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a b s t r a c t 

Jamming attacks have become prevalent during the last few years facilitated by the open access to the 

shared wireless medium as well as the increased motivation and easiness to create damage as a result of 

sophistication of wireless devices, both legitimate and jamming ones. Among the challenges that a wire- 

less network faces while trying to confront the jammer, jammer localization is of utmost importance. 

This entails estimating the physical location of the jammer. Successful jammer localization can trigger a 

series of corrective measures to ensure sustainable network operation. However, locating the jammer is a 

difficult problem. Our primary goal in this paper is to design a simple, lightweight and generic approach 

for localizing a jamming device through a set of measurable parameters. The key observation guiding 

our design, is that the Packet Delivery Ratio (PDR) that can be readily measured locally by a device de- 

creases as a receiver moves closer to the jammer. Further, we draw on the gradient-descent principle 

from optimization theory, and we adapt it to operate on the discrete plane of the network topology so 

that the jamming device location can be estimated. The very nature of the gradient-descent algorithm al- 

lows the distributed execution of our localization scheme. In this paper, we compute and experimentally 

validate the impact of jammer on the PDR of a link and we show that this impact decreases as the link 

moves away from the jammer. We further design a distributed, lightweight jammer localization system, 

which does not require any modifications to the driver/firmware of commercial NICs, while we imple- 

ment a prototype system to evaluate our scheme on our 802.11 indoor testbed. Finally, we evaluate the 

performance of our system via extensive simulations in larger scale settings. Its performance in terms of 

average location estimation error in combination with its simplicity and distributed operations hold great 

promise. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The widespread proliferation of 802.11 wireless networks makes

hem an attractive target for various types of attacks [1–3] . Its

pen access nature makes it fairly easy for saboteurs with jam-

ing devices [4,5] to disrupt WiFi communications. A jamming

evice continuously emits electromagnetic energy on the medium.

umerous jamming attacks have been reported in the recent past

6–9] . The effect of this behavior on a CSMA/CA network is

wofold: (a) at the transmitter side it renders the medium busy
� An earlier version of this work has appeared in IEEE Globecom 2009. 
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esulting in large back-off times and, (b) at the receiver side, it dra-

atically decreases the SNR resulting in a large number of packet

ollisions. Jamming effects may also occur due to accidental acti-

ation of devices that do not serve a malicious cause, such as mi-

rowave ovens, cordless phones [10] , etc. Following the detection

f the presence of an attacker [11] , localizing the jammer allows

n administrator to pursue further countermeasures (such as deac-

ivating the jamming device, isolating the attacker and capturing,

unishing or even destroying it). 

In this work, we design and implement a simple, lightweight

pproach for jammer localization. The main attribute of our ap-

roach that makes it attractive to use and straightforward to im-

lement, is that it relies on Packet Delivery Ratio (PDR), a met-

ic that is readily available at each node and is an indication

f transmission corruption. Our technique exploits an intrinsic
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characteristic of the wireless medium: since the power of the jam-

ming signal degrades with distance, farther transmitters do not

sense strong jamming signals. As a consequence, the requirements

for successful packet delivery at such transceivers are satisfied.

This property cannot be manipulated by an attacker. A transceiver

pair located further away from a jammer is more likely to be suc-

cessful in exchanging packets; the transmitter is able to send more

packets, while the receiver can decode more of those, due to in-

creased SINR, resulting in an increased PDR. 

Taking this property into account we design a simple local-

ization algorithm, that borrows its rationale from the gradient-

descent method in a continuous-valued variable space. Our algo-

rithm starts from an initial node and terminates at another node,

that is closer to the jammer than any of its neighbors. In particu-

lar, it is distributed and is progressively executed by nodes moving

towards the proximity of the attacker. Specifically, nodes succes-

sively forward PDR measurements to neighbors towards assessing

patterns related to PDR growth or degradation. The above structure

of the algorithm is reminiscent of the iterative gradient-descent al-

gorithm for identifying the minimum of a real-valued function f .

The gradient-descent algorithm iteratively searches for a global op-

timum by moving from one point � x n of the function’s domain S to

another � x n +1 ∈ S . The point � x n +1 is towards the opposite direction

of the gradient of f at � x n ; this is the direction in which f exhibits

the largest decrease with regards to its value at point � x n . Note that

in our case, the domain set consists of the discrete locations of the

nodes. Hence, our scheme can be viewed as a discretized version of

a gradient-descent algorithm. If the algorithm cannot proceed fur-

ther, an optimum is declared 

1 . As one can deduce, our scheme is

greedy in nature, since each node takes the locally optimal choice

to derive the global optimum (i.e., the position of the jammer). 

Our full-fledged localization approach considers different start-

ing points for the gradient-descent-based algorithm. We examine

two algorithms as candidates for our approach. The first consid-

ers the distribution of the stopping points/nodes and applies a

weighted centroid algorithm to estimate the position of the jam-

mer. The second, which we include in our approach as the best

solution, considers all the nodes where the kernel 2 algorithm stops,

and declares as the jammer’s position, the one with the small-

est PDR. As might be evident, the latter scheme, similar to the

kernel algorithm, always exhibits a non-zero error (since the po-

sition of the jammer is always assumed to be the same as that

of a network node). However, as our evaluations indicate, it sig-

nificantly reduces the uncertainty with respect to the position,

as compared to both the vanilla gradient-descent-based algorithm

and the weighted centroid algorithm. 

Our main contributions in this work can be summarized as fol-

lows: 

• Analytical and experimental assessment of the spatial effects

of jamming: As previously mentioned, the jammer may affect

both the transmitter and receiver operations; this has an im-

pact on the PDR. We provide an analytical expression for quan-

tifying the change in PDR at different locations in the network

(relative to the jammer’s location). We validate the analyti-

cally computed expression via real experiments on our 802.11

wireless testbed. Specifically, we show that the tranceivers that

are further from the jammer exhibit lower (or no) degradation

in terms of PDR as compared to transceivers that are located

closer to the jammer. 

• Design of a lightweight jamming localization algorithm:

Having shown that PDR is minimized in the vicinity of the ma-
1 As we will see later this optimum is possibly local. 
2 We will use the words core, kernel and vanilla interchangeably in the rest of 

the manuscript. 

s

licious device, we design a gradient-descent based algorithm to

locate the adversarial node. We further design two algorithms

that are built on top of the above core algorithm to improve ac-

curacy; one is based on weighted centroid localization and an

annealing -like extension which provides the best performance

in terms of localization and thus, it is used in our approach.

The main advantages of our approach (as compared to previ-

ously proposed localization approaches) are: (a) simplicity, (b)

does not require any special hardware support, and (c) can be

easily integrated with higher layer functions, such as routing, to

circumvent the jammer’s location. 

• Implementation and evaluation of our scheme: We imple-

ment a prototype of our approach on our wireless testbed us-

ing the Click modular router [12] . We validate its perfor-

mance through experiments on our indoor 802.11 testbed. We

also evaluate the scalability of our approach through simula-

tions (with larger topologies). 

Our work in perspective: Our goal is to exploit the inherent

ropagation characteristics of the wireless channel in order to ex-

ose the presence of jamming devices and localize them. The jam-

ing attacker might be able to hide itself from all but the wireless

hannel’s propagation characteristics. The attributes of the jam-

ing signals (and in particular their spatial properties) can affect

easurable attributes (such as the PDR) to varying degrees in dif-

erent parts of the network, thereby revealing important informa-

ion with regards to the location of the malicious device. The key

ovelty of our scheme is its distributed nature and its lightweight

perations. 

In particular, our proposed algorithms offers the benefit that

hey rely on the operations of existing network functionalities and

easurable quantities at a device level. Hence, no additional hard-

are or mechanisms are needed. Moreover, to reiterate, the na-

ure of the gradient-descent algorithm allows the distributed ex-

cution of our localization scheme. Furthermore, the achieved lo-

alization error, which is at the range of one communication hop 

3 

ignificantly reduces the area that one needs to search for locating

he misbehaving device. Equally novel and crucial is the adoptabil-

ty of the designed scheme. In particular, the kernel can be used

s a standalone module, the output of which can be processed in

any various ways (e.g., a simulated annealing-like algorithm, a

imple centroid calculation algorithm etc.). This flexibility further

llows for building systems that can deal with more advanced at-

ack models (see Section 5.5 ). 

The rest of the paper is organized as follows. Section 2 pro-

ides the required background and describes related studies.

ection 3 describes our analytical framework for quantifying the

amming effects on the PDR. Section 4 provides a progressive de-

cription of our component algorithms starting from the basic ver-

ion to the full-fledged scheme. We present our experimental set-

p and evaluations in Section 5 . Our conclusions form Section 6 . 

. Background and related studies 

In this section we present representative studies of different

ypes of localization algorithms. We further briefly introduce the

radient-descent optimization method and discuss approaches that

ave utilized it for network operations. 

Signal processing-based localization techniques: Secure mo-

ile device localization, and in particular jammer localization,

as been studied in the literature. Various approaches have been
3 We prefer referring to this relative notion of error, since it puts results in per- 

pective. For instance, a localization error of 20 m can be considered small for a 

WiFi network but it is certainly not small in the context of sensor or bluetooth 

networks, whose communication ranges are much smaller. 
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4 Depending on the initial point, the algorithm might be trapped at a local mini- 

mum. 
roposed in order to locate the malicious device, such as the stud-

es in [13–17] . However, all of these studies use advanced signal

rocessing techniques and operate at the PHY layer. In addition,

hey require special, additional infrastructure in order to achieve

heir goal (e.g. ultrasound, infrared or laser infrastructures). These

eatures obstruct the wide deployment of such techniques in cur-

ent commercial wireless networks. A detailed description of vari-

us secure positioning systems, that exclusively operate at the PHY

ayer, can be found in [18] . 

Received signal strength (RSS) based localization techniques:

n addition to the above schemes, various studies utilize RSS mea-

urements in order to discover the location of wireless devices,

nd in particular the positions of access points (APs). Most of

hese techniques require measurements of RSS at various positions

 wardriving ). Some well-known approaches belonging to this cat-

gory are the (weighted) centroid [19] and trilateration [20] . Both

hese techniques combine measurements of the RSS at various lo-

ations in order to infer the position of the AP. Subramanian et al.

21] propose a localization algorithm that utilizes steerable, direc-

ional antennas in order to get information with regards to the

ngle of Arrival (AoA). This can significantly reduce the localiza-

ion error. In a different approach, the authors in [22] manage to

erive AoA equivalent information by simply measuring the RSS.

ll of these schemes, require wardriving and can be considered as

entralized algorithms; a set of previously collected measurements,

ncluding coordinates and the corresponding RSS, are needed in or-

er to apply the algorithms and identify the position of the AP. In

 slightly different context Chen et al. [23] combine environmen-

al information gathered from sensor networks in order to perform

ocalization. All data are gathered at the base station and are an-

lyzed in order to identify the locations needed; centralized local-

zation is again performed. 

Our approach is different from the previously proposed

chemes. In particular it does not require additional, specialized in-

rastructure in order to operate (in contrast with signal processing

ystems). No changes at the driver/firmware of commercial NICs

re required. Our localization system can be integrated with higher

ayers, as we discuss later in this paper. One could expect that the

SS-based algorithms could be modified in order to locate a jam-

ing node; areas close to the jamming device might exhibit ex-

remely high RSS values due to the jamming signals [24] . 

Recent work from Liu et al. [25] further provides a way to es-

imate the jamming signal strength, which can provide a more ac-

urate localization. However, the advantage of our approach over

he RSS-based systems is that it does not require calibration mea-

urements and it can be executed online and in a distributed man-

er. Recently, and after our initial study [26] on using readily avail-

ble network metrics for coarse-grained jammer localization, some

tudies use similar rationale. Liu et al. [27] propose Virtual Force

terative Localization (VFIL), which is an iterative method. An ini-

ial, coarse-grained, position estimation is performed, and in each

teration of the algorithm the accuracy and the granularity of lo-

alization are improved. Cheng et al. [28] further use basic ge-

metric concepts to improve the performance of VFIL, while the

ame authors [29] provide a rudimentary system based on SNR

easurements and bifurcation points on skeletons of jammed ar-

as. In [30] the authors design a jammer localization scheme based

n jamming-caused neighbor changes. A least-squares (LSQ) prob-

em derived from the changes in nodes’ hearing and sending range

s formulated and solved for the jammer localization. Their wire-

ess sensor network emulations show that the scheme can achieve

mean) localizations errors between 10–20 m when there are sig-

al irregularities. Cai et al. [31] developed a specialized system that

s based on RSS indirectly by utilizing the busy-time periods of

ccess points to first detect jammed access points and then per-

orm a coarse-grained localization of reactive jammers in enter-
rise WLANs. In comparison, our scheme requires only PDR mea-

urements, which can be obtained from existing device function-

lities. For instance, the probing functionality of link quality-based

outing protocols (e.g., ETT [32] ) already provides this information.

ore importantly, we show the feasibility of our proposed scheme

hrough experiments on our 802.11 testbed with a prototype im-

lementation of our main algorithm. 

We would like to point out here that the current study is an

xtension of our preliminary work [26] . Compared to our previous

tudy, the current work includes two full-fledged localization al-

orithms, which build on top of the core algorithm that was the

ain focus of our preliminary investigation. We have further in-

luded additional measurement results to validate/evaluate the ac-

uracy of our analytical model on the effects of jamming on the

DR. Finally, we also provide specific proposals/steps for adapting

he scheme to accommodate more advanced jamming strategies

uch as mobile and on-off jammers. 

Gradient-descent minimization: Gradient-descent is an opti- 

ization method for real valued functions. In particular, assume

hat function f is defined on R n and it is convex. In order to find

he minimum of f , one may start from a point � x 0 ∈ R n and continue

nding a series of points using 

  n +1 = 

�
 x n − γ n · ∇ f ( � x n ) , (1) 

here ∇ f ( � x i ) is the gradient of f and and γ n is the step at itera-

ion n . The gradient of f at point � x is the direction of the maximum

ncrease of the function at � x . Starting from an arbitrary point, the

lgorithm greedily moves towards the direction of maximum de-

rease of the function at the neighborhood of this point (- ∇ f ( � x n ) ).

fter a series of iterations, the algorithm will converge, at least to

 local optimum and possibly to a global optimum 

4 . 

Gradient-based routing: The idea of incorporating features

rom gradient optimization into network operations has been used

n the past for routing. In particular, Faruque et al. [33] propose the

se of a gradient-based algorithm for the efficient forwarding of

ueries in sensor networks. Poor [34] presents an on-demand rout-

ng protocol for ad hoc networks, which uses a gradient-descent

ogic in order to forward the packets based on the cost to desti-

ation . In particular, the source broadcasts the message along with

ts cost to deliver it. Consequently, only the neighboring nodes that

an deliver the message at a smaller cost relay the packet. In a

imilar fashion, Ruhil et al. [35] forward the message to the neigh-

or node that is closer to the direction of the destination. 

. System model and jamming effects on PDR 

System model and metrics: We consider a wireless multi-hop

ad-hoc or mesh) network. We further assume that there exists

 static malicious device whose location is unknown to the net-

ork operator. This device is a MAC layer jammer that aims at

acket disruption at the transmitter and/or receiver of a wireless

ink. For our attack model we will consider a continuous-deceptive

ammer that transmits continually seemingly legitimate packets on

he medium [24] . Finally, central to our work is the PDR. PDR is

efined as the ratio of the number of packets that are acknowl-

dged at the transmitter and the number of packets that enter in

ts MAC layer queue. In the literature, PDR is defined as the ratio

f acknowledged packets and the packets that are transmitted. For

 carrier sensing access protocol, Packet Sent Ratio (PSR) is also

sed to capture the performance of the transmitter. In particular,

SR refers to the ratio of the number of packets that are sent out

rom the transmitter and the total packets that enter its MAC layer
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queue from the upper layers. However, in order to keep our analy-

sis tractable we will use our above definition, which implicitly in-

tegrates PSR into PDR calculations. 

The presence of a jammer has a significant effect on the perfor-

mance of a link. In particular, there are three possible ways that a

(successful) packet transmission can be affected: (i) the transmitter

(denoted as T x ) senses the medium busy due to jamming signals,

(ii) the reception at the receiver (denoted as R x ) fails due to low

SINR at its antenna because of the jamming signals and (iii) the

reception of the MAC layer ACK packet fails due to low SINR at the

T x antenna. Since the above are statistically independent, the PDR

can be expressed as 

 DR = P T x send−DATA 
· P R x recei v e −DATA 

· P T x recei v e −ACK 
, (2)

where P T x send−DATA 
is the probability that T x will sense the medium

idle and transmit its packets, P R x recei v e −DATA 
is the probability that the

SINR requirement at R x is satisfied and P T x recei v e −ACK 
is the probability

that the SINR requirement at T x (for receiving the ACK) is satisfied

as well. Note that we do not include the probability that the R x 
is sensing the medium idle for the transmission of the MAC layer

ACK; once R x correctly receives the DATA packet it does not per-

form carrier sensing in order to send out the ACK [36] . 

In order to calculate these probabilities we need to assume a

signal propagation model. We adopt the model from [37] and we

calculate the received power P r at distance r when the transmis-

sion power is P as 

P r = 

P 

r α
· Y, (3)

where α is the path loss exponent, and Y is a random variable that

is log-normally distributed, it captures the shadow fading effects,

and it has a mean value of 1 and a standard deviation equal to the

shadow fading variation which we can obtain from measurements.

In our analysis, we will use the following notation: 

• P JT is the signal strength of the jamming signal at T x , 

• P J is the transmission power of the jammer, 

• r T is the distance between the jammer and T x , 

• r R is the distance between the jammer and the R x , 

• P is the transmission power on the link, 

• d is the distance between T x and R x , 

• CCA is the Clear Channel Assessment threshold, 

• u is the SINR requirement for the rate used, 

• N is the thermal noise floor, and 

• ( μ, σ ) are the parameters of the log normal distribution (com-

puted from the mean value and the standard deviation of the

r.v. Y ). 

Using the introduced propagation model the terms in (2) can

be expressed as follows 5 : 

P T x send−DATA 
= P 

{
P JT < CCA } = P r { P J 

r a 
T 

· Y < CCA 

}

= P { Y < 

CCA · r a T 

P J 
} = 

1 

2 

+ 

1 

2 

· er f 

( 

ln ( 
CCA ·r a T 

P J 
) − μ

√ 

2 · σ

) 

(4)

P R x recei v e −DATA 
= P 

{ 

SINR R x > u } = P { Y > 

N · u 

P 
d a 

− u · P J 
r a 

R 

} 

= 

1 

2 

− 1 

2 

· er f 

⎛ 

⎜ ⎝ 

ln ( N·u 
P 

d a 
−u · P J 

r a 
R 

) − μ

√ 

2 · σ

⎞ 

⎟ ⎠ 

(5)
5 Note that we consider a single rate network, and in particular a network oper- 

ating at the basic rate (6 Mbps). 

w  

i  

n  
 T x recei v e −ACK 
= P { SINR T x > u } = P { Y > 

N · u 

P 
d a 

− u · P J 
r a 

T 

} 

= 

1 

2 

− 1 

2 

· er f 

⎛ 

⎜ ⎜ ⎜ ⎝ 

ln 

(
N·u 

P 
d a 

−u · P J 

r a 
T 

)
− μ

√ 

2 · σ

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (6)

ubstituting Eq. (4) –(6) in (2) we obtain an expression for the PDR

n a link as a function of r T and r R . Fig. 1 presents the PDR for var-

ous distances from the jammer and various link lengths. In gener-

ting these plots we have used the following values: (i) P = P J = 18

Bm, (ii) CCA = −80 dBm, (iii) shadow fading signal variation is 10

Bm (value measured on our testbed) and (iv) path loss exponent

s equal to 5 (this is a typical value for the path loss exponent in

ndoor environments [37] ). 

There are two main observations that we can derive from these

nalytical results. First, areas in the vicinity of the jamming de-

ice (approximately 25–30 m - one hop away), exhibit very low

DR. This forms the basis for our localization algorithm described

n the following section. Second, shorter links, i.e., links where

he transmitter and the receiver are in close distance, are more

obust to jamming, since they can satisfy the SNR requirements

ith higher probability. 

In Section 5 we present experimental results that validate our

nalysis. Our analytical and experimental results, demonstrate the

ecrease in the PDR due to the presence of a jammer and its min-

mization in the proximity of the latter, thus, justifying its usage in

ur localization scheme. 

. The proposed jammer localization algorithm 

In this section we develop our localization scheme. We start

y formally introducing our core algorithm, namely, the gradient-

escent-based localization. We then present two full-fledged (also

eferred to as wrapper in what follows) algorithms. The first one

s based on computing a weighted centroid, while our algorithm

esembles the annealing optimization procedure. 

.1. Gradient-based kernel 

As it was mentioned in the previous section, the PDR value de-

reases as we move closer to the jammer. Hence, we can mod-

fy the gradient-descent method in order to localize the jammer.

unction f can represent now the PDR, while the next candidate

oints � x n +1 may stand for the neighbors of the node under con-

ideration. Since we adapt the continuous-valued gradient-descent

ethod to work in a discrete solution space, the differential PDR

f two neighboring locations is the discrete analog to the gra-

ient’s magnitude of a continuous-valued function. In particular,

ach node tries to find its neighbor node with the largest decrease

n PDR. Algorithm 1 presents a pseudocode for this basic scheme,

hile Algorithm 2 presents a pseudocode for the operations exe-

uted at each node and used by Algorithm 1 . 

In the above notation, PDR i is the PDR of node i . However, PDR

s measured on a link, rather than a node. Hence, in order to cal-

ulate PDR i we can use the average value of the PDR of the links

etween node i and its neighbors. Specifically 

 DR i = 

∑ | NS i | 
m =1 

P DR im 

| N S i | , (7)

here N S i the set of neighbors of i, PDR im 

is the PDR on link

 - m and | N S i | is the cardinality of set N S i , i.e., the number of

eighbors of node i . Using this average value makes sense since
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Fig. 1. Analytically computed PDR. Shorter links are more robust, while areas around the jamming device exhibit low PDR. 

Data : Starting node x s 
Result : Node closest to the jammer, x e 
begin 

x ∗ = x s 1 

while x ∗ � = grad_node ( x ∗) do 2 

x ∗ = grad_node ( x ∗) 3 

end 

x e = x ∗4 

return 

end 

Algorithm 1 : Pseudocode for the gradient-based kernel algo- 

rithm starting at point x s – grad_kernel( x s ) . 

Data : Neighbors’ i PDR, P DR i 

Result : Next node n closer to the jammer 
begin 

Pick k : (P DR i − P DR k ) > (P DR i − P DR j ) ∀ j � = k 1 

� = (P DR i − P DR k ) 2 

if � > 0 then 3 

n = k 4 

else 5 

n = i 6 

end 

end 

return 

end 

Algorithm 2 : Pseudocode for the localization scheme running 

on node i – grad_node(i) . 
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−→
ne can expect the jammer to impact the PDR on all of a vic-

im’s associated links to approximately the same extent. However,

n our experimental evaluations different variants of the defini-

ion above are tested such as, P DR i = min 

1 ≤m ≤| NS i | 
P DR im 

and P DR i =
max 

 ≤m ≤| NS i | 
P DR im 

. 

.2. Weighted centroid-based wrapper 

Gradient-descent minimization is sensitive to the starting point

f the algorithm. A bad starting point may lead to a local optimum,

nd in our case a location far from the jammer. One way to elim-

nate or at least reduce this sensitivity is not to rely on a single

tarting point, but apply our kernel algorithm ( Algorithm 1 ) multi-

le times and in parallel with randomly picked distinct nodes that

nitialize the process. 

Each run of the algorithm will stop at a particular node. Con-

idering the weight of each node j to be the frequency with which

he grad_node terminates at node j , we can then compute their

eighted centroid. This is the estimated position of the jamming

evice. Of course each node that is a terminal node at least once,

eeds to report its weight to a central entity which will then as-

ume the role of computing the centroid. Note here that, central

ontrollers exist in many wireless network architectures such as,

esh and WiFi enterprise networks. Algorithm 3 presents the steps

ollowed by our weighted centroid full-fledged localization scheme.

he centroid computation mentioned in the last step (line 11) fol-

ows the traditional definition from analytical geometry. In partic-

lar, the weighted centroid of n points is given by 

 

x = 

n ∑ 

i =1 

w (i ) · −→ 

x i 

(8) 

n 
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Data : Set of starting nodes K ⊆ N , coordinates 
−→ 

c i , ∀ i ∈ K 

Result : Estimation of jammer’s position 

−→ 

x 

begin 

S = ∅ // The set of stopping nodes 1 

for ∀ i ∈ N do 2 

w (i ) = 0 // The weight of each node 3 

end 

for ∀ i ∈ K do 4 

y = grad_kernel (i ) 5 

if y / ∈ S then 6 

S = S 
⋃ { y } 7 

end 

w (y ) = w (y ) + 1 8 

end 

for ∀ i ∈ S do 9 

w (i ) = w (i ) / | K| 10 

end 

−→ 

x = Centroid(w i · −→ 

c i ) , ov er all i ∈ S 11 

return 12 

end 

Algorithm 3 : Pseudocode of our weighted-centroid full- 

fledged localization scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data : Set of starting nodes K ⊆ N , coordinates 
−→ 

c i , ∀ i ∈ K 

Result : Estimation of jammer’s position 

−→ 

x 

begin 

S = ∅ // The set of stopping nodes 1 

for ∀ i ∈ | K| do 2 

y = grad_kernel (i ) 3 

if y / ∈ S then 4 

S = S 
⋃ { y } 5 

end 

end 

−→ 

x = c r | P DR (c r ) ≤ P DR (c j ) , ∀ j ∈ S, j � = r 6 

return 7 

end 

Algorithm 4 : Pseudocode of our annealing-based full-fledged 

localization scheme. 

Fig. 2. The inter-workings of our algorithms. 
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where w ( i ) is the weight assigned to point 
−→ 

x i . The cardinality |K|
of the set of initializing nodes K, is a control knob of the algo-

rithm, whose effect will be evaluated and quantified in our evalu-

ations. 

In essence, the algorithm above requires multiple runs of the

grad_kernel( x s ) , for different starting points x s . With this pro-

cess, we get the relative frequency (which serves as an estimate of

the probability) that the algorithm will terminate at a given node.

This relative frequency is then used to weigh the contribution of

each stopping point, in the centroid calculation. 

4.3. Annealing-like wrapper 

Given that many localization algorithms in the literature make

use of the notion of centroid, the weighted centroid-based wrap-

per can serve as a baseline algorithm. However, the fact that we

utilize multiple points where the core algorithm has stopped at,

may in some cases increase the location estimation error intro-

duced by the core algorithm. Since, there can be only one global

minimum 

6 , taking into consideration multiple stopping points in

essence means that we use multiple local minima. Hence, the er-

ror introduced may still be large. 

Therefore, we propose an alternative wrapper algorithm, which

resembles an annealing process. In particular, we run our gradient-

based kernel algorithm again starting from multiple randomly se-

lected nodes. Choosing the stopping node with the minimum PDR

as the location of the jammer can reduce the error significantly. In

other words, we identify local minima, and we pick the location

of the node with the smallest PDR from among them as an ap-

proximation of the jammer’s position. Algorithm 4 formalizes these

steps. Again | K | is a parameter of the algorithm, whose effect we

examine in the evaluations. Even though this algorithm will always

exhibit a non-zero location estimation error since the location of

a jammer will always be identified as a position of an existing
6 Of course, in theory there are functions that exhibit multiple minimums, but in 

our case the global minimum is found only around the area of the jammer. This is 

especially true if we consider that all the nodes in the network are exposed to the 

same wireless environment and no node suffers from severe fading as compared to 

his peers. 

a  

o  

g  

s

etwork node, its overall performance is significantly better com-

ared to the kernel approach and the weighted-centroid wrapper

 Section 5 ). 

.4. Protocol implementation 

The weighted centroid-based wrapper in pseudocode 3 and the

nnealing-like wrapper in pseudocode 4 describe the general steps

f two complete localization schemes. However, Algorithm 4 is our

nal proposed scheme. Even though the core algorithm presented

n Section 4.1 is fully distributed, in order to localize the jammer

sing the full-fledged schemes, cooperation between the nodes is

equired. Each node, needs to initiate once (either independently 7 

r upon being prompted by a central authority – e.g., the cen-

ral controller of a mesh network or of a WiFi enterprise network)

n parallel, the gradient-descent-based method above. Each node

ecords the number of times it has been the terminal node of this

earch (initiated from other peers in the network). After report-

ng this information along with its PDR to their peers via control

ackets, the jammer’s position can be estimated by each scheme

resented. 

These protocols are distributed in nature but might require light

oordination using a central entity for processing the data as is

he case for any localization algorithm in a multi-hop network.

or instance, in [30] a designated node is required to collect evi-

ence from the network and perform the localization. Note here

hat, even in the case where each node can independently estimate

he jammer’s location, a central authority is likely to be responsi-

le for further actions against the malicious entity such as physical

apture and disablement of the jammer. 

Fig. 2 depicts a flow chart that shows how our algorithms

re combined to the full-fledged localization scheme. The core

f the operations is grad _ kernel () , which further relies on the

rad _ node () that runs individually on each node. The output from
7 E.g., with a pre-defined ruleset or with local neighborhood voting-based 

chemes. 
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Table 1 

Our analytical model predicts well the effect of a jammer on the 

PDR of a link. 

d(m) r T (m) r R (m) PDR measured PDR analytical 

10 32 36 0 .68 0 .64 

10 .5 18 .7 18 .9 0 .02 0 

8 .1 28 25 .3 0 .1 0 .013 

7 .3 30 25 0 .12 0 .19 
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Fig. 3. Empirical CDF for the relative error e r . 
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=  
hese algorithms (for different starting nodes K) is passed to our

rapper algorithms, which provide us with the final location of

he jammer. 

.4.1. Computational complexity and system overhead 

An important aspect of every protocol/system is its computa-

ional complexity as well as the overhead imposed by its use. The

rad _ kernel () algorithm is linear to the size of the network, i.e.,

 ( n ), where n is the number of nodes in the network. The over-

ll complexity of the full-fledged localization algorithms is then

 ( kn ), where k is the number of starting points for the localiza-

ion. In practice (see Section 5.3 ) the number of iterations needed

or the grad _ kernel () to converge is a fraction of n . With respect

o the overhead added from our localization scheme this is zero!

n particular, all the functionality of the localization is piggybacked

n the routing functionality of ETT as described in more details in

ection 5.3 . Hence, there is no additional control message overhead

mposed by the system. 

. Performance evaluation 

In this section we present the experimentation and simulation-

ased evaluations of our scheme. We first verify our analytical re-

ults through measurements on a real testbed. We continue by

resenting the evaluations of our full-fledged schemes through

imulations on a large scale topology. Finally, we describe a pro-

otype implementation of the core algorithm based on gradient-

escent minimization. This serves as a proof-of-concept for the

racticality of our design. We further showcase its applicability

hrough a small-scale experiment. 

Testbed description: Our testbed is deployed in the 3rd floor

f Engineering Building 2, at the University of California, Riverside.

he testbed consists of 42 nodes; 22 of them are Soekris net5501

odes, which mount a Debian Linux distribution with kernel v2.6

ver NFS and are equipped with a miniPCI EMP-8602 6G 802.11a/g

iFi card with the Atheros chipset. The other 20 nodes are Soekris

et4826; they mount the same Debian Linux distribution, and are

dditionally equipped with an Intel-2915 mini-PCI card. We use a

 dBi omnidirectional antenna for every node and the transmis-

ion rate is 6Mbps unless otherwise stated. We use the Madwifi-

g driver for our Atheros based cards and a proprietary version of

he ipw2200 driver/firmware of the Intel-2915 cards, which allows

or tuning the CCA. More details on our testbed deployment can

e found in [38] . 

Jammer implementation: For the purposes of our work we im-

lement our own constant-deceptive jamming utility [24] . In par-

icular, a constant-deceptive jammer transmits continually seem-

ngly legitimate packets on the medium. The implementation is

ased on a specific configuration (CCA = 0 dBm) and a user space

tility that sends broadcast packets as fast as possible. By set-

ing the CCA threshold to such a high value, we force the device

o ignore all legitimate 802.11 signals even after carrier sensing.

ackets arrive at the jammer’s circuitry with powers less than 0

Bm (even if the distances between the jammer and the legiti-

ate transceivers are very small [39] ). In addition, having the jam-

er transmit broadcast packets allows the deferral of back-to-back

ransmissions for the minimum possible time. Given that transmis-

ions of MAC layer ACK packets are by default disabled for broad-

ast traffic, the jammer needs to wait for the DIFS time, plus the

inimum possible backoff period min BackOff (i.e., DIF S + min BackO f f )

36] . 

.1. Validation of our theoretical assessments 

We start by validating our model presented in Section 3 . We ac-

ivate the jamming nodes one at a time and we measure the PDR
n different links on our testbed. We perform our experiments late

t night in order to avoid interference from other collocated wire-

ess LANs that are active during the day, and we also operate each

ink in isolation (no other link active at the same time). 

Table 1 shows the detailed results for a subset of our exper-

ments. In particular, we compare the PDRs observed in practice

ith those that are anticipated from theory. We observe that there

s a good match between the measurements and the analysis. 

Fig. 3 depicts the empirical CDF for the relative error e r : 

 r = 

| P DR measured − P DR analytical | 
P DR measured 

(9) 

The majority of the relative errors are small, which translates

o a fairly accurate analytical model. However, there are some dis-

repancies that can be attributed to the fact that the path loss ex-

onent used in the model might not match exactly the one that

haracterizes the real environment. Nevertheless, the jamming ef-

ects observed on our testbed are similar to what is estimated from

ur analysis. More than 60% of the estimations using our analytical

odel exhibit error within 20% of the actual PDR value measured

n the testbed. Moreover, note that our scheme does not rely on

he analytical model parameters. We use online measurements to

apture the actual PDR. 

These results can be further seen as a validation of our theo-

etical intuition that the PDR values decrease in areas closer to the

ammer. Hence, they form a strong motivation for our framework

esign for our localization algorithms. 

.2. Localization error performance 

We evaluate the weighted centroid and annealing-based local-

zations using large scale simulations in MATLAB. We consider a

etwork of 100 nodes, randomly placed in a rectangular area of

0 0 x 50 0 m 

2 . The jammer is also randomly positioned within

he area. We run 100 different topologies and obtain the distri-

ution of the localization error. We utilize the lognormal shadow

ading propagation model with the following parameters: (a) CCA

 –80 dBm, (b) the shadow fading variation is 5 dBm (as it has



82 K. Pelechrinis et al. / Computer Communications 86 (2016) 75–85 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

e
n

E
m

p
ir

ic
al

 C
D

F

 

 

Gradient descent
Annealing
Weighted centroid

Fig. 4. Empirical CDF for the normalized error e n . 
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for different definitions of the PDR of a node. 
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been measured on our testbed) and (c) the path loss exponent is 5

[37,40] . Our evaluation metric is the normalized error with respect

to the communication range, namely, “one-hop” length of a node:

e n = 

absol ute l ocal ization error 

communication range 
(10)

Given that our algorithms operate on the discrete solution

plane, the absolute error will not reveal a lot of information. The

closest we can get is “one-hop” away from the jammer, that termi-

nates at the node that is nearest to the malicious device. Hence,

our objective is to keep the above error smaller than 1, which

means that the distance between the estimated and the actual

jammer’s position is within the network’s communication range 8 .

Fig. 4 presents the results for both the weighted centroid and the

annealing-like algorithms, when K = N . We also present the per-

formance of the gradient-based kernel algorithm. As we observe,

annealing outperforms all the other schemes, with the error being

always less than half the communication range. The weighted cen-

troid algorithm exhibits much higher error, since we use all ter-

minating points of the gradient-descent core. Hence, we are us-

ing many local minima in our estimation, which leads to a higher

localization error. Finally, our core algorithm (with a randomly

chosen starting point) performs the worst, as one might have

expected. 

In the above simulations we have set K, the set of starting

points, to be equal to the set of the nodes in the network ( N ).

In other words, each node in the network initiates the kernel algo-

rithm in parallel. However, we have examined the performance of

the annealing-based algorithm with a smaller cardinality of set K.

Fig. 5 shows that even though there is a slight degradation when

the number of starting nodes is smaller, this degradation is not sig-

nificant. In all cases, the observed error is always smaller than ap-

proximately 68% of the coverage range. Hence, we could reduce the

number of parallel runs of the algorithm significantly (by an order

of 10), without compromising accuracy. 

Finally, we examine how the annealing-based algorithm per-

forms for different definitions of the PDR of a node. Recall that all

of our results up to now are obtained by assuming that the PDR

of node i is defined as per Eq. (2) . In what follows, we examine

two alternative definitions, that is, the PDR of node i is considered

to be the max or min of its PDRs across its neighbor nodes. Fig. 6
8 A typical communication range for an indoors 802.11b/g system is 25–50 m. 

With the above parameters our channel model gives a coverage range at the high 

end of the above interval (i.e., ≈ 50 m) 

5

 

i  
epicts our results. When we use the minimum PDR of a node in

ur scheme, the performance is degraded. This can be attributed

o the fact that we are taking a conservative approach; we project

he worst performance of the links of the node under considera-

ion (say i ) to all of its links. Hence, this may cause the iteration

o be trapped around local minima with higher probability, since it

ight be the case that this worse performance is due to the wire-

ess channel uncertainty. A neighboring node (say j ) that is more

ffected from the jammer than i , might exhibit a lower average

DR but higher than that of the worse - fading induced - PDR of

he latter. This will further lead to a local minimum. On the con-

rary, when we use the maximum value of a node’s PDRs, we ad-

ere to a more optimistic approach since we assume that the effect

f the jammer on node i is equal to that on its best link. This pro-

ides a performance almost identical to the average PDR, since all

inks of node i are expected to be affected at the same degree from

 node, except the ones that experience additional severe fading

ue to the channel conditions. 

.3. Prototype system implementation of our core algorithm 

We have implemented a prototype version of our core local-

zation scheme in order to show the practicality of the proposed
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Fig. 7. Pictorial view of the test-bed and jammer position. 
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9 With the term successful we refer to runs of our algorithm that indeed termi- 

nate close to the malicious device. 
chemes. We use the Click Modular Router framework and

he Roofnet implementation from MIT. In particular, we have

odified the code at sr2ettmetric.cpp of the Roofnet soft-

are framework [41] in order to retrieve the average PDR for each

ode (with respect to its neighbors). Our algorithm uses these val-

es in order to perform the localization of the jammer. The dis-

emination of the PDR information in the network takes places

long the lines of what is done with the ETT [32] functionality.

n particular, a probe is transmitted every τ seconds and the PDR

s calculated over a sliding window of w seconds (currently we

ave τ = 100 ms and w = 1 sec). This implementation allows its

ntegration with higher layer operations (and in particular rout-

ng) with no additional overhead. Note here that by building on

op of ETT, we essentially do not require a control channel for PDR

nformation exchange. Absence of probes/responses from a com-

letely jammed node automatically translates to a PDR = 0, as it

hould. Less affected nodes will still be able to exchange the ex-

ected number of probes. In the rest of this subsection we present

ome proof-of-concept experiments on our testbed and their inter-

retations. 

Experimental results: Our main goal is to observe how this

rototype system progressively percolates through the network

opology. Every node independently runs the localization algorithm

nd makes local decisions with regards to the next node that is

loser to the jammer, based on the PDR values of its neighbors.

his procedure continues until a node cannot identify one of its

eighbors as being closer to the jammer than itself. The percola-

ion can be thought of as a “route discovery” propagation towards

he jammer. 

We illustrate the functionality of the core algorithm with the

ollowing sample experiment. We activate one of our jamming de-

ices on the testbed and run our localization algorithm on the rest

f the nodes in our testbed in order to find the routes towards the

ammer. Fig. 7 shows the various paths towards the jammer that

ere reported by our algorithm for various starting points (nodes).

n this experiment, the jammer is node 50 (see Fig. 7 ). The arrows

epresent the path towards the jammer that our algorithm finds,

or various starting points. We extract the following observations: 
• All successful localization iterations 9 end at nodes within one

hop distance from the jammer (i.e. 25–30 m). 

• The paths to the jammer may be different. However, once two

paths meet at an intermediate node, they converge and follow

the same path until the termination of our algorithm. 

• Depending on the starting point, our system could terminate at

other end points and can be trapped at a local minimum (e.g.,

path 11 → 36 → 27). This is a feature that our scheme inherits

from gradient-descent minimization technique, and as we saw

above our full-fledged solutions can eliminate. 

A more detailed examination of our experimental results re-

eals that when we start our search from nodes 13 and 46 we end

p at node 23; this node is one hop away from the jammer. How-

ver, the paths followed are different; 13 → 19 → 37 → 22 → 41

 23 and 46 → 22 → 41 → 23. Nevertheless, note that once the

wo paths meet at node 22, they follow the same sub-route to the

ammer’s location. In addition, starting from node 34, we manage

o successfully localize the jammer once again, following a totally

ifferent path this time, that is, 34 → 32 → 35 → 39. 

To reiterate, one collateral effect from incorporating the

radient-descent minimization method is that our scheme can be

rapped in local minima. The performance of our proposed method

s dependent on the choice of the initial point/node. For the ex-

mple in Fig. 7 , our measurements reveal that if the localization

rocedure starts at node 11, it will result in an inefficient localiza-

ion. Specifically, our algorithm follows the path: 11 → 36 → 27,

nd falsely concludes that the jammer is in the vicinity of node 27.

his can happen for various reasons. For instance: (a) The random

ature of wireless signal fading can cause the PDR in some areas

f the network exhibit low values even without the presence of a

ammer. (b) The links of node 27 might be inherently of bad qual-

ty (low PDR) as compared to the other links in the neighborhood

f node 27 (indeed, this was the reason for being trapped to local

inima in the experiment of Fig. 7 ). (c) Large-scale temporal varia-

ions in the medium can affect the performance of our localization

cheme (e.g. instantaneous PDR drop due to movement of obsta-

les). In general, local minima can be attributed to the randomness

f wireless channel fading. Due to channel fading randomness, it is

ossible that a node closer to the jammer, has a higher PDR than a

ode further from the jammer. In order to reduce this sensitivity,

e have proposed our two wrapper algorithms in Section 4.2 and

.3 , whose evaluations on a larger scale topology revealed that can

ignificantly reduce the localization error. 

Finally, it is worth examining the computational complexity of

he grad _ kernel () implementation. In Section 4.4.1 we mentioned

hat the algorithm is linear to the number of nodes in the net-

ork. Our experimental results show that in reality the algorithm

onverges much faster. In particular, the three paths that converged

o the right solution required on average just 3.6 iterations or just

pproximately 8% of the network size. Given that probes are trans-

itted every τ = 100 ms, this means that it took on average ap-

roximately 360 ms to localize the jammer. 

.4. Summarizing our algorithms 

The main problem with the kernel algorithm is its sensitivity

o local minima. As our results show, for different starting points,

he algorithm can terminate at a node, which is much further than

he actual jammer. Further, since the position of the jammer is al-

ays declared to be a network node location, the error is always

on-zero. 
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In order to overcome this pitfall, we first provided an alterna-

tive using a weighted centroid-based algorithm. In this approach,

we initialize the kernel algorithm from different points in the net-

work and based on the termination points we calculate a weighted

centroid of the latter as the jammer’s position. Since this position

can be any point in the network, the localization error can poten-

tially be as low as zero. However, as our evaluations indicate, even

though the error is significantly lower as compared to the kernel

algorithm it is still high enough. In addition, the weighted centroid

wrapper requires to be run multiple times in parallel, as compared

to the single run of the kernel algorithm. 

In order to further improve the localization, we designed an

annealing-like algorithm, which also makes use of our kernel. Even

though it also needs multiple runs with different starting points

and it always exhibits non-zero error (a node’s position is always

declared as the estimated jammer’s location), the overall perfor-

mance of this algorithm is significantly better and hence, this is

our proposed scheme in this paper. 

We would like to state that the runs that both wrapper algo-

rithms require can take place in parallel. The overhead increase

is minimal since each node forwards a single packet to the next

node in the chain . Furthermore, running the algorithm in parallel

from different starting points may also help in localizing multiple

jammers. In the latter case, different starting points will be able

to converge to different points of minimum PDR, which all will be

candidate jammer locations. 

5.5. Extensions of our scheme 

Our system is based on gradient descend optimization method

and hence, as we have discussed is sensitive to local minima. The

algorithm guarantees that the optimum found in terms of localiza-

tion error is a local one. While the simulated annealing-like wrap-

per is able to alleviate some of the problems, unfortunately we

cannot guarantee a global optima. However, since the mechanism

is of minimal computational complexity and almost zero overhead,

it could be applied to an even greater number spatially diverse ini-

tial points - possible all the nodes in the network depending on its

size - to check the convergence. Another narrow aspect of the cur-

rent system is the attack model considered. In particular, the attack

model we have considered in this paper assumes a static jammer.

Nevertheless, there are more advanced jamming models that are

possible. In what follows we briefly describe how our scheme can

be extended to deal with different attack models. 

Adaptive jammers: An adaptive jammer switches its transmis-

sion on and off in an effort to avoid being detected. The problem

of optimally (i.e. as fast as possible) detecting such a jammer in a

sensor network has been previously studied [ 42 ]. There, the obser-

vations were the number of collisions rather than the PDR. If the

jammer is static, the localization problem is similar to that consid-

ered in the paper. The difference is that now there will be fewer

PDR samples to consider in the decision, but the algorithm works

in that case as well. 

Mobile jammers: The problem changes from estimating the lo-

cation of a static jammer to tracking the mobile trajectory process.

The algorithm proposed in this paper will not converge if applied

as is, since the location of the jammer changes with time. The

problem would need to be casted in a different manner, i.e. the

objective needs to be modified to minimizing the error of track-

ing the mobility process. Note however that, at each fixed point in

the trajectory process, the optimization problem that needs to be

solved is the one discussed in this paper, and the algorithm pro-

posed can be applied to solve it. 

Coordinated jammers: To tackle the problem, we need to have

some assumptions about how the jammers coordinate. For in-

stance, each one of them will be characterized by an on-off jam-
ing process. If we know the number of jammers, then we can run

ne replica of the algorithm for each jammer to locate its location.

he rest of the problem remains the same. 

. Conclusions 

We design a low-overhead, distributed jammer localization al-

orithm. Our main observation that guides the construction of our

ystem is related to the spatial effects of jamming. In particular,

inks that are further from the jammer experience higher PDRs as

ompared to nodes that reside closer to the jamming device. We

dopt the rational of gradient-descent methods in order to resem-

le the searching process for the node that is closer to the jammer.

he algorithm is greedy in nature; each node makes the locally op-

imal choice in terms of the neighbor with the least PDR and pro-

eeds in that fashion towards the direction of the jammer location.

his decision is based on parameters that are readily observable in

xperimental platforms like the PDR. In order to overcome the in-

erent problem of gradient descent methods with local optima, we

ropose two algorithms that attempt to find a good starting point

or the algorithm. Our evaluations indicate that the annealing-like

lgorithm performs the best and can indeed efficiently estimate

he jammer’s location with a low position error. 
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