
ARTICLE IN PRESS 

JID: COMCOM [m5G; April 9, 2016;12:31 ] 

Computer Communications xxx (2016) xxx–xxx 

Contents lists available at ScienceDirect 

Computer Communications 

journal homepage: www.elsevier.com/locate/comcom 

Big Data-backed video distribution in the telecom cloud 

M. Ruiz 

a , M. Germán 

a , L.M. Contreras b , L. Velasco 

a , ∗Q1 

a Universitat Politècnica de Catalunya (UPC), Barcelona, Spain 
b Telefónica Investigación y Desarrollo (TID), Madrid, Spain 

a r t i c l e i n f o 

Article history: 

Received 23 November 2015 

Revised 8 February 2016 

Accepted 30 March 2016 

Available online xxx 

Keywords: 

Telecom CDN 

Cloud CDN 

Big Data 

a b s t r a c t 

Telecom operators are starting the deployment of Content Delivery Networks (CDN) to better control and 

manage video contents injected into the network. Cache nodes placed close to end users can manage 

contents and adapt them to users’ devices, while reducing video traffic in the core. By adopting the stan- 

dardized MPEG-DASH technique, video contents can be delivered over HTTP. Thus, HTTP servers can be 

used to serve contents, while packagers running as software can prepare live contents. This paves the 

way for virtualizing the CDN function. In this paper, a CDN manager is proposed to adapt the virtual- 

ized CDN function to current and future demand. A Big Data architecture, fulfilling the ETSI NFV guide- 

lines, allows controlling virtualized components while collecting and pre-processing data. Optimization 

problems minimize CDN costs while ensuring the highest quality. Re-optimization is triggered based on 

threshold violations; data stream mining sketches transform collected into model ed data and statistical 

linear regression and machine learning techniques are proposed to produce estimation of future scenar- 

ios. Exhaustive simulation over a realistic scenario reveals remarkable costs reduction by dynamically 

reconfiguring the CDN. 

© 2016 Published by Elsevier B.V. 

1. Introduction 1 

Live-TV and Video on Demand (VoD) distribution is in the port- 

Q2 

2 

folio of many telecom operators aiming at entering into compe- 3 

tition with on-line, over-the-top broadcasters, such as Netflix. To 4 

this end, a Content Delivery Network (CDN) is being considered as 5 

a suitable option to be deployed by telecom operators internally 6 

within their network infrastructure by placing cache nodes in geo- 7 

graphically distributed locations covering a territory [1,2] . Forecasts 8 

show that 79% of the global IP traffic will be related to video traffic 9 

by 2018 [3] thus managing its own CDN allows the network oper- 10 

ator to better control and manage the video content injected into 11 

the network through predictable traffic sources strategically placed 12 

according to a careful network planning to maximize capacity sav- 13 

ings. Cloud-based CDNs provide CDN functionalities using cloud re- 14 

sources. Nonetheless, the introduction of cloud imposes additional 15 

challenges that have to be addressed. Authors in [4] present a sur- 16 

vey on available cloud-based CDNs and identify the open chal- 17 

lenges. 18 

In fact, the telecom infrastructure is undergoing a huge trans- 19 

formation since telecom operators are deploying their own cloud 20 

infrastructure [5] to prove cloud services and enabling Software 21 

Defined Networking (SDN) [6] and Network Functions Virtualiza- 22 
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tion (NFV) [7] . The resulting infrastructure is referred to as the 23 

telecom cloud [8] . NFV decouples network functions (e.g., caching) 24 

from proprietary hardware appliances, so they can be implemented 25 

in software and deployed on virtual machines (VM) running on 26 

commercial off-the-shelf computing hardware. A Virtualized Net- 27 

work Function (VNF) can be functionally decomposed into one 28 

or more components and different VNF instances can be placed 29 

in geographically distributed locations and communicate among 30 

them. 31 

Regarding video delivery, the standardized MPEG Dynamic 32 

Adaptive Streaming over HTTP (MPEG-DASH) [9] technique en- 33 

ables media content to be delivered over the Internet. MPEG-DASH 34 

requires from a HTTP web server infrastructure to allow users’ 35 

devices (e.g., Internet-connected televisions, desktop computers, 36 

smart phones and tablets, etc.) to consume multimedia content. 37 

MPEG-DASH divides contents into a sequence of small file seg- 38 

ments , each containing a short interval of the content. At the start 39 

of a streaming session, the MPEG-DASH client downloads a Media 40 

Presentation Description (MPD) file with the resource identifiers 41 

(HTTP-URLs) for content’s segments. A variety of different qualities 42 

(e.g., by changing bitrate and resolution) is made available for each 43 

content; while a content is being played back, the MPEG-DASH 44 

client automatically selects the segment with the highest quality 45 

possible that can be downloaded in time thus, dealing with vari- 46 

able Internet conditions. In addition, client buffer size can be ad- 47 

justed to ensure a given probability of video re-buffering [10] . 48 

http://dx.doi.org/10.1016/j.comcom.2016.03.026 
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MPEG-DASH enables CDN virtualization, where cache nodes are 49 

virtualized and be placed in datacenters (DC) (see use case in [7] ). 50 

Virtualizing caching capabilities facilitates rapid distribution and/or 51 

scaling of cache nodes in a cost-efficient and scalable manner. For 52 

instance, as a result of using MPEG-DASH for delivery, multimedia 53 

contents can be served by HTTP servers. Another cache component 54 

must be in charge of generating DASH segments in several qual- 55 

ities and the related MPD files. However, the component that re- 56 

quires more computational effort is video transcoding / transrating, 57 

although it can be implemented in software and performed in real- 58 

time (see [11] for available software implementations). 59 

To reduce traffic in the core network, cache nodes can be placed 60 

as close as possible to the end users. Authors in [12] presented a 61 

configurable, efficient and transparent in-network caching service 62 

to improve the VoD distribution efficiency by caching video con- 63 

tents as close to the end-user as possible. The solution leverages 64 

SDN technology improve network utilization and increasing the 65 

Quality of Experience for the end-user. Related to this, authors in 66 

[13] proposed a hierarchical telecom CDN and a caching algorithm 67 

to decide which objects to cache and a cache collaboration strategy 68 

to determine how cacheable items are propagated throughout the 69 

telecom CDN. In [14] authors studied the performance of distribut- 70 

ing caches and the impact of its size and the cache update logic for 71 

VoD services, e.g. catch-up programs and movies. They concluded 72 

that placing caches in the aggregation network improves the per- 73 

centage of requested content found in the cache ( Hit Ratio , HR); 74 

in contrast, placing the cache in the access reduces the amount of 75 

traffic. 76 

Apart from their right placement, cache nodes are typically di- 77 

mensioned for peak demand and therefore, greatly underutilized 78 

at other times. Aiming at elastically adapt the allocated resources 79 

to the current service needs, authors in [15,16] proposed to lever- 80 

age on the resources of cloud providers to increase capacity when 81 

required. 82 

Analyzing video sessions, authors in [17] concluded that a cen- 83 

tralized controller could improve user experience, while authors 84 

in 85 

opt86 

pla87 

con88 

can89 

rith90 

of 91 

the92 

fras93 

con94 

arc95 

96 

ada97 

tho98 

to 99 

100 

for101 

tor102 

tail103 

and104 

ces105 

Dat106 

and107 

13 108 

Am109 

cut110 

dat111 

req112 

dat113 

use114 

which establishes a computing fabric (computation, storage, and 115 

networking resources as well as platforms and processing frame- 116 

works) in which certain transformation applications are executed, 117 

while protecting the privacy and integrity of data. 118 

A telecom company can take advantage of all the above when 119 

deploying its own CDN to provide VoD and live-TV services. In 120 

this paper, we assume the hierarchical CDN architecture presented 121 

in Section 2 that includes: (i) a Big Data CDN Manager that de- 122 

tects opportunities to minimize operational costs and dynamically 123 

serves users from the most proper cache node, while adapting the 124 

CDN to the current load by reconfiguring cache nodes (i.e., scal- 125 

ing them by adding new resources), adding and releasing cache 126 

nodes, and managing connectivity; (ii) the CDN Admission and 127 

Control module responsible for controlling content access and de- 128 

ciding from which cache every user will be served; and (iii) the 129 

virtualized leaf cache node with a number of HTTP servers, pack- 130 

agers, storage and a cache manager. Specifically, the contributions 131 

of this paper are the following: 132 

(1) A Big Data CDN Manager responsible for adapting the CDN 133 

to the current and future load as well as its internal compo- 134 

nents is presented in Section 2 , including: (i) a prediction 135 

module to forecast likely scenarios; (ii) a decision maker 136 

module to select the most appropriate reconfiguration; and 137 

(iii) an optimizer in charge of computing the optimal config- 138 

uration of the CDN. 139 

(2) To facilitate CDN optimization, three incremental optimiza- 140 

tion problems are proposed in Section 3 ; (i) single cache 141 

node optimization; (ii) users re-allocation among caches 142 

and connectivity re-configuration; and (iii) global CDN re- 143 

configuration. Integer Linear Program (ILP) formulations are 144 

proposed and heuristic algorithms to solve the problems in 145 

real time are devised. 146 

(3) Section 4 targets at making decisions from collected data: 147 

(i) data stream mining sketches conveniently summarize col- 148 

lected data into model ed data; (ii) a prediction module 149 

based on machine learning techniques predicts likely sce- 150 

51 

52 

53 

54 

ula 55 
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Nod 60 
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dis 69 

Pl

ht
[18] introduced presented a centralized algorithm for live video 

imization providing real-time, fine-grained control. In addition, 

cing new cache nodes to accommodate spikes in demand and 

solidate workload in few cache nodes when the load decreases 

 also bring benefits. Apart from classical optimization algo- 

ms on conventional content distribution problems, the usage 

cloud resources offers a new dimension for optimization that is 

 IT resource cost (i.e., storage, CPU, etc.) Commercial cloud in- 

tructure for CDN deployment was reported in [19] . While the 

cept is applicable to the idea of virtualized CDN, the proposed 

hitecture does not fit to network operator scenarios. 

Regarding the interconnection network, connection capacity 

ptation is not trivial when it is based on optical technology. Au- 

rs in [20,21] proposed a cross-stratum orchestrator architecture 

coordinate DC and network elastically. 

To detect when resources have to be added or released, the per- 

mance and load of cache nodes need to be monitored. Moni- 

ing a variety of network elements, servers and applications en- 

s collecting huge volumes of data that needs to be transferred 

 stored assessing validity , as well as being analyzed and pro- 

sed fast to achieve near real-time performance. Therefore, Big 

a techniques for data collection, pre-processing, and analysis 

 visualization should be applied. In [22] , the ITU-T Study Group 
proposes a classification of the roles in a Big Data ecosystem. 

ong the identified roles, the Big Data application provider exe- 

es a specific set of data life-cycle to meet the requirements of 

a analysis and visualization as well as the security and privacy 

uirements. It utilizes the resources from a cloud provider for 

a analysis and provides analysis result to the Big Data service 

r. Another role is that of the Big Data infrastructure provider , 

tho 70 

use 71 

72 

com

DC

stre

The
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narios; and (iii) a simple decision maker module based on 1

threshold violations triggers the most appropriate optimiza- 1

tion problem. 1

The discussion is supported by the results from exhaustive sim- 1

tion over a realistic scenario in Section 5 . 1

Telecom CDN 1

 CDN architecture 1

A virtualized hierarchical CDN infrastructure can be deployed 1

the telecom cloud with some (few) central Intermediate Cache 1

es receiving contents from several sources and a number of Leaf 1

he Nodes placed close to end users ( Fig. 1 ). A centralized CDN 1

ission and Control module implements CDN access policies and 1

irects users’ requests, e.g., based on their geographical location, 1

the (intermediate or leaf) cache node that will serve them. 1

Intermediate cache nodes and leaf cache nodes distribute two 1

ds of contents: VoD and live-TV. VoD contents are prepared in 1

ermediate cache nodes and stored in leaf caches based on its 1

ularity (see e.g., [13] ). Nonetheless, in line with [23] , live-TV is 1

tributed from intermediate cache nodes and locally prepared in 1

se leaf cache nodes delivering every specific TV channel to the 1

rs. 1

A virtualized leaf cache node would consist of the following 1
ponents running as software inside VMs deployed in the same 173 

. The packager is in charge of live-TV preparation, including 174 

am transcoding/ transrating, segmentation and MPD generation. 175 

 HTTP server component serves end users’ segment requests. 176 

tion in the telecom cloud, Computer Communications (2016), 
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The Cache Manager is the entry point of the cache node; it receiv

users’ requests, identifies which contents will be locally stored, a

redirects users’ requests to the appropriate HTTP server. Each com

ponent usually consists of a pool of resources for load balanci

and redundancy purposes. 

We assume that the location for all intermediate cache nod

and those for leaf cache nodes distributing both, VoD and liv

TV contents were selected during a pre-planning phase, based 

the available connectivity, covered population, etc. Notwithstan

ing, the amount of resources in every resource pool can be d

namically adapted as a function of the load. In addition, new le
Please cite this article as: M. Ruiz et al., Big Data-backed video dis
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g the Big Data CDN Manager. 

cache nodes to deliver specific live-TV contents can be dynamica

created and released in response to spikes in demand, e.g. a spo

event. 

2.2. Big Data CDN Manager 

A CDN manager is responsible for adapting the CDN to the cu

rent and future load. However, an architecture supporting the CD

manager is needed to control virtualized components and da

collection and pre-processing functionalities. Fig. 2 presents t
tribution in the telecom cloud, Computer Communications (2016), 
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proposed architecture, which is aligned with the ETSI NFV archi- 196 

tectural guidelines [24] . 197 

A Big Data application provider offering Big Data processing to 198 

provide data analysis and visualization is shown on the top. The 199 

architecture of the Big Data infrastructure manager includes a Vir- 200 

tual Infrastructure Manager (VIM) and a Big Data Analytics Engine. 201 

The VIM architecture includes an orchestrator module, which is the 202 

common entry point for services and performs an overall coordi- 203 

nation of cloud and networking resources. The Big Data analytics 204 

engine includes data collection, pre-processing, and storage and 205 

allows applications to monitor and manage allocated resources, 206 

while protecting the privacy and integrity of data. Each comput- 207 

ing, network, and application node generates logging records that 208 

are collected and sent to one of multiple instances of the ana- 209 

lytics node, which collate and store the information in a hori- 210 

zontally scalable database. Hence, the performance and load of a 211 

CDN can be monitored to elastically adapt its resources to cur- 212 

rent service needs. Data collected from the Big Data infrastructure 213 

manager is analyzed using services from the Big Data application 214 

provider. 215 

A configuration manager is in charge of interfacing the VIM 216 

to request and release resources and of properly configuring each 217 

cache node. A more detailed view of the proposed CDN manager 218 

is presented in Fig. 3 . After processing collected data from the 219 

analytics engine, it can be used to predict likely scenarios, thus 220 

anticipating future demand load distribution. A prediction module 221 

(PROMPTER) based on machine learning and time series model ing 222 

is proposed to that end. 223 

224 

min225 

sur226 

opt227 

tim228 

est229 

the230 

loc231 

bet232 

Nod233 

dow234 

Analyzing current and predicted load distribution, a decision 235 

maker module (TUNER) is responsible of triggering the most 236 

appropriate optimization problem as well as selecting meaningful 237 

input data for its solving. 238 

3. CDN optimization 239 

As anticipated in the previous section, we face the CDN 240 

optimization problem by dividing it into three sub-problems. 241 

The CHOIR problem performs a global CDN optimization by re- 242 

dimensioning existing leaf cache nodes and creating and releasing 243 

leaf cache nodes to deliver live-TV according to the load, while en- 244 

suring that end users are served with the highest video quality. In 245 

addition, the CHOIR problem decides the connectivity needed be- 246 

tween intermediate and leaf cache nodes and between leaf caches 247 

and metro areas. 248 

For the sake of simplicity, we configure each cache component 249 

as follows: (i) a different VM flavor is defined for cache managers, 250 

packagers, and HTTP servers; (ii) two cache managers are config- 251 

ured in each cache for load balancing and redundancy purposes; 252 

(iii) every packager works on a single live-TV channel; (iv) every 253 

HTTP server in the pool can serve any content. Cache managers 254 

use a round-robin policy to select the server for every incoming 255 

request; (v) the size of the storage is preconfigured according to 256 

the target HR . 257 

Globally optimizing the CDN might entail a large number of re- 258 

configurations. However, in some situations just reallocating users 259 
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ht
Based on current and future load, the CDN can be optimized to 

imize total costs while serving contents to the end users en- 

ing the highest Quality of Service (QoS) level. To that aim, three 

imization problems have been devised: (i) the Global CDN Op- 

ization (CHOIR) problem targets at serving users with the high- 

 QoS level from leaf cache nodes with the minimum cost; (ii) 

 CDN User Reallocation (CDN_USHER) problem focuses on real- 

ating users among leaf cache nodes, just updating connections 

ween cache nodes and metro areas; and (iii) the Leaf Cache 

e Optimizer (CHORISTER) problem that scales a cache node 

n. 
ser

ease cite this article as: M. Ruiz et al., Big Data-backed video distribu
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ween cache nodes will balance load of cache nodes, thus re- 2

ing the load of those running close to its currently allocated 2

acity. For this very reason, we propose the CDN_USHER prob- 2

 that performs such reallocations, managing the connectivity 2

ween leaf cache nodes and metro areas. In addition, the CHO- 2

TER problem focuses on releasing unused resources of a given 2

he node. HTTP servers are the only component which load re- 2

 varies as a function of the number of users being served. How- 2

r, the limiting factor is not the CPU but the use of bandwidth, 2

we use that parameter to decide whether the number of HTTP 2
vers could be reduced. 270 

tion in the telecom cloud, Computer Communications (2016), 
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3.1. Global CDN optimization (CHOIR) problem 271 

The problem can be formally stated as follows: 272 

Given: 273 

• A set IC of intermediate cache nodes. 274 

• A set of cache node types: { void, TV , VoD + TV }. 275 

• A set LC of locations where leaf cache nodes are deployed and 276 

the allowable cache node types. 277 

• A set A of metro areas with users consuming contents. 278 

• The set O of contents being consumed. Contents include VoD 279 

and live-TV channels. 280 

• A set U of user groups. Each group u contains all users inside a 281 

metro area that are currently playing a specific content with a 282 

specific device. 283 

Output: 284 

• Configuration of every l ∈ LC , including creating or releasing leaf 285 

cache nodes, 286 

• Assignment ( u , l ) for every u ∈ U , 287 

• Connections to be created/released/reconfigured. 288 

Objective: Minimize the CDN cost from setting up resources in 289 

leaf caches and the needed connections. 290 

The following sets and parameters have been defined: 291 

IC set of intermediate caches, index i 292 

LC set of leaf cache locations, index l 293 

294 

295 

296 

297 

 a 298 

299 

 300 

301 

302 

303 

304 

 l 305 

306 

 is 307 

s 308 

309 

i 310 

ed 311 

p- 312 

313 

eo 314 

315 

te 316 

317 

318 

/s, 319 

320 

321 

322 

323 

324 

m 325 

326 

327 

328 

h- 329 

330 

rs 331 

332 

y ol binary, 1 if content o is required at leaf cache location l ; 333 

0 otherwise 334 

y oil binary, 1 if content o in leaf cache location l is provided 335 

from intermediate cache node i ; 0 otherwise 336 

w e non-negative integer with the number of connections 337 

supporting link e 338 

z l 
+ binary, 1 if leaf cache node l is created; 0 otherwise 339 

z l 
− binary, 1 if leaf cache node l is released; 0 otherwise 340 

The formulation of the CHOIR problem is as follows: 341 

min 

∑ 

l∈ LC 

( 

c HT T P · x l + 

∑ 

o∈ O TV 

c T V · y ol + c l ·
(
z + 

l 
− z −

l 

)) 

+ 

∑ 

e ∈ E 
c e · w e 

(1) 

subject to: 342 ∑ 

l∈ LC 

δul · x ul = 1 ∀ u ∈ U (2) 

343 
x l ≥

∑ 

u ∈ U 
h u · x ul ∀ l ∈ LC (3) 

344 

y ol ≤ δol ∀ l ∈ LC, o ∈ O (4) 

345 ∑ 

u ∈ U 
δuo · x ul ≤ | U | · y ol ∀ l ∈ LC , o ∈ O (5) 

346 

6) 

347 

7) 

348 

8) 

349 

9) 

350 

0) 

351 

1) 

352 

2) 

353 

3) 

ng 354 

s. 355 

ed 356 

- 357 

n- 358 

ed 359 

v- 360 

ed 361 

s- 362 

n- 363 

e- 364 

365 

e- 366 

e- 367 

n- 368 
U set of user groups, index u 

A set of metro areas, index a 

O set of contents, index o 

O TV subset of O with live-TV contents 

E set of links, index e . Each link can be supported by

number of individual connections 

E IC-LC subset of links connecting intermediate to leaf caches

E LC-A subset of links connecting leaf caches to metro areas 

δoi 1 if content o is available in intermediate cache i 

δuo 1 if user group u requests content o 

δua 1 if user group u is in metro area a 

δl 1 if a leaf cache node is currently installed in location

γ l 1 if a leaf cache node in location l can be released 

δul 1 if user group u can be served from location l . This

computed based on transmission delay and policy rule

δol 1 if content o can be served from location l 

δil 1 if location l can be served from intermediate cache 

h u fraction of HTTP server in terms of bandwidth requir

to serve user group u with the best video quality su

ported by their device 

b u bitrate needed to serve user group u with the best vid

quality supported by their device 

b oil bitrate needed to convey content o from intermedia

cache i to leaf cache l 

hr l hit ratio of leaf cache node l , e.g. 70% 

b e bitrate of each connection supporting link e , e.g. 1 Gb

10 Gb/s, etc. 

max l maximum amount of VMs available in leaf cache l 

max e maximum capacity of link e 

c HTTP cost per HTTP server to be allocated 

c TV cost per packager component to be allocated 

c l fixed cost for creating a new leaf cache, coming fro

VMs for cache managers, storage, and connections 

c e cost per connection supporting link e 

The decision variables are as follows: 

x ul binary, 1 if user group u is served from location l ; 0 ot

erwise 

x l non-negative integer with the number of HTTP serve
to be configured in location l he 369 
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∑ 

i ∈ IC 
δil · δoi · y oil ≥ y ol ∀ l ∈ LC, o ∈ O (

∑ 

i ∈ IC 
y oil ≤ 1 ∀ l ∈ LC, o ∈ O (

ma x l · z + 
l 

≥ (1 − δl ) · x l ∀ l ∈ LC (

x l + 

∑ 

o∈ O TV 

y ol + 2 · z + 
l 

≤ (1 − z −
l 
) · ma x l ∀ l ∈ LC (

z −
l 

≤ δl · γl ∀ l ∈ LC (1

b e · w e ≥
∑ 

o∈ O TV 

b oil · y oil + 

∑ 

o∈ O \ O TV 

(1 − h r l ) · b oil · y oil 

∀ e ∈ E IC−LC , i = IC(e ) , l = LC ( e ) (1

b e · w e ≥
∑ 

u ∈ U 
δua · b u · x ul ∀ e ∈ E LC−A , a = A (e ) , l = LC ( e ) (1

b e · w e ≤ ma x e ∀ e ∈ E (1

The objective function ( 1 ) minimizes the CDN cost from setti

up resources in leaf cache nodes and from the needed connection

Constraint ( 2 ) guarantees that every user group will be serv

from one leaf cache location. Constraint ( 3 ) accounts for the num

ber of HTTP servers that need to be set up in each location. Co

straint ( 4 ) ensures that each cache location contains only allow

contents, e.g. it prevents from creating new leaf cache nodes ser

ing VoD contents. Constraint ( 5 ) computes the contents requir

at each leaf cache location and, for each of them, constraint ( 6 ) a

signs as source an intermediate cache node containing that co

tent. Constraint ( 7 ) ensures that only one content source is s

lected. 

Constraints ( 8 )–( 10 ) decide whether a leaf cache node is cr

ated or released. Constraint ( 8 ) computes whether a cache is cr

ated. Constraint ( 9 ) guarantees that the number of VMs to be co

figured in l does not exceeds a given maximum and releases t
tribution in the telecom cloud, Computer Communications (2016), 
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Table 1 

CHOIR heuristic algorithm. 

1: bestS ← ∅ 
2: for i = 1.. maxIter do 

3: ResetResources(); S ← ∅ 
4: sort U VoD and U TV randomly 

5: U ← concatenate( U VoD , U TV ) 

6: for each u in U do 

7: l ∗ ← 0; cost ← ∞ 

8: for each l in LC do 

9: if δul = 0 then continue 

10: if ComputeCost( u , l ) < cost then 

11: l ∗← l; cost ← ComputeCost( u , l ) 

12: if l ∗ = 0 then return INFEASIBLE 

13: S ← S U {( u , l ∗)} 

14: UpdateResources ( u , l ∗) 

15: RemoveUnusedResources() 

16: if evaluate ( S ) < evaluate ( bestS ) then bestS ← S 

17: return bestS 

he if no VMs are configured, while constraint ( 10 ) ensures that 

y designated cache nodes can be released. 

Constraints ( 11 )–( 13 ) deal with the capacity of the interconnec- 

 network. Constraint ( 11 ) computes the amount of connections 

support links between intermediate and leaf cache nodes and 

straint ( 12 ) computes those for the links between leaf cache 

es and metro areas. Finally, constraint ( 13 ) guarantees that the 

uested bitrate for every link does not exceed a given maximum. 

Note that different solutions can be obtained depending on the 

ues for parameters max l and max e . Those parameters provide 

erentiated limits for every l and every e and need to be fixed 

ry time the problem is to be solved; values can be obtained 

m the VIM to reflect the current resource availability, technol- 

 constraints, as well as operator policies. For instance, an op- 

tor might want to guarantee that maximum capacity of links 

necting intermediate to leaf caches is 10 Gb/s, whereas that of 

 links connecting leaf caches to metro areas is 1 Gb/s, as a result 

echnology constraints. Moreover, the operator can also partition 

ources and reserve some amount of servers for the CDN service, 

ile the rest of the servers are reserved for other services in its 

tfolio. 

The CHOIR problem can be considered NP-hard since it is 

ed on the unsplittable capacitated assignment problem that has 

n proved to be NP-hard [25] . Regarding its size, it entails 

 LC | ·(| U | + | O | ·| IC |) + | E |) variables and O(| U | + | O | ·| LC | + | E |) con- 

ints. As an example, taking into account the instances pre- 

ted in Section 5 , the problem size raises to 7 ·10 6 variables and 

0 4 constraints. 

Since the CHOIR problem needs to be solved on-line, its exact 

ution is impractical. As a result, we propose the heuristic algo- 

m in Table 1 to obtain near optimal solutions in short computa- 

 times (e.g., hundreds of ms). The algorithm is an iterative ran- 

ized procedure that builds a solution by assigning user groups 

cache locations and computing the cost of using and increasing 

 releasing) cache and network resources. At each iteration, user 

ups are randomly sorted and assigned to a cache location with 

 minimum cost. After processing all users, unused resources are 

oved (if allowed) and the cost of the solution is computed. The 

t solution is returned upon exiting the algorithm. 

. CDN user reallocation (CDN_USHER) 

The problem can be formally stated as: 

Given: 

A set LC of locations where leaf caches are currently deployed. 

A set O of contents currently being served. 

A set A of metro areas with users consuming contents. 
ease cite this article as: M. Ruiz et al., Big Data-backed video distribu
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A set U of user groups. Each group u contains all users inside a 4

metro area that are currently playing a specific content with a 4

specific device. 4

Output: 4

Assignment ( u , l ) for every u ∈ U , 4

Connections to be created/released/reconfigured. 4

Objective: Minimize the cost from the new connections to be 4

ablished and the total number of users reallocated. 4

The following sets and parameters have been (re)defined: 4

1 if user group u can be served from location l . The def- 4

inition has been extended to cover also whether the con- 4

tents requested by user group u are available at l 4

 

1 if user group u is currently being served from l 4

current number of HTTP servers running in location l 4

current number of connections supporting link e 4

cost of reallocating user group u . Based on its size and 4

other policies 4

A new decision variable is defined: 4

binary, 1 if user group u is reallocated; 0 otherwise 4

The ILP formulation is as follows: 4

n 

∑ 

e ∈ E LC−A 

c e · ( w e − g e ) + 

∑ 

u ∈ U 
c u · x u (14) 

ject to: 4

 

 

δul · x ul = 1 ∀ u ∈ U (15) 

4
 

 U 

h u · x ul ≤ h l ∀ l ∈ LC (16) 

4

 u ≥ x ul − γul ∀ u ∈ U, l ∈ LC (17) 

4

 e · w e ≥
∑ 

u ∈ U 
δua · b u · x ul ∀ e ∈ E LC−A , a = A (e ) , l = LC ( e ) (18) 

4

w e ≤ ma x e ∀ e ∈ E LC−A (19) 

The objective function ( 14 ) minimizes the cost of establishing 4

 connections and reallocating users. 4

Constraint ( 15 ) guarantees that every user group will be served 4

m one leaf cache location. Constraint ( 16 ) limits the demand 4

ved in each location to the capacity currently installed in each 4

ation. Constraint ( 17 ) stores whether a user group has been re- 4

cated. Constraints ( 18 ) and ( 19 ) deal with the capacity of the 4

s between leaf cache nodes and metro areas. Constraint ( 18 ) 4

putes the amount of connections supporting each link and 4

straint ( 19 ) assures that the requested bitrate does not exceed 4

iven maximum. 4

Note that after solving the CDN_USHER problem, a post-process 4

 scaling down (see the CHORISTER problem), and even releasing, 4

f caches is needed. 4

Similarly as for the CHOIR problem, the CDN_USHER prob- 4

 can be considered NP-hard since it is based on the unsplit- 4

le capacitated assignment problem. The size of the problem is 4

 U | ·| LC | + | E LC-A |) variables and O(| U | ·| LC | + | E LC-A |) constraints. The 4

blem size r ises to 7 ·10 6 for both, variables and constraints, 4

reby making impractical its exact solution. Thus, aiming at 4

aining near optimal solutions in short computation times, a 4

ristic algorithm similar to that presented in Table 1 , with the 4

cific constraints of this problem, was developed; specifically, re- 4

rces updating in lines 14 and 15 in Table 1 are constrained to 4

work connections in the CDN_USHER problem. 4
tion in the telecom cloud, Computer Communications (2016), 
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3.3. Leaf cache node optimizer (CHORISTER) 465 

The CHORISTER problem can be formally stated as: 466 

Given: 467 

• The current size of the HTTP servers’ pool ( s cur ) and its current 468 

bandwidth utilization k cur (in %). 469 

• A target bandwidth utilization ( th l ), e.g. 60%. 470 

Output: 471 

• Target size ( s tgt ) of the HTTP servers’ pool. 472 

Objective: Minimize the size of the HTTP servers’ pool. 473 

The CHORISTER problem can be solved using Eq. (20) . 474 

s tgt = 

⌈
s cur · k cur 

t h l 

⌉
(20) 

4. Collecting data and making decisions 475 

li- 476 

nt 477 

N 478 

i- 479 
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A 481 
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re, 488 
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- 490 
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in 506 

er 507 

es 508 

 • ) ). 509 

of 510 

m 511 

e 512 

in 513 

ds 514 

le 515 

ER 516 

517 

n- 518 

el- 519 
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ng 521 

to 522 

e- 523 

ta 524 

es. 525 

e- 526 

on 527 
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ta 529 

e- 530 

le , 531 
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e 533 

534 

ry 535 
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e- 541 
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c- 545 

er 546 

ey 547 

to 548 

549 

se 550 

es. 551 

la- 552 

lv- 553 

554 

1) 

 is 555 

on 556 

ti- 557 

ta 558 

559 

at 560 

is 561 

ng 562 

ly 563 

r- 564 

er, 565 

es. 566 

i- 567 

 1 568 

ns 569 
As previously introduced, each computing, network, and app

cation node generates monitoring data that are collected and se

to the analytics engine. To preserve privacy, however, the CD

manager can only access data related to the CDN service. Mon

tored variables include: (i) bandwidth utilization of HTTP serve

and links in E LC-A , generated from network nodes; and (ii) 

video quality metric generated by cache managers that measur

whether the video quality provided to users from each cache no

is the one requested. 

Following a predefined time period, e.g. every minute, the CD

manager collects monitored data from the analytics engine. A tim

series is retrieved for each monitored point and average values a

stored using the Big Data Application Provider facilities. Therefo

up to 60 consecutive observations are available every hour for ea

collected variable. Data stream mining sketches conveniently sum

marize collected data from every monitored point into model

data representing the current state of a cache node. The followi

model ed variables have been defined: 

q l 
min minimum average video quality metric provided to use

by cache node l ∈ LC 

q l 
cur current average video quality metric provided to users 

cache node l ∈ LC 

k l 
max maximum average bandwidth utilization (in %) of inte

faces in VMs running HTTP servers in cache l 

k l 
cur current average bandwidth utilization (in %) of interfac

in VMs running HTTP servers in cache l 

k e 
max maximum average bandwidth utilization (in %) of li

e ∈ E LC-A 

k e 
cur current average bandwidth utilization (in %) of li

e ∈ E LC-A 

To select which of the optimization problems defined 

Section 3 needs to be solved, we propose a simple decision mak

module (TUNER) based on threshold violations. TUNER compar

the evolution of model ed variables against a low threshold ( th (
In brief, the CDN-USHER problem is solved to reassign groups 

users in the case that the quality of the video being served fro

some cache nodes starts degrading, whereas the capacity of som

other cache nodes is underutilized. In the case that a more 

depth CDN reconfiguration is needed, the CHOIR problem nee

to be solved. Finally, the CHORISTER problem is solved to sca

underutilized cache nodes down. Table 2 summarizes the TUN

algorithm. 

An important decision to be made is regarding the values of i

put data to solve the optimization problems. This is specifically r

evant for user load, i.e. parameter h u . When input data estimati

is based on the observations in the collected data, we are maki
Please cite this article as: M. Ruiz et al., Big Data-backed video dis
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Table 2 

Tuner decision algorithm. 

1: Underu L , Underu E ← false 

2: for each l in LC do 

3: if s tgt < s cur then Underu L ← true 

4: for each e in E LC-A do 

5: if k e 
max < th e then Underu E ← true 

6: for each l in LC do 

7: if q l 
min < th q AND ( Underu L OR Underu E ) then 

8: if CDN_USHER ( input data ) = FEASIBLE then 

9: return 

10: for each l in LC do 

11: if q l 
min < th q then 

12: CHOIR ( input data ); return 

13: for each l in LC do 

14: if s tgt < s cur then CHORISTER ( input data ) 

decisions following a reactive strategy , trying to update the CDN 

changes in the demand after those changes have actually been d

tected ( Fig. 4 , top). Nonetheless, some prediction in the input da

estimation could be introduced trying to anticipate those chang

To that end, the predictive strategy ( Fig. 4 , bottom) includes a pr

diction module, named as PROMPTER, able to produce estimati

of future scenarios. The PROMPTER module estimates the value 

model ed variables for the next period as well as other input da

needed for solving optimization problems (e.g., h u values). We r

fer to any of those variables to be estimated as a response variab

and will be in general denoted by Y . For such prediction, we u

a methodology that combines statistical linear regression and tim

series prediction based on machine learning techniques [26] . 

Let us denote Y ( t ) as the value of Y at time t . m explanato

variables , denoted as X i ( t ), are defined for each t , where each X i

can be deterministically and independently computed from the r

sponse variable. Three explanatory variables are considered in th

work: (i) the time of the day ( X 1 ), (ii) the capacity of the curre

CDN resources in terms of the potential amount of users that cou

be served ( X 2 ), and (iii) a popularity measure of the available liv

TV and VoD contents at t , computed from historic audience ratin

It is worth noting that these explanatory variables are strongly co

related to response variables. For instance, if the popularity of co

tents is expected to be high at prime time but the potential capa

ity of CDN is limited, then it is likely that a large expected numb

of users will be accessing to those contents and, consequently, th

will experience poor video quality (i.e., low q l 
min and q l 

cur ) due 

over utilized CDN resources (i.e., high k l 
max and k l 

cur ). 

Starting from an initial data set with collected data for respon

and explanatory variables, the methodology consists of two phas

Response variables are first transformed to eliminate their corre

tion to explanatory variables; Y ( t ) is transformed into Z ( t ) by so

ing the multivariate linear model: 

Z ( t ) = Y ( t ) −
∑ 

i =1 ..m 

βi · X i ( t ) (2

where β i represents the coefficient of variable X i . Note that Z ( t )

the error of estimating Y ( t ) with the linear model depending 

X i ( t ) variables. The optimal values of β i coefficients can be es

mated by ordinary least squares fitting applied to the initial da

set. 

Eq. (21) predicts Y ( t ) from explanatory variables observed 

time t ; however, the effect of past periods is not collected in th

model. For this very reason, a second phase consisting in model i

variable Z ( t ) based on previous observations is needed. We app

an Artificial Neural Network (ANN) model [27] due to its inhe

ent capability of adapting to changes in a non-supervised mann

in contrast to auto-regressive models to fit continuous time seri

Assuming an ANN with one hidden layer, the notation p : s : 1 ind

cates an ANN with p inputs, s neurons in the hidden layer, and

output. In our model, the inputs represent the last p observatio
tribution in the telecom cloud, Computer Communications (2016), 
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Fig. 4. From collected da

Fig. 5. Telefonica’s scenario with five regions. Deta

ore observation in t , i.e., Z ( t −p ),…, Z ( t −1), whist the output re- 

ns the observation Z ( t ). The Levenberg –Marquardt backpropaga- 

 algorithm [27] can be applied for training the ANN from the 

ial data set. Hence, predicting Y ( t + 1) from current and stored 

ervations is made by first estimating Z ( t + 1) from previous ob- 

vations using the ANN model and second transforming Z ( t + 1) 

o Y ( t + 1) using Eq. (21) . 

Once models have been obtained, refitting is applied to adapt 

dels to changes in explanatory variables. To that end, the rela- 

 error between predictions and real observations is monitored 

 models are refitted when a threshold (e.g., 10%) is reached. A 

d sliding window allows limiting fitting to new observations. 

Finally, note that the TUNER module for the predictive strategy 

eives two values for each model ed variable (e.g., q l 
min ( t ) and 

in ( t + 1)) ( Fig. 4 ). In that regard, we use the value that would 

ult in the best service. 

Simulation results 

This section presents exhaustive simulation results evaluating 

 proposed CDN architecture and management algorithms over 
ease cite this article as: M. Ruiz et al., Big Data-backed video distribu

tp://dx.doi.org/10.1016/j.comcom.2016.03.026 
making decisions. 

regional nodes in Catalonia –Aragon region. 

 realistic scenario 180-node Telefonica’s optical national net- 5

rk, with 5 regional 30-node domains connected through an ex- 5

ss 30-node core network. We assume a telecom cloud, where 5

all datacenters are deployed in each node location with re- 5

rces available to deploy leaf cache nodes. Two leaf cache nodes 5

 region have been deployed providing both live-TV and VoD ser- 5

es ( Fig. 5 ). In addition, new leaf cache nodes can be deployed on 5

and on any regional location to serve exclusively live-TV con- 5

ts. 5

We assume a video distribution service with 50 0,0 0 0 sub- 5

ibers geographically distributed among 150 metro areas, i.e., 5

h area is connected to a regional node. 35 national and 15 re- 6

nal TV channels are available per region with live and VoD con- 6

ts. In line with recent studies [28] , we assume a contents share 6

65% for live and 35% for VoD contents. 6

Realistic time-varying demand is generated following a uni- 6

m random distribution centered on a typical hourly pattern 6

h three demand peaks at morning, afternoon, and evening. Hot 6

nts targeting potential audience ranging from 40% to 80% sub- 6

ibers are additionally generated with an inter-arrival time fol- 6

ing a Poisson random distribution. VoD contents are requested 6
tion in the telecom cloud, Computer Communications (2016), 
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Fig. 6. Results vs. of hour of the day: served video quality metric (a), number of HTTP servers (b), and total bandwidth (c). 

Table 3 

Adoption scenarios for the years to come (%). 

Quality (Mb/s) 2016 2017 2018 2019 

SD (2.1) 28 .6 22 .0 13 .6 7 .0 

HD ( 4) 38 .6 34 .3 28 .2 23 .7 

Full HD ( 10) 27 .1 37 .7 42 .3 47 .3 

4 K UHD (25) 5 .7 6 .0 15 .9 22 .0 

according to a popularity metric following the model in [29] ; after 610 

a period of time, e.g. 10 days, contents are taken off the service. 611 

Table 3 summarizes the considered video qualities adoption 612 

scenarios for the years to come, based on [3] ; total bandwidth in 613 

the network can be easily computed by multiplying the number 614 

of active users and the average bitrate for every adoption scenario. 615 

The quality actually served to users can be reduced up to 2 levels 616 

(e.g., from 4 K to Full HD or even to HD) in case that not enough 617 

resources (HTTP servers) are available in a cache. We define the 618 

video quality metric using a three-level scale: a value of 3 is ob- 619 

tained when the served video quality equals the one requested, a 620 

value of 2 when the video quality is degraded to the immediately 621 

lower quality, etc. 622 

in 623 

ve 624 

s- 625 

N 626 

d- 627 

a- 628 

ge 629 

630 

ed 631 

he 632 

at 633 

al- 634 

re 635 

tic 636 

nd 637 

a- 638 

es 639 

640 

in 641 

es, 642 

N 643 

is off-line planned and two leaf cache nodes per regional domain 644 

are deployed with a configuration, in terms of number of packagers 645 

and HTTP servers, to ensure enough video quality. 646 

Let us first assume that leaf caches can be scaled 647 

adding/removing HTTP servers, but no new cache nodes can 648 

be created. We also assume that physical machines in the DCs are 649 

equipped with a 10 Gb/s network interface and the VM flavor for 650 

HTTP servers define a 10 Gb/s network interface; thus, one single 651 

VM instance can be placed per server. 652 

Initial datasets to train prediction models were obtained by 653 

simulation and concluded that ANNs with 5 inputs and 10 neurons 654 

provide a goodness-of-fit higher than 95% for all response vari- 655 

ables. Graphs in Fig. 6 plot CDN performance metrics as a function 656 

of the hour of the day for the 2016 scenario. Specifically, Fig. 6 a 657 

plots the video quality metric under the different strategies under 658 

study; the number of users is also included for reference. When 659 

the load is under some value, all three strategies provide the best 660 

video quality metric value, i.e., the served video quality equals the 661 

one requested. However, when the load goes beyond some point, 662 

video quality metric values decrease; the best video quality met- 663 

ric is provided by the static strategy, while the reactive strategy 664 

provides the worst one. Interestingly, the predictive strategy per- 665 

forms better that the reactive one. In fact, the effectiveness of 666 

he 667 

ic- 668 

ric 669 
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ge 671 

ve 672 

by 673 
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ng 676 
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he 678 

60 679 
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he 681 
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We implemented a simulator in Matlab with the following ma

elements: (i) a user demand generator following the model abo

described; (ii) a CDN monitor that evaluates the state of the sy

tem and provides collected data to the CDN manager; (iii) the CD

manager including the data collector, TUNER and PROMPTER mo

ules, as well as the algorithms for solving the proposed optimiz

tion problems; and (iv) the Big Data application provider in char

of processing collected into model ed data. 

The ILP formulations presented in Section 3 were implement

using the CPLEX’s Matlab API and integrated in the simulator. T

performance of the proposed heuristics was compare against th

of solving the ILPs in terms of quality of the solutions (optim

ity gap was set to 1%) and computation time. After solving mo

than one hundred problem instances, we concluded that heuris

provides quasi-optimal solutions with a gap between heuristic a

ILP solutions as low as 0.5% in the worst case. Regarding comput

tion time, solving the ILPs took more than 2 h for some instanc

compared to 1 s in the case of the heuristic. 

Besides the reactive and predictive strategies introduced 

Section 4 , a static strategy is also defined for comparison purpos

where cache and network resources are statically configured; CD
Please cite this article as: M. Ruiz et al., Big Data-backed video dis
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the PROMPTER module is validated since it allows improving t

served video quality metric up to 45% with respect to the pred

tive strategy. This is as a result of anticipating video quality met

degradation and scaling the CDN accordingly. 

Fig. 6 b focuses on the number of active HTTP servers; avera

and maximum values are plotted for reactive and predicti

strategies. In general, the number of HTTP servers allocated 

the predictive strategy is slightly higher on average. Notwit

standing, the maximum number of servers for the highest lo

is requested by the reactive strategy. Aiming at fairly compari

strategies, we computed the area under the plots expressed 

server-hour. The static strategy is dimensioned according to t

maximum number of servers needed by the reactive strategy. 6 9

servers-hour are required under the static strategy in contrast 

1 147 required by the reactive one (a reduction of 83.5%). T

predictive strategy needs 1 593 servers- hour, 39% more than t

reactive. 

Finally, Fig. 6 c presents average and maximum total bandwid

allocated by each strategy. Similarly as for HTTP servers, the rea

tive strategy requires less bandwidth than the predictive one 

average, although peak values are higher for the former. It is no
tribution in the telecom cloud, Computer Communications (2016), 
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Fig. 7. Evolution of number of HTTP servers (a) and total bandwidth (b) for the years to come. Network cost vs. new leaf caches for live-TV (c). 

Table 4 

Number of servers at peak hour. 

1 Gb/s 10 Gb/s 

Average Reactive 70 111 

Predictive 113 154 

Maximum Reactive 286 290 

Predictive 195 245 

clear that adapting CDN resources leads to enormous savings in 688 
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Pl

ht
lly the same video quality metric. 

Aiming at analyzing the impact of the VM flavor network inter- 

e capacity for HTTP servers, we run additional simulations as- 

ing 1 Gb/s interfaces. We assume that each physical server can 

shared by up to 10 of such VM instances. Table 4 summarizes 

 results comparing flavors with 1 Gb/s and 10 Gb/s interfaces. 

 VM flavor with 1 Gb/s interface clearly adds flexibility in the 

 of resources, resulting in savings in the number of required 

sical servers. 

Fig. 7 a and b shows the evolution of average and maximum 

ount of HTTP servers and total bandwidth, respectively for the 

ption scenarios presented in Table 3 . Although on average val- 

 show a quite flat evolution, maximum values increase signif- 

ntly and show different slopes; the relative difference for peak 

ues almost doubles since it increases from 18% to 29% for HTTP 

vers and from 22% to 51% for total bandwidth. Thus, the predic- 

 strategy scales the best. 

Let us now study whether being able to add and release new 

f cache nodes might bring some benefit. These new leaf cache 

es can be added to deliver specific live contents, such as a 

rts event or a concert. Each new leaf node cache is configured 

h the minimum resources required for serving the event, i.e., 

 cache manager, one packager per live-TV channel, and a num- 

 of HTTP servers. Since HTTP servers are required even if the 

nt is served from fixed caches, the only additional costs rely on 

 extra amount of managers and packagers. In contrast, by plac- 

 transcoding closer to end users, the amount of traffic through 

 interconnection network is reduced, thus reducing network 

ts. Note, however, that adding new leaf caches entails creating 

 connections from intermediate caches to those leaf caches. 

Fig. 7 c plots network costs, computed as used bandwidth per 

, as a result of adding new leaf cache nodes serving specific 

-TV events, for three relative audience sizes with respect to the 

al amount of subscribers. As observed, costs savings range from 
ease cite this article as: M. Ruiz et al., Big Data-backed video distribu

tp://dx.doi.org/10.1016/j.comcom.2016.03.026 
 10%, 20%, and 50% audience sizes, respectively. 7

Concluding remarks 7

A Big Data -backed virtualized CDN architecture to be deployed 7

the telecom cloud has been proposed in this paper. The tele- 7

 CDN consists of a hierarchy of cache nodes: the centralized in- 7

mediate cache nodes receive live-TV channels and prepare VoD 7

tents, whereas the leaf cache nodes, located close to the end 7

rs, manage VoD contents access and adapt live-TV channels to 7

rs’ devices. 7

Media content can be delivered over HTTP by using the stan- 7

dized MPEG-DASH technique and therefore, a virtualized leaf 7

he node would consist of a number of HTTP servers serving live 7

 stored contents to users. In addition, packagers are needed for 7

-TV preparation as well as a cache manager in charge of apply- 7

 caching policies to locally stored VoD contents. All these com- 7

ents can run as software inside VMs deployed in the same DC. 7

A CDN manager is responsible for adapting the CDN function 7

current and future load. The CDN manager needs from an ar- 7

tecture to control virtualized components and data collection 7

 pre-processing functionalities; the proposed architecture fol- 7

s the ETSI NFV guidelines. 7

The CDN manager optimizes the CDN by minimizing total costs, 7

ile ensuring that contents are served with the highest video 7

lity metric level. The optimization problem is divided into: (i) 7

 CHOIR problem that manages resources, i.e. VMs and connec- 7

ty, focused on global CDN optimization and assigns users to leaf 7

he nodes; (ii) the CDN_USHER problem that rebalances the CDN 7

reassigning users to leaf caches, and (iii) the CHORISTER prob- 7

 that optimizes the number of VMs of a given leaf cache. ILP 7

mulations were devised and heuristic algorithms proposed for 7

real time solving. 7

Re-optimization is run based on threshold violations. Data 7

am mining sketches transform collected data into model ed data 7

resenting the state of the CDN. The TUNER module compares 7

rent values against predefined thresholds and decides whether 7

optimization need to be performed, which problem should be 7

ved and the input data for the selected problem. Because up- 7

ing the CDN to changes in the demand after they have occur 7

ht result in quality degradation, the PROMPTER module to pro- 7

e estimation of future scenarios was proposed; it uses statisti- 7

 linear regression and machine learning techniques to estimate 7
tion in the telecom cloud, Computer Communications (2016), 
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Exhaustive simulation results over a realistic scenario showed 767 

that a reduction of 83.5% in the number of allocated HTTP 768 

servers and a similar amount in total bandwidth can be reached 769 

when CDN reconfiguration is performed, while providing equiva- 770 

lent video quality metric to end users. Comparison between the re- 771 

active and the predictive strategies revealed that the reactive strat- 772 

egy uses fewer resources on average but more resources in the 773 

peak than the predictive one. The effect of allowing adding and 774 

releasing new leaf cache nodes was also analyzed; remarkably net- 775 

work costs reduction as high as 33% can be achieved by placing 776 

transcoding close to the end users. 777 
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