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a b s t r a c t 

We present the design, implementation and evaluation of DevCom, a network system that provides users 

with a trustworthy and user-friendly way to communicate, share and collaborate among distinct groups 

of devices simultaneously, e.g., home devices, work devices and friends’ devices. DevCom is trustwor- 

thy, because reliability, security and privacy issues are automatically taken care of with state-of-the-art 

cryptography. User-friendliness is ensured through self-configuration, persistent connections in advent of 

mobility, and by automatically solving problems that network address translation (NAT) and firewalls in- 

troduce. An experimental evaluation shows that (1) off-the-shelf applications such as games perform in 

the same way as they do without DevCom, (2) latency, throughput and processing overhead is low and 

unnoticeable to users, and (3) persistent connections are automatically supported on devices with chang- 

ing addresses. A critical analysis from three user perspectives, i.e., a novice, an intermediate user, and an 

application developer, highlight the user-friendliness of DevCom for a broad range of users. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

People are surrounded by computing devices with ubiquitous

access to data networks such as Wi-Fi and cellular networks. This

is making Mark Weiser’s vision of ubiquitous computing [1] a real-

ity in the quantitative aspect. It is common to own smart-phones,

laptops, desktop computers, tablets, and specialized computers

such as media centers, and use additional devices at school, work

and when visiting friends and family. However, the qualitative part

of Weiser’s vision, regarding unconscious human-computer inter-

action based on seamless communication, sharing, and collabora-

tion between devices, is still unfulfilled. Files (e.g., music libraries

and text documents), peripherals (e.g., printers and web-cams) and

services (e.g., remote desktop and secure shell) are not always ac-

cessible on the devices currently available to users. Access to such

remote resources is even more cumbersome if proper security and

privacy protection mechanisms are in place. 

In order to make life less complicated for users, this work

presents a network system called DevCom that assists users to

easily organize devices in multiple trustworthy communities.

Communities are small groups of devices (later called device

communities) with common trust policies, where ubiquitous

communication, sharing, and collaboration among the devices are
∗ Corresponding author. Tel.: +47 22852876; fax: +47 22852401. 
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ssured. A device community is providing security and privacy

rotection and can be seen as a generic trustworthy platform for

ll types of network applications. Devices can be part of many

evice communities at the same time and take advantage of the

ifferent services and applications in each device community. A

obile device on a public Wi-Fi can, e.g., securely access a shared

preadsheet document at work and print it using the family

rinter at home. To minimize user interaction, DevCom even

orks seamless when mobile devices change their IP address, and

n the presence of firewalls and network address translation (NAT).

One question to investigate is whether this type of device man-

gement requires new research or if sufficient solutions already

xist. The answer is that some of the DevCom features can be

chieved by combining existing technologies, but at the expense

f user-friendliness. It is possible to configure port forwarding and

tatic IP addresses for devices behind NAT, dynamic name server

pdates for devices using Dynamic Host Configuration Protocol

DHCP), multiple Virtual Private Network (VPN) tunnels, and mo-

ile IP, but “only the most dedicated, desperate, or geeky will go

o this trouble” [2] . Simpler techniques typically rely on third-party

ervices, such as Hamachi [3] . These services can cost money, in-

roduce downtime when the service providers experience failures,

e slow if the service providers are located across the globe, and

erhaps most importantly, raise serious privacy concerns. 

Trustworthy and user-friendly is often considered to be a con-

radiction, because security features normally incorporate con-

traints and obligations. One of the core goals of this work is to

http://dx.doi.org/10.1016/j.comcom.2016.02.001
http://www.ScienceDirect.com
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chieve trustworthiness while maintaining user-friendliness. De-

Com relies on self-configuration in order to minimize user in-

eraction and reduce the risk of misconfiguration. Users might

hoose poor passwords, because they are easy to remember, and

se potentially fatal configuration, e.g., if forced to define IP ranges,

hoose dedicated super peers or manage cryptographic key distri-

ution. By taking the configuration burden away from the user, the

ecurity and user experience is improved at the same time. The

nly task to be performed by users is to name their device com-

unities and let devices join and leave when desired. The rest of

he difficult configuration and maintenance is performed by Dev-

om. A critical part of the self-configuration mechanism is a novel

P address assignment algorithm using cryptographic keys to yield

ermanent and unique addresses for each device. 

In many ways a device community is similar to a VPN. Both im-

ly a group of distributed devices in a trustworthy virtual network.

ember admission is controlled, communication is encrypted and

ata is only transmitted to whom it concerns, ensuring privacy for

he users. However, there are also substantial differences between

evice communities and VPNs. First, a device community is com-

letely decentralized and independent of third party servers. Sec-

nd, and arguably more important, VPNs do not allow a device to

e part of several networks at the same time. We regard coexisting

etworks as essential in ubiquitous computing. Using applications

nd services in different networks at the same time is required in

cenarios like the one described above where a user’s current task

pans networks, i.e., working from a public network on a document

n a private home network and printing it in another completely

eparate work network. It is also beneficial when two or more

asks are performed simultaneously in different networks, e.g., if

 user is streaming audio from a friend while troubleshooting a

amily member’s computer using remote desktop. Furthermore, not

ll devices a user has access to are equal in terms of trust or de-

and for files, peripherals and services. For example, devices used

or work should not necessarily have access to the same services as

ome devices, and friends’ devices are not trusted in the same way

hat family devices are. Similarly, mobile devices should not nec-

ssarily have the same privileges as stationary devices, and work-

tations can have different needs than servers. With existing net-

ork technology, if a user enables a service on a device, e.g., a web

erver listening on port 80, all incoming requests to that service

re treated equally, with no simple means to allow some devices to

onnect, while denying others. If a user of DevCom wants to deny

ccess to a service (such as a web server) in one device commu-

ity while allowing it in another, this is easily done using off-the-

helf firewalls with graphical user interfaces where the user can

hoose the application to restrict from a menu. This is predomi-

antly relevant if the application or service does not have its own

uthorization features, i.e., unlike ssh. 

The first contribution of this work is the device community

oncept and approach for organizing computing devices into mul-

iple, concurrent groups. Device communities facilitate differenti-

ted communication, sharing, and collaboration among computing

evices, supporting existing network applications and services

ncluding games, audio/video streaming, file and printer sharing,

emote desktop, ssh, etc. Few existing systems have the ability to

llow devices to take part simultaneously in independent secure

etworks. The second contribution is a novel self-configuration

echanism. The self-configuration alleviates users from burdening

nd potentially unsafe configuration choices. Users are the most

ompetent when it comes to grouping their devices in terms

f trust, but should not be concerned with technical details,

uch as defining IP ranges, choosing dedicated super peers and

anaging cryptographic keys. The self-configuration mechanism

s also used to separate the location and identification of devices,

llowing seamless connection handover in mobile scenarios. The
hird contribution is the design of one complete, decentralized,

elf-organizing, user-friendly and trustworthy system without de-

eloping new security and privacy solutions. Instead, DevCom uses

xisting cryptography and NAT penetration solutions according to

est practices. The fourth and final contribution is a prototype

mplementation and evaluation of DevCom. A combination of

xperiments, ranging from micro-benchmarks to preliminary user

tudies is performed in order to analyze the performance and

ser-friendliness of DevCom. 

The remainder of this paper is organized as follows: Section 2

xamines the configuration effort s necessary to achieve DevCom

ommunication features in current networks, Section 3 reviews the

elated work, Section 4 describes the DevCom design, Section 5

resents the evaluation specific details and results, and Section 6

oncludes the paper. 

. Configuration effort s in current networks 

The configuration effort s necessary to achieve DevCom commu-

ication features in current networks are not negligible. Users of

etworked devices face a series of challenges when they want to

se applications or services in different private networks simulta-

eously. The following are some needs users typically have, and

he configuration effort s required to achieve those needs. 

Connecting to devices without knowing their physical loca-

ion or network attachment requires automatically updated IP

ddresses or hostnames. This can be achieved by expert users

hrough third party services, such dynamic DNS, but only on cer-

ain devices and operating systems. Dynamic DNS typically in-

olves signing up for an account with, e.g., noip.com, installing and

onfiguring an update agent in all devices, and ensuring that de-

ices are always addressed by hostname and that no local caching

ccurs. 

Connecting to devices behind NAT, typically used in homes and

orkplaces, requires port forwarding or publicly exposed networks.

ort forwarding is difficult if more than one device behind NAT use

he same port, and exposed networks can potentially be a security

hreat. Furthermore, it requires that the devices behind NAT use

tatic IP addresses. Port forwarding is configured in home and of-

ce routers’ administration interfaces by choosing the port to open

xternally and the internal IP address to forward traffic to. The

onfiguration has to be done for each port or port range to for-

ard. 

Roaming with seamless streaming, remote desktop and other

pplication sessions requires mobile IP and fast handover or equiv-

lent solutions. Configuring this is not trivial for regular users, il-

ustrated by e.g. Cisco’s 10 page configuration documentation just

or setting up home and foreign agents. 

Protecting one’s privacy on public networks requires encryption,

ypically through VPN. VPN services are not necessarily difficult to

onfigure, but give the VPN service providers control over the traf-

c content. The data is encrypted from the sender and to the VPN

rovider, but not further. This is inherently limiting the provided

rotection, because data is not only accessible by the intended re-

eivers, but also by the VPN provider and all subsequent nodes in

he path to the receiver. 

Controlled admission and differentiated access to applications

nd services requires configuration of complex firewall rules with

uthentication mechanisms. This type of maintenance is only

chievable by skilled users, and updating firewall rules for a roam-

ng device is likely an endless task, because the circumstances are

onstantly changing. 

Using services and applications in different networks simulta-

eously can require all of the effort s above repeated for each net-

ork, device and application. It is unlikely that anyone is deter-

ined enough to go through that for more than a few devices. 
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Table 1 

Trust related tasks. 

Task Cryptographic keys Component 

Establish trust Public RSA key exchange User 

Sign and decrypt control 

traffic 

Private RSA keys Overlay Manager 

Verify and encrypt control 

traffic 

Public RSA keys Overlay Manager 

Encrypt and decrypt data 

traffic 

AES symmetric key Data Manager 
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Some of the required efforts above can be impossible for end

users to perform if they do not have administrative privileges on

the network equipment, e.g., opening ports on routers. Our goal

is to realize the user desires described above with minimal con-

figuration effort s and need to modify equipment. We aim to go

from complex configuration tasks which require expert knowledge

to close to zero configuration requirements. 

3. Related work 

Several systems for device communication, sharing, and collab-

oration exist, but none of them are able to provide a truly ubiqui-

tous experience. Some systems, such as Turtle [4] , OneSwarm [5] ,

Tarzan [6] and Tangler [7] , only address anonymity and privacy is-

sues, while others, such as WASTE [8] , are limited to a specific

application domain, e.g., file sharing. OpenVPN [9] and Mobile IP

[10,11] have considerable setup and management effort s and are

vulnerable, because of their single point of failure. The most closely

related systems to DevCom use overlays and introduce a virtual

network between the applications and the physical network. This

includes GroupVPN, SocialVPN [12] , TinCan [13] , Network 2 Net-

work [14] , P2PVPN [15] , Everywhere Local Area Network [16] and

the Unmanaged Internet Protocol [2] . 

GroupVPN and Social VPN are two systems built on top of

a framework called IP over P2P (IPOP) [17,18] , which have later

evolved to TinCan. Neither of the systems support multiple simul-

taneous networks in their current versions. 

Network 2 Network (N2N) provides multiple simultaneous net-

works which are called communities. The N2N communities are

configured manually and statically, and dedicated super peers are

used for bootstrapping and NAT penetration. As pointed out above,

manual configuration is a potential security weakness, and assign-

ing dedicated servers which are always available is unrealistic from

an end-user perspective. N2N uses pre-shared keys which makes

eviction of devices from N2N communities impossible. 

P2PVPN relies on centralized BitTorrent trackers for bootstrap-

ping, requires manual configuration of IP addresses, and does not

penetrate NAT. The current design and implementation does not

allow multiple simultaneous networks, and a final drawback we

found when testing P2PVPN, is that it drops packets when packet

sizes are large. 

Everywhere Local Area network (ELA) uses both UDP and TCP

for tunneling in order to support different types of NAT. A differen-

tiation is made between devices using both UDP and TCP to com-

municate (core nodes) and devices using only TCP (edge nodes).

Bootstrapping is done manually in ELA by providing an IP address

of a device already in the network. Data packets are supposedly

encrypted, but the details of how this is done are not disclosed. 

The Unmanaged Internet Protocol (UIP) is part of a larger

project called Unmanaged Internet Architecture (UIA) [19] . UIP al-

lows several users per device, but it does not support different

coexisting networks. Different network names, known as personal

groups, are possible, but they are in reality aliases for the same

network. This means that applications and services cannot be re-

stricted to certain networks. Another drawback of UIP is that it

does not have TCP fallback when UDP hole punching 1 fails. This

can result in unreachable devices, e.g., in presence of symmetric

NAT. 

The above review reveals that the most important feature, i.e.,

support for multiple simultaneous networks, is only supported by

N2N. It is probably possible to extend some of the related work,

e.g., TinCan and UIP, to have multiple IP addresses, but it is unclear

whether their design allows the deterministic assignment novel to
1 UDP hole punching is a technique for NAT traversal. c
evCom. In particular, DevCom uses a network part mapped to a

ommunity name, and a unique, static host part mapped to a pub-

ic key identifier. DevCom’s IP address assignment enables mul-

iple, unique, persistent IP addresses and differentiated access to

esources, based on network/community membership. The second

ost important feature, i.e., complete self-configuration, is only

rovided by TinCan and UIP. None of the related systems provide

oth features combined. 

. Design 

The overall goal of this work is to provide end-users with a

ser-friendly and trustworthy platform to communicate, share and

ollaborate among small groups of devices, e.g., home devices,

ork devices, etc. This should be achieved for existing applications

nd with existing network solutions, and without the need to re-

uest the user to perform modifications or cumbersome configu-

ations. In the following, we briefly motivate for the major design

ecisions to achieve these goals, before we present the following

ubsections the detailed design of device communities, the archi-

ecture of DevCom, how it internally works during practical use,

nd the most important implementation aspects. 

Our aim to achieve the highest possible degree of trustworthi-

ess for realistic settings, i.e., using any kind of computing device

ver the unprotected Internet, implies two major design decisions.

irst, the system must be entirely independent of 3rd parties such

hat only devices the user personally trusts are involved. Second,

ryptographic functions with a high security level must be applied

o protect all data that is exchanged among the trusted devices.

able 1 gives a brief overview over the tasks related to trust, the

ryptographic methods used for these tasks, and the responsible

evCom components. To achieve independence of 3rd parties and

ser-friendliness at the same time requires a self-organizing sys-

em with close to zero configuration effort for the user. 

One major task of DevCom is to manage the membership in-

ormation and maintain application sessions. Device mobility and

hurn introduce a challenge for this task since the IP addresses

f devices 2 change in an uncontrolled and unpredictable manner.

he fundamental problem that IP addresses combine identification

nd location in one address is circumvented in DevCom by adding

 virtual IP layer on top of the existing, unmodified Layer 3, i.e.,

he native IP layer. The virtual community addresses are static such

hat applications always see the same IP addresses, even when the

nderlying, physical device addresses change, e.g., due to handover

rom WiFi to 4G. In order to achieve maximum resilience for de-

ice communities against churn we propose a fully decentralized

olution in which all devices maintain a list of all devices they

ave a relationship with, i.e., all devices they trust in at least one

evice community. Furthermore, all devices propagate device com-

unity membership changes to other members. This implies that

ll devices are equal in terms of trust and responsibilities regarding
2 Depending on the context, the IP address of a device is later in this paper also 

alled physical address or location. 
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Fig. 1. Layers of the DevCom stack. 
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Fig. 2. Two example device community addresses. 
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evice community management. For a device that has been turned

ff for a longer time the membership information it hosts might be

utdated to a large extent, since many of the other devices might

ave obtained new IP addresses. However, a single valid IP address

f another device community member is sufficient to synchronize

he membership information and again gain full connectivity for

ll device community members. 

These core design decisions lead to the networking stack in

hich applications can use either the existing transport layer ser-

ices or the services of one or more device communities which

rovide persistent connections, security and protect privacy (see

ig. 1 ). Device communities are built on top of a DevCom control

ayer to maintain these overlay networks over the existing Inter-

et. Fig. 1 also indicates the relationship between the physical IP

ddress of the device which can change and the static virtual IP

ddresses of device communities. 

.1. Device communities 

The fundamental feature that DevCom attempts to provide is

ser-friendly and trustworthy communication, sharing, and collab-

ration among any potential devices users desire. This requires a

ovel solution to enable a device to be member of multiple de-

ice communities at the same time and have simultaneous access

o the resources their members provide. In existing network sys-

ems such as VPNs, a device can only be a member of one net-

ork at a time, inhibiting the device from concurrently using, e.g.,

ervices at work (remote desktop), from friends (file sharing) and

t home (printer). The core idea to isolate data between different

evice communities is to assign multiple, permanent, virtual IP ad-

resses to each DevCom device, i.e., one address for each device

ommunity a device is a member of. 

Another important requirement that has to be resolved is user-

riendly configuration. In contrast to other systems where users

ave to manually define IP ranges, DevCom does this automati-

ally in order to not burden the user and to avoid human errors.

urthermore, current addressing techniques can assign changing IP

ddresses to mobile devices depending on their physical location,

nd even to stationary devices that use DHCP. Dynamic addresses

ake it difficult for users to locate their devices to access files,

eripherals and services, and more importantly, break all open

onnections. When a device changes its address and the open con-

ections break, it effectively stops all file transfers, remote desktop

essions, audio/video streams etc. This is especially problematic

or mobile devices which frequently change between cellular and
i-Fi networks. DevCom must provide static addresses to ensure

hat all devices in all device communities are easily identified, and

o enable persistent connections. 

The way DevCom achieves static addresses is with a self-

onfiguration technique that is more user-friendly and less prone

o address collisions and misconfiguration than manual effort s.

t combines a known prefix with the device community names

nd cryptographic public keys to create one static and unique

ddress for each device community. Link-local IPv6 addresses are

sed instead of IPv4 addresses, because the IPv4 address space is

xhausted and it is impossible to generate an IPv4 address and

uarantee that it is not in use. As such, it is also impossible to

uarantee that traffic for a device is routed to the DevCom virtual

etwork interface instead of the physical network interface. 

Fig. 2 shows how DevCom separates the device community ad-

resses into three parts: the link-local prefix, the device commu-

ity name, and the device-user identification. In contrast to, e.g.

istributed Hash Tables (DHTs) and other P2P systems that use

roprietary addressing schemes, DevCom uses IP addresses that

ork with existing Internet applications. The following algorithm

s used to construct the IP addresses. 

The first 16 bits are the IPv6 link-local prefix. This prefix, fe80,

s defined by the IPv6 standard and is intended for communication

ithin the segment of a local network or a point-to-point con-

ection. It enables DevCom to provide a LAN equivalent network

ver any underlying network. Using the fe80 prefix minimizes the

hances of address collisions, because link-local addresses are not

lobally routed on the Internet. 

The following 48 bits comprise the device community name

epresented in hexadecimal. Typical device community names

ight be work , mobile and family , but this is entirely up to

he users to decide. The names do not need to be globally unique,

eaning that two independent users can both have, e.g., a home
evice community. The result is that all devices in a device com-

unity have the same 16 + 48 = 64 bits network identifier prefix. 

The last 64 bits represent the unique identity. DevCom uses

ublic-key cryptography in order to provide security features, and

he self-configuration mechanism uses a fingerprint of the user’s

ublic key as a unique identifier on each device. The unique 16 +
8 + 64 = 128 bit addresses ensure that DevCom only delivers data

o the device community members it is intended for. 

Another important requirement is trustworthy communication. 

t is vital that privacy and security is maintained with state-of-the-

rt cryptography algorithms, and that devices can be evicted from

he different networks if they are misplaced. 

Fig. 3 illustrates how this addressing concept is used to sepa-

ate traffic to different device communities from each other and

rom non-DevCom data traffic. The six steps of Fig. 3 show how

ny network application can send data in a trustworthy fashion

sing DevCom. (1) An application is sending data using the normal

etwork stack, completely unaware of DevCom. (2) Standard prefix

outing ensures that all packets are delivered by the operating sys-

em to the virtual network interface, separating device community

raffic from regular Internet traffic. (3) The data packets are picked

p by DevCom which determines the current physical address of

he receiving device and encrypts the packets using a symmetric

ey only known to the sending and receiving DevCom devices. (4)
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Fig. 3. Example of DevCom data flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. DevCom architecture. 

Fig. 5. Example of control channels and addresses. 
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The data packets are encapsulated in UDP/IP and (5) tunneled to

the receiving device using the physical network interface. (6) The

tunneled data packets are sent via the Internet, and delivered to

the receiving DevCom device which reverses the process. 

In the receiving device, the operating system kernel delivers

all tunneled packets to DevCom, because it is bound to the outer

packet’s destination port. DevCom uses the symmetric key corre-

sponding to the current session to decrypt the tunneled packet and

deliver it back to the operating system. The operating system rec-

ognizes that the virtual device community address is a local ad-

dress and delivers the data to the application bound to the inner

packet’s destination port. 

The six steps guarantee that data is only going to the intended

recipient and that routers and other potential, intermediate devices

only see encrypted data. If the user wants additional security, e.g.,

as part of a security-in-depth approach or because an application

does not have its own authentication mechanisms, it is possible

to use regular firewall software to deny access to applications per

device community. How this is done is explained in more detail in

Section 4.3.5 . 

4.2. Architecture 

The DevCom architecture consists of four components, shown

in Fig. 4 . The components are present in all devices and perform

the same tasks. 

• The Virtual Interface Manager is responsible for the virtual net-

work interface by assigning the virtual device community ad-

dresses. 

• The Key Manager is responsible for key management, i.e., cre-

ating symmetric and asymmetric keys used to ensure authenti-

cation, confidentiality and integrity. 

• The Overlay Manager is responsible for membership manage-

ment and to maintain the control channels to the members. It

manages the decentralized virtual overlay by sending and re-

ceiving control messages via these channels. 

• The Data Manager is responsible for the data channels, includ-

ing tunneling, encrypting, and decrypting data packets. 

The Overlay Manager is the main component of DevCom, re-

sponsible for maintaining the device communities by managing

control channels between members. Control channels are dedi-

cated TCP connections between community members used to send
nd receive control messages related to device community func-

ions, such as trusting new members. To avoid relying on third

arty service providers it is important that the Overlay Manager

s self-organizing and decentralized. Fig. 5 shows an example with

ve devices that are in two device communities, i.e., family and

obile , and for the tablet computer its physical IP address and

wo virtual IP addresses for the device communities. The Overlay

anager on the tablet computer maintains control channels to all

evice community members, but only one control channel is es-

ablished for each physical address, even if two devices trust each

ther in more than one device community. The control channels

re made using any currently available Internet connection, mean-

ng that it automatically switches on devices with, e.g., Wi-Fi and

G connectivity. Changing physical network connectivity does not

ffect the self-configured, virtual device community addresses. 

The Overlay Manager maintains mappings between the cur-

ent physical IP addresses (locations) of the other devices and

heir virtual device community addresses (identities). The map-

ings are updated each time a device connects to a device com-

unity and authenticates itself, e.g., in roaming scenarios when a

evice switches from Wi-Fi to 3G connectivity. Historical records

f physical IP addresses are stored in the Overlay Manager in or-

er to assist creating the control channels. When a device wants

o connect to a device community, the Overlay Manager attempts

o locate devices at the different physical addresses that have been

sed in the past, starting with the most recent addresses. 
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Fig. 6. List of DevCom control messages. 
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The control message payloads are encrypted with the receivers

ublic key to prevent eavesdropping and ensure privacy, and

igned with the senders private key, authenticating the sender and

erifying the integrity of the message. Standard asymmetric cryp-

ography is used and the 4096 bit RSA keys are provided by the

ey Manager. The cryptography provides integrity protection of the

ontrol messages and authentication of the devices. Fig. 6 shows

he different control messages used by the Overlay Manager to

anage the device communities. 

T(rust) is sent to instruct a device to accept another device

nto a device community by storing the new device’s public key.

(istrust) is sent to instruct a device to evict another device from

 device community by deleting the identified device’s public key.

(oin) is sent to establish a control channel including the exchange

 symmetric session key. L(ocations) is sent to inform a device

bout another device’s IP addresses. S(ync) is sent to initiate a syn-

hronization of a device community, i.e., start exchanging T(rust)

nd L(ocations) messages. P(acket) is used to send data packets

ver the control channel if the data channel is unavailable, e.g., be-

ause of UDP filtering. 

Control channels are only used for control messages. To send

pplication data so-called data channels need to be established by

he Data Manager. This separation of control and data traffic is

one because early measurements show that using UDP instead

f TCP tunnels increases throughput by 27% and decreases aver-

ge latency by 23%. It is also documented that TCP tunnels can de-

rade performance when the end-to-end TCP and the tunnel TCP

nterfere with each other [20] . Data packets are therefore tunneled

y the Data Manager using UDP, with a fallback to TCP using the

(acket) control message if UDP is blocked. The reasoning behind

he fallback to TCP is that a suboptimal connection is better than

o connection. 

The Data Manager is responsible for maintaining data channels

o all devices in a device community, separate from the control

hannels, shown in Fig. 1 . The Data Manager must be efficient, but

ithout compromising privacy. For this reason, it uses 256 bit Ad-

anced Encryption Standard (AES) symmetric keys, retrieved from

he Key Manager, to encrypt and decrypt data traffic. Cipher Block

haining (CBC) mode is used. The encryption preserves privacy

hile the symmetric AES cipher is faster than the asymmetric RSA

ipher to improve efficiency. The AES keys are exchanged over the

ontrol channel to guarantee security and reliability. 

The Virtual Interface Manager is responsible for maintaining the

irtual network interface, i.e., automatically creating and assigning

irtual IP addresses. It must separate the identification (virtual in-

erface) and location (physical interface) of a device and enable

ersistent connections when a device changes physical networks.

he Virtual Interface Manager achieves this by creating permanent

ddresses using the self-configuration algorithm described above

nd associating the addresses to a virtual network interface placed

etween the applications and the physical network interfaces. 
The Key Manager is responsible for creating and maintaining

he asymmetric RSA keys and the symmetric AES keys used by the

verlay Manager and Data Manager, respectively. 

.3. Practical use of DevCom 

.3.1. Key management 

The RSA public and private key-pair is automatically created the

rst time a user starts DevCom on a device. The asymmetric key

air is unique for each user on a device, and two users owning a

evice together can be members of different device communities

n that device. However, several users cannot run DevCom simul-

aneously, but have access to their device communities when they

ave exclusive access to the shared device. 

The private and public keys are never handled by users. A user

nly has to select which devices to trust in which device commu-

ities and all necessary information about the new device commu-

ity member is automatically propagated by the Overlay Manager

o all existing members. Similarly, in a situation where a device is

ost or misplaced, the user only has to select that device and the

verlay Manager takes care of removing the corresponding public

ey and closing all communication with the device. The eviction

nformation is also distributed to all the other members of the de-

ice community. It is possible to evict a device from one device

ommunity, while continuing to trust it in another. 

.3.2. Joining a device community 

When a user wants a device to initially join a device commu-

ity, two tasks need to be performed: (1) provision of a physical

ddress of a device already in the device community, and (2) a

wo-way, public key exchange with that device. The required infor-

ation can be exchanged between the two devices in one of the

ollowing four ways. 

Service discovery protocols such as Multicast DNS (mDNS) [21]

nd DNS-based Service Discovery (DNS-SD) [22] can be used to

iscover other devices nearby. To trust a device for a given device

ommunity, the user simply selects the desired announcement in

he user interface. 

Near field communication (NFC) is a radio communication stan-

ard where devices have to be in close proximity to exchange data.

obile devices can use NFC to share the required information. 

Quick response (QR) codes are two-dimensional bar codes that

an encode and present the required information visually. Personal

evices can generate QR codes on demand, but they can only be

sed when the devices have cameras. 

Invitation files can be generated on-demand to contain the re-

uired information. The files can be exchanged via memory sticks,

-mail or instant messaging and users only have to click on the

les to join a device community. 

.3.3. Connecting to a device community 

The established control channels break if a device is roaming or

t is turned off for some time, because it receives a new physical IP

ddress. In such cases, the device needs to reconnect to the device

ommunities it is member of by re-establishing the control chan-

els. When this happens, the mutual trust is already established

hrough the two way public key exchange during the join opera-

ion. Therefore, the connecting device only needs a valid physical

ddress of one of the other device community members. 

DevCom uses the last valid membership information to auto-

atically probe for devices at the different locations they have

een used in the past, starting with the most recent. If the device

s connecting after a short switch of networks, e.g., moving from a

abled to a wireless network or from Wi-Fi to 3G, the location of at

east one of the other devices is presumably unchanged. It is highly

nlikely that all devices in a device community get new physical
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Fig. 7. Device community connection example. 
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3 More information on firewall and NAT related issues are given in Section 4.3.5 . 
addresses in the few seconds it takes to switch networks. However,

if more time has passed, e.g., because a device has been turned

off for a few days, it is more probable that all the other devices

have new physical addresses. In these cases DevCom attempts to

find the other devices using their historical addresses. Records of

historical addresses are always kept in order to assist this type of

probing. Authentication is still provided by the asymmetric keys, so

no malicious third-party device can deceive the connecting device

by obtaining the historic address of another device and pretend to

be it. 

It is important to point out that only one existing member

needs to be found. Any member of a device community can be

used to synchronize membership information, because all mem-

bers maintain locally complete knowledge about the device com-

munity memberships, and no special role, like a guard member, is

used. Synchronization control messages ensure that the connect-

ing device gets information about all the other members, and vice

versa. When only one device is available it becomes a single point

of failure, but when more members are available, the likelihood

of locating a member increases and the load is distributed so it

does not become a performance bottleneck. Thus, the probabil-

ity of finding a trusted device increases with the size of the de-

vice community. However, if no device can be located, the user

has to resort to one of the initial joining techniques described in

Section 4.3.2 . 

A device can start communication with members it has estab-

lished control channels to while the connection procedure contin-

ues to the remaining devices, minimizing the perceptibility for the

user. Similarly, the connection procedure is transparent to the user

if no applications are actively communicating to the device com-

munity. 

Fig. 7 illustrates an example scenario where Device A is about

to join and connect to a device community ( work ) for the very

first time. One caveat is that Device D has a firewall that does not

allow incoming connections. 
At time t 1 Device A and Device B are sharing public keys and

hysical addresses, using any of the methods mentioned above. Af-

er mutual trust is established, Device A sends a J(oin) message to

evice B in order to create the control and data channels. In this

(oin) message, it includes a pseudo-randomly created AES session

ey which they use to encrypt and decrypt application data. 

After the control and data channels are created, Device A sends

 S(ync) message to Device B with the consequence that Device

 informs Devices A, C and D about each other, using T(rust) and

(ocations) messages. The T(rust) messages contain the public keys

o trust, and the L(ocations) messages contain the physical ad-

resses to connect to. 

At time t 2 all four devices trust each other and are considered

embers of the “work ” device community, even if not all devices

re currently connected. Device A sends a J(oin) message to Device

, and attempts to send a J(oin) message to Device D, but is re-

ected in the latter attempt, because of the firewall. However, when

evice D gets the L(ocations) message from Device B and realizes

hat it does not have a connection with Device A, it establishes a

everse connection by sending a J(oin) message to Device A. 3 At

ime t 3 all the devices are connected with a full-mesh topology. 

A similar pattern of messages is exchanged in all scenarios

hen a device connects to a device community, e.g. when a de-

ice regains power after an outage, or when switching between

hysical networks. The scalability of DevCom is limited by the con-

ection procedure, i.e., by the time it takes to connect to all device

ommunity members. Currently, the number of packets sent during

he connection procedure converges towards 5 packets per device

ommunity member, where, e.g., connecting to a device commu-

ity with 100 members requires 492 packets to be sent. 

.3.4. Persistent connections 

When a non-DevCom device changes its IP address, e.g., when

oving from a cabled to a wireless network or from Wi-Fi to

G, all open connections break. Remote desktop sessions halt, file

ransfers stop, and games and audio/video streams freeze. The rea-

on is that an IP address incorporates both identification and loca-

ion of a device. 

With DevCom, persistent connections are not only possible,

ut automatic. Applications use the virtual device community ad-

resses and not the changing physical addresses, decoupling the

dentification (device community address) from the location (phys-

cal address). When a physical address changes, the device has to

onnect again to the device community. This is invisible to the ap-

lication except a short term increase in delay. This means that a

ser commuting home from work while streaming a movie from a

riend does not have to restart the video playback or reconnect the

layer application when network changes occur. The seamlessness

f the experience depends on a number of factors, such as the size

f the buffer and how fast the physical network switch occurs. 

.3.5. Firewalls and NAT 

Firewalls and NAT can limit connections between devices and in

ome cases completely block certain applications and services. De-

Com uses existing techniques in order to attempt to provide con-

ections between trusted device community members that would

therwise not be possible. This does not make DevCom devices

ore vulnerable, because regular Internet traffic, including poten-

ial malicious traffic, is still blocked as intended. NAT penetration is

erformed using standard techniques, such as reverse connections

nd relaying. Relaying devices are unable to read or tamper with

he data, because of the strong cryptography. 

Firewalls can have many ways of limiting traffic. Four filter-

ng techniques that DevCom attempts to bypass are deep packet
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Table 2 

Example of firewall access rules. 

Device community Application/Service Rule Direction 

mobile Web-cam streaming DENY IN 

mobile File sharing DENY IN & OUT 

family Remote desktop DENY IN 
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nspection, port blocking, UDP blocking and host blocking. Deep

acket inspection and blocking traffic based on data content or

pplication protocol (e.g., BitTorrent) is made significantly harder,

ecause all data including protocol headers is encrypted. Further-

ore, port blocking can in many situations be circumvented, be-

ause the data traffic is tunneled and not delivered to the actual

ervice port, such as port 22 for ssh, but to the DevCom port. UDP

locking can also be circumvented, because DevCom automatically

alls back to TCP if UDP is blocked. Lastly, host blocking can be

ircumvented by relaying traffic through other device community

embers using the P(acket) control message. All device commu-

ity members accept P(acket) control messages containing encap-

ulated (data or control) messages. If a P(acket) message is not in-

ented for a receiving member, it will forward it. For example, if

evices A and D in Fig. 7 are unable to communicate directly, even

fter attempting the reverse connection, Device B or C can be used

s proxies. 

However, firewalls can also be of benefit to DevCom. If needed,

t is possible to restrict applications and services to certain device

ommunities using common application firewalls. For example, a

ablet computer can have a web-cam service announced and avail-

ble to family devices, but not to other mobile devices, which

emain unaware of this service and unable to connect to it. Ex-

sting firewalls with graphical user interfaces and wizards make it

asy for users to pick applications from a list and choose which

evice communities to allow it in. One set of example rules 4 to

ifferentiate access privileges is shown in Table 2 . 

.4. Implementation 

The DevCom prototype implementation consists of 3686 lines

f C code 5 and is compiled for the Intel and ARM architectures. It

ses the TUN/TAP driver [23,24] to create the virtual network in-

erfaces and the Avahi library [25] for device discovery and trust

xchange. The OpenSSL library [26] is used for all cryptography

unctions. This includes generation of the asymmetric key pair the

rst time a user starts DevCom and encryption and decryption of

ata using the session keys. 

While the DevCom design is fully operating system agnostic,

he current implementation has only been tested on Linux. A par-

ial test has confirmed that Android, which is based on the Linux-

ernel, is supported if the TUN/TAP kernel module is installed. The

odule is available for most Android devices [27] , but requires root

rivileges to install if it is not pre-installed by the device vendor.

OS devices are not supported, because they use the Objective-C

rogramming language. 

One important implementation decision worth mentioning is

hoosing to copy packet data between the virtual network inter-

ace and the physical network interfaces instead of zero-copying

he packet data using the splice() Linux system call [28] . Contrary

o our expectations, early measurements show that reading and

riting instead of zero-copying increases average throughput by

2% and decreases average latency by 3%. Colloquial sources on the

orld wide web experience similar decrease in performance when
4 Created by Graphical Interface to Uncomplicated Firewall (gufw). 
5 Determined using SLOCCount by David A. Wheeler. 
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t

 

c  
plice() is used with small buffer sizes. This means that avoiding

ero-copying makes the DevCom implementation more portable

nd more efficient for all applications using it. 

Time constraints have prevented the implementation of NAT

raversal and firewall penetration through relaying, leaving reverse

onnections as the only employed penetration technique. 

. Evaluation 

The overall goal of DevCom is to move todays state-of-the-art

n ubiquitous computing one step closer towards Mark Weiser’s

ision to “make computing an integral, invisible part of the way

eople live their lives”. With DevCom, computing is still visible for

sers, but the core properties of DevCom, i.e., user-friendliness, se-

urity, privacy protection, and minimal overhead to communicate

mong devices, reduce the necessary effort of users to merge all

heir devices in a trustworthy device community. DevCom provides

hese properties in the very complex and challenging environment

f todays’ Internet with wireless and mobile devices, large varia-

ions in computing power of devices, large variations in available

andwidth, and devices behind firewalls and NATs. Therefore, it is

lso a challenge to properly evaluate DevCom. The major aspects

o be evaluated are related to functionality, performance, and user-

riendliness. Only security and privacy protection is not evaluated

n this paper since it is achieved with existing state-of-the-art so-

utions. 

The evaluation of the functionality aspect comprises two parts,

rst the analysis of which types of applications can be used on top

f DevCom. Second, the analysis of whether the system is able to

aintain connectivity among device community members in the

ase of mobility, NATs and blocking firewalls, i.e., if application ses-

ions can be maintained in such situations. Thus, to evaluate the

econd part of the DevCom functionality, we perform two experi-

ents in real-life environments. 

The performance evaluation of DevCom includes detailed mea-

urements of the overhead this extra layer between the physi-

al network and applications introduces, using the metrics latency,

hroughput, and computational overhead. To achieve accurate re-

ults many experiments are performed in a fully controlled lab

nvironment. In order to understand the implications of the over-

ead, we do not only measure the overhead of DevCom itself. Ad-

itionally, we perform the same experiments with nearly all re-

ated works in order to compare DevCom performance with the

erformance of GroupVPN, N2N, P2PVPN, SocialVPN, and UIP. Fi-

ally, we perform an empirical experiment to compare the quality

f experience (QoE) of a first-person shooter game with and with-

ut DevCom. 

This leads us to design and perform five experiments, outlined

n Table 3 . In addition, the user friendliness of DevCom is studied

rom the viewpoint of novice users, intermediate users, and appli-

ation developers. 

The devices used in the experiments and their specifications

re listed in Table 4 . In order to eliminate underlying factors such

s network conditions and isolate the relevant metrics, transpar-

nt testbeds consisting of two identical devices connected to the

ame switch are used. The desktop devices represent high-end

ersonal devices, while the laptop devices are more representa-

ive of typical, everyday devices. The handheld devices represent

oth legacy devices, such as the Apple iPhone 3GS, and more

urrent, but resource constrained devices, such as set-top boxes

nd network-attached storage (NAS) devices. Similarly, the differ-

nt network connections represent the whole range of bandwidth

ypically available to consumers, from 54 Mbps to 1 Gbps connec-

ions. 

Benchmarks using desktop computers with excellent network

onnectivity are especially suitable to highlight the overhead of
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Table 3 

The five conducted experiments. 

Aspect Experiment Description 

Functionality Off-the-shelf applications Tests existing applications for DevCom compliance. 

Self-configuration Verifies DevCom functionality and practical applicability. 

Performance Micro-benchmarks Measures latency, throughput and CPU utilization. 

Quality of experience Compares DevCom with native networking in an A/B test. 

Connecting time Investigates the impact of changing network connectivity. 

Table 4 

Device hardware specifications. 

Desktops Laptops Handhelds 

Brand HP Compaq HP EliteBook 8530p Nokia N900 

Processor Intel Core i7 Intel Core 2 Duo ARM Cortex-A8 

2.93 GHz × 8 2.53 GHz × 2 600 MHz × 1 

Memory 8 GB 4 GB 256 MB 

Table 5 

Testbed configurations. 

Testbed Devices Network connectivity 

A 2 × Desktops 1 Gbps, wired 

B 2 × Desktops 100 Mbps, wired 

C 2 × Laptops 100 Mbps, wired 

D 2 × Laptops 54 Mbps, wireless 

E 2 × Handhelds 54 Mbps, wireless 

Fig. 8. Testbed F, used in the connecting time experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Tested off-the-shelf applications working with DevCom. 

Type Name 

File and printer sharing Samba 

Remote desktop Remmina/Vino 

HD video streaming VLC 

Games OpenTTD and Quake 3 

File transfer FileZilla/vsftpd 

Backup rsync 

Secure shell ssh 

File sharing sshfs 

Network diagnostic tools tcpdump, nmap and netstat 
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the different network systems compared to direct network connec-

tions. Benchmarks using handheld devices with poor network con-

nectivity allow investigation of how DevCom performs in the worst

possible use-cases. 

The testbed configurations used in the experiments are shown

in Table 5 and Fig. 8 . Testbed A is used in the off-the-shelf ap-

plications experiment and the quality of experience experiment.

Testbeds A through E are used in the micro-benchmark experi-

ments. Finally, testbed F is used in the connecting time experi-

ment. The HP Compaq desktop and HP EliteBook laptops in testbed

F are the same machines as in Table 4 , while the Dell Latitude

and Media Center machines are other machines with specifications

comparable to, but less powerful than, the laptops. The network

conditions in testbed F are varying corresponding to the back-

ground traffic. The end-to-end latency changes internally in the

university network and over the Internet. The media center is con-

nected to the Internet via a cable modem line with 4 Mbps down-

link and 1 Mbps uplink. 

5.1. Functionality 

5.1.1. Off-the-shelf applications 

In order to demonstrate that DevCom works with all types

of existing network applications and services, it has been tested

with the large variation of tasks listed in Table 6 . The list is not

exhaustive, but is intended to represent many different types of
etwork applications. The applications have been used for their

egular tasks for up to one hour each. Most time is spent using

he remote desktop, games and video streaming applications, and

east time is spent using the network diagnostic tools. 

The tests reveal that all the applications work without modifi-

ation. DevCom is able to handle many different types of applica-

ions and network traffic patterns without introducing any annoy-

nce to the user in form of, e.g., configuration efforts or noticeable

uality degradation. 

.1.2. Self-configuration 

This experiment intends to get insight into the practical use of

evCom functionality. Eight distributed devices with varying spec-

fications form a device community, and users (informatics stu-

ents) test how well the DevCom properties work. The device

ommunity is operational for several days, but the actual use of

pplications are, as in real life, more ad-hoc. The main test in-

olves streaming audio using the VLC media player from a device

hat switches networks once every minute. A firewall is blocking

ncoming UDP connections to the streaming server and one resi-

ential device is behind a NAT box. 

The experiment verifies that the self-configuration works. The

ublic and private key-pair is created the first time the users start

evCom, the permanent addresses are generated, and all mem-

er information including the cryptographic keys are propagated

ithin the device community. Furthermore, the NAT and firewall

enetration also works as expected, and the users are able to ac-

ess devices in spite of UDP and port blocking firewalls. The audio

treaming continues without user intervention after the streaming

erver switches networks, but with a delay corresponding to the

owntime of the physical network, because of no buffering. Lastly,

o devices have problems connecting to the device community, be-

ause at least one device is always on-line. 

.2. Performance 

Micro-benchmarks measuring application to application latency

nd throughput, as well as CPU utilization, provide a performance

omparison between direct network connections (expressed as “Di-

ect” in the following graphs), DevCom, and most of the related

ork; and determine their overhead. Direct network connections

n the following sections means the use of the different applica-

ions and services without DevCom or the related work running,
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Fig. 9. Latency results. The y -axsis is in milliseconds. 
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.e., corresponding to the leftmost arrow in Fig. 1 . The different

pplications and services used in the experiments have different

haracteristics, like TCP or UDP, but these are identical when run-

ing on top of the direct connections and on top of, e.g., DevCom.

he following results show that the performance penalty of pro-

iding the flexibility of device communities and adding security

eatures is in most cases negligible, except in the throughput ex-

eriment using testbed A. 

.2.1. Latency 

High latency and noticeable delay can negatively affect the user

xperience of real-time applications, such as first-person shooter

ames, video conferencing applications and remote desktop ser-

ices. Minimizing latency overhead is therefore important in order

o support these types of applications. 

Latency is in our experiments determined by using the ping

ool and sending 10 0 0 packets. The minimum, average and max-

mum round-trip times are shown in Fig. 9 . The graphs are not

ormalized in order to better highlight the differences. 

The results show that the average latency overhead of the dif-

erent network systems is comparable, but DevCom has lower av-

rage latency than the related work, regardless of device hardware

nd connectivity. Some of the other systems also exhibit higher

ariance, but overall, the systems perform similarly. It seems that

he latency is affected to some degree by the device hardware and

etwork system, but mostly by the network connectivity. That net-

ork connectivity is the major factor impacting latency is an indi-

ation of low overhead. 

The average latency overhead of the network systems is small

hen compared to a direct connection. For example, DevCom

nly increases the average latency with approximately 0.2 ms us-

ng testbed A. Furthermore, DevCom’s average latency overhead is

ess than 0.6 ms when compared to direct communication using

estbeds B, C and D. In testbed E, the average latency overhead of

evCom is approximately 5 ms, but this is only an increase of 3%,

ecause the average latency using a direct connection is as high as

70 ms. 
The latency experiments demonstrate that DevCom exhibits lit-

le latency overhead and that it therefore can allow real-time ap-

lications to be used without quality degradation. 

.2.2. Throughput 

High throughput is important for applications such as video

treaming and file sharing. In order to compare the throughput of

he different network systems, as well as the baseline throughput

f direct communication, three benchmarking tools are used, i.e.,

perf, nuttcp and netperf. The results are shown in Fig. 10 , together

ith the average result of the three tools. The graphs are not nor-

alized, but show instead the maximum theoretical throughput of

ach testbed, e.g., 54 Mbps in testbeds D and E. 

The results show that the throughput of all evaluated network

ystems is close to the throughput of direct connections on net-

orks with limited bandwidth, regardless of device hardware. The

ottleneck shifts from the network to the end systems when band-

idth increases, and in extreme cases with very high bandwidth,

.e., testbed A, none of the network systems achieve throughput

lose to the throughput of direct connections. In testbed A, De-

Com and P2PVPN achieve only about 10% of the 932.27 Mbps

hroughput of a direct connection, and UIP and GroupVPN achieve

 throughput of 46.21 Mbps and 55.64 Mbps. One possible bot-

leneck is the TUN/TAP driver that manages the virtual network

nterfaces, used by all evaluated network systems. If it is the bot-

leneck, it seems that it reaches its maximum throughput around

00 Mbps, but time constraints have prevented further research on

he internals of this driver. 

In testbed B, DevCom achieves a throughput of 90.52 Mbps

nd N2N 82.56 Mbps. These results are close to the 94.86 Mbps

hroughput of direct connections. All other systems achieve a sub-

tantially lower throughput, between 28.44 Mbps for GroupVPN

nd 47.33 Mbps for UIP. UIP, DevCom, and N2N achieve in testbed

 and B approximately the same throughput, while GroupVPN,

2PVPN, and SocialVPN can benefit from the additional bandwidth

n testbed A compared to testbed B and approximately double their

hroughput. 
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Fig. 10. Throughput results. The y -axsis is in Mbps. 
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The results from the experiments with the wireless network,

i.e., testbed D and E, show that the throughput in all experi-

ments, including direct connections, is below the available band-

width. This is to be expected, because the attainable goodput is

always lower than the maximum theoretical bandwidth of 802.11

networks. Inhibiting factors include Wi-Fi specific parameters such

as slot time, distributed inter-frame spaces (DIFS) and short inter-

frame space (SIFS), but also TCP/IP header overhead. The low

throughput on the handheld devices, i.e., testbed E, might be con-

tributed to the low CPU power. 

Overall, the reduction in throughput that DevCom imposes is

acceptable. It has the highest average throughput of the evaluated

systems in all testbeds, which should allow bandwidth demanding

applications to be used in a non-disruptive way. 

5.2.3. CPU utilization 

Low processing overhead is important in order to support a

wide spectrum of computing devices, including low performance

handheld devices, and to allow other applications to run on the

same device. In order to measure CPU utilization, netcat (nc) is

used to send data packets over TCP, while sar is used to measure

the kernel space and user space CPU utilization. The difference be-

tween direct communication and the given network systems rep-

resents their processing overhead. Samples are gathered every sec-

ond for 10 0 0 s, 6 and the average results are shown in Fig. 11 . The

graphs are not normalized to 100% in order to better highlight the

differences between the network systems in each testbed. 

The results show that the CPU utilization varies with device

hardware, network system and connectivity, and that all network

systems perform comparably with no major differences. One dif-

ference worth noticing between the network systems and using a

direct connection is that sending data using a direct connection

uses no kernel space CPU time, while sending data using the net-

work systems uses a combination of kernel space and user space

CPU time. This difference can possibly be explained by the former

using direct memory access from the application sending data to
6 dd if = /dev/urandom | nc -[4 or 6] [IP] -q 10 0 0 & sar -u ALL 1 10 0 0. 

t  

p  

o  
he physical network card, while the latter has to go through the

UN/TAP kernel driver in order to process the packets. 

None of the evaluated systems overload the CPU in testbeds A

o D, but the CPU is overloaded in testbed E, i.e., the handheld test.

he Nokia N900 is resource constrained, and even direct connec-

ions (when DevCom is not running) exhaust its CPU, shown on the

eft side of Fig. 11 e. This overload is one possible explanation for

ts prevailing high latency and low throughput in the experiments

escribed above. Sources of CPU utilization in DevCom include the

ryptographic functions, but other functions, such as routing deci-

ions, also affect CPU consumption. 

An interesting observation is that GroupVPN, N2N and UIP con-

istently spend more CPU time in user space than in kernel space,

nd that P2PVPN, SocialVPN and DevCom do the opposite. The

ryptographic functions occur in user space, while the TUN/TAP

river resides in kernel space. Furthermore, generating the work-

oad is also affecting kernel space CPU utilization. 

One anomaly visible in testbed C is that P2PVPN and SocialVPN

ave a lower average CPU consumption than direct connections.

his could be attributed to high variance or outliers in the direct

onnection measurements, but when examining the raw samples

his does not seem to be the case. It is possible than an exter-

al kernel thread has influenced the CPU consumption in the di-

ect connection experiment. The average CPU consumption of di-

ect connections in testbeds A, B and D, is between 8% and 13%. 

It is interesting to see that the DevCom processing overhead

s satisfactory considering that it has the highest throughput and

owest latency of all evaluated systems. In summary, the CPU over-

ead DevCom exhibits is expected and is in most cases insignif-

cant, allowing other applications to run unaffected on the same

evice as DevCom. 

.2.4. Quality of experience 

The micro-benchmarks show that the DevCom overhead is low,

nd an A/B QoE test intends to investigate if the overhead is no-

iceable to real users. The test is performed by installing a first-

erson shooter game, Quake III Arena, that is sensitive to latency

n four identical desktop machines, i.e., two identical testbed A
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Fig. 11. CPU utilization results. The y -axsis is in percent. 

Fig. 12. A/B QoE test answers from 22 players. 
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onfigurations. DevCom is running on two of the machines (labeled

), while the other two communicate directly using the physical

etwork (labeled A). 

22 users played the game and answered questions regarding

he game experience. The players ranked themselves as gamers

6 newbies, 12 casual gamers and 4 hardcore/pro gamers), stated

heir preference for machines A, B or neither, rated the game ex-

erience from 1 (Bad) to 5 (Excellent) on both A and B, and gave a

rief statement about the difference in game experience on A and

, if any. Neither the players nor the person conducting the ex-

eriment knew about DevCom or the purpose of the experiment,

aking the test double-blind. 

The answers of the players reveal that eight players prefer the

 machines, ten players prefer the B machines and four players are

nable to detect any difference in game experience. Fig. 12 shows

he opinion scores and the corresponding number of votes for both

 and B machines. It is visible that the B machines, where Dev-

om runs, have no players indicating a bad game experience and

our players with an excellent game experience. The A machines,
sing direct connections, have one player with a bad experience

nd three players with an excellent game experience. As it is im-

ossible to get better performance than with the physical network,

he answers indicate that users are either imagining a difference,

ecause the experience is equal, or that their experience is in-

uenced by other factors. Mouse sensitivity, the game character’s

eld-of-view and screen brightness are commented by players to

e different, but all hardware and software configurations are ver-

fied to be identical on all four machines. The A/B test is not a

ull QoE evaluation, but substantiates the results from the micro-

enchmarks and provides some insight about the user experience

hen using DevCom. DevCom allows applications to run on top of

t with a high QoE for its users. 

.2.5. Connecting time 

The connecting time is the period between when a device starts

o connect to a device community and when that device has es-

ablished control channels to all the other devices in the commu-

ity. The connecting time is sensitive to parameters such as the

umber of devices in the device community, the processing power

partially because establishing the control channels involve several

ryptography operations), and end-to-end delay between member

evices. To get an indication of how DevCom behaves in real con-

ecting scenarios an experiment is performed using a distributed

evice community consisting of five devices. The testbed setup is

hown in Fig. 8 as testbed F. The physical network interface of the

ell Latitude laptop is restarted 20 times, and when network con-

ectivity is available, the Dell Latitude establishes control channels

o the four other devices, one by one. The order of control chan-

el establishment is 1st) Desktop, 2nd) Media Center, 3rd) Laptop,

nd 4th) Laptop, also illustrated in Fig. 8 . The connecting times are

easured, and the cumulative results are shown in Table 7 . Be-

ause of time constraints, this experiment does not cover situations

here devices are behind NAT, which would negatively affect the

onnecting times. 

It takes 48 ms in the best case scenario, 333 ms on average and

045 ms in the worst case scenario to connect to the device com-

unity and establish connections to all the other members. Once
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Table 7 

Cumulative connecting times. 

Minimum Average Maximum Std. Ddviation 

1st 5 ms 5 ms 6 ms 0.2 ms 

2nd 21 ms 160 ms 926 ms 330 ms 

3rd 37 ms 175 ms 947 ms 330 ms 

4th 48 ms 333 ms 1045 ms 441 ms 
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a connection is established it can be used immediately, so after

175 ms on average, the connecting device can communicate with

three of the four other device community members. 

The first connection is established significantly faster than the

other three, taking only 6 ms in the worst case. One reason for

this is that the first connection is established based on the list of

historic physical addresses in the connecting device. In this exper-

iment, the connecting device contacts the powerful desktop com-

puter in close physical proximity first. 

The connecting time experiment shows that DevCom has low

connecting time which facilitates persistent connections without

long interruptions in mobile scenarios. When a device using Dev-

Com changes network, e.g., from Wi-Fi to 3G, all sessions and data

transfers resume automatically and without user interaction within

the connecting time. 

The results are verified with an audio streaming test where one

device streams audio to another device and no buffering is applied.

The physical network interface of one device is taken down and

brought up repeatedly, and the receiving device experiences only

short interruptions corresponding to the connecting times of the

sending device. 

A possible optimization strategy that can reduce noticeable con-

necting times is prioritizing certain devices in the list of addresses

where a connecting device attempts to connect. Connecting time is

only relevant for applications with active communication channels,

and connecting to the active devices first asserts that the notice-

able connecting time is lowered. 

5.3. Critical analysis of user-friendliness 

The user-friendliness of DevCom is analyzed from the viewpoint

of a novice, an intermediate user, and an application developer. 

Only a single step is required if a novice user wants to join an

existing device community, i.e., performing the initial join. It can

be done with any of the techniques listed above, but using NFC or

selecting the device community announcement in a user interface

is probably most appropriate. After the initial join, DevCom takes

care of the rest. This means that the devices can communicate,

share and collaborate, despite barriers, such as NAT and changing

addresses. 

If no suitable device community exists, it is also necessary to

create one, but this is trivial even for a novice, because creating

a device community is achieved simply by choosing an arbitrary

name. A default suggestion can be the user’s own name in order

to indicate that it is a personal device community, but any name

is possible. 

It is also possible to evict a device from a device community

if it is misplaced, stolen or does not need to be part of a device

community for some other reason. The user must choose the de-

vice and device community from a list and confirm the eviction,

but DevCom automatically removes the public keys, closes all con-

nections to the device and distributes the eviction information to

all the other device community members. 

A more interested user might want to have many devices

working together in multiple device communities. This requires a

bit more planning, i.e., choosing recognizable device community

names and thinking more about which devices belong in which
evice communities. Furthermore, the initial join must be repeated

or each device, but the process is the same and can be done in-

rementally. 

Advanced users might want to use firewalls to allow an applica-

ion in some device communities, but not in all. This can be done

ith existing firewall applications in the same way as with normal

nternet traffic, meaning that the required steps only depend on

he specific firewall application. Some firewalls have simple step-

y-step wizards that guide the user when choosing applications

nd networks, while others have more features and require special

nowledge. 

Developing applications for DevCom is done in the same way

s regular network applications. The same APIs are used and no

pecial attention is needed in order to be DevCom compliant, be-

ide supporting IPv6. That is why all types of existing applications

lready work with DevCom. 

However, it is possible to integrate applications with DevCom if

evelopers desire. The virtual network card has a unique and iden-

ifiable name, and the generated addresses have a rigid structure

nabling easy extraction of, e.g., the device community names. For

xample, DevCom integration can enable built-in device commu-

ity authorization where an application is only available to devices

n a predefined device community, e.g., web-cam streaming is only

llowed to devices in the webcam device community. 

It is apparent that DevCom requires few steps to start func-

ioning, and that its use is completely transparent. Users are not

urdened by having to define IP ranges, choose dedicated super

eers or manage cryptographic keys, and applications are not even

ware that DevCom exists. Furthermore, application developers can

lso be oblivious to DevCom and continue to create network ap-

lications without any concern for DevCom. The benefits, such as

ersistent connections in advent of network changes and NAT and

rewall penetration, are all automatically enabled by DevCom. 

. Conclusions 

This paper presents DevCom, a new way to organize trustwor-

hy groups of devices and the resources, data, and services they

ost. The two dominating approaches to support communication,

haring and collaboration today are LANs and VPNs, and compared

o such solutions DevCom provides several advantages. One impor-

ant drawback of both LANs and VPNs is that a device can only

e member of a single group at a time. People are members of

everal communities, e.g., family, friends and work, and they most

ikely have different trust relations to the various communities. If

 user is part of a corporate VPN today, all traffic goes through the

ompany’s network regardless of whether it is destined for another

ompany device or for a friend’s device. Multiple networks are es-

ential in ubiquitous computing to allow seamless communication,

haring, and collaboration between disparate devices, and at the

ame time allow differentiated trust levels. To come one step closer

o truly ubiquitous computing, social communities and interactions

hould be reflected and supported on the technical level. DevCom

nables this with minimal user interaction, because nearly all tasks

re performed automatically. The novel self-configuration mecha-

ism introduced in DevCom can also be used in other zero con-

guration networking services where permanent, but unique ad-

resses are needed. Furthermore, DevCom enables applications to

un uninterrupted when devices change networks and obtain new

ddresses. This type of seamless connection handover is useful for

early all types of mobile networking applications. 

The combination of existing solutions for NAT penetration and

ryptography algorithms for security and privacy protection has

een shown to provide both trustworthiness and user-friendliness

t the same time. It is also shown that all types of existing applica-

ions and services work with DevCom. The performance evaluation



H.V. Hansen et al. / Computer Communications 85 (2016) 14–27 27 

o  

i  

t

 

u  

a  

T  

v  

w  

a  

a  

s

A

 

i  

w

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

[  

[  

[  

[
[  

 

[  
f the prototype implementation demonstrates that the overhead

s so low that it is unnoticeable for users, even for highly interac-

ive applications such as first-person shooter games. 

In addition to the advantages presented here, DevCom opens

p new dimensions for researchers and developers of ubiquitous

pplications that can leverage the new features DevCom provides.

his includes, for example, research in sensor networks for pri-

acy protected home care and distributed application migration. It

ould also be interesting to see how the DevCom concepts can be

pplied in larger scale communities with many thousand devices,

nd if existing overlay systems, such as DHTs, can be used to aid

uch a transition. 
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