
Computer Communications 84 (2016) 12–24 

Contents lists available at ScienceDirect 

Computer Communications 

journal homepage: www.elsevier.com/locate/comcom 

Novel adaptive virtual network emb e dding algorithm for Cloud’s 

private backbone network 

Ilhem Fajjari a , Nadjib Aitsaadi b , ∗, Boutheina Dab 

b , Guy Pujolle 

c 

a Orange Labs, 38-40, rue du General Leclerc, 92130 Issy-les-Moulineaux, France 
b LiSSi - University of Paris Est Creteil (UPEC): 122, rue Paul Armangot, 94400 Vitry Sur Seine, France 
c Sorbonne Universites, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606: 4 place Jussieu Paris 75005, France 

a r t i c l e i n f o 

Article history: 

Received 11 September 2015 

Revised 5 February 2016 

Accepted 14 March 2016 

Available online 22 March 2016 

Keywords: 

Cloud computing 

NaaS 

Service provisioning 

Optimization 

K-supplier algorithm 

a b s t r a c t 

In this paper, we study the adaptive virtual network embedding problem within Cloud’s backbone. The 

main idea is to take profit from the unused bandwidth but allocated to virtual networks. Consequently, 

the acceptance rate of new clients will be maximized. However, the congestion rate of virtual links must 

be minimized in order to maximize the satisfaction of end-users. To do so, first we formulate the problem 

as K -supplier optimization problem. Then, we propose a novel virtual network embedding strategy de- 

noted by Adaptive-VNE . It is based on the approximation-algorithm for bottleneck problems and back- 

tracking strategy. The proposal is validated by simulations and experimental testbed. The results obtained 

show that Adaptive-VNE outperforms the most prominent strategies and reaches a good performance. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Cloud computing is seen as a tremendous innovation and has

attracted both academics and industrials. The global market for

Cloud equipment will reach 79.1 billions by 2018 1 . Such success

has leading to a massive usage of Cloud’s physical resources. For

example, CISCO forecasts that Cloud network traffic will grow more

than threefold by 2017. In fact, the volume of traffic will progress

from 2.6 zettabytes in 2012 to 7.7 zettabytes annually in 2017 2 . 

Whereas with the rapidly increasing number of clients, Cloud

computing becomes victim of its own success. Unfortunately,

CloudÇÖ popularity often outgrows the physical infrastructure

which brings new challenges to Cloud Providers ( CP ). To tackle this

problem, CP must possess efficient techniques to supply clients

with their required computational resources over scalable net-

works. An optimal and fast provisioning algorithm is fundamental

to achieve the above objective. CP s need to minimize their pro-

vision cost whilst guaranteeing the requested Service Level Agree-

ments (SLA) of clients. 

In this context, one of the main enabling technology for Cloud

computing is virtualization. Thanks to it, physical resources can
∗ Corresponding author. Tel.: +33 141807310. 

E-mail addresses: ilhem.fajjari@orange.com (I. Fajjari), nadjib.aitsaadi@u-pec.fr 

(N. Aitsaadi), boutheina.dab@u-pec.fr (B. Dab), guy.pujolle@lip6.fr (G. Pujolle). 
1 http://www.forbes.com/fdc/welcome _ mjx.shtml . 
2 http://www.cisco.com/ . 
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e shared by various independent applications hosted within data

enters and Cloud’s backbone. Such a hardware reuse delivers

eduction in capital expenditure. Moreover, virtualization offers

lastic scalability by dynamically calibrating (i.e., increasing and/or

ecreasing) the capacity of virtual resources. Unfortunately, the

exibility of virtualization has a cost and add complexity on re-

ource provisioning stage within the physical Cloud infrastructure.

ote that the resource provisioning process is considered as one

f the most challenging issue to deal with in Cloud computing. In-

eed, selecting the most suitable physical resources for any service

hile i) guaranteeing the QoS requirements (e.g., CPU, memory,

andwidth, etc.) and ii) maximizing the CP ’s revenue is complex

nd on which Cloud’s success depends on. In this paper, we ad-

ress the resource provisioning problem within Cloud’s backbone.

ur objective is to ensure the best embedding of Virtual Networks

 VN s) within the Substrate Network ( SN ) of Cloud’s backbone. In

ther words, we focus on the resource allocation problem of Net-

orks as a Service (NaaS). The problematic of adaptive resource

rovisioning of bandwidth within Cloud’s backbone network is also

onsidered. In order to supply dedicated VN to an end-user typi-

ed with a customized traffic, the resource provisioning algorithm

ims to guarantee an efficient and flexible share among all the in-

tantiated VN s upon the underlying SN . 

To reach our objective, we propose a new Adaptive Virtual Net-

ork Embedding algorithm ( Adaptive-VNE 3 ). It makes use of
3 Preliminary results are published in IEEE GLOBECOM 2012. 
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Fig. 1. NaaS business model. 
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s  
divide and conquer” strategy. The main idea behind our proposal

s to i) take advantage of unused reserved bandwidth and ii) allo-

ate them to VN demanding additional resources. Adaptive-VNE
roceeds as following. First, the VN topology is subdivided into a

et of star topologies called Solution Components SC s . Afterwards,

ach SC embedding is formulated as K -supplier problem which

s resolved based on the approximation-algorithm for bottleneck

roblems [1] . In fact, the solution consists of finding the best can-

idates to host the central virtual router of each SC . The calculated

andidates are sorted with respect to a proposed cost metric. The

atter considers the residual physical resources such as processing

ower, memory and bandwidth. Finally, to perform the embedding

f the global VN topology, Adaptive-VNE adopts a backtrack-

ng algorithm in order to minimize the virtual network mapping

ost. To do so, the best virtual network mapping solution is built

y selecting one (not necessary the best one) candidate for each SC 
hile the mapping cost is minimized of the global VN topology. 

Adaptive-VNE is validated by extensive simulations and with

xperimental testbed. In fact, we developed a VN embedding

latform called ProvisionLab. It is based on Xen hypervisor and

penVsiwtch. Based on the results obtained, Adaptive-VNE
utperforms the related strategies in terms of i) reject rate of VN 

equests, ii) CP revenue, iii) congestion of virtual links and iv)

atisfaction rate of congested virtual links. 

The remainder of this paper is organized as follows. The next

ection will present the business model of Cloud computing by

xplaining the Cloud’s actors and their relationships. Afterwards,

n Section 3 , we will detail the related work addressing the VN 

mbedding problem. In Section 4 , we will formulate both the net-

ork model and the VN optimization mapping problem. Then, we

ill describe our adaptive virtual network embedding algorithm,

daptive-VNE in Section 5 . Performance evaluation of both sim-

lations and experimentations will be detailed in Section 6 . Finally,

ection 7 will conclude the paper. 

. Business model of Cloud computing 

Cloud computing business model defines new actors. Indeed,

he service providers are no more the owner of the physical in-

rastructure. The user actor is decoupled into two actors: Service

roviders ( SP ) and Clients . SP s create and run applications over

he physical infrastructure offered by a Cloud provider . In other

ords, CP s supply an Infrastructure as a Service (IaaS). As a con-

equence, the clients lease services from SP s. The latters become

ustomers of CP s. 

CP ’s own the physical infrastructure and manage the resources

e.g., bandwidth, CPU, memory, etc.). As described in [2] , CP s can

e classified into Private, Community, Public or Hybrid according to

he type of hosting clients. Private CP offers services to one sin-

le organization (e.g., bank, company, etc.). Community CP serves

 group of organizations having similar needs and interests (e.g.

roup of universities, etc.). Public CP provides services to the gen-

ral public (i.e., open access). Finally, hybrid CP is a composition

f the above types (i.e., private, community and public). 

The physical infrastructure consists of a set of geographically

istributed data centers interconnected through a Substrate back-

one Network ( SN ). It is formed by i) a set of geographically dis-

ributed routers (access and core) interconnected with wired con-

ections such as fiber. 

To illustrate the clients demands, hereafter we enumerate some

cenarios: 

• A commercial gaming service needs virtual nodes in several

major cities with link constraints such as bandwidth size equal

to 20 Mbps. 
• A researcher needs a specific network topology to evaluate the

new proposed protocol. 

• A company has one main office and many branches. It wants

to set up a secure and confidential communication system be-

tween the main office and branches by deploying its private

network and managing its network stack. It is worth noting that

setting up Virtual Private Networks (VPN) is a complicated task

and is subject to human error. 

In this paper, we will investigate the Network as a Service

NaaS) within the SN of private CP . The business model is the

ollowing. First, a client specifies the service requirements in terms

f i) virtual network topology, ii) processing power and memory

f virtual routers, iii) bandwidth of virtual links, iv) softwares, etc..

hen, the above requirements are communicated to a SP . The lat-

er is elected according to the choice of the client. Next, SP needs

o deploy the softwares within the best data centers and to con-

ect all the instances by the requested VN topology. In order to

mbed the VN and softwares, the SP delegates the instantiation

rocess to a CP insofar as it owns the physical infrastructure. It

s worth noting that in this paper we tackle only the embedding

roblem of VN within the SN . Afterwards, based on the VN de-

cription, CP identifies the appropriate substrate resources and al-

ocates them. CP also has the ability to migrate other VN s in order

o free resources for new requests. Once the VN is instantiated,

he client deploys the protocol stack and has all the privileges to

dminister the virtual topology. In fact, there is no limit or con-

traint on the choice of client’s protocol stack. It is straightforward

o see that a CP s must optimize the physical resource allocation in

rder to maximize the revenue while i) guaranteeing the required

oS and ii) ensuring low penalty in terms of congestion and rejec-

ion rate of new VN requests. Fig. 1 summarizes the NaaS business

odel. 

. Related work 

Virtual network embedding is one of the most challenging is-

ues of Network as a Service (network virtualization) in Cloud
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computing. In fact, a fundamental challenge in resource instanti-

ation is how to afford optimal allocation so that the CP fulfills the

required SLA of CP while operational cost is minimized and the

global revenue is maximized. To do so, CP maps online VN s in

the SN using the minimum volume of physical resources while

still satisfying the required QoS in terms of bandwidth, processing

power and memory. This in turn minimizes the reject rate of VN 

requests and maximizes returns for the CP . 

VN embedding problem under node and link constraints has

been proved to be NP-hard [3–5] even in the offline case. It is

worth noting that the offline VN embedding problem can be re-

duced to the NP-hard multiway separator problem [6] . Moreover,

even if all the virtual nodes are mapped, virtual link embedding

problem can be reduced to the unsplittable flow problem [4,5] ,

which is still NP-hard [7] . 

VN resource provisioning strategies can be classified into two

main groups: i) Static and ii) Dynamic approaches. 

The first group, static approaches [6–13] , consists of VN em-

bedding strategies which full guarantee the required client SLA in

terms of bandwidth, processing power and memory. The advan-

tages of this approach are the simplicity of deployment and a full

customer satisfaction guarantee. Unfortunately, the static approach

does not optimize physical resource usage rate. Even though the

allocated resources of any embedded VN are free, they cannot

be exploited by the rest of VN s. The second group, dynamic ap-

proaches, provides a dynamic resource provisioning of virtual re-

sources. In doing so, physical resource usage rate in the SN is

maximized. The second group encompasses two sub-groups: i) re-

configuration based strategies and ii) adaptive strategies . The re-

configuration strategies aim to “tidy up” the embedded VN within

the SN in order to balance the load of physical resources. Hence,

the acceptance rate of VN requests will be increased. The adap-

tive strategies take advantage of the unused allocated resources

by allowing more than one VN to exploit them. In fact, adaptive

mapping strategies embed VN s with respect to their i) current de-

mand, ii) prediction of circulating traffic in VN s and iii) required

performance (i.e., rate of congested links, reject rate of VN s, etc.).

Hereafter, we will give an in-depth overview of adaptive VN re-

source provisioning strategies proposed in literature. 

In [14] , the authors propose a dynamic and flexible allocation

scheme for VN mapping based on a non-cooperative game the-

ory model [11] . The proposed algorithm allocates the bandwidth

among multiple VN s based on defined payoff function. The lat-

ter function is convex and encompasses three functions: i) utility,

ii) price to pay and iii) congestion cost according to the assigned

bandwidth. Each VN is modeled as a player and characterized by

the playing strategies. The authors assume that the individual VN 

does not communicate with others to modify its own playing strat-

egy. Hence, the infrastructure provider is responsible for enforcing

the instantiated VN s to i) modify their strategies, ii) ensure the

fairness and iii) maximize their revenue. The authors prove the

convergence of their scheme through simulations. We notice that

the authors do not consider how to embed VN s in the SN . In fact,

they assume the mapping strategy of VN s is known. Moreover, the

proposal is validated only with small-size benchmark and the scal-

ability issue has not been studied. 

In [15] , an adaptive bandwidth allocation algorithm, denoted by

Davinci , was proposed for VN s. The main idea is to periodi-

cally reassign bandwidth shares between instantiated virtual links

in order to maximize aggregate performance across multiple traffic

classes. To do so, each VN is assumed to run customized packet-

delivery protocols optimizing a performance objective. The latter

is formulated as a convex function of network parameters. Then,

a traffic management protocol is designed to control the amount

of traffic through each substrate path including current congestion

levels and the performance objectives of VN s. The main drawback
f this proposal is that each substrate link must be aware of all

bjective functions of VN s transiting through it. Moreover, virtual

outer allocation problems have not yet been considered. 

In [16] , the flexible bandwidth VN embedding problem was

ackled. The proposed algorithm uses multi-commodity flow solver

o embed virtual links. In order to avoid producing bottleneck

ubstrate links, the proposal calls periodically the traffic predictor

odule to adjust the links’ bandwidth allocation with the largest

ccupation. The results obtained show that the multi-commodity

ow solver incorporated with a traffic prediction module widely

mproves the usage rate of bandwidth and reduces the rate of

acket loss compared with the variant without prediction. 

In [17] , the mechanisms for adaptive bandwidth allocation are

nvestigated. The main goal is to distribute fairly the bandwidth

mong virtual links in order to avoid bottleneck substrate links. To

o so, the authors define two types of connections for virtual links:

) restricted connections consuming more bandwidth than reserved

nd ii) unrestricted connections limited by the reserved bandwidth

or the current link. First, the proposed algorithm allocates band-

idth to restricted connections based on their requirements. Then,

he remaining bandwidth is distributed equally among unrestricted

onnections crossing a substrate link. Unfortunately, we notice that

nly bandwidth allocation is investigated and the mapping of vir-

ual nodes is not tackled. Moreover, the authors assume that only

ne connection crosses a virtual link which needs to be extended

or multiple connections. 

The main contribution of this paper consists in proposing an

daptive embedding algorithm. Adaptive-VNE algorithm aims to

nd the virtual network mapping that maximizes the minimum

esidual bandwidth in the network and simultaneously minimizes

he total usage of physical links. Indeed, the main idea is to balance

he load of resources while mapping the virtual network in order

) to avoid causing physical resources bottlenecks and ii) to favor

he utilization of least loaded resources. By doing so, incoming vir-

ual networks are most likely to find available physical resources.

o reach our objective, Adaptive-VNE iteratively constructs the

apping solution by selecting physical nodes that i) have avail-

ble resources (CPU, memory) and ii) optimize the load balanc-

ng in physical links. It worth noting that links load balancing is

chieved thanks to the K -supplier based approach which aims to

elect the physical nodes that offer paths with the highest residual

andwidth. 

Unlike [6–8] , our proposal will analyze the traffic circulating

ver the virtual links in order to optimize the bandwidth usage

nd reuse available bandwidth for other VN requests. Unlike [8,9] ,

e will consider limited substrate resources. Indeed, only a finite

umber of VN s can be hosted in the SN . Hence, the acceptance

ate of VN requests can be determined. Finally, unlike [14–17] ,

he virtual router mapping stage will be taken into account dur-

ng the embedding of VN request. In the aim to optimize the em-

edding virtual topology, our proposal will coordinate the virtual

outers and links mapping stages and exploit the unused allocated

andwidth. 

. Formulation of the adaptive virtual network embedding 

roblem 

We model the SN as an undirected graph denoted by G =
( V ( G ) , E ( G ) ) where V ( G ) and E ( G ) are respectively the sets of

hysical routers and their connected links. Each physical router,

 ∈ V ( G ) , is characterized by its i) residual processing power B ( w ),

i) residual memory M ( w ), iii) type: access or core X ( w ) and iv) ge-

graphic location L ( w ). Note that if X ( w ) = 1 , then w is an access

outer. Otherwise, X ( w ) = 0 . Likewise, each physical link, e ∈ E ( G ) ,
s typified by its i) capacity C ( e ), ii) distribution of usage rate U ( e )
 0 ≤ U ( e ) ≤ 1 ) and iii) used bandwidth y ( e ). 
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o  

a  

o  
Similarly, a VN request is modeled as an undirected graph,

enoted by D = ( V ( D ) , E ( D ) ) where V ( D ) and E ( D ) are respec-

ively the sets of virtual routers and their virtual links. Each vir-

ual router, v ∈ V ( D ) , is associated with the i) required process-

ng power B ( v ) and ii) memory M ( v ), iii) its type X ( v ) and iv) ge-

graphic location L ( v ) if is an access router. Moreover, each virtual

ink d ∈ E ( D ) is characterized by its i) bandwidth capacity C ( d ) and

i) distribution of usage rate U ( d ) ( 0 ≤ U ( d ) ≤ 1 ). 

The problem is to embed the virtual graph D in the substrate

raph G considering the same VN mapping constraints as in our

revious work [18] , except the constraint concerning bandwidth al-

ocation. Hereafter, we will define the following notations: 

• W ( v ) ⊆ V ( G ) denotes the set of potential substrate routers for

hosting virtual node v ∈ V ( D ) taking into account its require-

ments such as: processing power B ( v ), memory M ( v ), geograph-

ical location L ( v ) , etc. 

• V ( w ) ⊆ V ( D ) denotes the set of virtual routers that can be em-

bedded on physical router w ∈ V ( G ) . Note that v ∈ V ( w ) ≡ w ∈
W ( v ). 

• x vw 

is a binary variable indicating whether virtual router v ∈
V ( D ) is assigned to physical router w ∈ V ( G ) or not. 

• P st denotes the set of admissible physical paths from physical

routers s to t , ( s, t ) ∈ V ( G ) 2 . Note that A 

2 denotes the family of

all ordered pairs of elements within set A (i.e., A = { (s, t) ∈ A 

2 :

s � = t} ). 
• P denotes the set of all admissible paths. Formally, P =⋃ 

{ s,t}∈ V ( G ) 2 P st . 

• u dp is a binary variable indicating whether virtual link d ∈ E ( D )
is mapped upon the physical path p ∈ P or not. 

• ( a (d) , b(d) ) ∈ V 2 ( D ) denotes the starting and terminating vir- 

tual routers of virtual link d ∈ E ( D ) . 

• δep is a binary coefficient determining whether physical link e ∈
E ( G ) belongs to path p ∈ P . 

The mapping of virtual routers is constrained so that for each

N request, D, two virtual routers cannot be assigned to the same

ubstrate router. Formally, ∑ 

 ∈ V ( w ) 

x v w 

≤ 1 , ∀ w ∈ V ( G ) (4.1)

In addition, each virtual router must be assigned in only one

hysical router. Formally, ∑ 

 ∈ W ( v ) 

x v w 

= 1 , ∀ v ∈ V ( D ) (4.2)

Virtual router, v ∈ V ( D ) , can be mapped in the substrate router,

 ∈ V ( G ) , if i) the available residual resources (i.e., B ( w ) and M ( w ))

re at least equal to those required (i.e., B ( v ), M ( v )) and if ii) v has

he same type (i.e., access or core) as w . Formally, 

 v ∈ V (w ) , 

⎧ ⎨ 

⎩ 

(B (w ) − B (v )) x v w 

≥ 0 

( M( w ) − M(v )) x v w 

≥ 0 

( X ( w ) − X (v )) x v w 

= 0 

(4.3)

Each virtual link, d ∈ E ( D ) between a ( d ) and b ( d ), is embedded

n an unsplittable substrate path denoted by p ∈ P between s and

 . Note that p is a set of substrate links that form a path. In fact,

he current SN s mainly make use of shortest-path-based routing

rotocols such as Open Shortest Path First (OSPF) and avoid the

ut-of order arrival problem of multi-path. Formally, 
 

p∈P 
u dp = 1 , ∀ d ∈ E ( D ) (4.4)

A virtual link d ∈ E ( D ) must be embedded in only one path p ∈
 st (i.e., unsplittable) such as a ( d ) ∈ V ( D ) is assigned to substrate

outer s ∈ V ( G ) and b ( d ) ∈ V ( D ) is assigned to substrate router t ∈
 ( G ) . Formally, 
 d ∈ E(D) , p ∈ P st 

{
u dp ≤ x a ( d ) s 
u dp ≤ x b ( d ) t 

(4.5)

On the other hand, the first objective consists in maximizing

he acceptance rate of VN requests. Hence, the reject rate of re-

uests is minimized and the provider’s revenue is maximized. In

his respect, our objective is to maximize the minimum residual

andwidth in the network (i.e., z ) and then, keeping the value of

 at its maximum , we minimize the total usage of physical links

i.e., maximize −Z ). Note that z and Z are equal to: 

 = min 

e ∈ E ( G ) 
( C ( e ) − y e ) (4.6) 

 = 

∑ 

e ∈ E ( G ) 
y e (4.7) 

However, the flexible bandwidth VN mapping needs an addi-

ional objective concerning the usage rate of substrate links. In-

eed, this approach allows a substrate link to host more than its

apacity. In other words, the sum of all requested bandwidth tran-

iting over the substrate link e ∈ E ( G ) can be greater than C ( e ). The

ew objective consists in minimizing the bottleneck rate in each

ubstrate link e with respect to the traffic behavior transiting over

t and with respect to all the virtual links. Formally, 

 e ∈ E ( G ) , minimize [ P ( U ( e ) = 1 ) ] (4.8)

here P (a = b) denotes the probability that a is equal to b . Note

hat U ( e ) = 1 means that substrate link e is congested. 

We will now outline our VN embedding optimization problem.

roblem 1 (Adaptive virtual network embedding problem) . 

ex max ( z, −Z ) 
inimize P ( U ( e ) = 1 ) , ∀ e ∈ E ( G ) 

ubject to: 
∑ 

v ∈ V ( w ) x v w 

≤ 1 , ∀ w ∈ V ( G ) ∑ 

w ∈ W ( v ) x v w 

= 1 , ∀ v ∈ V ( D ) 

( B ( w ) − B ( v ) ) x v w 

≥ 0 , ∀ v ∈ V ( w ) 

( M ( w ) − M ( v ) ) x v w 

≥ 0 , ∀ v ∈ V ( w ) 

( X ( w ) − X ( v ) ) x v w 

= 0 , ∀ v ∈ V ( w ) 

u dp ≤ x a ( d ) s , ∀ d ∈ E ( D ) , p ∈ P st 

u dp ≤ x b ( d ) t , ∀ d ∈ E ( D ) , p ∈ P st ∑ 

p∈P u dp = 1 , ∀ d ∈ E ( D ) 

y e ≤ C ( e ) , ∀ e ∈ E ( G ) 
x v w 

, u dp : binary 

z, Z, y e : continuous 

U ( e ) : dist ribut ionof usagerate 

Note that lex max ( z, −Z ) objective means lexicographical max- 

mization. In other words, we first maximize z (i.e., minimum un-

sed capacity on physical links) and then we maximize −Z with-

ut deteriorating the maximization of z . The above problem is a

ulti-objective mixed-integer optimization problem. It has been

roved to be NP-hard [3–5] . In the next section, we will pro-

ose a new scalable VN flexible embedding algorithm based on

n approximation algorithm for bottleneck problems, denoted by

daptive-VNE . 

. Proposal: Adaptive-VNE algorithm 

Adaptive-VNE is a new adaptive VN embedding algorithm

perating as follows. First, the VN topology (i.e., D) is divided into

 set of solution components, denoted by SC , forming a star topol-

gy. Then, the generated solution components { SC } are sorted and
i 
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Fig. 2. Solution Component formation. 
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mapped sequentially. Note that the assignment of a SC is formu-

lated as a K -supplier problem [19] and its resolution is equivalent

to build a small part of the overall topology. Afterwards, based

on an approximation algorithm for bottleneck problems [1] , for

each SC i a set of candidate substrate routers that could host the

SC i ’s center virtual router are generated. The final assigned topol-

ogy is constructed incrementally based on all the generated SC s’

candidates and using the backtracking strategy in order to mini-

mize the overall mapping cost. Hereafter, we will detail the main

Adaptive-VNE stages: i) Formation of solution components , ii)

Mapping of solution component , iii) Forecasting the usage rate of re-

sources and iv) Selection of the global VN embedding topology . The

pseudo algorithm of VNE-Adaptive is illustrated in Algorithm 1 .

Algorithm 1: Adaptive-VNE. 

1 Input: D, G 
2 Output: Mapping of D in G 
3 { SC i } ← Generation-Solution-Component( D) 

4 for i = 1 , i ≤ |{ SC i }| , i + + do 

5 W (v i ) ← Generation-Best-Candidates ( SC i , D, G ) 

6 /*Backtracking mechanism*/ 

7 for j = 1 , j ≤ i , j + + do 

8 Select best candidates w 

∗
j 
∈ W (v j ) such as the global 

mapping cost is minimized 

9 Mapping-Edge-Routers-Links( D, G) 

10 for j = 1 , j ≤ |{ SC j }| , j + + do 

11 Mapping-Solution-Component ( SC j , w 

∗
j 
, G) 

5.1. Formation of solution components 

In this stage, the VN request, D, is split up into k sub-requests

depending on | V ( D ) | and | E ( D ) | , known as Solution Components,

denoted by { SC i } 1 ≤i ≤k . To do this, Adaptive-VNE first embeds

all virtual access routers. Indeed, the virtual access router, v (i.e.,

X ( v ) = 1 ), is mapped in the nearest substrate access router, w (i.e.,

X ( w ) = 1 ), offering the most residual resources and giving prior-

ity to processing power. Remember that the available resources of

substrate router w (i.e., B ( w ) and M ( w )) must be at least equal

to those requested (i.e., B ( v ) and M ( v )). Then, virtual links be-

tween the virtual access routers will be assigned as explained

in Section 5.2 . The remaining virtual topology, lacking virtual ac-

cess routers and links connecting them, is denoted by ˜ D . Note

that in 

˜ D , many virtual links missing one of their outermost vir-

tual routers appear. In fact, the virtual routers had already been

mapped. Insofar, we will refer to this type of links as a “hanging

links”. 

As depicted in Fig. 2 , A SC i is a star topology, composed of a

center virtual node v i and its direct connected links. { SC i } 1 ≤i ≤k are

generated sequentially on the basis of the number of their hang-

ing links. To do so, first the virtual router with the highest num-

ber of hanging links in 

˜ D is selected. Then, SC i is built by the

selected virtual router and its whole attached virtual links with-

out their outermost virtual routers. Next, SC i is subtracted from 

˜ D
(i.e. ˜ D ← 

˜ D \ SC i ). The same process is repeated recursively to build

the rest of the solution components until ˜ D becomes empty (i.e.,
˜ D = ∅ ). Note that the set { SC i } 1 ≤i ≤k obtained follows the same se-

quencing during the SC formation process. 

5.2. Mapping of solution components 

The potential substrate routers capable for hosting the SC i ’s
center virtual router v , denoted by W ( v ), are those supplied with
i i 
ufficient residual resources (i.e., processing power and memory)

nd guaranteeing the minimum mapping cost. 

To find W ( v i ), the SC i ’s mapping sub-problem is formulated as

 -supplier problem [19] . Indeed, the K -supplier problem consists of

 nodes that are partitioned into i) a set of suppliers and ii) a set

f customers. The objective is to find the subset of suppliers that

inimizes the cost of serving customers. 

We define i) N i as the set of substrate routers hosting the vir-

ual routers of hanging links in SC i and ii) S i as the set of substrate

outers not belonging to N i and not hosting any virtual router of

N request. So, N i models the set of customers and the objective

s to find the best set of suppliers W ( v i ) within S i which can host

C i ’s center virtual router. 

We remind that the main goal of Adaptive-VNE is to reduce

he mapping cost of VN while maximizing residual SN resources.

o do so, i) the allocated bandwidth in the SN must be minimized

or each virtual link d ∈ E ( D ) and ii) the selected substrate routers

ithin the prospective candidates, W ( v i ) for any v i ∈ V ( D ) , must

aximize the residual resources and load balancing in terms of

rocessing power, memory and bandwidth once the virtual links

re mapped. 

The prospective candidates within S i forming W ( v i ) should be

s close as possible to the substrate routers belonging to N i and

ave available resources (at least those required by v i ) in terms of

rocessing power and memory. Thus, we define the mapping cost

f substrate router w ∈ S i denoted by c w 

as follows: 

 w 

= 

1 

B ( w ) + M ( w ) + 

∑ 

u ∈N i R p u w 
+ ε

(5.9)

here p u w 

is the best path between substrate routers w and u in

erms of the proposed metric defined in [18] , R p u w 
is the minimum

esidual bandwidth in the substrate path p u w 

and ε a small pos-

tive constant to avoid dividing by zero. We recall that B ( w ) and

 ( w ) correspond to the residual processing power and the resid-

al memory M ( w ) respectively. 

Since the sub-problem is formulated as K -supplier problem, the

otal mapping cost of the prospective candidates W ( v i ) must be at

ost equal to K . Formally, 

 W ( v i ) = 

∑ 

w ∈ W ( v i ) 

c w 

≤ K (5.10)

To resolve the above K -supplier subproblem, we propound to

dapt the proposed approximation algorithm in [1] . To do so,

daptive-VNE constructs sequentially a set of subgraphs G j . For

ach G j , the algorithm tests whether there is a set W ( v i ) having a

ost c W ( v i ) 
≤ K. If this latter does not exist, the new subgraph G j+1 

s generated and j is incremented. The same process is repeated

ntil W ( v ) is found or ( j + 1) is greater than the number of SC ’s
i 
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Fig. 3. Generation of best candidates. 
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Algorithm 2: Generation-Best-Candidates. 

1 Input: SC i , N i , S i , D, G 
2 Output: W ( v i ) /*Set of best candidates for hosting v i */ 

3 W ( v i ) ← ∅ 
4 v i ← SC i ’s center router 

5 Generate E ′ (G) 

6 j ← 1 

7 repeat 

8 Generate graph G j 
9 Generate graph G 2 

j 

10 Generate graph Ḡ 2 
j 

/* G 2 
j 

is reduced to N i */ 

11 Generate Independent Set IS of Ḡ 2 
j 

12 foreach u ∈ IS do 

13 Select w 

∗ ∈ V (G j ) : (w 

∗ is one-hop neighbor of u ) ∧ 

(w 

∗ ∈ S i ) ∧ (c w 

∗ is the lowest one ) 

14 W (v i ) ← W (v i ) ∪ { w 

∗} 
15 j ← j + 1 

16 until [(c W (v i ) ≤ K) ∧ ( j > nbr hanging links of SC i )] ; 
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anging links (i.e., number of customers). It is worth noting that

he calibration of K in each SC is performed with respect to the

ean value of its mapping cost. 

The procedure that generates subgraph G j proceeds as fol-

ows. First, the edge weighted complete graph based on shortest

aths, denoted by G ′ , is generated from the physical graph G (see

ig. 3 (a)) . Then, the physical links e ∈ E ( G ) are sorted according to

heir residual bandwidth. 

Let RB ( e i ) be the residual bandwidth of the substrate link e i . The

ew set substrate link is denoted by E ′ ( G ) and is equal to: 

 

′ ( G ) = { e 1 , . . . , e m 

} \ ( RB (e i + 1) ) ≥ ( RB (e i ) ) (5.11)

here m = | E(G) | and 0 ≤ i ≤ m − 1 . 

Afterwards, as shown in Fig. 3 (b), the subgraph G j (V (G j ) , E(G j ))
an be generated. In fact, V (G j ) = V (G) and E(G j ) = E j = { e ∈
 

′ (G) : y (e ) ≤ y (e j ) } . It is worth noting that G j represents the sub-

raph composed of the first j th best substrate links. 

Adaptive-VNE tests whether W ( v i ) can be generated from G j 
s following. First, G 2 

j 
is generated. It consists in adding to G j new

inks between nodes connected by 2-hop path. Then, graph G 2 
j 

is

educed to N i and denoted by Ḡ 2 
j 
. In other words, as depicted in

ig. 3 (c), the graph G 2 
j 

is reduced to the number of customers. Af-

erwards, the maximal independent set of Ḡ 2 
j 

is generated, denoted

y IS . Indeed, IS ⊂ N i is a subset of customers. Note that an inde-

endent set of graph is a set of pairwise non-adjacent nodes. Be-

ides, a maximal independent set is an independent set that is not

roperly contained in any independent set. It has been proved that

he problem of maximal independent set can be solved in polyno-

ial time [1] . Once IS is generated for each customer u ∈ IS , its

owest 1-hop neighbor w 

∗ ∈ G j in terms of mapping cost is selected

nd added to W ( v i ). It is worth noting that w ∗ must belong to the

ligible candidates belonging to S i . Finally, if c W ( v i ) 
≤ K then the

daptive-VNE converges. Otherwise, the next sub-graph G j+1 

ill be generated and the same process is repeated. 

Let G ∗
j 

be the subgraph on which W ( v i ) is found. G ∗
j 

is called a

ottleneck graph (see Fig. 3 (d)). As detailed in [1] , the above al-

orithm yields an approximate solution guaranteed to be within

 constant factor 3 of the optimal solution . The generation of

he best candidates W ( v i ) that would hosts a SC i is detailed in

lgorithm 2 and illustrated in Fig. 3 (b). 

.3. Forecasting of the usage rate of resources 

Contrarily to a static VN embedding strategy, a flexible ap-

roach aims to optimize the usage rate of resources by exploit-

ng the unused allocated resources of already mapped VN s. Hence,
ore VN requests can be accepted. However, the probability that a

N request cannot access to its allocated resources must be mini-

ized. In this paper, we focus only on the flexibility of bandwidth

llocation since the latter is a scarce resource. Virtual nodes’ re-

ources will be instantiated assuming a static approach. 

The random distribution of usage rate U(d) for each virtual link

 ∈ E ( D ) is very hard to be typified and defined upstream of the

apping. Indeed, the distribution depends on many parameters

uch as: i) end-user traffic, ii) routing protocol, iii) failures, etc. To

ackle the above problem, we propose to make use of a monitoring

odule in order to estimate an upper-bound of usage rate for each

irtual link d mapped in the SN . 

Let ᾱt i 
(d) be the average data traffic volume during the period

 

t i − T , t i ] where T is the size of the observing window. We de-

ne, so doing, the usage rate during the same period, denoted by

t i 
(d) , as: 

t i (d) = 

ᾱt i (d) 

C ( d ) 
(5.12) 

e recall that C ( d ) is the bandwidth capacity of virtual link d . 

Consequently, the usage rate of the window [ t i − T , t i ] of the

ubstrate link e ∈ E ( G ) is defined as follows: 

t i (e ) = 

1 

|L e | 
∑ 

d∈L e 
μt i (d) (5.13) 
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Table 1 

Performance of VN Embedding strategies. 

Strategy Reject rate (%) Revenue ( × 10 4 ) 

VNE-AC 5.1 ± 0.40 47.42 ± 0.28 

VNE-Greedy 12.95 42.51 

Static-VNE 4.8 47.78 

Adaptive-VNE 0.25 ± 0.05 50.82 

GomoryHu-VNE 0.55 50 
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where L e is the set of virtual links transiting over the substrate

link e . 

As a simple prediction module of usage resource rate, we pro-

pose setting the usage rate of substrate link e denoted μ∗
t i 
(e ) as:

μ∗
t i 
(e ) = μ̄t i (e ) + δ · σ√ 

n 

(5.14)

where i) μ̄t i 
(e ) and σ respectively denote the mean and standard

deviation of μt i 
(e ) , ii) n is the set sample size of μt i 

(e ) and iii) δ
is equal to normal inverse cumulative distribution in respect to the

desired confidence level. So, the used bandwidth of the substrate

link e can be estimated as: 

y (e ) = C(e ) · μ∗
t i 
(e ) (5.15)

The above module calculates the upper-bound of the usage rate

according to the confidence level. However, this monitoring mod-

ule could, in the future, be extended and deployed easily (i.e.,

without any modification of the proposal) with more sophisticated

traffic prediction algorithms [20,21] . 

5.4. Selection of the global VN embedding topology 

Once all the solution components are generated { SC i } ,
Adaptive-VNE starts the mapping of solution components as

described in Section 5.2 . To do so, backtracking mechanism is

adopted. Indeed, at each iteration, the global mapping cost is eval-

uated and the previous mapping of solution components can be

updated by choosing another candidate while the global mapping

cost is reduced. 

It is worth remarking that the global mapping topology is gen-

erated incrementally. In each step, only one SC is mapped but the

final decision will be made at the end. So, Adaptive-VNE avoids

being blocked in local optima by using a backtracking approach. 

6. Performance evaluation 

In this section, we will study the performance of our proposed

adaptive VN embedding strategy Adaptive-VNE . To achieve this,

first we will define the performance metrics to evaluate it. Then,

we will detail the simulation environment and the generated re-

sults compared with prominent related strategies found in litera-

ture. Finally, we will describe our experimental platform Provision-

Lab and we will present the performance obtained. 

6.1. Performance metrics 

To gauge the performance of our proposal, hereafter we define

the following performance metrics: 

• Q is the rejection rate of VN requests. 

• R (D) is the revenue produced by a VN request D. 

• B is the bottleneck rate of embedded virtual links in the SN . 

• D is the average bottlenecking duration of embedded virtual

links in the SN . 

• S is the satisfaction rate of mapped VN s. It quantifies the per-

centage of allocated bandwidth resources with respect to the

requested volume. 

• Residual memory of substrate routers. 

• Allocated processor power of substrate router. 

6.2. Simulation performance 

6.2.1. Simulation environment 

We designed and implemented a discrete event VN embedding

simulator. To generate SN and VN topologies, GT-ITM tool 4 is
4 http://www.cc.gatech.edu/projects/gtitm/ . 

t  

A  

t  
sed. As in [7,22] , (i) the arrival of VN requests is modeled by a

oisson Process with rate λA and (ii) VN lifetime is modeled by

xponential distribution with mean μL . 

We integrated in the simulator our proposal Adaptive-VNE
nd the related strategies: (i) VNE-Greedy [7] , (ii) VNE-AC [23] ,

iii) Static-VNE which is the static variant of Adaptive-VNE
hat assigns the virtual links according to the peak demand and

vi) GomoryHu-VNE [24] which converges to the optimal solution

hile considering the peak demand. We compared the above em-

edding strategies with respect to the defined performance met-

ics. Moreover, we evaluated the robustness of Adaptive-VNE .
ote that our proposal cannot be compared with related adaptive

N embedding strategies since the virtual router mapping stage is

ot considered. Only virtual link assignment is addressed. 

As stated in [7,23,25] , we make use of the following benchmark

cenario. The SN size is set to 100 and, in this case, the ratio of

ccess and core routers are respectively fixed at 20% and 80%. Fur-

hermore, the VN size is set according to a discrete uniform distri-

ution, using the values given in [2,10] . Since virtual access router

re defined by customers, we can assume that each virtual router

ould be access or core with a probability of 0.5. It is worth noting

hat in both cases ( VN and SN ), each pair of routers is randomly

onnected with a probability of 0.5. The arrival rate λA and the av-

rage lifetime μL of VN s are respectively fixed to 4 requests per

00 time units and 10 0 0 time units. We calibrate the capacity of

ubstrate routers and links (i.e., B ( w ), M ( w ), and C ( e )) according to

 continuous uniform distribution, taking the values in [50, 100].

imilarly, the required virtual resources (i.e., B ( v ), M ( v ), and C ( d ))

re set according to a continuous uniform distribution, using the

alues given in [10, 20]. The number of VN requests are set to

0 0 0. Finally, the size of observing window T = 10 time units. 

We assume exponential ON-OFF traffic sources as in [26,27] .

he average ON time is set to 100 units and the OFF period varies

ithin the range of [5, 50] units to simulate different traffic load

onditions. This means that each virtual link can at most be off

uring half of the duration of the ON period. We assume that each

irtual link d is typified by its usage rate distribution U ( d ) follow-

ng a discrete uniform distribution using values [50%, 100%]. During

ach ON traffic period, the current usage rate is sampled according

o its distribution. Besides, we assume that the extremity nodes

f virtual link d transmit with a fixed rate leading to a fixed usage

ate as generated by U ( d ) . Finally, we consider that all virtual links

re full-duplex. 

Note that a realistic characterization of network traffic is out-

ide the scope of this paper. The main goal is to evaluate the

obustness and the effectiveness of the proposed algorithm in dif-

erent network conditions. Moreover, all simulation results are cal-

ulated with confidence intervals corresponding to a confidence

evel of 99.70%. Tiny confidence intervals are not shown in the fol-

owing figures. 

.2.2. Simulation results 

Table 1 compares the reject rate Q and total revenue of

he whole (i.e., 20 0 0) VN requests. It shows that our proposal,

daptive-VNE , significantly reduces the reject rate compared

o other strategies and thus, improves the CP ’s revenue. As

http://www.cc.gatech.edu/projects/gtitm/
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Fig. 4. Adaptive-VNE — Comparison of VN rejection rate Q . 
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Fig. 5. Adaptive-VNE — Congestion of virtual links. 
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llustrated in Table 1 , Adaptive-VNE rejects only 3 ± 1 re-

uests among 20 0 0, which is the equivalent of 0.25 ± 0.05% of

ll of the VN requests. We notice that 5.1 ± 0.40%, 12.95%, 4.8%

nd 0.55% of requests are respectively rejected by static strate-

ies VNE-AC , VNE-Greedy , Static-VNE and GomoryHu-VNE .
ndeed, the static embedding strategies decline at least two times

ore of VN requests than the adaptive Adaptive-VNE . This is

ainly due to the fact that the static mapping strategies do not

euse allocated bandwidth even though they are not exploited. We

ecall that this is also the case of GomoryHu-VNE which con-

erges to the optimal mapping based on the peak demand. Con-

equently, this leads to large resource wastage and more rejection

f VN requests. 

It is worth noting that the static variant of our proposal (i.e.,

tatic-VNE ) outperforms our previous strategy VNE-AC and

NE-Greedy . 
On the other hand, we can see, in Table 1 , that Adaptive-VNE

aximizes the CP ’s revenue. In fact, as defined in [7,8,22] , the rev-

nue of a VN request, R (D) , is proportional to the amount of its

llocated resources. This can be explained due to the fact that a

arger number of accepted requests leads to the increase in allo-

ated resources. R ( D ) can be expressed as: 

 (D) = 

∑ 

v ∈ V ( D ) 
B ( v ) + 

∑ 

v ∈ V ( D ) 
M ( v ) + 

∑ 

d∈ E ( D ) 
C ( d ) (6.16)

In Fig. 4 , we evaluate the robustness of Adaptive-VNE
ompared with static strategies VNE-AC , VNE-Greedy and

tatic-VNE with respect to the arrival rate of VN requests,

A . Note that the average lifetime of VN is fixed. As shown in

he figure, our proposal Adaptive-VNE keeps a lower rejection

ate while the arrival rate of VN s grows exponentially in the

ange [4, 64]. Recall that λA = n means that n VN requests ar-

ive per 100 units. It is clear to see that for low λA values (i.e.,

 ≤ λA ≤ 32), our proposal significantly reduces the rejec-

ion rate. For example, at λA = 8 the rejection rate is equal to

.66 ± 0.43%. Hence, Adaptive-VNE reduces the rejection rate

y at least 4 times compared with the best related Greedy-VNE
mbedding strategy (reject rate equal to 23.45%). Note that the re-

ection rate improvement stays high while the arrival rate grows

xponentially. Moreover, with high values of λA , the SN becomes

aturated and no matter the chosen embedding strategy no more

equests can be accepted. Even though substrate resources are con-

ested, the improvement remains noticeable even with λA = 64 ,

daptive-VNE rejects almost 63.05 ± 1.30% of VN requests
hen VNE-AC , Greedy-VNE and Static-VNE respectively de-

line 69.3% ± 0.7, 65% and 69.85%. 

To investigate the impact of VN ’s traffic load on

daptive-VNE ’s performance, we simulate within the VN 

hree scenarios according to the discrete uniform usage rate distri-

ution U ( d ) : i) [25%, 100%], ii) [50%, 100%] and iii) [75%, 100%]. In

ig. 5 (a), we illustrate the rate of bottlenecked virtual links with

espect to λA and U ( d ) . 
It is clear that whatever the range of U ( d ) , the rate of con-

ested virtual links is low and less than 50%. In fact, for low occu-

ation rates (i.e., U ( d ) → [25% , 100%] ), at most only 15% of mapped

irtual links are congested (i.e., bottlenecked traffic) when λA = 16 .

oreover by increasing the usage rate, (i.e., U ( d ) → [50% , 100%]

nd U ( d ) → [75% , 100%] ), the bottleneck rate of virtual links in-

reases and this is a consequence of the high level of traffic cir-

ulation. Whereas this increase stays limited and, at most, reaches

2%. It is worth noting that this bottlenecking is considerably

hort-lived. In fact, as displayed in Fig. 5 (b), the duration of

ongestion is infinitely short since it does not exceed 5.5% of the

ifetime of VN s whatever the arrival rate and the load rate. For

xample, with a congestion duration around to 2% of VN lifetime

nd U ( d ) → [50% , 100%] , the end-user may notice a slight pertur-

ation of the traffic, which can sometimes even be transparent in
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Fig. 6. Adaptive-VNE — Satisfaction level of mapped virtual links. 
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5 http://libvirt.org/ . 
the case of elastic traffic such as TCP-based applications (e.g., HTTP,

STMP, FTP, etc.). We have noticed that for high values of λA (i.e.,

λA ≥ 32), the rate of bottlenecked virtual links decreases. This is

expected since the acceptance rate declines with high VN arrival

rates. 

As crucial and important performance metric, to evaluate the

effectiveness of our proposal, is the satisfaction level of congested

mapped VN s. Indeed, even though the bottleneck duration is tiny,

we evaluate the percentage of reserved bandwidth volume com-

pared to the required bandwidth during the congestion period. 

Fig. 6 (a) shows the satisfaction level of bottlenecked VN s. One

can clearly see that the satisfaction level is high since it varies be-

tween 60% and 80%. This signifies that a virtual link, congested

during its lifetime, will see at least 60% of its bandwidth require-

ments satisfied whatever the occupation rate distribution U(d) and

the arrival VN requests rate λA . 

Moreover, Fig. 6 (b) reports the global satisfaction of all mapped

VN s. Note that this performance metric S is considerably satisfy-

ing. Indeed, 84% ≤ S ≤ 100% . 

6.3. Experimental performance 

We evaluate the performance of our proposal Adaptive-VNE
with a testbed. To accomplish our goal, we designed and imple-
ented an experimental virtualization platform, called Provision-

ab, in order gauge the efficiency of Adaptive-VNE . Hereafter,

e will describe the technical details of the VN embedding exper-

mental platform. Then, we will illustrate the ProvisionLab’s results.

.3.1. Experimental environment 

ProvisionLab routers are running with “ARCH Linux” operating

ystem characterized by “Linux kernel” release 3.2. Upon the above

perating system, we install the hypervisor “Xen” environment re-

ease 4.1.2 characterized by the virtualization library “Libvirt”5 . Vir-

ual routers are created using Xen and Library “Libvirt”. The oper-

ting system of virtual routers is “ARCH Linux” characterized by

Linux kernel” release 3.4.6. The substrate network topology is il-

ustrated in Fig. 7 . The platform is composed of 7 network devices:

 core routers and 5 access routers. The access routers denoted

y “PhyN0”, “PhyN1”, “PhyN2”, “PhyN3” and “PhyN4” are charac-

erized by i) processor power (CPU): 1.5 GHz and ii) Random Ac-

ess Memory (RAM): 150 Mo. Core routers denoted by “PhyN5”

nd “PhyN6” are characterized by i) CPU: 2.4 GHz and ii) RAM:

00 Mo. 

Core routers are characterized by 6 Gigabit Ethernet ports,

hile edge routers are characterized by 4 Gigabit ports. The capac-

ty of physical cables interconnecting physical routers is 100 Mbps.

he Ethernet ports of different routers are connected using i) ca-

les with capacity of 100 Mbps and ii) bridge network mode. We

ecall that a network bridge is a 2-layer device used to create a

onnection between two distant network devices. It forwards data

etween the network’s routers based on the MAC address of both

ender and receiver. We configured Xen in the bridge mode in or-

er to monitor the transmission between the routers. 

ProvisionLab is managed by a Central Controller (CC) which is

esponsible for i) virtual and substrate network devices, ii) admis-

ion of new VN s and iii) the VN s mapping process. The latter

trongly depends on state (i.e., residual resources) of the SN which

s continuously monitored. Instantiated VN s are monitored by Xen

ypervisor. Note that hosting and hosted systems are classified by

omains. Domain zero, abbreviated by “Dom0”, is the initial do-

ain launched by the hypervisor on the boot. “Dom0” plays the

ole of host operating system. The hosted virtual machines repre-

ent the unprivileged domains abbreviated by “domU”. 

Each VN is able to allocate one or more virtual machines (i.e.,

omU). Dom0 is responsible for the communication monitoring

etween different domUs. Dom0 has a direct access to the hard-

are. Moreover, Dom0 is the starter of the new domains. Hosted

omUs are created and/or killed using the library Libvirt. Each VN 

s typified by its own i) IPv4 address and ii) identifier. It is worth

oting that each virtual machine is qualified by a unique identifier

uuid). The latter is randomly generated and permits to distinguish

 virtual machine from any others within a VN . 

In order to deploy Adaptive-VNE in the ProvisionLab, we de-

igned and implemented several processes in the CC proceeding as

ollows. First, the CC receives the new VN request which needs

o be instantiated in the SN . Then, Adaptive-VNE is launched

o embed the VN request based on the already collected informa-

ion from the SN . Afterwards, if Adaptive-VNE succeeds to map

he VN request then notification messages are sent to the hosting

ubstrate routers in order to execute the calculated mapping so-

ution. In fact, the allocation process will be triggered within the

oncerned substrate routers. Finally, killing virtual machines pro-

ess will be executed as soon as a VN ’s lifetime expires in order to

nfreeze the allocated substrate resources. Hereafter, we will enu-

erate the main processes and will describe their tasks. 

http://libvirt.org/
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Fig. 7. Network devices of ProvisionLab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Resource Discovery Process : is responsible for monitoring SN re-

sources (i.e., collecting information) in order to determine the

availability of substrate resources and their suitability to host

virtual resources. This information is periodically exchanged be-

tween the substrate routers and the CC. Resource Discovery

Process is composed of four functional processes: 

1. Topology Update (TU): It is executed in the substrate routers.

This process collects network information from its neigh-

bors. This information describes the state of SN equipments

such as: i) IP address, ii) residual resources (i.e., CPU, mem-

ory and bandwidth), iii) packet error rate, iv) byte error rate.

TU process is responsible for periodically update of resid-

ual resources and takes into account the current SN state.

Collected information is structured based on Resource De-

scription Framework (“rdf”) format. So additional moni-

tored data can be easily added. 
2. Topology Distribution (TD): Thanks to this process, updated

information is sent to the CC agent. To do so, “rdf” files gen-

erated by TU process in each substrate router are transmit-

ted using HTTP protocol. 

3. Topology Request (TR): To collect topology files “rdf” from

substrate routers, the CC agent periodically broadcasts “GET

HTTP request”. Upon receiving this request, each TD process

is triggered and the topology file is transmitted. 

• Resources Allocation : Once the mapping decision is made by

Adaptive-VNE , the CC broadcasts resource reservation mes-

sages to the assigned substrate routers. These messages indicate

for each virtual router in the VN request its: i) hosting sub-

strate router in the SN , ii) type (i.e., edge or core) and iiii) re-

quired resources (i.e., CPU and memory). Moreover, these mes-

sages contain for each virtual link the substrate path supporting

it and its allocated bandwidth. 
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Fig. 8. Generation of UDP virtual traffic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. ProvisionLab — Memory usage. 
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The VN request instantiation process is executed in two se-

quential stages. 

1. Virtual Router Creation (VRC): Once the mapping decision is

received by all the routers in the SN , each substrate router

checks whether it is concerned by the instantiation process

or not. If it is the case, then VRC process is trigged to cre-

ate the virtual router according the information received in

“rdf” file. The latter contains the following information: i)

VN identifier, ii) uuid (i.e., unique node identifier) identi-

fying the virtual router belonging to the VN request, iii)

amount of required CPU capacity and iv) amount of required

memory. The router’s agent constructs the XML description

file by adding information concerning i) bridge id, ii) MAC

address, iii) OS kernel image, etc. The XML file is exploited

by “Libvirt ” library in order to instantiate the virtual router.

2. Virtual Link Creation (VLC): In order to allocate bandwidth

resources along the substrate paths supporting the virtual

links, Spanning Tree Protocol (STP) is launched. It is worth

noting that STP is included by default in openVsiwtch tool 6 

which is deployed in our platform. We recall that, STP se-

lects the shortest path while preventing bridge loops. 

In order to evaluate the performance of Adaptive-VNE , we

test the following scenario. The arrival rate of VN s λA is fixed

to 4 requests per 100 time units (seconds). The average lifetime

μL is fixed to 10 0 0 time units. The capacity of substrate routers

and links are calibrated depending on the capacity of physical net-

work devices previously outlined. The required virtual resources

of routers (i.e., B ( v ) and M ( v )) are set according to a continuous

uniform distribution. B ( v ) and M ( v ) are respectively sampled be-

tween [10, 17] KHz and [45, 45.1] KBytes. Similarly, we set required

virtual bandwidth (i.e., C ( d )) according to a continuous uniform

distribution, using values in [40, 50] Mbps. Due to the hardware

resource limitation, the number of VN requests in the current sce-

nario is set to 50. 

To investigate the impact of VN ’s traffic load on

Adaptive-VNE ’s performance, we generate a Constant Bit

Rate ( CBR ) traffic circulating through each VN . The usage rate of

these flows are set according to a discrete uniform distribution

taking values in [0.25, 1]. That mean the volume of traffic circu-

lating over a virtual link d follows a discrete uniform distribution

taking values in [ U(d) 
4 , U(d)] . The traffic in each virtual link starts

to circulate at a moment generated according to a discrete uniform

distribution taking values in [ L 2 , L ] . Note that L is the lifetime of

the VN generated according to the exponential distribution with

average μL . The UDP traffic is generated with “iPerf ” tool. Note

that traffic should be generated by end-users who are directly

connected to access routers. As a consequence, the traffic must

necessarily i) transit through core routers and ii) converge to

an access router which transmits the traffic to the destination.

For further details, Fig. 8 illustrates an example of UDP traffic

circulating through a VN topology. 
6 http://openvswitch.org/ . 

n  

“  

r

.3.2. Experimental results 

Based on the above scenario, Adaptive-VNE rejects only one

N request. In other words, the reject rate Q is equal to 2%. This

btained result shows the good performances of Adaptive-VNE
n real conditions. 

Fig. 9 evaluates the residual memory of all the substrate routers

uring the experimentation. We can easily differentiate three main

tages. 

The first stage expresses the volume of residual memory be-

ore any usage of substrate routers. It corresponds to the maximal

apacity where no VN is embedded in the SN . Indeed, the first

N request arrives at t = 20 0 0 s. Hence, during the first period [0,

0 0 0] s, the residual memory amount remains stationary at each

ubstrate router. It is worth noting that, as previously explained,

ubstrate core routers “PhyN5” and “PhyN6” are characterized by

igher capacity of memory compared with the access routers. 

During the second stage, VN requests pseudo-randomly (i.e.,

oisson process) arrive in the SN . The last VN request leaves the

N at t = 15 , 0 0 0 s. As we can see in Fig. 9 , during the period

20 0 0 , 15 , 0 0 0] s, virtual resources are equally dispatched among

he substrate routers. In fact, we remark that all substrate routers

re elected to host virtual routers and the memory load is bal-

nced among the substrate hosts. Consequently, we conclude that

daptive-VNE maximizes the load balancing during the embed-

ing decision process. 

The third stage starts at t = 15 , 0 0 0 s. The volume of residual

emory in the SN is evaluated after the departure of all VN . It is

lear to see that all memory resources are restored as in the first

tage and the SN is free once again. 

Fig. 10 illustrates the variation of used CPU during the em-

edding of VN requests. Similarly to the residual memory perfor-

ance, it is clear to distinguish three stages: before, during and

fter the mapping of VN s. 

Note that the amount of CPU exploited does not only depend

n allocated virtual resources. In fact, daemons and processes, de-

cribed in Section 6.3.1 , strongly impact the consumption of pro-

essing power. For this reason, CPU consumption is high during the

rst stage. Indeed, some substrate routers run multiple “iPerf” pro-

esses. We recall that “iPerf” tool is used to measure circulating

hroughput and residual bandwidth of physical links. 

During the second stage (i.e., VN embedding phase), all sub-

trate routers consume CPU due to i) the instantiation of virtual

odes and ii) the generation of traffic within VN . In Fig. 10 , we

otice that the highest CPU use is measured in substrate router

PhyN1”. In fact, the latter plays the role of Central Controller and

uns continually “Resource Discover” process. 

http://openvswitch.org/
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Fig. 10. ProvisionLab — CPU usage. 

Fig. 11. ProvisionLab — Bandwidth usage. 

Fig. 12. ProvisionLab — Loss rate. 
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Fig. 11 depicts the link usage rate within the substrate network.

t is straightforward to see that the traffic load is balanced and

airly shared between physical links. This can be explained by the

act that the distance path metric aims to make a trade-off be-

ween minimizing the length of substrate paths and maximizing

esidual bandwidth in the substrate network. 
Fig. 12 illustrates the loss rate occurred during the lifetime of

ach instantiated VN . Node that this network-relative metric is

easured inside the different access nodes by “iPerf”. It is worth

oting that the loss rate of instantiated VN is low since it takes

alues in [0, 3.5]%. Besides, we notice that the loss rate is station-

ry. Indeed, it is straightforward to see that the latter is indepen-

ent of the number of mapped VN s which enhances the QoS of

nd-users. This obtained result confirms the good performances of

daptive-VNE in real conditions. 

Fig. 13 (a) illustrates the bandwidth satisfaction level (i.e., per-

entage of reserved bandwidth volume compared to the requested

ne) of VN s. It is worth noting that, aside VN request 15 which

s rejected, all virtual links belonging to other VN s are satisfied at

east 95%. Indeed, our proposal Adaptive-VNE aims to select al-

ays the shortest substrate paths having the most available band-

idth in order to maximize the satisfaction of incoming VN re-

uests. Fig. 13 (b) illustrates the volume of required and allocated

andwidth during the experimentation. 

. Conclusion 

In this paper, we addressed the adaptive virtual network em-

edding problem. The main idea is to take advantage of the un-

sed reserved bandwidth within the embedded virtual networks.

n doing so, the rejection rate of new virtual network requests
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will be minimized. To this end, we proposed a new adaptive vir-

tual network embedding algorithm denoted by Adaptive-VNE .
The problem is formulated as K -supplier problem. Adaptive-VNE
makes use of i) the approximation-algorithm for bottleneck prob-

lems and ii) backtracking strategy to resolve the problem. Based

on extensive simulations, Adaptive-VNE outperforms the most

prominent strategies. Based on experimental testbed, the re-

sult obtained show that Adaptive-VNE optimizes the usage

of physical resources and maximizes the satisfaction rate of

end-users. 
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