends on in the amount

available data rather than the clock time. This means if an applic

tion handles more traffic, the required clock time to generate sum

maries is lesser. Fig. 8 , gives a rough idea of the required amou

of application messages to be collected before moving into the d

tection mode. 
Please cite this article as: I. Bermudez et al., Towards autom
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tection mode: on the one had it receives network traffic and 

the other it gets the rules from the database. The output of t

anomaly detection system is packets/connections which are flagg

as anomalous as they violate the rules learned by the system. 

The traffic labeler simply labels traffic with the respective p

of triplets and forwards it to the anomaly detector. Using t

triplets, the detector can retrieve the rules from the database a

apply them to the traffic. If rules are violated, system raises alarm

indicating that the traffic contains anomalous packets or conne

tions. When rules cannot be found in the rules database, traffic

forwarded to the training mode path. 

5.3. Evaluation of anomaly detection system 

We tested our system using traffic collected from PowerCyb

the test-bed. It simulates and emulates components of a smart gr

including industrial SCADA [23] . The anomaly detection system

trained with clean network traffic. Finally, we evaluate its effica

by running traffic collected during an attack. 

5.3.1. Datasets 

Network traffic is collected from one control center network 

PowerCyber’s test-bed. Traffic is collected during normal operati

of the control center network and also during an attack. Such a

tack is performed intentionally in a controlled environment. 

Table 5 describe the datasets used for testing the detecti

system. Two datasets of two hour duration, each with about 1

flows, are used. Despite the few flows present in these datase

the number of application messages is about thousands, which 

lows FieldHunter to provide meaningful results from it. The atta

dataset contains both normal traffic and two flows belonging 

an authentication attack. We use full packet traces and there is 

packet filtering. Training Packet Capture (TPC) contains only no

mal traffic, while Mixed Packet Capture (MPC) contains normal a

attack traffic mixed together. 

5.3.2. Evaluation 

We evaluated the system end to end, using TPC dataset to tra

the system and MPC for testing. The expectation was that t

anomaly detection system should flag only malicious flows in t

mixed dataset and ignore the benign traffic. 

We found 6 different protocol summaries from MPC. One 

them belongs to the DNP3 protocol [24] , which is common 

SCADA systems. The message structure of DNP3 protocol is defin

by a header containing the constant value 0x0564 at the start, t

message length, a control byte, destination and source ids, and

Cyclic Redundancy Check (CRC) field followed by the payload. Sim

ilarly payload is structured as data blocks which contain user da

(1–16 byte) followed by a CRC. 

From the protocol, FieldHunter is able to identify parts of t

constant field, message length, and destination and source ids. 

the given trace, the control byte appears as constant (0xC4 f

client-to-server direction and 0x44 for server-to-client directio
atic protocol field inference, Computer Communications (2016), 
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Similarly, the destination field appear as a constant in the client- 792 

to-server messages as there is only one server in the trace, and the 793 

same for the source in the other direction. Therefore, the identity 794 

of clients can be associated to IP address. 795 

MPC, contains a malicious DNP3 flow which abuses the lack of 796 

authentication in the protocol. Another machine in the same net- 797 

work spoofs valid DNP3 messages, but it has to provide a 2 byte 798 

entity in the source id field of the protocol. The attacker has two 799 

options: (i) provide a new source id, or (ii) use one already used 800 

by another client. In both cases we can raise an alarm, because 801 

in case (i) we observe a new source id not seen during training; 802 

for case (ii) we observe that the source id does not match the IP 803 

address associated to that identifier. In this particular attack the 804 

attacker spoofed the identifier of one of the observed clients. The 805 
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6.3. Binary protocols have a header and a payload 850 

We assume that every binary protocol has similarly structured 851 

messages – each with a common header and a payload that may 852 

change. However, this assumption may not be true in all cases. 853 

For instance, some protocols can have messages with different 854 

formats for handshakes or preamble communication and subse- 855 

quently, when connection is established all communication uses 856 

standard uniform messages. FieldHunter is not designed to dis- 857 
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ht
tem detected the anomaly and can provide a detailed report to 

 administrator to make an informed decision. 

We also evaluated our system on real industrial datasets. Re- 

ts were similar to the ones presented for test-bed dataset. Un- 

tunately, due to privacy concerns about the data, we can not 

close further details in this paper. 

Assumptions and limitations 

In this section, we discuss the assumptions of FieldHunter. Fur- 

r, for each assumption we describe the limitations imposed on 

 system due to that assumption. 

 Training data contains patterns corresponding to the protocol 

ds 

FieldHunter assumes that the training data contains the pat- 

ns that allow it to identify protocol fields. Hence, the sys- 

 cannot identify fields when traffic is compressed or en- 

pted. However, this limitation can be overcome by using a pre- 

cessing stage that decompresses or decrypts traffic before pass- 

 it to FieldHunter. Another consequence of this assumption is 

t the FieldHunter is dependent on the quality of the dataset. 

refore, if the traces do not contain the required diversity that 

hlights data patterns, FieldHunter is not able to identify fields 

m traffic, or worst it may misclassify fields. For example, a 

ver-ID may be classified as a constant if traces only contain traf- 

directed to one particular server. 

. TCP PSH flag delimits the start of a new application message 

For TCP communication FieldHunter does not assume that a 

gle TCP segment contained in packet carries an application mes- 

e. It heavily relies on TCP PSH flag to delimit the end from the 

inning of a new application message in the TCP stream. The as- 

ption here is that the TCP PSH flags are set when sender does 

 have more data to transfer. On the receiver side ,TCP PSH flag 

sed to trigger transmission of the data to the application layer. 

en a TCP PSH flag is incorrectly set in the middle of an appli- 

ion message, it creates a message misalignment. This is simi- 

to the noise due to having random data in the protocol collec- 

. Note that we did not observe this odd behavior in any of our 

ces. 

In addition, we assume that the data in-between two PSH flags 

ongs to a single application message. However, this is not true 

the times, since multiple application messages can be contained 

between two consecutive PSH flags due to TCP buffering. This 

ation can be mitigated if the protocol shows different types of 

ssages with multiple lengths allowing FieldHunter to split the 

gle” application message into multiple correct ones. 
ease cite this article as: I. Bermudez et al., Towards automatic 
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inate among these two types of message formats. This can be 8

rcome by using a preprocessing module that splits the conver- 8

ions to ensure that the messages having different formats are in 8

arate collections. Moreover, FieldHunter can still provide mean- 8

ful results if this situation happens. However, the quality of the 8

l result depends on how popular is each type of message is in 8

 whole collection. For instance, if flows are long lived, then the 8

amble message will be less popular than the rest of the mes- 8

es, and the final result will contain fields of the protocol format 8

t follows the preamble. 8

Another characteristic of FieldHunter is that it cannot differen- 8

e between message header and payload. So even though, we 8

get field inference from the header, sometimes FieldHunter ends 8

identifying fields contained in the payload part of the protocol. 8

. Dataset contains pure protocols 8

Our expectation is that the protocol collections are pure since 8

ldHunter is sensitive to noise in the form of different protocol 8

mat types. However, traffic classifiers such as a DPI can produce 8

e positives, which means flows belonging to other protocols are 8

ssified as the protocol of our interest. FieldHunter is not able to 8

ect the presence of this noise, and will underperform depending 8

how bad is the noise level. 8

. Fields in textual protocols are key-value paired 8

FieldHunter looks for key-value pairs found in textual protocols. 8

oes not take advantage of other characters that provide richer 8

cture to textual protocols such as parenthesis to enclose one 8

ect, or commas used in enumeration. When complex textual 8

tocols are processed by FieldHunter it can still obtain valuable 8

rmation. However, it can produce a less richer result set that 8

s to take into account the structure of the data. 8

. ICS protocols are similar to “traditional” network protocols 8

Our observation is that many of the ICS network protocols use 8

ditional transport UDP/TCP network protocols. Hence, our as- 8

ption is that these protocols can be profiled using FieldHunter. 8

wever, there are other differences in the environments which 8

ose further challenges that require special attention. For in- 8

nce, the diversity in such networks is more difficult to reach 8

en the applications or setups of those networks. This makes it 8

re difficult to correctly identify some fields since the patterns 8

not show up in the traffic collection, or in some cases, the final 8

ult can overfitted to the training data given the lack of samples 8

t truly represent the protocol behavior. However, we note that 8

 the anomaly detection application that we described, we do not 9

d to infer all the fields of the protocol. Hence, FieldHunter is 9

y effective for this application. 9

elated work 9

 Protocol format reverse engineering using network traces 9

Automatic inference of protocol formats from passive net- 9

rk monitoring was first addressed by Beddoe [25] . The authors 9
protocol field inference, Computer Communications (2016), 
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applied the Needleman –Wunsch algorithm for alignment of by

sequences between network payloads. The same algorithm h

been used in Scriptgen [26] and RolePlayer [9] for automating t

process of learning protocols in honey-nets. Their works aim 

find variant and invariant segments in textual protocols. In co

trast, our aim is to identify a broader selection of field types. 

The problem of extracting message format specification for s

curity applications was later addressed by Discoverer [8] . They fi

clustered messages with similar formats together using sequen

alignments and then identified parts of the messages that chan

across flows. In contrast to FieldHunter, Discoverer has the sam

limitations as in [9,25,26] , where fields of the protocols are e

pected to appear in a predefined order. In [12] authors propo

Prodecoder that uses semantic information for field extraction, 

using the LDA model. Their approach looks promising for identif

ing keys and the syntax of textual protocols, but it is not clear ho

LDA can properly merge n-grams into fields of binary protocols. 

7.2. Protocol format reverse engineering using binary analysis 

Other authors have tackled the problem of protocol reverse e

gineering by using binary analysis. For instance Prospex [6] is

system that analyzes both binary execution traces combined wi

network traffic. Binary analysis requires an instrumented syste

with enough privileges to read protected memory of the applic

tion that uses the protocol. Similar in spirit, in Dispatcher [27] t

authors focused on protocol reverse-engineering for botnet infi

tration. All the above works rely on binary analysis and they a

therefore very different from what we want to achieve with Fiel

Hunter, where we only have passive access to network traffic. 

7.3. Protocol network signature generation from network traces 

In [7,10,11,13,28] authors automatically derive protocol sign

tures purely from network traces. In PEXT [10] and ReveX [7] s

natures are extracted for protocols using similar tokens to clust

flows. On the other hand [28] uses semantic information found 

the protocol to group messages with similar formats. Authors 

[13] propose a system that can automatically produce signature f

botnets’ command and control traffic. Obtaining automatically ge

erated signatures for traffic classification has multiple positive im

plications. However, understanding the mechanics of the seman

of the protocols is a valuable complementary information for t

system experts to verify the quality of automatically generated s

natures. 

7.4. Payload based anomaly detection systems 

Systems able to detect anomalies from network traffic obser

ing protocol payload, have been previously proposed in [29–3

These anomaly detectors define signatures on patterns found 

network payloads, from which they create models and baselin

Our proposed system differs from all of them, because we use

generic abstraction of protocol format to create rules and baselin

This allows easier false positive back tracking, since the system c

explain better the cause and context of a violation. For examp

when a new value for an opcode has been observed. Moreover, 

far as we are aware, none of these systems have been tested 

industrial control networks. 

7.5. ICS anomaly detection systems 

In the recent years there has been an interest on developi

anomaly based IDS for ICS. Authors in [21] propose a system th

uses clustering to detect anomalies. Their system does not nece

sary look only at network traffic, but also at other features th
Please cite this article as: I. Bermudez et al., Towards autom
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may come from other logs such as engine speeds and temper

ture. Another work that is more closely related to ours is that 

Caselli et al. [22] . Here, the authors use known protocol descri

tions to extract field values from network traffic, which they u

to create models to detect sequence attacks. The system that w

have developed shares some similarities with their solution. Ho

ever, a crucial difference is that they assume that they know t

protocol specification. This is an unrealistic assumption as many

the protocols used by industrial devices are poorly documented.

FieldHunter is complementary to other systems for extracti

of protocol message format, as our final goal is to identify co

tainers/fields of information. Moreover, we present a specific a

plication for FieldHunter in a critical security context, using da

obtained from a realistic scenario. 

8. Conclusions 

In this paper, we presented FieldHunter, a system that aut

matically infers protocol field types from passive observation 

network traffic. We showed that FieldHunter is able to provide

comprehensive set of fields and their types for both textual a

binary protocols that may not have a publicly available specific

tion. Therefore, we believe that a system such as FieldHunter c

significantly improve the effectiveness of modern network secur

tools. 

Finally, we extended FieldHunter and built a payload-bas

anomaly detection system on top of it. FieldHunter provides val

able information about network protocol specification, allowing

to detect realistic zero-day attacks on ICS network. Our anoma

detection system can detect stealthy attacks in ICS systems wi

un-documented protocols that current statistical-based or trad

tional payload-based anomaly detection systems cannot. 
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