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Video streaming methods have evolved greatly over the years. Today, the most prevalent technique to
stream live and video on-demand is the adaptive HTTP streaming and is used by several commercial
vendors. In this paper, we present an approximate analytic model for live adaptive streaming over HTTP.
Using this model, we propose a new rate control algorithm that makes the rate transitions less frequent
and increases the quality of experience for the viewer. Also, the model can be used to characterize the
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1. Introduction

Over the last few years video-based applications, and video
streaming in particular, have become very popular generating
more than half of the aggregate Internet traffic [1]. This has be-
come possible through the gradual development of highly efficient
video compression methods, broadband access technologies, QoS
schemes in the IP network and the development of adaptive video
players. Today, the most popular and cost effective means for video
streaming is adaptive streaming over HTTP. Multimedia content
can now be delivered efficiently in larger segments using HTTP. The
basic idea is to chop a continuous stream into segments, encode
these in multiple qualities and make these available for down-
load using plain HTTP methods. The client video player applica-
tion monitors the download speed and requests chunks of varying
quality in response to changing network conditions. The main ad-
vantage of HTTP based streaming is that the deployed web infras-
tructure is easily reused, even for live segment streaming. In case
of live streaming, the segments are produced periodically; with a
new segment becoming available shortly after it has been recorded
and encoded completely.

Several recent players, such as Microsoft Smooth Streaming, Ap-
ple’s HTTP Live Streaming, Adobe OSMF and Netflix players all
use adaptive streaming over HTTP. However, each implementation
uses formats and proprietary client protocols. Due to the mar-
ket prospects and requests from the industry, adaptive streaming
has been standardized by 3GPP and ISO as MPEG-DASH (Dynamic
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Adaptive Streaming over HTTP) in 2011 [2]. In addition to provid-
ing all benefits of streaming over HTTP, DASH supports live media
services and it is bitrate adaptive.

Different aspects of dynamic adaptive HTTP streaming have
been explored in the literature. The research work done in the area
of adaptive HTTP streaming is mostly focused on the performance
and design of efficient rate control algorithms and the interactions
of HTTP streaming with TCP. However, there is a lack of analytical
models for video streaming traffic over HTTP. Performance model-
ing is necessary for service providers to properly maintain qual-
ity of service (QoS) and it requires accurate traffic models that
have the ability to capture the statistical characteristics of the ac-
tual traffic on the network. Better understanding of the network
through modeling provides the means to make better design deci-
sions. In this paper, we present the first (to the best of our knowl-
edge) analytic model for live adaptive streaming over HTTP. Using
this model, we propose a new rate control algorithm that reduces
the number of rate transitions and increases the quality of experi-
ence for the viewer. The proposed model can also be used to char-
acterize the departure packet process at the video server.

This paper is organized as follows. In Section 2, we summa-
rize the research done in this area. In Section 3, we present our
model and in Section 4 we provide a validation of its accuracy.
In Section 5 we describe a new rate control algorithm based on
the proposed analytic model. Lastly, the summary is presented in
Section 6.

2. Literature review

Different aspects of dynamic adaptive HTTP streaming have
been explored in the literature over the past few years. Several
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performance studies have been conducted to compare various
players that use adaptive HTTP streaming. In [3], Akhshabi et al.
conducted an experimental evaluation of three commercial adap-
tive HTTP streaming players, i.e., Microsoft Smooth streaming,
Netflix and Adobe OSMF player. They noted that all players had
their shortcomings and further research is needed in order to im-
prove the rate adaptation algorithms. A study of the performance
of Adaptive HTTP Streaming over different access networks is pre-
sented in [4]. Muller et al. compared Microsoft Smooth Steaming
(MSS), Adobe HTTP Dynamic Streaming (HTS), and Apple HTTP
Live Streaming (HLS) and DASH in a vehicular environment in [5],
using the client implementations for the proprietary systems and
their own DASH client. In [6], Miller et al. compare MSS client and
their own DASH client in Wireless Local Area Network (WLAN)
environment. In [7], the different delay components in DASH for
live streaming are identified and analyzed. The best performance
in terms of reduced delay is obtained with short media segments
but short segments increase server load. Seufert et al. surveyed the
literature that covers QoE aspects of adaptation dimensions and
strategies in [8]. They reviewed recent developments in the field
of HTTP adaptive streaming (HAS), and existing open standardized
and proprietary solutions.

Several rate adaptation algorithms and optimization strategies
have been proposed in the literature for adaptive video streaming
over HTTP. In [9], Miller et al. presented an algorithm that aims
at avoiding interruptions of playback, maximizing video quality,
minimizing the number of video quality shifts and minimizing
the delay between user’s request and the start of the playback.
Tian and Liu proposed a rate control algorithm [10] that smoothly
increases video rate as the available network bandwidth increases,
and promptly reduces video rate in response to sudden congestion
events. In [11], Bokani et al. consider a Markov Decision Process
(MDP) to derive the optimum segment rate selection strategy
that maximizes streaming quality. Xing et al. [12] also formu-
lated the optimal video streaming process with multiple links
as a Markov Decision Process (MDP). MDP is time consuming
and computationally expensive, and in view of this they also
proposed an adaptive, best-action search algorithm to obtain a
sub-optimal solution. Mansy et al. [13] proposed a technique called
SABRE (Smooth Adaptive Bit RatE), that enables a video client to
smoothly download video segments from the server without caus-
ing significant delays to other traffic sharing the link. In [14], Liu
et al. proposed two new rate adaptation algorithms for the serial
and the parallel segment fetching methods. Jiang et al. proposed
a rate adaptation algorithm called FESTIVE (Fair, Efficient, Stable,
adaptIVE) in [15]. SVC has been shown as better encoding method
for adaptive streaming and several authors have proposed rate
adaptive algorithms for SVC encoded video in [16-18] and [19].

Apart from the research on performance and rate adaptation,
the interactions of HTTP adaptive streaming with TCP has also
been studied in the literature. Different aspects like fairness, TCP
throughput and traffic shaping have been considered. In [20],
Akhshabi et al. described how the competition for available band-
width between multiple adaptive streaming players can lead to
instability, unfairness, and bandwidth underutilization. The authors
identified that once the playback buffer size reaches a certain tar-
get buffer, the player switches to the steady-state during which it
aims to maintain a constant playback buffer size. The player re-
quests one chunk every T seconds (if the download duration is less
than T) or as soon as the previous chunk is received. This leads to
an activity pattern in which the player is either ON, downloading
a chunk, or it is OFF, staying idle. They conducted experiments
with real adaptive streaming players and showed that the three
issues mentioned above i.e., instability, unfairness, and bandwidth
underutilization, can arise in practice. They also showed that
different factors like the duration of ON-OFF periods, the fair

share relative to the available profile bitrates, and the number of
competing players, can affect the stability of the system. Esteban
et al. examined the interactions between HTTP Adaptive Streaming
(HAS) and TCP in [21]. A TCP transfer can be divided into 3
phases, the initial burst, ACK clocking, and trailing ACK phases.
HAS requests are relatively small and a significant portion of the
transmission duration is spent in the initial burst and trailing ACK
phases. The authors note that if the congestion window is large
enough and the data is small enough, the entire transmission
occurs during the initial burst, eliminating the ACK clocking phase.
There is also some research done on modeling different aspects
of adaptive streaming. Wang et al. [22] investigated the relation-
ship between the capacity and responsiveness of HTTP adaptive
streaming under different segment sizes and media encoding rates.
Through experiments, they find that the maximum capacity can be
achieved by choosing different segmentation time intervals specific
to each media encoding rate. Kleinrouweler et al. [23] proposed
an analytical performance model that estimates the rate at which
HAS players switch quality. They have modeled the starting and
stopping players as a Markov process instead of the download of
individual segments. The results show that the model underesti-
mated the average bitrate when compared with experimental runs
using a proxy server. The proxy server can be placed in the gate-
way, or another similar network device between player and server.
At the proxy server, HTTP traffic was monitored to detect start-
ing and stopping players. In [24], Mitra and Swaminathan proposed
a buffer model for the client that uses tunable buffer parameters
such as sizes, thresholds, and rate of flow of data. They analyzed
of the effects of thresholds and rate of movement of data among
and proposed a strategy to design the buffers based on these con-
straints. The model is not applicable to live adaptive streaming.
Chen et al. [25] propose model to predict the time-varying sub-
jective quality (TVSQ) of rate-adaptive videos that are transported
over HTTP. The TVSQ is a time series or temporal record of one or
more viewers’ judgments of the quality of the video as it is being
played and viewed. The accuracy of the model was validated on a
database of four video sequences. The estimated TVSQs can then
be used to guide online rate-adaptation strategies towards maxi-
mizing the QoE of viewers. The results showed that the predicted
TVSQ correlated with the measured TVSQ in subjective studies.

3. The proposed model

In this paper, we propose a novel analytical model for live adap-
tive streaming over HTTP. To the best of our knowledge, this is the
first such analytic model for adaptive video streaming.

The model consists of the following three components:

1. The video server model

2. A queueing network model of the IP network between the
client and server

3. The client video player model

In DASH, HTTP servers and HTTP caches are used to host and
distribute continuous media content and the clients can access me-
dia resources through an HTTP-URL. In live adaptive streaming, the
sequence of media segments is created on the fly from a contin-
uous media stream. The segmenter function of the video server
creates a new media segment every t seconds. Thus, each media
segment contains t seconds worth of media data, i.e., the playback
time for each segment is t seconds. The DASH Media Presenta-
tion Description (MPD) describes all available and not-yet avail-
able media segments either for the entire live session or up to
the next MPD update. The client obtains the start time of the live
stream from the MPD and synchronizes itself with the server. The
client must be time synchronized with the server. If it is properly
synchronized, it can calculate the latest available media segment
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Fig. 1. Segment on-off periods.

on the server given the segment duration. It then starts fetching
the media segments as they become available on the server ev-
ery t seconds. The client also monitors the network bandwidth
fluctuations continuously and chooses the subsequent segments
accordingly.

We note that the video server transmits a segment in a series
of IP packets set to Maximum Transfer Unit (MTU). The length of
the segment in bytes is determined by the bitrate requested by the
client. Therefore, each bitrate will have a corresponding segment
size. Since all packets are equal to MTU, except the last one, we
assume that the last one is also equal to MTU. This assumption
does not affect the accuracy of the model, since the last packets
account for a small percentage of all the transmitted packets, and
permits us to define all three models in discrete-time, where the
length of the time slot is equal to the amount of time it takes to
transmit one IP packet of size equal to the MTU.

3.1. The video server

The nature of network traffic generated by live segment
streaming is very different from the traditional bulk transfer traffic
stemming from progressive video download and file transfer. The
video traffic generated by the video server is determined by the
client request strategy. The client downloads the segments of a
stream one after another. It chooses the bitrate of the segments
according to the available bandwidth so that the time it takes to
download a segment is shorter than or equal to the actual segment
duration (the playout time of a segment). The download time must
be shorter or equal to the segment duration, otherwise the client
buffer would eventually become empty and pauses would occur in
the playout. In general, it takes less time to download a segment
than it takes to playout the segment, i.e., the download speed
is higher than the playout speed. The client buffer hides this
inequality by buffering every segment that is downloaded. These
successive download-and-wait operations create an on-off traffic
pattern of IP packets.

Based on this observation, we have modeled the video server as
an on-off video traffic source. The server transmits the packets in
a video segment back to back during the on period and then stops
transmitting during the off period. All packets are of equal size set
to the MTU. The transmission begins again when it receives the
next HTTP GET request from the client for the next video segment.
In case of live-streaming, the sum of the on and off periods is al-
ways the segment duration, t, as shown in Fig. 1.

The length of the on period, I, and consequently of the off, t — I,
period can vary throughout the life time of the connection depend-
ing on the bitrate requested by the client. The requested bitrate
differs due to the variations in the available bandwidth as mea-
sured by the client. The length of the on period depends on the
size of the video segment which is determined by the requested
bitrate. Hence, for each video streaming rate, there will be a differ-
ent length of the on-off period.

We assume that the TCP congestion window is large enough so
that all the packets in a segment can be sent back-to-back in a
burst. We have not modeled any TCP retransmissions that may oc-
cur due to congestion and packet loss. Retransmitted packets are of
no use to the client in the case of live streaming since it maintains

1-p3;-p3;

Fig. 2. Markov chain for three bitrates.

a buffer of one video segment only. Any packets received from pre-
vious segments are discarded. Also, we assume that the congestion
control algorithm of TCP is tailored to live streaming, which means
that the congestion window size is not decreased drastically during
congestion, because it can cause large packet delays that can make
the entire segment reach the client over a span of more than one
segment durations, thus causing the client to freeze.

In view of these observations, we model the video source model
as a Markov chain with unit time equal to video segment duration
t. The states of the Markov chain represent the different qualities
or bitrates that are available for download for each video. A model
for three different bitrates is shown in Fig. 2. Within each state,
the packets are generated using an on-off process. The length of
the on period, [, is equal to the (size of the segment in a given
quality)/(transmission speed of the server). The off period is t mi-
nus the length of on period. Thus, the lengths of on and off periods
are fixed for each state.

In the real system, the transitions among the state of the
Markov chain are caused by the client and they depend on
the available bandwidth as measured by the client along with the
client buffer occupancy level. Specifically, the client estimates the
available bandwidth as the (segment size in bytes)/(download
time for the entire segment) and subsequently it decides whether
to switch to a higher or lower rate or stay at the same rate. Conse-
quently, the transition probabilities are obtained by modeling the
behavior of the client. In order to determine the client’s decision
as to whether to change the bitrate, we need to model the delay
that the packets of the same segment suffer until they reach the
client, and also how spread out these packets are from each other
due to interleaving with other packets in the routers along the
path from the video server to the client. This is done using the
queueing network model described below.

3.2. The queueing network

We use a discrete-time queueing network to depict the network
between the video server and the client. We assume that this is a
wide area network (WAN) connected to an access network which
serves the client. We assume that Differentiated Services (Diffserv)
is used to support QoS in the network.

Differentiated Services is a multiple service scheme that pro-
vides different QoS to different flows. Several QoS classes have
been defined, known as the DiffServ Code Points (DSCP). The DSCP
is carried in the IP header of each packet and it is used to deter-
mine which priority queue the packet will join at the output port
of a router. Video packets are typically given an AF41 priority. Con-
sequently, the WAN is modeled by a series of single-server queues
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which represent the AF41 queue at the output port of each router
along the path of the video stream. An example of this queueing
network is shown in Fig. 3, where the first four queues represent
the WAN and the last queue represents the access network. Each
WAN queue receives packets transmitted from the video server
to the client (tagged traffic), along with other video packet traffic
from other sources (background traffic).

All packets are assumed to be equal to 1500 bytes (the path
MTU). All packets in each WAN queue are served in a FIFO man-
ner at a rate u equal to (1500 bytes)/(speed of the link), where the
link speed is the same for the four WAN queues. The background
traffic in a WAN queue is transmitted to the same next hop router
as the tagged traffic and it may get dispersed to different output
ports of the router. It is likely though, that some part of it will be
transmitted out of the same output port of the next hop router as
the tagged traffic. In view of this, we assume that for each WAN
queue 80% of all the background traffic that arrives at the queue
departs from the queueing network after it is served and the re-
maining 20% continues on to the next queue (these percentages
can be readily varied in the model). A similar assumption holds
for the remaining WAN queues.

The last queue of the queueing network depicts part of a metro
Ethernet access network. In this case, the traffic gets fanned out
to the Ethernet switches, and eventually to the users. We are
only modeling the first hop between the Broadband Remote Ac-
cess Server (BRAS) router and an Ethernet switch. The BRAS sits at
the core of an ISP’s network, and aggregates user sessions from the
access network. (Other hops within the access network can be eas-
ily modeled). There is no background traffic at the Ethernet switch
and the service rate is uq = (1500 bytes)/(speed of the link). We
assume that the link speed of the Ethernet switch is a hundred
times less than the WAN router link speed (other speeds can also
be modeled). Due to the fan out of the traffic to the end users,
we assume that 95% of the background traffic that enters from the
BRAS queue follows a different path after it leaves the Ethernet
switch. That is, a small percentage goes along with the tagged traf-
fic to the user.

Of interest to the overall model proposed in this paper, are the
following two quantities:

1. The spread of the original video segment transmitted by the
video server, when it arrives at the client

2. The end-to-end delay in the network of the leading packet of a
segment.

As will be seen, these two quantities are used in the client
model presented in Section 3.5.

3.3. Calculation of the spread

Let Ns be the number of packets that make up one video seg-
ment at a given bit rate. We assume that these packets arrive back-
to-back at queue 1, one per time slot, where a time slot is equal
to the time it takes to transmit a 1500-byte packet. At the same
time it is possible that there may be background arrivals. Back-
ground traffic enters the router from other input ports and they
end up being interleaved in between the packets of the segment
at the AF41 queue at the output port of the router. These packets
increase the length of the original segment, i.e., they increase the
amount of time elapsed between the arrival of first packet and the
last packet of the video segment, referred to as the “spread”.

Fig. 4 shows how the spread is formed. Let us assume that the
segment consists of four packets (1,2,3,4) and during its arrival to
queue 1, three background packets arrive (A,B,C). A possible forma-
tion of the spread is 4CB32A1. At the next queue, packets A and B
depart and their slots are taken over by new background packets
D and E resulting in a new formation 4GFC3E2D1.

As shown in Fig. 5, let ny, be the number of packets that arrive
during the time it takes for the spread to arrive at queue i, and let
d;, be the number of background packets in the spread that depart
before the segment joins queue i. The remaining background pack-
ets in the spread is indicated by n;, i.e., n; = nj_1 + n;, — dj. In the
case of the access Ethernet queue n;, = 0.

We assume a binomial distribution of the background arrival
process. That is, there is a probability p that a background packet
arrives in a time slot. Consequently, the probability that k back-
ground packets arrive in the first queue during the time the Ng
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packets arrive is:

Plny, = k] = (IZS) pé(1 - p)Nk (1)

The probability distribution of the background packets n, is a
convolution of ny, the background traffic at node 2, n,;, and the de-
partures at node 2, d,p,. Let q be the probability that a background
packet leaves before the segment joins queue i. This can be written
as:

P[ny = ln1] = P[nyp] ® Plng — dy]

or,

Plny = I|ny] = Y{j_q) Plngp = jIP[ny — dpy =1 — j]. if ny > 1

and,

Plny = Ilny] = XV, Plngy = jIPIny —dyp =1 jl. if ny <1

where ny = ny,

Plngy = jl= ("1"*)p/(1 = pym+Ns=J and,

Plny —dyy =1 —j=m] = (}1)g"(1 —q)m~"™

Unconditioning on ny, we obtain an expression for the distribu-
tion of ny:

Plny = 1] =3, (P[ngp] @ P[ny — dap])P(11)

In general for queue i, we have:

P[n; = 1] =" (P[ny] ® P[ni_y — dip)P(i1) (2)
nj_q

where, '

Pl = j] = (") pI (1 = pyi-1 8T and,

Py —djy=1—j=m]=("1)q" (1 - q)"1—"

At the last queue, we do not consider any new background traf-
fic as explained above. The distribution of the background packets
can be expressed as:

Plng =1] = (Plng_y —dg, = I])P(ng_1) 3)

Ng-1

The total length of the spread is equal to the sum of the video
segment packets and the background traffic packets at the last
queue. Since, the video segments packets are fixed for a given bi-
trate, the pdf of the spread is the same as the pdf of the back-
ground traffic given by Eq. (3).

The case of slow video server

In this section we consider the case where the video server
transmits packets at a rate lower than its transmission speed. This
situation can arise, for instance, if it is multiplexing the video pack-
ets for multiple clients or if there are restrictions on server trans-
mission rate from the TCP or application layer. In this case the
packets that make up a segment will not be transmitted back to
back. They will be spaced out and the segment will span a larger
number of time slots than in the above case. We have modeled
this as follows:

Let Ns; be the number of slots that make up one video segment
for a given bit rate. We assume that the video packets arrive at
queue 1, one per M time slots. Let Ny denote the number of pack-
ets per segment. At the same time there may be background ar-
rivals. Background traffic enters the router from other input ports
and they are interleaved in between the packets of the segment at
the AF41 queue of the output port. The background packets may
fill the empty slots in between the slots occupied by the packets
from the video segment. Depending on the rate of background traf-
fic, if the background packets that arrive during N slots is more
than the empty slots they will increase the spread otherwise the
length of the spread remains the same at the output port of the
router.

Fig. 6 shows how the spread is formed. Here we assume that
the video server sends out packets at half of the link transmis-
sion speed. Let us assume that the segment consists of four pack-
ets (1,2,3,4) and during its arrival, four background packets arrive
(A,B,C,D). A possible formation of the spread is 4DC3B2A1. At the
next queue, packets A, B and D depart and their slots are taken
over by new background packets E, F and G resulting in a new for-
mation 4HGC3F2E1.

In this case, the number of background arrivals at queue i can
be expressed as:

Pln; =11=3%,  (Plny]® P[n;_y — dipDP(n;_1)

where,

Plnyy = j1 = (") pl (1 = p)nir =i, and

Plni_y —dp =1—j=m] = ("1)g"(1 - q)"i1~"
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where Ny, is the length of the spread at the input queue in
terms of number of slots and is given as:

Nsp = Max(Ns¢, nj_q + Ns)

In this case, the pdf of the spread is same as the pdf of back-
ground packets only if the sum of video packets and background
traffic is greater than the total number of slots in the spread, N.
Otherwise, the length of spread is fixed and equals Ng;.

At the last queue, we do not consider any new background traf-
fic. Also the spread shrinks and any empty slots disappear because
of the much lower transmission speed of the last router. The dis-
tribution of background packets can be expressed as:

Plng =11= 3, (PIng_1 —dgp = IDP(ng_1)

This also gives the pdf of the number of packets in the spread.

Plng =1+ Ns] =) " (Plng 1 — dgy = [)P(ngc_1) (4)

Nk

3.4. Calculation of the end-to-end delay

In order to calculate the total time t, taken to download a com-
plete video segment, we need to know the end-to-end delay of
the first packet in the video segment along with the time delay
between the first packet and the last packet ts,. The pdf of the
time delay t; can be obtained from the pdf of the spread, cal-
culated above. Let t; be the service time of one packet, where
t-= 1500*8/(speed of link). So, the time delay between the first
packet and the last packet in the segment is equal to the num-
ber of packets in the spread multiplied by the service time of
each packet. Thus, if x is the total number of packets that con-
stitute the spread then we can write tsp = tr x x. Since the distri-
bution of the time delay between the first and the last packet is
the same as the distribution of the packets in the spread, we have:
P[tsp =1t *X] = P[nK = X].

The end-to-end delay of the first packet in the segment consists
of the propagation delay and the transmission and queueing delays
at each router along the path of the segment. In our model, we
have assumed that the background traffic follows a binomial distri-
bution, i.e., for each time slot there is a probability p that a back-
ground packet arrives. Now, the combined tagged and background
traffic offered to each link has to be less than the link’s maxi-
mum throughput, so that the link’s utilization is less than 100%.
In view of this, there are no background packets queued at each
router when the first packet of a segment arrives at the router.
(This was also verified through extensive simulations). Therefore,
the queueing delay at each link encountered by the leading packet
of a segment is zero, and the end-to-end delay of the first packet is
the propagation delay and sum of transmission times tp. This leads
us to the pdf of the total delay: P[te =t + t; * X] = tp + P[ng = x],
where P[ny = x] can be determined using Eq. (3) or (4).

3.5. The client player

In HTTP live segment streaming, it is a client’s responsibility to
download the next segment before the previous segment is com-
pletely played out. This implies deadlines by which segments need
to be encoded and be available at the video server for down-
load. On the client’s side, if a segment is not available, a dead-

line miss occurs, and the playback stalls. There are several seg-
ment request strategies that clients can implement. Four request
strategies for live adaptive streaming are discussed and evaluated
in [26]. Two of these strategies maintain a constant liveness while
the other two increase the end-to-end delay after each deadline
miss. The goodput of strategies with constant liveness increases as
more bandwidth becomes available. The reason for this behavior
is that these strategies provide a full segment duration of time
for segment download. We chose the Constant Liveness Immedi-
ate Request (Coln) strategy as it has no start-up delay and does
not synchronize requests which can lead to bandwidth wastage.
It maintains the liveness of one segment duration throughout
the streaming session which means that a segment that becomes
available at t; at the video server is presented at t;, ; at the
client.

A deadline miss also occurs if the download time is longer
than the segment duration, t. In this case, the part of the segment
downloaded after the segment playout deadline is skipped. In or-
der to decrease the number of deadline misses, the adaptation al-
gorithm chooses the segment quality so that the download ends
at least t; seconds before the segment deadline. Thus, a deadline
miss occurs only if the download time is longer than the estimated
download time plus the time safety. The minimal value of ¢, is re-
ferred to as the time safety. This request strategy is illustrated in
Fig. 7. A client first requests the latest segment on the server at
ro. The first segment is downloaded completely at the client at dy
and the playout begins at t;. The next segment is requested at rq
and available at the client at d;. The number of bytes that can be
downloaded within the time safety increases with available band-
width. This results in fewer deadline misses as the available band-
width increases. In this respect, one should choose a larger time
safety if more bandwidth fluctuations are expected. We can also
adjust the time safety dynamically based on the observed band-
width fluctuations.

We assume that the client makes a request immediately after
t —ts seconds and that the request reaches the server before the
next t-second period starts. We have used the following client rate
adaptation algorithm in our model:

1. Download the first segment at the lowest bitrate
2. Determine the download time for the current segment
3. If the video segment is completely downloaded by time t — s
a. Determine the highest bitrate so that it can be downloaded
by t — ts with the current available bandwidth
i. Determine the delay per bit for the current rate (reyr),
Le.reurr = te/(Feurr % £)
ii. Determine the highest bitrate, rny, for which the ex-
pected download time is the closest to t—ts, i.e.,
(te/(Teurr #t)) s (nxe % t) =t —ts
b. Send an HTTP GET request for this higher bitrate (r;x)
c. Go to step 2
4. If the video segment is not downloaded by t — ts
a. Send an HTTP GET request for the next lower bitrate for
which the expected download time is closest to t — tg
b. Go to step 2

http://dx.doi.org/10.1016/j.comcom.2016.03.025
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3.6. State transition probabilities

Using the above algorithm and the cdf of the total delay for
each rate, we can determine the state transition probabilities for
the video source model. The total time to download a segment
determines the available bandwidth which helps the client decide
the bitrate to download the next segment. Therefore, we obtain the
cdf from the pdf of the end-to-end delay obtained in Section 3.2.
Then, we find points on the cdf beyond which the bitrate has to be
changed in order to download the next segment within the dead-
line using the current available bandwidth.

For example, let us assume that the client can request 2 s seg-
ments with three different bitrates: 800, 900 and 1000 Kbps, and
that the time safety is 0.3 s. That means t —ts is 1.7 s and the
segment needs to be completely downloaded at the client by this
time. Fig. 8 gives the cdf for 900 Kbps bitrate obtained assuming
the queueing network shown in Fig. 3 with four WAN routers that
transmit at 1.2 Gbps and one Ethernet access network node with
a transmission rate of 1.2 Mbps. The background traffic is 60% of
the total link capacity in the WAN and only 5% of it continues
into the Ethernet access network. Each point on the cdf gives the
probability that the video segment encoded at 900 Kbps will reach
the client within a certain end-to-end delay (the x-axis). For exam-
ple, point A indicates that the end-to-end delay will always be less
than or equal to 1.535 s with a probability of 0.005. From this, we
can calculate the total delay per bit, i.e, 1.535/(900,000%2) (since
there are 900,000+2 bits in the 2 s segment). We can also calculate
the total delay for a segment encoded at a higher bitrate assuming
the same delay/bit. For example, at 1000 Kbps, the delay will be
1.7 s. Thus, A is the point beyond which if the client switches to a
higher rate, the total delay taken by the new segment will be more
than t —t; which is 1.7 in this case. This implies that the client
only switches to a higher rate if the end-to-end delay is less than
or equal to 1.535 s. This point then gives us the state transition
probability of switching from 900 Kbps to 1000 Kbps.

Now, let us find the probability of switching to a rate lower
than 900 Kbps. This will only happen if the total delay is greater
than 1.7 s. Point B on the curve indicates that the end-to-end de-

lay will always be less than or equal to 1.7 s with a probability of
0.9496. This means that the probability the end-to-end delay will
be more than 1.7 is 1-0.9496 = 0.0504. Also the probability that
the client will request the same rate again based on the current
delay is 1-0.0504—-0.005 = 0.9446.

Employing the same technique, we can calculate all rows of the
transition matrix using the cdfs for different rates and for different
time safety values.

4. Validation of the rate transition rates

In this section, we validate our method for calculating the rate
transition probabilities of the server traffic model using simulation.
(The expression of the cdf of the end-to-end delay is exact, and
consequently it does not require validation). The simulation model
is a discrete-time model based on the same assumptions as the an-
alytic model described above, and it consists of a video server that
generates video packets in a queueing network of 5 single-server
queues and a client player that implements the rate control logic.
The video server generates segments at different rates based on
the requests from the client every t seconds. These segments are
packetized and transmitted in the network in 1500-byte packets.
The background traffic is assumed to follow a binomial distribu-
tion. A slot is equal to the amount of time it takes to transmit out
a 1500 bytes packet.

The first four queues are part of the core network and we set
their service rate to 1.2 Gbps. The last queue is assumed to be part
of the Ethernet access network and transmits at a speed that is
hundred times less than the core. All packets have the same pri-
ority. We assume that 80% of the background traffic that arrives
at each queue in the core network leaves before entering the next
queue, and 95% of all the background traffic leaves before enter-
ing the last queue. The background traffic is set to 60% of the link
capacity.

The client implements the rate adaptation algorithm described
in Section 3.5. It maintains a buffer of one video segment as we
are modeling the live streaming case. The client sends the request
at t —t; and we assume that it reaches the server, after a fixed
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Fig. 9. The cdf of the end-to-end delay for rates 800,850,900,950 and 1000 Kbps.

delay that equals the transmission and the propagation delays be-

602
603 fore the server transmits the next segment. The simulation pro-
604 gram was written in Matlab. The simulation model was run for a
605 million video segment requests.
606 We compared the transition probabilities obtained from the
607 simulation model with the transition probabilities calculated us-
608 ing the cdf of the end-to-end delay obtained from the mathemat-
609 ical model as explained in Section 3.6. In the simulation model,
610 we determine the transition probabilities by counting the fre-
611 quency of transitions among the bitrates requested by the client
612 for each segment. The client requests a new bitrate after down-
613 loading each segment based on the rate control algorithm dis-
614 cussed in Section 3.5 This is done for a large number of segment
615 requests. The cdfs of the end-to-end delays for a chosen set of rates
616 are given in Fig. 9. The set of rates are determined based on the
617 input parameters of the model, i.e., the transmission rates of the
618 routers and the background traffic as these dictate the available
619 bandwidth. These are the most selectable rates for given network
620 parameters. For example, if the available bandwidth is 1 Mbps, the
621 client will most probably select a bitrate closer to 1 Mbps instead
622 of a very low rate, say 300 Kbps or a very high bitrate. Hence,
623 there will be no transitions to those bitrates even if they are of-
624 fered to the client.
625 We compared the one-step transition matrices using the Mean
626 Squared Error (MSE), defined as:
n n
MSE = > > "(X;j — Yyj)?/size(X) (5)
i=1 j=1
627 where Xj; are the transitions calculated using the mathematical
628 model, Y; are the transitions determined using simulation, and
629 size(X) is the total number of elements in the matrix. The MSE of
630 the one-step transition matrices are plotted in Fig. 10 as a func-
631 tion of the time safety t —t;. The MSE values are very low which
632 indicate that the transition matrices are very similar.
633 We conducted another set of experiments assuming faster core
634 and access network elements. We set the transmission rate in the
635 core network to 10 Gbps and the access network transmission to
636 2 Mbps. The set of video bitrates that the client can choose from
637 are from 1650 Kbps to 1800 Kbps in increments of 500 Kbps. The
638 cdfs of the end-to-end delay for this case are shown in Fig. 11, and

the results for MSE as a function of the time safety t — t; are shown 639
in Fig. 12. 640

We note that in both experiments, the MSE value is very small. 641
Additional results were obtained for other input values including 642
the case of the slow servers, see [27]. Based on these results, it ap- 643
pears that the mathematical model is very accurate and predicts 644

the rate change probabilities very close to those obtained by sim- 645
ulation. 646
5. Applications of the model 647
As was seen above, our analytic model can be used to charac- 648
terize the departure process of IP packets from the video server. 649
650

Video traffic models are crucial in network dimensioning and re-
source management of IP networks. Using the proposed model, we 651
can determine the packet arrival process for different types of net- 652
works by varying the number of nodes, link capacities, background 653
traffic utilization and video server transmission rates. In addition, 654
the model can be used by the video service providers iteratively 655
to help determine the optimal video bitrates to encode the videos 656
for given network parameters and types of clients. It also enables 657
them to dimension the server properly to meet clients’ quality 658
of service requirements. This may include determining a maxi- 659
mum number of clients per output port that can be entertained 660
simultaneously. 661

In the remaining of this section, we describe a new rate control 662
algorithm which takes future decisions into consideration in order 663
to avoid playback interruption and achieve better smoothness and 664

quality. 665
5.1. Rate control algorithm 666
667

The main idea behind the algorithm is that the client estimates
the available bandwidth of the network links and this information 668
can be used to estimate the time required to download a video 669
segment that is available at different bitrates. The client gets the 670
information about all the bitrates, that the server offers, from the 671

MPD file. The client constructs the cdfs for these different bitrates 672
and then decides on the optimal rate to download the next seg- 673
674

ment. We saw in Section 3.2, that if the speed of access link is
several times less than that of the WAN links (which is true in 675
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Fig. 11. The cdf of the end-to-end delay for rates 1.65, 1.7, 1.75 and 1.8 Mbps.

most cases), the spread shrinks in terms of number of packets
(and slots) but takes more time to be transmitted because of the
slower speed. Making use of this observation, the client can esti-
mate the cdf of the delay by measuring the background traffic that
affected the spread at the access network link only. In order to
do that, the client player measures the time it took to download
the complete segment. Since it knows the capacity of the link, it
can also determine how much time the actual video segment data
took to download out of the total time. The difference between
the two gives the delay caused by the background traffic and the
percentage of background traffic that affected the spread can be
estimated from that. The client assumes that the background traf-
fic arrival process is binomial and the time is slotted just as in the

model.

The pdf of the number of background packets in the spread can

be written as:

Plng =Kl = (’,Vc) P pyt

Here p is the percentage of background packets per segment
estimated by the client every t seconds. Since N; is fixed, the pdf
of the spread is same as above. From that the cdf of the spread
and consequently, the cdf of the end-to-end delay can be obtained.
In order to do that, the client should also measure and add the

(6)

propagation delay.
We compared the pdf of the spread and the cdf of the end-

to-end delay obtained by the above approximation with the ones
calculated by the model. We assumed the same queueing network
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model described in Section 3.2 that consists of single-server

701
702 queues and a client player that implements the rate control logic.
703  The first four queues are part of the core network and we set their
704 service rate to 1.2 Gbps. The last queue is assumed to be part
705 of the Ethernet access network and transmits at a speed that is
706  hundred times less than the core. We assume that the background
707  traffic arrives at each router in the core network and 80% of the
708 previous background packets leave before entering the next router
709 queue. 95% of all the background traffic leaves before entering
710 the last queue. We assume the background traffic to be 60% of
711 the link capacity. Only 5% of the net background traffic packets
712 from the previous queues join the last queue and contribute to
713 the spread. For the given input parameters, the client estimated
714 the background packets to be 9% of the total packets in the
715 spread at the last queue on average. Based on this percentage, we
716 approximated the pdf of the spread and the cdf of the end-to-end

delay and compared with those determined using the model. The
results are shown in Figs. 13-16.

We can see that the approximated pdfs and cdfs match very
well with the ones obtained using the model.

Based on the above delay estimation technique, we propose the
following rate adaptation algorithm:

1. Download the first segment at the lowest bitrate
2. Determine the download time for the current segment
3. If the video segment is completely downloaded by time t — t;
a. Based on the download time of the current segment, deter-
mine the percentage of background traffic (pes;) that affected
the spread
b. Determine the highest bitrate so that it can be downloaded
by t —t; with the current available bandwidth
i. Determine the delay per bit for the current rate (reyq)
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732 ii. Determine the highest bitrate, rpy, for which the ex- can use a moving average for the current end-to-end delay in-
733 pected download time is the closest to t—t;, ie, stead of the latest value. Similarly, we can use a moving average
734 (to/(reurr % t)) % (pxe xt) >~ t — tg of the background traffic. The moving average can be based on last
735 iii. Estimate the cdf of the end-to-end delay for ry based N segments, where the best value of N can be determined using
736 on the estimated background traffic (pes;). Check if the simulation.
737 90th percentile of the delay for rpy <=t —t;. If not then We implemented the algorithm in the simulation and compared
738 choose rx as the second highest bitrate. the results with the algorithm discussed in 3.5, referred to as the
739 c. Send an HTTP GET request for this chosen bitrate (rpy) “simple algorithm”. We assume that the client can request 5 avail-
740 d. Go to step 2 able bitrates at the server, i.e., 800, 850, 900, 950 and 1000 Kbps.
741 4. If the video segment is not downloaded by t — t; We compared the simple algorithm with the new proposed algo-
742 a. Send an HTTP GET request for the next lower bitrate for rithm, referred to as the “model-based algorithm”, using the fol-
743 which the expected download time is closest to t — tg lowing metrics: the total number of rate transitions during the
744 b. Go to step 2 length of the simulation, the number of times a particular rate
is selected and how often the transitions occur. In order to com-
745 We assume that the client makes a request immediately after t — t; pare these metrics, we varied the background traffic during the
746 seconds and that the request reaches the server before the next simulation. This was done using a discrete time Markov-modulated
747 t-second period starts. In order to smooth the rate change, we Bernoulli process (MMBP) consisting of three states: low, medium
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Fig. 17. Markov chain for background traffic arrival process.

and high (see Fig. 17). Within each state i, the background traffic
is generated using a binomial distribution with probability p;, set
to 0.4, 0.6 and 0.7 for low, medium and high activity states respec-
tively. The same value of p; is used at the first four queues. At the
last queue, only 5% of the background traffic joins the queue like
before.

We set the state transition probabilities r in such a way that
the process spends most of the time in the medium activity state
and least of the time in high activity state. Since it is a discrete-
time process, time is measured in time slots. Here a slot is equal
to the segment time t. During the simulation, a new state is de-
termined every t seconds using the state transition matrix and
the background traffic is generated accordingly at each queue. The
state transition probabilities we used are:

0.8 0.18 0.02
0.15 0.8 0.05
0.01 019 0.8

are:

0.3661
0.4778
0.1561

We used a moving average for the estimated pes; in the al-
gorithm. We present the results for a moving average of N = 5
and 10 previous segments. In Figs. 18 and 19, we present the
rate transitions for the first 200 segments for both simple and
the proposed model-based algorithm for two different moving
average windows. We can conclude from the results that N = 5
is sufficient in this case. The solid line curve represents the state
in which the background traffic process currently resides in. Here,
state 1 is for low activity, 2 for medium activity and 3 for high
activity. For this reason, we can see that when the process is in
a low activity state the bitrate selected by the client is higher.
Hence, the background curve fluctuates in opposite directions
to the bitrate curves. We can observe from the figures that the
proposed algorithm chooses the bitrate smoothly as compared to
the simple algorithm described in Section 3.5. It stays in the same
bitrate for longer time periods instead of choosing a higher bitrate
and then choosing the same rate again like the simple client.
We can see in the figure that the simple algorithm fluctuates
back and forth between the 1000 Kbps and 950 Kbps bitrates
but the model-based algorithm tends to choose one of these
bitrates multiple times before switching to another. As discussed
in [28] and [9], downloading each segment in the highest possible
representation results in frequent changes of playback quality
whenever the dynamics of the available throughput exhibit strong
fluctuations. Therefore, it is better to choose a bitrate that will not
result in too many quality fluctuations. Thus, the overall goal of
the rate adaptation algorithm should be to maximize the average
video quality but also to minimize the number of video quality
shifts. Our proposed algorithm achieves this goal. In the case of
the simple algorithm there is a transition almost every segment
due to small changes in background even though the background
process stays in the same state. This means that simple algorithm
is more sensitive to bandwidth changes and reacts too often than
necessary. However, the proposed algorithm reacts quickly similar
to the simple algorithm in case of a deadline miss.

http://dx.doi.org/10.1016/j.comcom.2016.03.025

Please cite this article as: S. Tanwir, H. Perros, Modeling live adaptive streaming over HTTP, Computer Communications (2016),

779
780

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815


http://dx.doi.org/10.1016/j.comcom.2016.03.025

ARTICLE IN PRESS

JID: COMCOM [m5G;April 11, 2016;10:19]
S. Tanwir, H. Perros/Computer Communications xxx (2016) xxx-xxx 13
x10°
T L T T T T T
= +=Simple
-+ -Model-based
Backgroud traffic state
a
[]
Q
ey 2
4 a
2 o
: g
gt s
g E
2
& g
095 et %a
1: o
Iz Qo
1= 5
oo e
[ )
3 (%]
1!
085 ] -
t
1
i
08 I 1 I 1 1 I 1 I 1
0 20 40 60 80 100 120 140 160 180 200

Segment Number

Fig. 18. Rate transitions for the simple and model-based algorithm using a moving average of the last 5 segments for pes.

x 10
T T T T T T T =
= & =Simple
o4 Model-based
Backgroud traffic state
w
w
Q
I
3 s
2 ]
3 E
o e
g E
B 5
@ °
2
095 »
1 [}
& s
I; s
09 -tn- Q
1 ] S
3 (] n
] ]
085t 1 i
t
!
a
08 | 1 1 | 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Segment Number

Fig. 19. Rate transitions for the simple and model-based algorithm using a moving average of the last 10 segments for pes:.

70000

60000

50000

40000

Model-based Algorithm

30000 B Simple Algorithm

20000

10000 1
e T —
850 900 950

Number of segments requested

0 T
800

1000
Bitrate (kbps)

Fig. 20. Number of segments requested per bitrate for the simple vs model-based algorithm using a moving average of the last 5 segments for pes:.



http://dx.doi.org/10.1016/j.comcom.2016.03.025

816
817
818
819
820
821
822
823
824
825
826
827
828

829

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

JID: COMCOM

[m5G;April 11, 2016;10:19]

14 S. Tanwir, H. Perros/Computer Communications xxx (2016) xxx-Xxx

80000 -

70000 -~

60000

50000 -+

40000 -~

30000 -

20000 -

Number of segments requested

10000 A

0 -F T T T

——

Model-based Algorithm

M Simple Algorithm

850 900
Bitrate (kbps)

1000

Fig. 21. Number of segments requested per bitrate for the simple vs model-based algorithm using a moving average of the last 10 segments for pes.

Table 1
Total number of bitrate transitions.

Algorithm Moving average window Transitions
Model-based 5 15705
Simple 5 41055
Model-based 10 18884
Simple 10 41164

Next, we present the number of segments requested for each of
the 5 available bitrates using both algorithms for a total of 100000
segments. We can see in Figs. 20 and 21, that the model-based al-
gorithm requests more segments in the bitrate 950 Kbps while the
simple algorithm is more aggressive and it requests more number
of segments in 1000 Kbps, which results in a lot of fluctuations.

Lastly, we report the total number of bitrate transitions be-
tween the five different bitrates requested by the client in Table 1.
We can see that the simple algorithm made a lot more transitions
among the different bitrates as compared to the model-based algo-
rithm. Again, this proves that the proposed model-based algorithm
chooses the bitrates wisely resulting in fewer quality fluctuations
and hence better quality of experience for the viewer.

6. Conclusion

Nowadays an increasing number of video applications employ
adaptive streaming over HTTP, as it has several more benefits com-
pared to classical streaming. Its offers multiple bit rates of video
that enables video service providers to adapt the delivered video to
the users’ demands. Secondly, the video bit rate can be adapted dy-
namically to changing network and server/CDN conditions. Lastly,
different service levels and/or pricing schemes can be offered to
customers. Significant amount of work has been done on the de-
sign of rate adaptation schemes and performance comparisons,
however, no one has modeled and studied the system analytically.
In this paper, we proposed the first (to the best of our knowledge)
analytic model for live adaptive streaming over HTTP. The model
can be used to characterize the departure process of the IP packets
from the video server. Also, using this model we proposed a new
rate control algorithm that makes less frequent rate transitions and
increases the quality of experience for the viewer.

The model is decomposed into three components, namely, the
video server model, the model of the IP network, and the client
video model. In the model of the IP network, we are basically in-
terested in obtaining the distribution of the spread of a segment,
and the time it takes for the leading packet of the segment to
reach the client. For this, we assumed that the background arrival

process is Bernoulli. In a future extension of this paper, we hope
to replace it by a discrete-time bulk arrival process where the bulk
size varies from one up to the total number of input ports of the
router. Under this assumption the calculation of the distribution of
the spread is feasible, but the calculation of the end-to-end delay
becomes extremely difficult. However, this can be estimated sepa-
rately for each bitrate using an extremely fast activity-based simu-
lation reported in [29].
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