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a b s t r a c t 

Video streaming methods have evolved greatly over the years. Today, the most prevalent technique to 

stream live and video on-demand is the adaptive HTTP streaming and is used by several commercial 

vendors. In this paper, we present an approximate analytic model for live adaptive streaming over HTTP. 

Using this model, we propose a new rate control algorithm that makes the rate transitions less frequent 

and increases the quality of experience for the viewer. Also, the model can be used to characterize the 

departure packet process at the video server. To the best of our knowledge, this is the first video traffic 

model for adaptive HTTP streaming to be reported in the literature. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 1 

Over the last few years video-based applications, and video 2 

streaming in particular, have become very popular generating 3 

more than half of the aggregate Internet traffic [1] . This has be- 4 

come possible through the gradual development of highly efficient 5 

video compression methods, broadband access technologies, QoS 6 

schemes in the IP network and the development of adaptive video 7 

players. Today, the most popular and cost effective means for video 8 

streaming is adaptive streaming over HTTP. Multimedia content 9 

can now be delivered efficiently in larger segments using HTTP. The 10 

basic idea is to chop a continuous stream into segments, encode 11 

these in multiple qualities and make these available for down- 12 

load using plain HTTP methods. The client video player applica- 13 

tion monitors the download speed and requests chunks of varying 14 

quality in response to changing network conditions. The main ad- 15 

vantage of HTTP based streaming is that the deployed web infras- 16 

tructure is easily reused, even for live segment streaming. In case 17 

of live streaming, the segments are produced periodically; with a 18 

new segment becoming available shortly after it has been recorded 19 

and encoded completely. 20 

Several recent players, such as Microsoft Smooth Streaming, Ap- 21 

ple’s HTTP Live Streaming, Adobe OSMF and Netflix players all 22 

use adaptive streaming over HTTP. However, each implementation 23 

uses formats and proprietary client protocols. Due to the mar- 24 

ket prospects and requests from the industry, adaptive streaming 25 

has been standardized by 3GPP and ISO as MPEG-DASH (Dynamic 26 
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Adaptive Streaming over HTTP) in 2011 [2] . In addition to provid- 27 

ing all benefits of streaming over HTTP, DASH supports live media 28 

services and it is bitrate adaptive. 29 

Different aspects of dynamic adaptive HTTP streaming have 30 

been explored in the literature. The research work done in the area 31 

of adaptive HTTP streaming is mostly focused on the performance 32 

and design of efficient rate control algorithms and the interactions 33 

of HTTP streaming with TCP. However, there is a lack of analytical 34 

models for video streaming traffic over HTTP. Performance model- 35 

ing is necessary for service providers to properly maintain qual- 36 

ity of service (QoS) and it requires accurate traffic models that 37 

have the ability to capture the statistical characteristics of the ac- 38 

tual traffic on the network. Better understanding of the network 39 

through modeling provides the means to make better design deci- 40 

sions. In this paper, we present the first (to the best of our knowl- 41 

edge) analytic model for live adaptive streaming over HTTP. Using 42 

this model, we propose a new rate control algorithm that reduces 43 

the number of rate transitions and increases the quality of experi- 44 

ence for the viewer. The proposed model can also be used to char- 45 

acterize the departure packet process at the video server. 46 

This paper is organized as follows. In Section 2 , we summa- 47 

rize the research done in this area. In Section 3 , we present our 48 

model and in Section 4 we provide a validation of its accuracy. 49 

In Section 5 we describe a new rate control algorithm based on 50 

the proposed analytic model. Lastly, the summary is presented in 51 

Section 6 . 52 

2. Literature review 53 

Different aspects of dynamic adaptive HTTP streaming have 54 

been explored in the literature over the past few years. Several 55 
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performance studies have been conducted to compare various 56 

players that use adaptive HTTP streaming. In [3] , Akhshabi et al. 57 

conducted an experimental evaluation of three commercial adap- 58 

tive HTTP streaming players, i.e., Microsoft Smooth streaming, 59 

Netflix and Adobe OSMF player. They noted that all players had 60 

their shortcomings and further research is needed in order to im- Q3 
61 

prove the rate adaptation algorithms. A study of the performance 62 

of Adaptive HTTP Streaming over different access networks is pre- 63 

sented in [4] . Muller et al. compared Microsoft Smooth Steaming 64 

(MSS), Adobe HTTP Dynamic Streaming (HTS), and Apple HTTP 65 

Live Streaming (HLS) and DASH in a vehicular environment in [5] , 66 

using the client implementations for the proprietary systems and 67 

their own DASH client. In [6] , Miller et al. compare MSS client and 68 

their own DASH client in Wireless Local Area Network (WLAN) 69 

environment. In [7] , the different delay components in DASH for 70 

live streaming are identified and analyzed. The best performance 71 

in terms of reduced delay is obtained with short media segments 72 

but short segments increase server load. Seufert et al. surveyed the 73 

literature that covers QoE aspects of adaptation dimensions and 74 

strategies in [8] . They reviewed recent developments in the field 75 

of HTTP adaptive streaming (HAS), and existing open standardized 76 

and proprietary solutions. 77 

Several rate adaptation algorithms and optimization strategies 78 

have been proposed in the literature for adaptive video streaming 79 

over HTTP. In [9] , Miller et al. presented an algorithm that aims 80 

at avoiding interruptions of playback, maximizing video quality, 81 

minimizing the number of video quality shifts and minimizing 82 

the delay between user’s request and the start of the playback. 83 

Tian and Liu proposed a rate control algorithm [10] that smoothly 84 

increases video rate as the available network bandwidth increases, 85 

and promptly reduces video rate in response to sudden congestion 86 

events. In [11] , Bokani et al. consider a Markov Decision Process 87 

(M88 
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share relative to the available profile bitrates, and the number of 122 

competing players, can affect the stability of the system. Esteban 123 

et al. examined the interactions between HTTP Adaptive Streaming 124 

(HAS) and TCP in [21] . A TCP transfer can be divided into 3 125 

phases, the initial burst, ACK clocking, and trailing ACK phases. 126 

HAS requests are relatively small and a significant portion of the 127 

transmission duration is spent in the initial burst and trailing ACK 128 

phases. The authors note that if the congestion window is large 129 

enough and the data is small enough, the entire transmission 130 

occurs during the initial burst, eliminating the ACK clocking phase. 131 

There is also some research done on modeling different aspects 132 

of adaptive streaming. Wang et al. [22] investigated the relation- 133 

ship between the capacity and responsiveness of HTTP adaptive 134 

streaming under different segment sizes and media encoding rates. 135 

Through experiments, they find that the maximum capacity can be 136 

achieved by choosing different segmentation time intervals specific 137 

to each media encoding rate. Kleinrouweler et al. [23] proposed 138 

an analytical performance model that estimates the rate at which 139 

HAS players switch quality. They have modeled the starting and 140 

stopping players as a Markov process instead of the download of 141 

individual segments. The results show that the model underesti- 142 

mated the average bitrate when compared with experimental runs 143 

using a proxy server. The proxy server can be placed in the gate- 144 

way, or another similar network device between player and server. 145 

At the proxy server, HTTP traffic was monitored to detect start- 146 

ing and stopping players. In [24] , Mitra and Swaminathan proposed 147 

a buffer model for the client that uses tunable buffer parameters 148 

such as sizes, thresholds, and rate of flow of data. They analyzed 149 

of the effects of thresholds and rate of movement of data among 150 

and proposed a strategy to design the buffers based on these con- 151 

straints. The model is not applicable to live adaptive streaming. 152 

Chen et al. [25] propose model to predict the time-varying sub- 153 

jec 54 

ove 55 

mo 56 

pla 57 

dat 58 

be 59 

miz 60 

TV 61 

3. 62 

63 

tive 64 

firs 65 

66 

1. 67 

2. 68 

69 

3. 70 

71 

dis 72 

dia 73 

seq 74 

uou 75 

cre 76 

Pl

ht
DP) to derive the optimum segment rate selection strategy 

t maximizes streaming quality. Xing et al. [12] also formu- 

d the optimal video streaming process with multiple links 

a Markov Decision Process (MDP). MDP is time consuming 

 computationally expensive, and in view of this they also 

posed an adaptive, best-action search algorithm to obtain a 

-optimal solution. Mansy et al. [13] proposed a technique called 

RE (Smooth Adaptive Bit RatE), that enables a video client to 

oothly download video segments from the server without caus- 

 significant delays to other traffic sharing the link. In [14] , Liu 

al. proposed two new rate adaptation algorithms for the serial 

 the parallel segment fetching methods. Jiang et al. proposed 

ate adaptation algorithm called FESTIVE (Fair, Efficient, Stable, 

ptIVE) in [15] . SVC has been shown as better encoding method 

 adaptive streaming and several authors have proposed rate 

ptive algorithms for SVC encoded video in [16–18] and [19] . 

Apart from the research on performance and rate adaptation, 

 interactions of HTTP adaptive streaming with TCP has also 

n studied in the literature. Different aspects like fairness, TCP 

oughput and traffic shaping have been considered. In [20] , 

shabi et al. described how the competition for available band- 

th between multiple adaptive streaming players can lead to 

tability, unfairness, and bandwidth underutilization. The authors 

ntified that once the playback buffer size reaches a certain tar- 

 buffer, the player switches to the steady-state during which it 

s to maintain a constant playback buffer size. The player re- 
sts one chunk every T seconds (if the download duration is less 

n T ) or as soon as the previous chunk is received. This leads to 

activity pattern in which the player is either ON, downloading 

hunk, or it is OFF, staying idle. They conducted experiments 

h real adaptive streaming players and showed that the three 

es mentioned above i.e., instability, unfairness, and bandwidth 

erutilization, can arise in practice. They also showed that 

erent factors like the duration of ON-OFF periods, the fair 

seg 77 

tim 78 

tion 79 

abl 80 

the

stre

clie

syn

ease cite this article as: S. Tanwir, H. Perros, Modeling live adapti

tp://dx.doi.org/10.1016/j.comcom.2016.03.025 
tive quality (TVSQ) of rate-adaptive videos that are transported 1

r HTTP. The TVSQ is a time series or temporal record of one or 1

re viewers’ judgments of the quality of the video as it is being 1

yed and viewed. The accuracy of the model was validated on a 1

abase of four video sequences. The estimated TVSQs can then 1

used to guide online rate-adaptation strategies towards maxi- 1

ing the QoE of viewers. The results showed that the predicted 1

SQ correlated with the measured TVSQ in subjective studies. 1

The proposed model 1

In this paper, we propose a novel analytical model for live adap- 1

 streaming over HTTP. To the best of our knowledge, this is the 1

t such analytic model for adaptive video streaming. 1

The model consists of the following three components: 1

The video server model 1

A queueing network model of the IP network between the 1

client and server 1

The client video player model 1

In DASH, HTTP servers and HTTP caches are used to host and 1

tribute continuous media content and the clients can access me- 1

 resources through an HTTP-URL. In live adaptive streaming, the 1

uence of media segments is created on the fly from a contin- 1

s media stream. The segmenter function of the video server 1

ates a new media segment every t seconds. Thus, each media 1

ment contains t seconds worth of media data, i.e., the playback 1

e for each segment is t seconds. The DASH Media Presenta- 1

 Description (MPD) describes all available and not-yet avail- 1

e media segments either for the entire live session or up to 1
 next MPD update. The client obtains the start time of the live 181 

am from the MPD and synchronizes itself with the server. The 182 

nt must be time synchronized with the server. If it is properly 183 

chronized, it can calculate the latest available media segment 184 

ve streaming over HTTP, Computer Communications (2016), 
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Fig. 1. Segment on-off periods. 

on the server given the segment duration. It then starts fetchi

the media segments as they become available on the server e

ery t seconds. The client also monitors the network bandwid

fluctuations continuously and chooses the subsequent segmen

accordingly. 

We note that the video server transmits a segment in a ser

of IP packets set to Maximum Transfer Unit (MTU). The length 

the segment in bytes is determined by the bitrate requested by t

client. Therefore, each bitrate will have a corresponding segme

size. Since all packets are equal to MTU, except the last one, w

assume that the last one is also equal to MTU. This assumpti

does not affect the accuracy of the model, since the last packe

account for a small percentage of all the transmitted packets, a

permits us to define all three models in discrete-time, where t

length of the time slot is equal to the amount of time it takes 

transmit one IP packet of size equal to the MTU. 

3.1. The video server 

The nature of network traffic generated by live segme

streaming is very different from the traditional bulk transfer traffi

stemming from progressive video download and file transfer. T

video traffic generated by the video server is determined by t

client request strategy. The client downloads the segments of

stream one after another. It chooses the bitrate of the segmen

according to the available bandwidth so that the time it takes 

download a segment is shorter than or equal to the actual segme

duration (the playout time of a segment). The download time mu

be shorter or equal to the segment duration, otherwise the clie

buffer would eventually become empty and pauses would occur 

the playout. In general, it takes less time to download a segme

than it takes to playout the segment, i.e., the download spe

is higher than the playout speed. The client buffer hides th

inequality by buffering every segment that is downloaded. The

successive download-and-wait operations create an on-off traffi

pattern of IP packets. 

Based on this observation, we have modeled the video server 

an on-off video traffic source. The server transmits the packets 

a video segment back to back during the on period and then sto

transmitting during the off period. All packets are of equal size s

to the MTU. The transmission begins again when it receives t

next HTTP GET request from the client for the next video segme

In case of live-streaming, the sum of the on and off periods is 

ways the segment duration, t , as shown in Fig. 1 . 

The length of the on period, l , and consequently of the off, t −
period can vary throughout the life time of the connection depen

ing on the bitrate requested by the client. The requested bitra

differs due to the variations in the available bandwidth as me

sured by the client. The length of the on period depends on t

size of the video segment which is determined by the request

bitrate. Hence, for each video streaming rate, there will be a diffe

ent length of the on-off period. 

We assume that the TCP congestion window is large enough 

that all the packets in a segment can be sent back-to-back in

burst. We have not modeled any TCP retransmissions that may o

cur due to congestion and packet loss. Retransmitted packets are

no use to the client in the case of live streaming since it maintai
Please cite this article as: S. Tanwir, H. Perros, Modeling live a
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Fig. 2. Markov chain for three bitrates. 

a buffer of one video segment only. Any packets received from pr

vious segments are discarded. Also, we assume that the congesti

control algorithm of TCP is tailored to live streaming, which mea

that the congestion window size is not decreased drastically duri

congestion, because it can cause large packet delays that can ma

the entire segment reach the client over a span of more than o

segment durations, thus causing the client to freeze. 

In view of these observations, we model the video source mod

as a Markov chain with unit time equal to video segment durati

t . The states of the Markov chain represent the different qualit

or bitrates that are available for download for each video. A mod

for three different bitrates is shown in Fig. 2 . Within each sta

the packets are generated using an on-off process. The length 

the on period, l , is equal to the (size of the segment in a giv

quality)/(transmission speed of the server). The off period is t m

nus the length of on period. Thus, the lengths of on and off perio

are fixed for each state. 

In the real system, the transitions among the state of t

Markov chain are caused by the client and they depend 

the available bandwidth as measured by the client along with t

client buffer occupancy level. Specifically, the client estimates t

available bandwidth as the (segment size in bytes)/(downlo

time for the entire segment) and subsequently it decides wheth

to switch to a higher or lower rate or stay at the same rate. Cons

quently, the transition probabilities are obtained by modeling t

behavior of the client. In order to determine the client’s decisi

as to whether to change the bitrate, we need to model the del

that the packets of the same segment suffer until they reach t

client, and also how spread out these packets are from each oth

due to interleaving with other packets in the routers along t

path from the video server to the client. This is done using t

queueing network model described below. 

3.2. The queueing network 

We use a discrete-time queueing network to depict the netwo

between the video server and the client. We assume that this is

wide area network (WAN) connected to an access network whi

serves the client. We assume that Differentiated Services (Diffser

is used to support QoS in the network. 

Differentiated Services is a multiple service scheme that pr

vides different QoS to different flows. Several QoS classes ha

been defined, known as the DiffServ Code Points (DSCP). The DS

is carried in the IP header of each packet and it is used to dete

mine which priority queue the packet will join at the output po

of a router. Video packets are typically given an AF41 priority. Co

sequently, the WAN is modeled by a series of single-server queu
daptive streaming over HTTP, Computer Communications (2016), 
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Fig. 3. The queueing n

Fig. 4. Formation

ich represent the AF41 queue at the output port of each router 

ng the path of the video stream. An example of this queueing 

work is shown in Fig. 3 , where the first four queues represent 

 WAN and the last queue represents the access network. Each 

N queue receives packets transmitted from the video server 

the client (tagged traffic), along with other video packet traffic 

m other sources (background traffic). 

All packets are assumed to be equal to 1500 bytes (the path 

U). All packets in each WAN queue are served in a FIFO man- 

 at a rate μ equal to (1500 bytes)/(speed of the link), where the 

 speed is the same for the four WAN queues. The background 

ffic in a WAN queue is transmitted to the same next hop router 

the tagged traffic and it may get dispersed to different output 

ts of the router. It is likely though, that some part of it will be 

nsmitted out of the same output port of the next hop router as 

 tagged traffic. In view of this, we assume that for each WAN 

ue 80% of all the background traffic that arrives at the queue 

arts from the queueing network after it is served and the re- 

ining 20% continues on to the next queue (these percentages 

 be readily varied in the model). A similar assumption holds 

 the remaining WAN queues. 

The last queue of the queueing network depicts part of a metro 

ernet access network. In this case, the traffic gets fanned out 

the Ethernet switches, and eventually to the users. We are 

y modeling the first hop between the Broadband Remote Ac- 

s Server (BRAS) router and an Ethernet switch. The BRAS sits at 

 core of an ISP’s network, and aggregates user sessions from the 

ess network. (Other hops within the access network can be eas- 

modeled). There is no background traffic at the Ethernet switch 

 the service rate is μ1 = (1500 bytes)/(speed of the link). We 

ume that the link speed of the Ethernet switch is a hundred 

es less than the WAN router link speed (other speeds can also 

modeled). Due to the fan out of the traffic to the end users, 

 assume that 95% of the background traffic that enters from the 

S queue follows a different path after it leaves the Ethernet 

itch. That is, a small percentage goes along with the tagged traf- 

to the user. 

Of interest to the overall model proposed in this paper, are the 

owing two quantities: 
ease cite this article as: S. Tanwir, H. Perros, Modeling live adapti
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e spread. 

The spread of the original video segment transmitted by the 3

video server, when it arrives at the client 3

The end-to-end delay in the network of the leading packet of a 3

segment. 3

As will be seen, these two quantities are used in the client 3

del presented in Section 3.5 . 3

. Calculation of the spread 3

Let N s be the number of packets that make up one video seg- 3

nt at a given bit rate. We assume that these packets arrive back- 3

back at queue 1, one per time slot, where a time slot is equal 3

the time it takes to transmit a 1500-byte packet. At the same 3

e it is possible that there may be background arrivals. Back- 3

und traffic enters the router from other input ports and they 3

 up being interleaved in between the packets of the segment 3

the AF41 queue at the output port of the router. These packets 3

rease the length of the original segment, i.e., they increase the 3

ount of time elapsed between the arrival of first packet and the 3

t packet of the video segment, referred to as the “spread ”. 3

Fig. 4 shows how the spread is formed. Let us assume that the 3

ment consists of four packets (1,2,3,4) and during its arrival to 3

ue 1, three background packets arrive (A,B,C). A possible forma- 3

 of the spread is 4CB32A1. At the next queue, packets A and B 3

art and their slots are taken over by new background packets 3

nd E resulting in a new formation 4GFC3E2D1. 3

As shown in Fig. 5 , let n ib be the number of packets that arrive 3

ing the time it takes for the spread to arrive at queue i , and let 3

be the number of background packets in the spread that depart 3

ore the segment joins queue i . The remaining background pack- 3

 in the spread is indicated by n i , i.e., n i = n i −1 + n ib − d ib . In the 3

e of the access Ethernet queue n ib = 0 . 3

We assume a binomial distribution of the background arrival 3

cess. That is, there is a probability p that a background packet 3

ives in a time slot. Consequently, the probability that k back- 3

und packets arrive in the first queue during the time the N s 3
ve streaming over HTTP, Computer Communications (2016), 
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Fig. 5. The queueing network under study. 

Fig. 6. Formation of the spread. 
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packets arrive is: 

P [ n 1 b = k ] = 

(
N s 

k 

)
p k (1 − p) N s −k (

The probability distribution of the background packets n 2 is

convolution of n 1 , the background traffic at node 2, n 2 b and the d

partures at node 2, d 2 b . Let q be the probability that a backgrou

packet leaves before the segment joins queue i . This can be writt

as: 

P [ n 2 = l| n 1 ] = P [ n 2 b ] � P [ n 1 − d 2 b ] 

or, 

P [ n 2 = l| n 1 ] = 

∑ l 
( j=0) P [ n 2 b = j] P [ n 1 − d 2 b = l − j] , if n 1 ≥ l 

and, 

P [ n 2 = l| n 1 ] = 

∑ l 
(l−n 1 ) 

P [ n 2 b = j] P [ n 1 − d 2 b = l − j] , if n 1 < l 

where n 1 = n 1 b , 

P [ n 2 b = j] = 

(
n 1 + N s 

j 

)
p j (1 − p) n 1 + N s − j and, 

P [ n 1 − d 2 b = l − j = m ] = 

(
n 1 
m 

)
q m (1 − q ) n 1 −m 

Unconditioning on n 1 , we obtain an expression for the distrib

tion of n 2 : 

P [ n 2 = l] = 

∑ 

n 1 
(P [ n 2 b ] � P [ n 1 − d 2 b ]) P (n 1 ) 

In general for queue i , we have: 

P [ n i = l] = 

∑ 

n i −1 

(P [ n ib ] � P [ n i −1 − d ib ]) P (n i −1 ) (

where, 

P [ n ib = j] = 

(n i −1 + N s 
j 

)
p j (1 − p) n i −1 + N s − j and, 

P [ n i −1 − d ib = l − j = m ] = 

(
n i −1 

m 

)
q m (1 − q ) n i −1 −m 

At the last queue, we do not consider any new background tr

fic as explained above. The distribution of the background packe

can be expressed as: 

P [ n K = l] = 

∑ 

n K−1 

(P [ n K−1 − d Kb = l]) P (n K−1 ) (

The total length of the spread is equal to the sum of the vid

segment packets and the background traffic packets at the la

queue. Since, the video segments packets are fixed for a given b

trate, the pdf of the spread is the same as the pdf of the bac

ground traffic given by Eq. (3) . 
Please cite this article as: S. Tanwir, H. Perros, Modeling live a
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The case of slow video server 

In this section we consider the case where the video serv

transmits packets at a rate lower than its transmission speed. Th

situation can arise, for instance, if it is multiplexing the video pac

ets for multiple clients or if there are restrictions on server tran

mission rate from the TCP or application layer. In this case t

packets that make up a segment will not be transmitted back 

back. They will be spaced out and the segment will span a larg

number of time slots than in the above case. We have model

this as follows: 

Let N st be the number of slots that make up one video segme

for a given bit rate. We assume that the video packets arrive 

queue 1, one per M time slots. Let N s denote the number of pac

ets per segment. At the same time there may be background a

rivals. Background traffic enters the router from other input po

and they are interleaved in between the packets of the segment

the AF41 queue of the output port. The background packets m

fill the empty slots in between the slots occupied by the packe

from the video segment. Depending on the rate of background tr

fic, if the background packets that arrive during N st slots is mo

than the empty slots they will increase the spread otherwise t

length of the spread remains the same at the output port of t

router. 

Fig. 6 shows how the spread is formed. Here we assume th

the video server sends out packets at half of the link transm

sion speed. Let us assume that the segment consists of four pac

ets (1,2,3,4) and during its arrival, four background packets arri

(A,B,C,D). A possible formation of the spread is 4DC3B2A1. At t

next queue, packets A, B and D depart and their slots are tak

over by new background packets E, F and G resulting in a new fo

mation 4HGC3F2E1. 

In this case, the number of background arrivals at queue i c

be expressed as: 

P [ n i = l] = 

∑ 

n i −1 
(P [ n ib ] � P [ n i −1 − d ib ]) P (n i −1 ) 

where, 

P [ n ib = j] = 

(n i −1 + N sp 

j 

)
p j (1 − p) n i −1 + N sp − j , and 

P [ n i −1 − d ib = l − j = m ] = 

(
n i −1 

m 

)
q m (1 − q ) n i −1 −m 
daptive streaming over HTTP, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.03.025


6 S. Tanwir, H. Perros / Computer Communications xxx (2016) xxx–xxx 

ARTICLE IN PRESS 

JID: COMCOM [m5G; April 11, 2016;10:19 ] 

Fig. 7. Client request strategy. 

where N sp is the length of the spread at the input queue in 424 

terms of number of slots and is given as: 425 

N sp = Max (N st , n i −1 + N s ) 426 

In this case, the pdf of the spread is same as the pdf of back- 427 

ground packets only if the sum of video packets and background 428 

traffic is greater than the total number of slots in the spread, N st . 429 

Otherwise, the length of spread is fixed and equals N st . 430 

At the last queue, we do not consider any new background traf- 431 

fic. Also the spread shrinks and any empty slots disappear because 432 

of the much lower transmission speed of the last router. The dis- 433 

tribution of background packets can be expressed as: 434 

P [ n K = l] = 

∑ 

n K−1 
(P [ n K−1 − d Kb = l]) P (n K−1 ) 435 

This also gives the pdf of the number of packets in the spread. 436 

437 

P [ n K = l + N s ] = 

∑ 

n K−1 

(P [ n K−1 − d Kb = l]) P (n K−1 ) (4) 

3.4438 

439 

ple440 

the441 

bet442 

tim443 

cul4 4 4 

t r =445 

pac446 

ber447 

eac448 

stit449 

but450 

the451 

P [ t452 

453 

of t454 

at 455 

hav456 

but457 

gro458 

tra459 

mu460 

In 461 

rou462 

(Th463 

the464 

of a465 

the466 

us 467 

wh468 

3.5469 

470 

dow471 

ple472 

to 473 

loa474 

line miss occurs, and the playback stalls. There are several seg- 475 

ment request strategies that clients can implement. Four request 476 

strategies for live adaptive streaming are discussed and evaluated 477 

in [26] . Two of these strategies maintain a constant liveness while 478 

the other two increase the end-to-end delay after each deadline 479 

miss. The goodput of strategies with constant liveness increases as 480 

more bandwidth becomes available. The reason for this behavior 481 

is that these strategies provide a full segment duration of time 482 

for segment download. We chose the Constant Liveness Immedi- 483 

ate Request (CoIn) strategy as it has no start-up delay and does 484 

not synchronize requests which can lead to bandwidth wastage. 485 

It maintains the liveness of one segment duration throughout 486 

the streaming session which means that a segment that becomes 487 

available at t i at the video server is presented at t i +1 at the 488 

client. 489 

A deadline miss also occurs if the download time is longer 490 

than the segment duration, t . In this case, the part of the segment 491 
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. Calculation of the end-to-end delay 

In order to calculate the total time t e taken to download a com- 

te video segment, we need to know the end-to-end delay of 

 first packet in the video segment along with the time delay 

ween the first packet and the last packet t sp . The pdf of the 

e delay t sp can be obtained from the pdf of the spread, cal- 

ated above. Let t r be the service time of one packet, where 

 1500 ∗8/(speed of link). So, the time delay between the first 

ket and the last packet in the segment is equal to the num- 

 of packets in the spread multiplied by the service time of 

h packet. Thus, if x is the total number of packets that con- 

ute the spread then we can write t sp = t r ∗ x . Since the distri- 

ion of the time delay between the first and the last packet is 

 same as the distribution of the packets in the spread, we have: 

 sp = t r ∗ x ] = P [ n K = x ] . 

The end-to-end delay of the first packet in the segment consists 

he propagation delay and the transmission and queueing delays 

each router along the path of the segment. In our model, we 

e assumed that the background traffic follows a binomial distri- 

ion, i.e., for each time slot there is a probability p that a back- 

und packet arrives. Now, the combined tagged and background 

ffic offered to each link has to be less than the link’s maxi- 

m throughput, so that the link’s utilization is less than 100%. 

view of this, there are no background packets queued at each 

ter when the first packet of a segment arrives at the router. 

is was also verified through extensive simulations). Therefore, 

 queueing delay at each link encountered by the leading packet 

 segment is zero, and the end-to-end delay of the first packet is 

 propagation delay and sum of transmission times t p . This leads 

to the pdf of the total delay: P [ t e = t p + t r ∗ x ] = t p + P [ n K = x ] , 

ere P [ n K = x ] can be determined using Eq. (3) or ( 4 ). 

. The client player 

In HTTP live segment streaming, it is a client’s responsibility to 

nload the next segment before the previous segment is com- 

tely played out. This implies deadlines by which segments need 

be encoded and be available at the video server for down- 
d. On the client’s side, if a segment is not available, a dead- 

ease cite this article as: S. Tanwir, H. Perros, Modeling live adapti
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nloaded after the segment playout deadline is skipped. In or- 4

 to decrease the number of deadline misses, the adaptation al- 4

ithm chooses the segment quality so that the download ends 4

least t s seconds before the segment deadline. Thus, a deadline 4

s occurs only if the download time is longer than the estimated 4

nload time plus the time safety. The minimal value of t s is re- 4

red to as the time safety. This request strategy is illustrated in 4

. 7 . A client first requests the latest segment on the server at 4

The first segment is downloaded completely at the client at d 0 5

 the playout begins at t 1 . The next segment is requested at r 1 5

 available at the client at d 1 . The number of bytes that can be 5

nloaded within the time safety increases with available band- 5

th. This results in fewer deadline misses as the available band- 5

th increases. In this respect, one should choose a larger time 5

ety if more bandwidth fluctuations are expected. We can also 5

ust the time safety dynamically based on the observed band- 5

th fluctuations. 5

We assume that the client makes a request immediately after 5

t s seconds and that the request reaches the server before the 5

t t -second period starts. We have used the following client rate 5

ptation algorithm in our model: 5

Download the first segment at the lowest bitrate 5

Determine the download time for the current segment 5

If the video segment is completely downloaded by time t − t s 5

a. Determine the highest bitrate so that it can be downloaded 5

by t − ts with the current available bandwidth 5

i. Determine the delay per bit for the current rate ( r curr ), 5

i.e., r curr = t e / (r curr ∗ t) 5

ii. Determine the highest bitrate, r nxt , for which the ex- 5

pected download time is the closest to t − t s , i.e., 5

( t e / (r curr ∗ t)) ∗ (r nxt ∗ t) � t − t s 5

b. Send an HTTP GET request for this higher bitrate ( r nxt ) 5

c. Go to step 2 5

If the video segment is not downloaded by t − t s 5

a. Send an HTTP GET request for the next lower bitrate for 5

which the expected download time is closest to t − t s 5
b. Go to step 2 528 

ve streaming over HTTP, Computer Communications (2016), 
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Fig. 8. CDF of the end

3.6. State transition probabilities 

Using the above algorithm and the cdf of the total delay f

each rate, we can determine the state transition probabilities f

the video source model. The total time to download a segme

determines the available bandwidth which helps the client deci

the bitrate to download the next segment. Therefore, we obtain t

cdf from the pdf of the end-to-end delay obtained in Section 3

Then, we find points on the cdf beyond which the bitrate has to 

changed in order to download the next segment within the dea

line using the current available bandwidth. 

For example, let us assume that the client can request 2 s se

ments with three different bitrates: 80 0, 90 0 and 10 0 0 Kbps, a

that the time safety is 0.3 s . That means t − t s is 1.7 s and t

segment needs to be completely downloaded at the client by th

time. Fig. 8 gives the cdf for 900 Kbps bitrate obtained assumi

the queueing network shown in Fig. 3 with four WAN routers th

transmit at 1.2 Gbps and one Ethernet access network node wi

a transmission rate of 1.2 Mbps. The background traffic is 60% 

the total link capacity in the WAN and only 5% of it continu

into the Ethernet access network. Each point on the cdf gives t

probability that the video segment encoded at 900 Kbps will rea

the client within a certain end-to-end delay (the x-axis). For exam

ple, point A indicates that the end-to-end delay will always be le

than or equal to 1.535 s with a probability of 0.005. From this, w

can calculate the total delay per bit, i.e, 1.535/(90 0,0 0 0 ∗2) (sin

there are 90 0,0 0 0 ∗2 bits in the 2 s segment). We can also calcula

the total delay for a segment encoded at a higher bitrate assumi

the same delay/bit. For example, at 10 0 0 Kbps, the delay will 

1.7 s . Thus, A is the point beyond which if the client switches to

higher rate, the total delay taken by the new segment will be mo

than t − t s which is 1.7 in this case. This implies that the clie

only switches to a higher rate if the end-to-end delay is less th

or equal to 1.535 s . This point then gives us the state transiti

probability of switching from 900 Kbps to 10 0 0 Kbps. 

Now, let us find the probability of switching to a rate low

than 900 Kbps. This will only happen if the total delay is great

than 1.7 s . Point B on the curve indicates that the end-to-end d
Please cite this article as: S. Tanwir, H. Perros, Modeling live a
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d delay for 900 Kbps bitrate. 

lay will always be less than or equal to 1.7 s with a probability 

0.9496. This means that the probability the end-to-end delay w

be more than 1.7 is 1 −0.9496 = 0.0504. Also the probability th

the client will request the same rate again based on the curre

delay is 1 −0.0504 −0.005 = 0.9446. 

Employing the same technique, we can calculate all rows of t

transition matrix using the cdfs for different rates and for differe

time safety values. 

4. Validation of the rate transition rates 

In this section, we validate our method for calculating the ra

transition probabilities of the server traffic model using simulatio

(The expression of the cdf of the end-to-end delay is exact, a

consequently it does not require validation). The simulation mod

is a discrete-time model based on the same assumptions as the a

alytic model described above, and it consists of a video server th

generates video packets in a queueing network of 5 single-serv

queues and a client player that implements the rate control log

The video server generates segments at different rates based 

the requests from the client every t seconds. These segments a

packetized and transmitted in the network in 1500-byte packe

The background traffic is assumed to follow a binomial distrib

tion. A slot is equal to the amount of time it takes to transmit o

a 1500 bytes packet. 

The first four queues are part of the core network and we s

their service rate to 1.2 Gbps. The last queue is assumed to be pa

of the Ethernet access network and transmits at a speed that

hundred times less than the core. All packets have the same p

ority. We assume that 80% of the background traffic that arriv

at each queue in the core network leaves before entering the ne

queue, and 95% of all the background traffic leaves before ente

ing the last queue. The background traffic is set to 60% of the li

capacity. 

The client implements the rate adaptation algorithm describ

in Section 3.5 . It maintains a buffer of one video segment as w

are modeling the live streaming case. The client sends the reque
daptive streaming over HTTP, Computer Communications (2016), 
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Fig. 9. The cdf of the end-to-end delay for rates 80 0,850,90 0,950 and 10 0 0 Kbps. 

delay that equals the transmission and the propagation delays be- 602 

fore the server transmits the next segment. The simulation pro- 603 
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lion video segment requests. 

We compared the transition probabilities obtained from the 

ulation model with the transition probabilities calculated us- 

 the cdf of the end-to-end delay obtained from the mathemat- 

l model as explained in Section 3.6 . In the simulation model, 

 determine the transition probabilities by counting the fre- 

ncy of transitions among the bitrates requested by the client 

 each segment. The client requests a new bitrate after down- 

ding each segment based on the rate control algorithm dis- 

sed in Section 3.5 This is done for a large number of segment 

uests. The cdfs of the end-to-end delays for a chosen set of rates 

 given in Fig. 9 . The set of rates are determined based on the 

ut parameters of the model, i.e., the transmission rates of the 

ters and the background traffic as these dictate the available 

dwidth. These are the most selectable rates for given network 

ameters. For example, if the available bandwidth is 1 Mbps, the 

nt will most probably select a bitrate closer to 1 Mbps instead 

a very low rate, say 300 Kbps or a very high bitrate. Hence, 

re will be no transitions to those bitrates even if they are of- 

d to the client. 

We compared the one-step transition matrices using the Mean 

ared Error (MSE), defined as: 

E = 

n ∑ 

i =1 

n ∑ 

j=1 

(X i j − Y i j ) 
2 /size (X ) (5) 

ere X ij are the transitions calculated using the mathematical 

del, Y ij are the transitions determined using simulation, and 

 ( X ) is the total number of elements in the matrix. The MSE of 

 one-step transition matrices are plotted in Fig. 10 as a func- 

 of the time safety t − t s . The MSE values are very low which 

icate that the transition matrices are very similar. 

We conducted another set of experiments assuming faster core 

 access network elements. We set the transmission rate in the 

e network to 10 Gbps and the access network transmission to 

bps. The set of video bitrates that the client can choose from 

 from 1650 Kbps to 1800 Kbps in increments of 500 Kbps. The 
s of the end-to-end delay for this case are shown in Fig. 11 , and sev 75 

ease cite this article as: S. Tanwir, H. Perros, Modeling live adapti
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itional results were obtained for other input values including 6

 case of the slow servers, see [27] . Based on these results, it ap- 6

rs that the mathematical model is very accurate and predicts 6

 rate change probabilities very close to those obtained by sim- 6

tion. 6

Applications of the model 6

As was seen above, our analytic model can be used to charac- 6

ize the departure process of IP packets from the video server. 6

eo traffic models are crucial in network dimensioning and re- 6

rce management of IP networks. Using the proposed model, we 6

 determine the packet arrival process for different types of net- 6

rks by varying the number of nodes, link capacities, background 6

ffic utilization and video server transmission rates. In addition, 6

 model can be used by the video service providers iteratively 6

help determine the optimal video bitrates to encode the videos 6

 given network parameters and types of clients. It also enables 6

m to dimension the server properly to meet clients’ quality 6

service requirements. This may include determining a maxi- 6

m number of clients per output port that can be entertained 6

ultaneously. 6

In the remaining of this section, we describe a new rate control 6

orithm which takes future decisions into consideration in order 6

avoid playback interruption and achieve better smoothness and 6

lity. 6

 Rate control algorithm 6

The main idea behind the algorithm is that the client estimates 6

 available bandwidth of the network links and this information 6

 be used to estimate the time required to download a video 6

ment that is available at different bitrates. The client gets the 6

rmation about all the bitrates, that the server offers, from the 6

D file. The client constructs the cdfs for these different bitrates 6

 then decides on the optimal rate to download the next seg- 6

nt. We saw in Section 3.2 , that if the speed of access link is 6

eral times less than that of the WAN links (which is true in 6
ve streaming over HTTP, Computer Communications (2016), 
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Fig. 10. Mean squared error: Rates 80 0,850,90 0,950,10 0 0Kbps . 
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Fig. 11. The cdf of the end-to-en

most cases), the spread shrinks in terms of number of packe

(and slots) but takes more time to be transmitted because of t

slower speed. Making use of this observation, the client can es

mate the cdf of the delay by measuring the background traffic th

affected the spread at the access network link only. In order 

do that, the client player measures the time it took to downlo

the complete segment. Since it knows the capacity of the link,

can also determine how much time the actual video segment da

took to download out of the total time. The difference betwe

the two gives the delay caused by the background traffic and t

percentage of background traffic that affected the spread can 

estimated from that. The client assumes that the background tr

fic arrival process is binomial and the time is slotted just as in t

model. 
Please cite this article as: S. Tanwir, H. Perros, Modeling live a
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y for rates 1.65, 1.7, 1.75 and 1.8 Mbps. 

The pdf of the number of background packets in the spread c

be written as: 

P [ n Kb = k ] = 

(
N s 

k 

)
p k (1 − p) N s −k (

Here p is the percentage of background packets per segme

estimated by the client every t seconds. Since N s is fixed, the p

of the spread is same as above. From that the cdf of the spre

and consequently, the cdf of the end-to-end delay can be obtaine

In order to do that, the client should also measure and add t

propagation delay. 

We compared the pdf of the spread and the cdf of the en

to-end delay obtained by the above approximation with the on

calculated by the model. We assumed the same queueing netwo
daptive streaming over HTTP, Computer Communications (2016), 
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Fig. 12. Mean squared error: Rates 1.65, 1.7, 1.75 and 1.8 Mbps . 

Fig. 13. The pdf of the number of packets in the spread for 800 Kbps bitrate. 
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 first four queues are part of the core network and we set their 

vice rate to 1.2 Gbps. The last queue is assumed to be part 

the Ethernet access network and transmits at a speed that is 

dred times less than the core. We assume that the background 

ffic arrives at each router in the core network and 80% of the 

vious background packets leave before entering the next router 

ue. 95% of all the background traffic leaves before entering 

 last queue. We assume the background traffic to be 60% of 

 link capacity. Only 5% of the net background traffic packets 

m the previous queues join the last queue and contribute to 

 spread. For the given input parameters, the client estimated 

 background packets to be 9% of the total packets in the 

ead at the last queue on average. Based on this percentage, we 

roximated the pdf of the spread and the cdf of the end-to-end 
ease cite this article as: S. Tanwir, H. Perros, Modeling live adapti
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We can see that the approximated pdfs and cdfs match very 7

ll with the ones obtained using the model. 7

Based on the above delay estimation technique, we propose the 7

owing rate adaptation algorithm: 7

Download the first segment at the lowest bitrate 7

Determine the download time for the current segment 7

If the video segment is completely downloaded by time t − t s 7

a. Based on the download time of the current segment, deter- 7

mine the percentage of background traffic ( p est ) that affected 7

the spread 7

b. Determine the highest bitrate so that it can be downloaded 7

by t − t s with the current available bandwidth 7

i. Determine the delay per bit for the current rate ( r curr ) 7
ve streaming over HTTP, Computer Communications (2016), 
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Fig. 14. The pdf of the number of packets in the spread for 900 Kbps bitrate. 

Fig. 15. The cdf of the end-to-end delay for 800 Kbps bitrate. 

ii. Determine the highest bitrate, r nxt , for which the ex- 732 

.e., 733 

734 

ed 735 

he 736 

en 737 

738 

739 

740 

741 

or 742 

743 

744 

t s 745 

xt 746 

747 

can use a moving average for the current end-to-end delay in- 748 

ge 749 

st 750 

ng 751 

752 

ed 753 

he 754 

il- 755 

ps. 756 

o- 757 

l- 758 

he 759 

te 760 

- 761 

he 762 

ed 763 
pected download time is the closest to t − t s , i

( t e / (r curr ∗ t)) ∗ (r nxt ∗ t) � t − t s 
iii. Estimate the cdf of the end-to-end delay for r nxt bas

on the estimated background traffic ( p est ). Check if t

90th percentile of the delay for r nxt < = t − t s . If not th

choose r nxt as the second highest bitrate. 

c. Send an HTTP GET request for this chosen bitrate ( r nxt ) 

d. Go to step 2 

4. If the video segment is not downloaded by t − t s 
a. Send an HTTP GET request for the next lower bitrate f

which the expected download time is closest to t − t s 
b. Go to step 2 

We assume that the client makes a request immediately after t −
seconds and that the request reaches the server before the ne
t -second period starts. In order to smooth the rate change, we 

Please cite this article as: S. Tanwir, H. Perros, Modeling live a
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stead of the latest value. Similarly, we can use a moving avera

of the background traffic. The moving average can be based on la

N segments, where the best value of N can be determined usi

simulation. 

We implemented the algorithm in the simulation and compar

the results with the algorithm discussed in 3.5 , referred to as t

“simple algorithm ”. We assume that the client can request 5 ava

able bitrates at the server, i.e., 800, 850, 900, 950 and 10 0 0 Kb

We compared the simple algorithm with the new proposed alg

rithm, referred to as the “model-based algorithm ”, using the fo

lowing metrics: the total number of rate transitions during t

length of the simulation, the number of times a particular ra

is selected and how often the transitions occur. In order to com

pare these metrics, we varied the background traffic during t

simulation. This was done using a discrete time Markov-modulat
Bernoulli process (MMBP) consisting of three states: low, medium 764 
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Fig. 16. The cdf of the end-to-end delay for 900 Kbps bitrate. 

Fig. 17. Markov chain for background traffic arrival process. 

and high (see Fig. 17 ). Within each state i , the background traffic 765 

is generated using a binomial distribution with probability p i , set 766 

to 767 

tive768 

las769 

bef770 

771 

the772 

and773 

tim774 

to 775 

ter776 

the777 

sta778 

[ 

The stationary probabilities obtained after solving this matrix 779 

are: 780 [ 

0 . 3661 

0 . 4778 

0 . 1561 

] 

We used a moving average for the estimated p est in the al- 781 

gorithm. We present the results for a moving average of N = 5 782 

and 10 previous segments. In Figs. 18 and 19 , we present the 783 

rate transitions for the first 200 segments for both simple and 784 

the proposed model-based algorithm for two different moving 785 

average windows. We can conclude from the results that N = 5 786 

is sufficient in this case. The solid line curve represents the state 787 

in which the background traffic process currently resides in. Here, 788 

state 1 is for low activity, 2 for medium activity and 3 for high 789 

activity. For this reason, we can see that when the process is in 790 

a low activity state the bitrate selected by the client is higher. 791 

Hence, the background curve fluctuates in opposite directions 792 

to the bitrate curves. We can observe from the figures that the 793 

proposed algorithm chooses the bitrate smoothly as compared to 794 

the simple algorithm described in Section 3.5 . It stays in the same 795 

bitrate for longer time periods instead of choosing a higher bitrate 796 

and then choosing the same rate again like the simple client. 797 

We 98 

bac 99 

but 00 

bitr 01 

in 02 

rep 03 

wh 04 

fluc 05 

res 06 

the 07 

vid 08 

shi 09 

the 10 

due 11 

pro 12 

is m 13 

nec 14 

Pl

ht
0.4, 0.6 and 0.7 for low, medium and high activity states respec- 

ly. The same value of p i is used at the first four queues. At the 

t queue, only 5% of the background traffic joins the queue like 

ore. 

We set the state transition probabilities r ij in such a way that 

 process spends most of the time in the medium activity state 

 least of the time in high activity state. Since it is a discrete- 

e process, time is measured in time slots. Here a slot is equal 

the segment time t . During the simulation, a new state is de- 

mined every t seconds using the state transition matrix and 

 background traffic is generated accordingly at each queue. The 

te transition probabilities we used are: 

0 . 8 0 . 18 0 . 02 

0 . 15 0 . 8 0 . 05 

] 
0 . 01 0 . 19 0 . 8 

to 
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 can see in the figure that the simple algorithm fluctuates 7

k and forth between the 10 0 0 Kbps and 950 Kbps bitrates 7

 the model-based algorithm tends to choose one of these 8

ates multiple times before switching to another. As discussed 8

[28] and [9] , downloading each segment in the highest possible 8

resentation results in frequent changes of playback quality 8

enever the dynamics of the available throughput exhibit strong 8

tuations. Therefore, it is better to choose a bitrate that will not 8

ult in too many quality fluctuations. Thus, the overall goal of 8

 rate adaptation algorithm should be to maximize the average 8

eo quality but also to minimize the number of video quality 8

fts. Our proposed algorithm achieves this goal. In the case of 8

 simple algorithm there is a transition almost every segment 8

 to small changes in background even though the background 8

cess stays in the same state. This means that simple algorithm 8

ore sensitive to bandwidth changes and reacts too often than 8

essary. However, the proposed algorithm reacts quickly similar 8
the simple algorithm in case of a deadline miss. 815 
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Fig. 18. Rate transitions for the simple and model-based algorithm using a moving average of the last 5 segments for p est . 

d algo

s mod
Fig. 19. Rate transitions for the simple and model-base

Fig. 20. Number of segments requested per bitrate for the simple v
Please cite this article as: S. Tanwir, H. Perros, Modeling live a
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rithm using a moving average of the last 10 segments for p est . 

el-based algorithm using a moving average of the last 5 segments for p est . 
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Fig. 21. Number of segments requested per bitrate for the simple vs model-based algorithm using a moving average of the last 10 segments for p est . 

Table 1 

Total number of bitrate transitions. 

Algorithm Moving average window Transitions 

Model-based 5 15705 

Simple 5 41055 

Model-based 10 18884 

Simple 10 41164 

Next, we present the number of segments requested for each of 816 

the 5 available bitrates using both algorithms for a total of 10 0 0 0 0 817 

segments. We can see in Figs. 20 and 21 , that the model-based al- 818 

gorithm requests more segments in the bitrate 950 Kbps while the 819 

simple algorithm is more aggressive and it requests more number 820 

of segments in 10 0 0 Kbps, which results in a lot of fluctuations. 821 

Lastly, we report the total number of bitrate transitions be- 822 

tween the five different bitrates requested by the client in Table 1 . 823 

We can see that the simple algorithm made a lot more transitions 824 

among the different bitrates as compared to the model-based algo- 825 

rithm. Again, this proves that the proposed model-based algorithm 826 

chooses the bitrates wisely resulting in fewer quality fluctuations 827 

and hence better quality of experience for the viewer. 828 

6. Conclusion 829 

Nowadays an increasing number of video applications employ 830 

adaptive streaming over HTTP, as it has several more benefits com- 831 

pared to classical streaming. Its offers multiple bit rates of video 832 

that enables video service providers to adapt the delivered video to 833 

the users’ demands. Secondly, the video bit rate can be adapted dy- 834 

namically to changing network and server/CDN conditions. Lastly, 835 

different service levels and/or pricing schemes can be offered to 836 

customers. Significant amount of work has been done on the de- 837 

sign of rate adaptation schemes and performance comparisons, 838 

however, no one has modeled and studied the system analytically. 839 

In this paper, we proposed the first (to the best of our knowledge) 840 

analytic model for live adaptive streaming over HTTP. The model 841 

can be used to characterize the departure process of the IP packets 842 

from the video server. Also, using this model we proposed a new 843 

rate control algorithm that makes less frequent rate transitions and 844 

increases the quality of experience for the viewer. 845 

The model is decomposed into three components, namely, the 846 

video server model, the model of the IP network, and the client 847 

video model. In the model of the IP network, we are basically in- 848 

terested in obtaining the distribution of the spread of a segment, 849 

and the time it takes for the leading packet of the segment to 850 

reach the client. For this, we assumed that the background arrival 851 

process is Bernoulli. In a future extension of this paper, we hope 852 

to replace it by a discrete-time bulk arrival process where the bulk 853 

size varies from one up to the total number of input ports of the 854 

router. Under this assumption the calculation of the distribution of 855 

the spread is feasible, but the calculation of the end-to-end delay 856 

becomes extremely difficult. However, this can be estimated sepa- 857 

rately for each bitrate using an extremely fast activity-based simu- 858 

lation reported in [29] . 859 
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