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a b s t r a c t 

We introduce a novel, efficient methodology for the automatic recognition of major vertical displacements 

in human activities. It is based exclusively on barometric pressure measured by sensors commonly avail- 

able on smartphones and tablets. We evaluate various algorithms to distinguish dynamic activities, iden- 

tifying four different categories: standing/walking on the same floor, climbing stairs, riding an elevator 

and riding a cable-car. Activities are classified using standard deviation and slope of barometric pressure. 

We leverage three different inference models to predict the action performed by a user, namely: Bayesian 

networks, decision trees, and recurrent neural networks. We find that the best results are achieved with a 

recurrent neural network (reaching an overall error rate of less than 1%). We also show that decision tree 

classifiers can achieve good accuracy and offer a better trade-off between computational overhead and 

energy consumption; therefore, they are good candidates for smartphone implementations. As a proof of 

concept, we integrate the decision tree classifier in an App that infers user activity and measures eleva- 

tion differences. Test results with various users show an average recognition accuracy rate of about 95%. 

We further show the power consumption of running barometric pressure measurements and analy se the 

correlation of pressure with environmental factors. Finally, we compare our approach to other standard 

methodologies for activity detection based on accelerometer and/or on GPS data. Our results show that 

our technique achieves similar accuracy while offering superior energy efficiency, independence from the 

sensor location, and immunity to environmental factors (e.g., weather conditions, air handlers). 

© 2016 Published by Elsevier B.V. 

1. Introduction 1 

In the last decades, smartphones became the central computer 

Q2 

2 

and communication device in people’s activities and lives. Current 3 

smartphones includes a variety of sensors that can be used for 4 

the continuous real-time location-aware monitoring of human ac- 5 

tivities as well as environmental conditions [1] . This has opened 6 

for research that ranged from very sensitive health applications 7 

[2] or privacy-concerned proximity solutions [3] up to leisure pur- 8 

poses [4] . Also, exploiting the multiplicity of mobile devices for 9 

large collection of measurements is beneficial to multiple fields, 10 

from health [5] to smart-cities [6] . Boosted up by smartphone 11 

computing and communication, activity recognition is spreading 12 

and developing: more and more applications rely on the knowl- 13 

edge of or on the distinction among human activities. Detecting 14 

the action a subject is performing can serve many purposes, for 15 

example, monitoring a variety of pathological conditions [7] , or 16 
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sending alerts when a potentially dangerous activity is sensed [8] , 17 

or identifying lifestyle quality [9,10] . Collected information can be 18 

valuable for suggesting countermeasures (e.g., stimulating physi- 19 

cal activity if a sedentary lifestyle is recognized). Other informa- 20 

tion, as location, can be inferred (e.g., detecting floor transitions 21 

when a subject passes from climbing stairs to standing still [11] ). A 22 

major challenge in designing an activity recognition system is the 23 

user acceptance. If a system invades the private sphere, the user 24 

might be reluctant to adopt it. With the rise of the smartphones, 25 

a large part of the activity recognition research switched towards 26 

wireless sensor measuring with mobile phones [12] . Smartphones 27 

have the double advantage of both being equipped with multi- 28 

ple sensors, and being an ubiquitous commercial product. Latest 29 

generation of devices are indeed equipped with a rich set of sen- 30 

sors, including accelerometer, barometric pressure sensor, compass, 31 

gyroscope, proximity sensor, light sensor, GPS, microphone, and 32 

camera. The key capabilities of sensing, computing and commu- 33 

nicating are integrated in the universally accepted and always- 34 

with-you smartphone [1,13] . For these reasons, the detection of 35 

user activities using sensors embedded in a smartphone is gain- 36 

ing a momentum. Traditional methods for tracking activities with 37 
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smartphones mainly rely on integrated accelerometer sensors. 38 

However, the difference in the way of performing a well defined 39 

activity and of carrying the device, even for the same user, can 40 

lead to a very poor accuracy [14] . A drawback of the accelerom- 41 

eter sensor is energy consumption, which (if always on) is signif- 42 

icant [15] and is mostly determined by the need of keeping the 43 

phone’s components active to access sensors results [16] . Emerg- 44 

ing methodologies aim at applying multi-sensor data fusion tech- 45 

niques, taking advantage of the abundance of sensors embedded 46 

in smartphones and their complementarity [17,18] . Of course, the 47 

use of multiple sensors negatively impacts energy consumption. At 48 

present, the two major challenges in the accomplishment of good 49 

activity detection with smartphones are still energy efficiency and 50 

independence from the device’s position along human body. In the 51 

present work, we define a new class of activities - Vertical Dis- 52 

placement Activities (VDAs) - where major movement is along the 53 

vertical axis. Examples of VDAs can be standing, climbing stairs, 54 

riding a cable-car, riding an elevator, or jumping. Our methodol- 55 

ogy shows that it is possible to identify VDAs with very good ac- 56 

curacy relying only on barometric pressure sensors available on 57 

off the-shelf smartphones [11] . Barometric pressure sensors have 58 

been traditionally used for height estimation by measuring pres- 59 

sure changes [19] . Information derived from accelerometer data 60 

and GPS based localization services can be integrated in a second 61 

step, only if really needed. Pressure sensing can provide, for ex- 62 

ample, complementary information to pedestrian dead reckoning. 63 

The main advantage is that switching from a sensor to another 64 

can extend battery life and optimize the detection analysis. More- 65 

over pressure measurements are totally independent of the phone 66 

position. 67 

Our paper is structured as follows. We firstly discuss the lit- 68 

erature ( Section 2 and the rationale of our work ( Section 3 ). In 69 

Section 4 we present our experiments for investigating the char- 70 

acteristics of barometric pressure in different scenarios. We de- 71 

fined four different user dynamics mode ( “standing/walking ” on 72 

the same floor, “climbing stairs ”, “riding a cable-car ”, and “riding 73 

an elevator ”). Then we collected training labelled data on baromet- 74 

ric pressure in the corresponding scenarios. We tested three differ- 75 

ent inference methods to classify trained data. The metric used to 76 

choose the best model is a good trade-off between performance 77 

and costs. It is widely known that recurrent neural networks are 78 

the state of the art in inference models, however their implemen- 79 

tation in resource-constrained devices (i.e. smartphones) presents 80 

several issues due to their computational needs and their impact 81 

on battery lifetime. On the other hand, decision trees and Bayesian 82 

networks are less computationally demanding and have less im- 83 

pact on energy consumption. The results presented in Section 5 84 

show that, although the success rate of the Long Short-Term Mem- 85 

ory [20] recurrent neural network to classify our barometric pres- 86 

sure data was very high (only 0.9% of errors, on average), the J48 87 

decision tree algorithm also had a very good performance, provid- 88 

ing an average recognition rate of about 95%. For all these rea- 89 

sons, J48 algorithm is the best choice for detecting VDAs on smart- 90 

phones using barometric pressure data. We also directly mea- 91 

sured battery consumption when sampling barometric pressure at 92 

a constant rate and found that it is negligible. To demonstrate 93 

the advantages of using pressure sensors for activity recognition 94 

over sensors traditionally used (i.e., accelerometers and GPS), in 95 

Section 6 we analy se and compare accuracy, energy efficiency, in- 96 

door effectiveness and phone position independence. Finally, in 97 

Section 7 – as a use case scenario – we describe an App for An- 98 

droid where both barometer-based approaches to activity recogni- 99 

tion and height estimation have been implemented. This App de- 100 

tects user activity using the J48 decision tree algorithm and shows 101 

the altitude graph, the current vertical speed and some statistics 102 

about the activities performed by the user. 103 

2. Related work 104 

Many studies have focused on the identification of human 105 

VDAs, such as standing, walking, climbing stairs and riding 106 

up/down an elevator, from sensors data. 107 

Several pieces of work have been performed with the analysis 108 

of accelerometer data, as further discussed in Section 6.1 . In gen- 109 

eral, the accuracy of methods based on accelerometers depends on 110 

the position of the sensors (or the phone that embeds sensors) 111 

and accelerometers are energy-demanding. Kwapisz et al. [21] col- 112 

lect data from a phone’s accelerometer for 29 individuals. Data 113 

is analy sed and two patterns are identified (periodic and non- 114 

periodic). Then, they use three classification techniques (decision 115 

trees, logistic regression and multilayer neural networks) to pre- 116 

dict the user activities. Krishnan and Panchanathan in [22] evaluate 117 

the performance of different discriminative classifiers (i.e., Boosted 118 

Decision Stumps, Support Vector Machines and Regularized Lo- 119 

gistic Regression) to tackle continuous human activity recognition 120 

based on accelerometer data. They propose to capture the rate at 121 

which the acceleration changes for activities that have a signifi- 122 

cant amount of motion (like walking, running, etc.), by comput- 123 

ing statistical features like mean, variance and correlation on the 124 

first order derivative of the acceleration data. The human-activity 125 

recognition system proposed in [14] employs a smartphone with 126 

a built-in triaxial accelerometer. It uses a combination of statisti- 127 

cal signal features, artificial-neural nets and autoregressive mod- 128 

elling to classify activities. The most cited paper about activity de- 129 

tection using accelerometers is [23] , where authors (Bao et al.) use 130 

wearable accelerometers to classify a variety of every-day activi- 131 

ties (including standing, climbing stairs and riding elevator). In [24] 132 

barometric pressure data is used in combination with tri-axial ac- 133 

celeration data and tri-axial gyroscope data to train classifiers and 134 

recognize child activities. In [25] pressure sensors are used to im- 135 

prove activity recognition based on acceleration data: in this case, 136 

authors limit to plot measures of both barometric pressure and ac- 137 

celeration, and to observe that the change in altitude connected to 138 

a pressure change can help to provide a more sophisticated algo- 139 

rithm for activity recognition, but they do not propose any algo- 140 

rithm for activity detection. In [26] a dedicated multi-sensor board 141 

containing seven different sensors (microphone, visible light pho- 142 

totransistor, 3-axis accelerometer, 2-axis compass, barometer, am- 143 

bient light, and humidity) is used to collect measurements from 144 

twelve individuals, to infer a subject’s activity and classify it as 145 

sitting, standing, walking, walking up stairs, walking down stairs, 146 

riding elevator down, riding elevator up, and brushing teeth. They 147 

employ an ensemble of classifiers to select the most useful features 148 

and then use those features to recognize the set of human move- 149 

ments. A second layer of Hidden Markov Models (HMMs) com- 150 

bines the outputs of the classifiers to estimate the most likely ac- 151 

tivity. Results show that three sensors yield the most discrimina- 152 

tive information for recognizing activities: the audio, barometric 153 

pressure and accelerometer sensors. This information is comple- 154 

mentary: audio captures sounds produced during the various ac- 155 

tivities, accelerometer data is sensitive to the movement of the 156 

body, and barometric pressure helps detecting activities connected 157 

to height variations, such as riding an elevator or moving up and 158 

down stairs. In [27] , four sensors (accelerometer, barometer, gyro- 159 

scope and magnetometer) are employed to accurately recognize a 160 

user’s mode of motion when a height change is detected. The algo- 161 

rithm developed has shown a good success rate (from 80 to 96%) 162 

in discriminating among walking up or down stairs, riding an el- 163 

evator, and standing or walking an escalator. In very few pieces 164 

of work, GPS location data has been used to learn and recognize 165 

the activities in which a person is engaged over a period. For ex- 166 

ample, in [28] the authors extract a person’s activities – such as 167 

walking, driving a car, or riding a bus – from traces of GPS data, 168 
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using a probabilistic temporal model that is based on conditional 169 

Random fields (CRF) [29] . Similarly, in [30] generic activities typ- 170 

ically performed while a user stays at a location, such as work, 171 

leisure, sleep, visit, dining, are inferred from GPS data, using Re- 172 

lational Markov Networks. Such approaches suffer from low-level 173 

accuracy and flexibility. In [31] , Sankaran et al. use only barometer 174 

to detect basic user activities such as idle , walking and vehicle . Their 175 

algorithm is based on the number and rate of altitude changes 176 

derived from the pressure measurements returned by barometric 177 

sensors. Our algorithm has a finer-granularity classification of dy- 178 

namic modes as it can distinguish the transportation mode (i.e., 179 

stairs, elevator or cable-car). Furthermore, the algorithm proposed 180 

by Sankaran et al. has a low detection accuracy of the walking 181 

mode, which forces them to fuse barometer and accelerometer 182 

to complement the barometer-based sensing. Using multiple sen- 183 

sors can help improving the detection of specific activities, espe- 184 

cially when information from one sensor is insufficient to recog- 185 

nize them. However, a higher number of sensors involves high en- 186 

ergy consumption and may increase the computational overhead. 187 

In [32] it is shown how pressure sensors data can be effectively 188 

used for floor localisation. The authors present an efficient indoor- 189 

stay recognition method requiring measurements such as vertical 190 

height between floors, current temperature, and atmospheric pres- 191 

sure value at a reference location, to accurately estimate the floor 192 

level. It is the only work where energy efficiency is considered, al- 193 

though it is not directly measured. There are also surveys about 194 

integrating sensors on garments for activity recognition tasks, but 195 

activities detected are more related to body postures and body- 196 

parts movements. For example, authors in [33] present a prototype 197 

using strain sensors to distinguish upper body postures. Authors 198 

in [34] use conductive textile based electrodes that can be easily 199 

integrated in garments to detect specific body activities (e.g., shak- 200 

ing head, looking down, speaking, looking left/right, etc.). Textiles 201 

have the same advantage of our approach: they have freedom in 202 

positioning of sensors. In addition, they provide space availability 203 

and are comfortable to wear. The main drawback of those studies 204 

is that they are still at a prototype and proof of concept stage. Us- 205 

ing sensors embedded in smartphones can be a better approach 206 

to activity recognition because smartphones are getting more and 207 

more common, they are likely to be with a user during his daily 208 

activities, have high processing power and adequate storage space, 209 
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dard acceleration due to gravity constant (9.80 6 65 m/s 2 ), M is the 228 

molar mass of Earth’s air (0.0289644 kg/mol) 1 . 229 

The function in Eq. (1) is non-linear, but continuous and mono- 230 

tonically decreasing with pressure P . Several factors can influence 231 

barometric pressure: atmospheric events, temperature and hu- 232 

midity changes, air conditioning/ventilation systems, window/door 233 

opening. 234 

Atmospheric events comprehend meteorological conditions: 235 

when the weather changes from cloud to sunny or to rainy, pres- 236 

sure changes significantly. A cold wind can influence a reading and 237 

cause an error of around 10 m in the derivation of the altitude. 238 

However this class of events has a larger time scale than the slid- 239 

ing window of the activities we want to classify. The typical time 240 

duration of human activities we would like to classify is from 5 to 241 

30 min , so sudden or slow changes in pressure due to modified 242 

weather conditions can be neglected. 243 

Temperature changes can occur for example when a person ex- 244 

its from her/his warm office and enters a cold corridor and then 245 

goes outside a building; it can be shown that variations of 15 °C 246 

result in an error of 14 cm in altitude estimation, while maximum 247 

error for a temperature span of 20 °C is averagely of 20 cm in alti- 248 

tude estimation [35] . To compensate the error in pressure reading 249 

caused by sudden changes in temperature, current chips contain 250 

a temperature sensor bundled into the barometric sensor chipset. 251 

The driver reads both pressure as well as temperature, and com- 252 

pensates for the error in software. To verify the effects of temper- 253 

ature changes on pressure readings, we used a barometric pres- 254 

sure sensor enabled smartphone to measure pressure in a closed 255 

room of a building where an air conditioning system was operat- 256 

ing. We subsequently exited the room and measured pressure out- 257 

side. The results of the test showed that there were not any signif- 258 

icant changes in the values of barometric pressure. We repeated 259 

the same experiment in a closed room where a heating system 260 

maintained the temperature at 26 °C (while the temperature out- 261 

side was 20 °C). Also in this case, we didn’t notice any significant 262 

pressure change. 263 

When humidity changes, air density changes and therefore also 264 

pressure. However, when humidity increases from 50 to 90% the 265 

error introduced on altitude calculation is about 1 cm and there- 266 

fore negligible [35] . In [36] , authors found that when an air han- 267 

dler was operating, barometric pressure in a living room raised by 268 
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ave relatively autonomy (before requiring a recharge), and are

erceived as an unobtrusive device for most of the subjects. 

To the best of our knowledge, there is no prior work that relies

nly on barometric pressure data coming from sensors embedded

n smartphones for identifying individual’s VDAs. 

. Rationale 

Barometric pressure (or atmospheric pressure) is defined as the

orce per unit area exerted against a surface by the weight of the

ir above that surface. The standard unit for pressure is the pas-

al (Pa), which is equal to one Newton per square meter (N/m 

2 ).

n meteorology, the hectopascal (hPa) unit is mainly used; 1 hPa

orresponds to 100 Pa. 

Pressure depends on altitude h and temperature. For altitudes
elow 11 Km, their relationship can be defined as 

 = h 0 + (T 0 /k ) ∗ ((P/P 0 ) 
−(k ∗R/g∗M) − 1) (1) 

here P 0 and T 0 are the pressure and temperature at sea level 

1013.25 hPa and 288.15 ° K), R is the universal gas constant 

8.31432 Nm/ Kmol), k is the lapse rate/drop in temperature with 

ltitude (0.0065 ° K/m) valid from sea level to 11 km, g is the stan- 
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ccurred in a master bedroom when its door was closed. Since

hese changes are below the relative pressure accuracy (0.1 hPa)

f the sensors mounted in common smartphones, their impact on

ur measurements (and, indirectly, on our technique) is negligible.

If an application performs height estimation with barometric

ensors, there is a need to constantly calibrate the values of base

ressure and temperature, especially in outdoor conditions. This

nformation is indeed provided by most airports and weather sta-

ions. Indoor height estimation can be done quite precisely but

nly with a constant update of reference values as it is shown in

37] . As illustrated in the following sections, we will use differen-

ial measurements to recognise activities, thus we can ignore ref-

rence values. 

In real-life situations, it is highly unlikely that external factors

ould mimic human activities and create artifacts. For example, to

imic stair climbing the temperature should decrease regularly at

round 20 °C per second, to mimic riding an elevator (speed ca. 1.5

/s) the opening of a door/window should bring an increase in

ressure of 15–25 Pa per second. Furthermore, artifacts of small

ntity can be smoothed by using a proper smoothing algorithm as
1 International Organization for Standardization (ISO), Standard Atmosphere,ISO 

533:1975, 1975. 
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the one we used for our VDAs detection algorithm that is described

in the following sections. In conclusion, Eq. (1) can be directly used

for the present study without any modification. 

4. System design 

In this section, we describe the hardware (smartphones) used

for our tests, the preliminary experiments we made to investigate

the characteristics of barometric pressure in different scenarios, the

process for collecting training data, and the method for deriving

height information from pressure. 

4.1. Hardware 

To test the dynamics of pressure variations and check if they

are the same for different sensors models, we conducted prelim-

inary experiments using different mobile phones. For our tests,

we used two Android v4 mobile phones models: Samsung Galaxy

Nexus and Samsung Galaxy SIII. The first phone is equipped with a

Bosch Sensortec BMP180 digital barometric pressure sensor, while

the Samsung Galaxy SIII mounts a STMicroelectronics LPS331AP

chip. Both sensors are based on piezo-resistive MEMS technology

and have low power consumption (average current consumption

in advanced mode is respectively, 30 and 32 μA). The relative ac-

curacy for pressure is ± 0.12 hPa for the BMP180 and ± 0.1 hPa for

the LPS331AP chip. 

4.2. Characteristics of barometric pressure 

We first analysed the trend of raw pressure readings. 

Android does not allow to set the sampling time for sensors

data. We determined empirically that using the “SENSOR_DELAY_
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ASTEST ” rate for sensors events (0 μs data delay) yields the best

esults. After each sensor read, we waited one second prior to the

ext read operation, thus emulating a sampling time of roughly

 Hz. 

To mitigate the residual noise, we applied the double exponen-

ial smoothing method [38] to our time series because of its trend-

racking properties. If x t is the raw data sequence of observations

tarting at time t = 0 , s t is used to represent the smoothed value

t time t , and b t is the best estimate of the trend at time t . Double

xponential Smoothing is given by: 

s t = αx t + (1 − α)(s t−1 + b t−1 ) 

 t = γ (s t − s t−1 ) + (1 − γ ) b t−1 (2)

here α is the data smoothing factor , 0 ≤ α ≤ 1, and γ is the trend

moothing factor , 0 ≤ γ ≤ 1. The initial values can be taken as s 1 =
 0 and b 1 = x 1 − x 0 . The smoothing factor, for both the data and

he corresponding trend, represents the importance applied to the

ost recent sample. We used 0.5 for both factors. 

On other smartphone models (e.g., Nexus 5), the barometer

hips performs smoothing internally, thus a smoothing technique

n the code is not required [31] . 

To study the characteristics of pressure for the VDAs of differ-

nt subjects, we recorded pressure in six different scenarios: while

 subject was standing, while she was walking on the same floor

f a building, while she was climbing and descending the stairs be-

ween different floors of a building, while she was riding an eleva-

or from the bottom to the second floor of a building and, finally,

hile she was riding a cable-car. Results show that the pressure

emains stable when a user is standing ( Fig. 1 ) and is relatively

table when a user walks on the same floor ( Fig. 2 ). When a sub-

ect is climbing/descending stairs the pressure decreases/increases.
ata to recognize vertical displacement activities on smartphones, 
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ig. 3 shows the evolution of pressure while a subject was climb-

ng stairs. When a subject is riding the elevator up, the pressure

ecreases at a higher rate than when climbing stairs, as illustrated

n Fig. 4 . Finally, when she rides a cable-car, barometric pressure

aries significantly ( Fig. 5 ). It can also be observed that the ver-

ical speed of a user has the same dynamics – and can be easily

nferred from the dynamics – of pressure variation over time. For

xample, the rate of pressure variation in elevators is higher, due

o their higher rate of velocity. 

The most important conclusion we derived from our set of ex-

eriments was that each VDA has distinct dynamics with regard

o pressure variations. Furthermore, the standing and walking sce-

arios exhibit the same behaviour in terms of pressure variation.

inally, although absolute values for pressure were different, dy-

amics were similar for both phones, thus the pressure variation
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ver time is independent of the type of sensor used for measuring

t. 

.3. Training data collection 

For our set of experiments in VDA recognition using barometric

ressure data, we studied four types of activities: 

• Standing/walking. 
• Climbing stairs. 
• Riding an elevator. 
ata to recognize vertical displacement activities on smartphones, 
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pressure (the direction is “up ” if the pressure decreases, “down ” if 371 

it decreases) 372 

To collect training data, we deployed an Android application 373 

that samples barometric pressure at a frequency of roughly 1 Hz 374 

(see Section 4.2 ). Subjects can label their activity by selecting the 375 

corresponding value from a spinner. Pressure values are recorded 376 

once a subject presses a Start button. Registration of pressure val- 377 

ues is stopped after pressing a Stop button. Pressure data collected 378 

between the start and stop times are labelled with the name of the 379 

associated activities and stored in a SQLite database on the smart- 380 

phone. 381 

4.4. Feature computation 382 

We performed features extraction on sliding windows with 50% 383 

overlap, which is fairly common in the literature [23,39,40] . We 384 

used a window of 8 samples (roughly 8 s ). The features that we 385 

extracted from the sliding windows of barometric pressure were: 386 

• Standard deviation. 387 

• Slope: defined as the ratio between the change in barometric 388 

pressure over the window. This physical quantity gives an indi- 389 

cation of how pressure varies over vertical displacement time. 390 

5. Experiments and data analysis 391 

We formulated activity detection as a classification problem, 392 

where classes are represented by labelled VDAs and test data in- 393 

stances are represented by the set of extracted features (standard 394 

deviation and slope) over barometric pressure measurements, col- 395 

lected using our Android application. We divided data sets into two 396 

different settings: 397 

• Experiments with trained subjects (researchers). 398 

• Experiments with untrained and unsupervised subjects. 399 
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Table 1 

Average values for features (standard deviation and slope) extracted 

from barometric pressure. 

Activity Std. Dev. Positive slope Negative slope 

(hPa) (hPa/s) (hPa/s) 

Standing/Walking 0.0 0 064 0.00456 −0.00438 

Climbing stairs 0.006359 0.02671 −0.02961 

Riding elevator 0.0828 0.1078 −0.0101 

Riding cable-car 0.60346 0.2965 −0.29342 

Table 2 

Recognition accuracy for the activities studied with trained and 

untrained subjects for the J48 classifier. 

Activity Trained users (%) Untrained users (%) 

Standing/Walking 98.44 87.61 

Climbing stairs 91.62 77.44 

Riding elevator 95.14 88.25 

Riding cable-car 99.99 99.99 

Table 1 shows the average values for the features (standard 432 

deviation and slope) we extracted from the barometric pressure 433 

data, for the trained user scenario. We obtained similar results also 434 

for the untrained user scenario. As expected, the average value 435 

of the standard deviation for pressure increases as the amplitude 436 

of the vertical movement associated to the correspondent activ- 437 

ity increases. The values for slope (i.e., the variation of pressure 438 

over time) confirm that pressure is almost stable when a subject 439 

is standing or walking, while it varies significantly when a sub- 440 

ject is riding an elevator, and even more, when she/he is riding 441 

a cable-car. The dynamics for positive and negative variations are 442 

almost similar. Standard deviation and slope of pressure are cor- 443 

related, since they both reflect a large amount of variation in the 4 4 4 

measurements of barometric pressure. 445 
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We discriminated between the above two settings because the

performance of classifiers may be significantly worse when applied

on data collected by untrained persons, in real-world conditions. In

the latter scenario, there are fewer constraints (e.g., subjects are

not told exactly where and how to perform activities) with re-

spect to a lab environment, where data is collected by scientists

who perfectly know the behaviour of the phenomenon under ob-

servation. This observation has been remarked many times in re-

lated studies in literature. For example, [41] reported 95.8% activity

recognition rates for data gathered in laboratory, but recognition

rates dropped to 66.7% for data gathered outside the laboratory, in

unconstrained settings. 

Experiments were carried out by ten subjects: five from the

academic community and five externals. Subjects performed their

daily routines by recording and manually labelling actions corre-

sponding to the four activities to detect, using our Android appli-

cation. Training sets were acquired from the subjects themselves,

in their workspaces, indoors and outdoors. On average, we gath-

ered about 30 min of data per activity (around 1800 pressure read-

ings per activity), per subject, except for the cable-car scenario,

where traces were registered only by one trained and one un-

trained person, for about 15 min each. The phones we used for

the experiments were the Samsung Galaxy Nexus and the Sam-

sung Galaxy SIII. It is important to point out that experiments

targeting the climbing stairs and riding elevator scenarios were

performed in buildings with different layouts, without any prior

knowledge of the building layout or any information about floor

heights and about the number of steps between each floor (for the

staircase scenario). In detail, floor height was in the range of (2.70;

3.40) m , while step height varied between 13 and 16 cm. Further-

more, experiments were run in different places, located at different

elevations. 
Please cite this article as: S. Vanini et al., Using barometric pressure d

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
We split our analysis into two sections. In Section 5.1 , we

resent machine learning algorithms, which are computationally

heap. A recurrent neural network algorithm – comparatively more

omputationally intensive – is instead presented in Section 5.2 . 

.1. VDA detection with computationally cheap machine learning 

lgorithms 

We used the Weka Machine Learning Algorithm Toolkit [42]

nd evaluated the performance of two base-level classifiers: J48

ecision Trees and Naive Bayes. We found a quite significant dif-

erence between the trained and untrained scenario. 

The highest recognition accuracy is reached by the J48 decision

ree classifier. It was able to distinguish between the different ac-

ivities with 95.06% average accuracy in the trained scenario and

3.20% average accuracy in the untrained scenario. In the trained

cenario, 1.56% of the standing/walking instances were incorrectly

lassified as climbing stairs, while 5.13% instances of the climb-

ng stairs scenario were wrongly detected as standing/walking

nd 3.25% as riding elevator. Finally, 4.86% instances of the rid-

ng elevator scenario were incorrectly detected as climbing stairs.

able 4 summarizes the aforementioned results. We found a sim-

lar behaviour also for the untrained scenario, but for the stand-

ng/walking case, where traces collected by untrained individuals

ere also classified as riding elevator ( Table 5 ). Table 2 shows the

esults of activities recognition for the J48 classifier, while Table 3

hows the performance results for the Naive Bayes classifier. As

t can be noticed, classification accuracy for the riding cable-car

cenario is almost 100% in both cases: this is not surprising be-

ause this scenario has the lowest relative standard deviation of

he training data (0.2 for standard deviation and 0.11 for slope). 
ata to recognize vertical displacement activities on smartphones, 
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Table 3 

Recognition accuracy for the activities studied with trained and 

untrained subjects for the Naive Bayes classifier. 

Activity Trained users (%) Untrained users (%) 

Standing/Walking 94.91 90.38 

Climbing stairs 88.78 68.1 

Riding elevator 90.67 73.6 

Riding cable-car 99.99 99.99 

Table 4 

Distribution of incorrectly classified activities for trained subjects with 

the J48 classifier. 

Activity Standing/ Climbing Riding Riding 

Walking stairs elevator cable-car 

Standing/Walking − 1.56% 0% 0% 

Climbing stairs 5.13% − 3.25% 0% 

Riding elevator 0% 4.86 − 0% 

Riding cable-car 0% 0% 0% −

Table 5 

Distribution of incorrectly classified activities for untrained subjects 

with the J48 classifier. 

Activity Standing/ Climbing Riding Riding 

Walking stairs elevator cable-car 

Standing/Walking − 11.49% 0.89% 0% 

Climbing stairs 20.50% − 1.57% 0% 

Riding elevator 0% 11.75 − 0% 

Riding cable-car 0% 0% 0% −

The main reason the J48 classifier has better performance than 475 

the Naive Bayes classifier is that Naive Bayes makes use of all the 476 

features extracted, and analyses them individually as though they 477 

are equally important and independent of each other. This is not 478 

our case, because standard deviation and absolute value of the 479 

pressure slope are correlated (as explained in Section 5 ). 480 

5.2. VDA detection with a recurrent neural network 481 

To show the effectiveness of our barometric pressure-based 482 

approach, we tested a recurrent neural network to learn and 483 

classify our pressure time series composed of long time lags of 484 

unknown size between different activities. We used the PyBrain 

2 485 

machine learning library to implement a Long Short-Term Memory 486 

(LSTM) neural network. We chose LSTM because the activities to 487 

discriminate are repetitive (e.g., if a subject is climbing stairs at 488 

time t , it is highly likely that she will still be climbing stairs at 489 

time t + 1 ) and they can be modelled with a recurrent network. 490 

Furthermore, LSTM outperforms other recurrent networks in many 491 

areas (e.g., regular, context-free and context sensitive languages 492 

[  493 
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t495 

 496 

t  497 

c  498 

n  499 

s  500 
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Table 6 

Average test error rates with trained sub- 

jects for the LSTM neural network. 

Activity Test error rate(%) 

Standing/Walking 1.29 

Climbing stairs 0.22 

Riding elevator 1.47 

Riding cable-car 1.01 

tected). For LSTM, we used 5 hidden units, an output layer with a 506 

softmax function (because we are doing classification), and a re- 507 

current connection from the hidden to the hidden layer that looks 508 

one timestamp back in time. The input layer has connections to 509 

all units in the hidden layer. The output layer received connections 510 

only from the hidden layer. Since we used the Rprop trainer, all 511 

training samples have the same weight. 512 

5.2.1. Results 513 

We extrapolated 1500 samples from the set of measurements 514 

collected by the five trained users. The resulting training set was 515 

randomly split into 60% training and 40% test data sets. We initially 516 

ran some training iterations to set the values of the Rprop param- 517 

eters that provided the minimum test error. After those tests, we 518 

decided to use 0.4 for etaminus (factor by which step width is de- 519 

creased when overstepping) and 4 for deltamax (maximum step 520 

width). Then, we ran 50 training iterations, each of which stopped 521 

after the training module converged. 522 

The LSTM algorithm nearly always learns to solve the VDA 523 

recognition task. The best test set error was only 0.22%. On av- 524 

erage, the training module converged after 120 epochs. Table 6 525 

shows the details of the test error rates for each activity. 526 

5.3. Weather dependence 527 

To demonstrate that our VDA detection algorithm is inde- 528 

pendent of changing weather conditions, we collected 24 h of 529 

traces with different weather conditions. We started from scattered 530 

clouds to variable clouds with isolated rain showers. The phone 531 

was lying still in the same position and we checked if changes in 532 

the barometric pressure under such variable weather conditions 533 

could trigger false positives and be detected as either climbing 534 

stairs, or riding an elevator or riding a cable-car. 535 

The accuracy of the standing/walking mode was found to be 536 

99.45%, showing that weather changes do not impact on the capa- 537 

bility of our algorithm to detect VDAs. This is because weather drift 538 

occurs over a larger time scale than the temporal duration of our 539 

VDAs. Furthermore, rather than having frequent ups and downs as- 540 

sociated with rapid pressure changes, weather drift is usually in 541 

one direction, and gradual. 542 

 543 
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g 548 
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 553 
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a  555 
43] ; handwriting recognition [44] ; discriminative keyword spot-

ing [45] ). Another key factor is that LSTM can handle very large

ime lags, say of the order of several hundreds or thousands [46] . 

As any recurrent neural network, LSTM uses feedback connec-

ions to store representations of recent inputs events. In addition, it

ontains blocks that automatically determine when an input is sig-

ificant enough to be stored. For training, we used the Rprop [47]

upervised learning technique, which is an adaptive gradient based

echnique (computation of the gradient of an error measurement

n weight space) known for its high convergence speed, accuracy

nd robustness. 

With regard to the network architecture, we used 2 input units

standard deviation and slope) and 1 output unit (activity to be de-

2 http://www.pybrain.org 
Please cite this article as: S. Vanini et al., Using barometric pressure d
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Fig. 6 shows the pressure variation during a day due to changes

f atmospheric events for a phone laying in the same position,

long with the indication of the VDA detected. As it can be seen

rom the picture, the pressure trend follows weather changes. Fur-

hermore, false positives (lighter lines in the picture) were trig-

ered only relatively to the climbing stairs scenario. 

.4. Power consumption 

We measured the power needed to retrieve barometric pres-

ure values. Measurements were made at two different levels of

ranularity. 

First, we implemented an App for monitoring significant

hanges in the battery level − specifically when a device enters

 low battery state. The App can also be configured for reading
ata to recognize vertical displacement activities on smartphones, 
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line with the current consumption (30 μA) of the pressure sensor 586 

specified in the technical data sheet. In fact, since voltage sup- 587 

ply required by the smartphone is 3.7 V, the power needed to 588 

read barometric pressure is about 0.12 mW. The remaining amount 589 

(0.01 mW) is due to the OS. It is important to emphasize that 590 
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Fig. 7. Power consumption without and with (1 Hz) pressure readings. 

barometric pressure data at a sample rate of approximately 1 Hz.

It keeps the screen on at full brightness. 

We started from a full-charged device, stopped all applications

and services, run our application and measured the time until a

low battery state was detected with pressure readings and without

pressure readings. It took respectively 5.21 and 5.7 h to reach the

low battery state, thus showing an overall impact well below 10%. 

To get a more accurate measure of the power (in mW) needed

to read values from pressure sensors, we employed a portable open

sourced power monitor (POEM) [48] – similar to BattOr [49] – us-

ing the open source hardware platform Arduino 3 . To synchronize

the external board with the smartphone, we used LED2LED com-

munication [50] between a LED mounted on the Arduino board

and the camera on the smartphone. POEM offers mW accuracy and

a sampling rate down to ms for measuring power consumption. 

Fig. 7 shows the boxplots of power consumption for two differ-

ent scenarios: idle mode and pressure readings at a sample rate of

approximately 1Hz. As it can be seen from the picture, the increase

of power consumption due to the sampling of barometric pressure

is negligible: the value of the second quartile for the “pressure

reading” scenario is indeed slightly higher than the correspond-

ing value in the “no pressure reading” scenario. The variability of

power consumption is higher in the “pressure reading” scenario,

where it can reach at most about 1.5 mW. This means that the

power required to read pressure data is not always constant (this

could be due to the OS). The average value of energy consumed by

the smartphone when the App was reading pressure values from

the barometric sensor was 1.23 mW, while it was 1.1 mW when

the App was in idle state. Therefore, energy required for reading

pressure values was about 0.13 mW on average. This value is in

3 http://www.arduino.cc 
Please cite this article as: S. Vanini et al., Using barometric pressure d
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ower consumption did not change when we moved (vertically)

he device (which is the gesture that allows to discriminate about

he different activities). 

. Comparison with other sensors and methodologies 

As described in Section 2 , the current approaches to VDA recog-

ition using sensors are mainly based on accelerometers and GPS

ensors. In the following sections, we compare the performance of

ur VDA detection based on pressure sensors with such approaches

n terms of accuracy, energy efficiency, indoor effectiveness and

hone position independence. 

.1. Accelerometer-based approaches 

We start our comparison analysis with accelerometers. In terms

f accuracy, Bao et al. [23] obtain the best performance results

ith decision tree classifiers, getting an accuracy rate of 95.67%

or standing still, but recognition rates were significantly lower

hen riding elevators and climbing stairs (respectively 43.58 and

5.61%). Lester et al. [26] achieved their best result for climbing

tairs, where the classification was correct 95% of the time. The

ccuracy for descending stairs and riding elevator up/down was re-

pectively 89%, 87.3% and 84.6%. Authors were also able to recog-

ize walking and standing activities, but in the latter accuracy was

ery low (55%). Results obtained by Kwapisz et al. in [21] show

hat the accuracy of recognizing the standing activity was up to

3.3%, while climbing stairs was inferred with about 60% accuracy

t best. Krishnan et al. [22] show that Boosted Decision Stumps

Adaboost) classifiers have the best performance, achieving about

0% recognition accuracy for walking, standing, and climbing stairs

cenarios. Khan et al. in [14] claim a 99% accuracy rate for the de-

ection of sitting, 95% accuracy for walking and climbing stairs, and

2% accuracy for descending stairs. 

Fig. 9 offers an overview of the accuracy rates in recogniz-

ng VDAs for the methods described above and our method (in

he best case of trained users). Accuracy rates obtained with our

arometric-based approach are in line with – and in some case

etter than – the numbers reported above. 

With regard to energy efficiency, to get comparable data,

e implemented an App that measures the acceleration force

in m/s 2 ) applied to a smartphone on all three physical axes ( x ,

 , and z ) and monitored the power consumption with our POEM

ool. The App listens to accelerometer sensor events at a sampling

ate of approximately 1Hz (as in the case of the App for reading
ata to recognize vertical displacement activities on smartphones, 
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Fig. 8. Power consumption for reading acceleration data. 

pressure data). We reproduced three of the four VDAs types stud- 632 

ied in the paper. We omitted the cable-car scenario because ac- 633 

celerations related to this use-case are not easy to reproduce as 634 

they are very high. For example, during our set of experiments in 635 

VDA recognition, we measured an average acceleration of 2.6 m/s 2 . 636 

Fig. 8 shows the boxplots of power needed for reading acceleration 637 

data in a temporal window of 10 s, in each of the three scenarios 638 

considered. We measured the power consumption at a sample rate 639 

of 100 ms. From the plots, it can be seen that the variability of the 640 

power consumption is almost the same in all three scenarios, but it 641 

is in any case higher than in the “no pressure reading” scenario de- 642 

scribed in Section 5.4 . The power required to measure acceleration 643 

was overall the same in all three cases, so it does not depend on 644 
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Table 7 

Average power consumption in GPS receiver chips on smartphones. 

Manufacturer CSR u-blox MediaTek Sony 

Model SirfSTAR IV Max-7 MT3333 CXD5600GF 

GSD4t u-blox 7 

Continuous 40 mW 50 mW 19 mW 10 mW 

tracking (1 Hz) 

Cyclic 8 mW 13.5 mW N.A. N.A. 

tracking (1 Hz) 
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he intensity of the movement. On average, the power consumed

y the App when reading acceleration data was about 1.37 mW:

his means that energy required to read data from the acceleration

ensor is about 0.27 mW. 

The accuracy of activity recognition based on accelerometer

ata depends on the position of the sensors (or phone) and their

rientation [14,26,51–53] . Conversely, during our experiments in

DA detection, we intentionally failed to control the position of

he phone, as it happens in a daily usage pattern. We found that

nder this realistic conditions, the accuracy of VDA detection was

naffected by changes in the phone’s on-body location (in pock-

ts, hands, or even bags) and orientation of the phone. This find-

ng is one of the main strengths of barometer pressure-based

ctivity recognition and is also one of the key differences from

ccelerometer-based activity detection. 
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.2. GPS-based approaches 

We have also compared barometers and GPS sensors in terms of

ctivity recognition accuracy, height estimation, power consump-

ion and sensor-position independence. 

As already described in Section 2 , methods based on GPS data

or activity detection have low-level accuracy and flexibility. 

Compared to GPS positioning, the main advantage of a

ressure-based approach to vertical displacement measurement is

hat, as widely reported in literature, the accuracy of the barome-

er height estimation exceeds that of GPS. Furthermore, barometer

s not subject to shadowing as GPS (which also impacts on the ac-

uracy and availability of the altitude measurement), thus it can be

sed in an indoor environment. 

In terms of power consumption, it is well-know that smart-

hone battery usage increases a lot when GPS interface is on [54] .

able 7 lists the average power consumption claimed by the most

opular manufacturers (CSR, u-blox, MediaTek, Sony corp) of GPS

eceiver chips for smartphones. The table distinguishes among con-

inuous tracking and cyclic tracking modes. In the first mode, the

eceiver continuously tracks all the available satellites to achieve

he best possible position accuracy. In cyclic tracking, the receiver

mploys intermittent tracking to conserve power: a significant

mount of power is saved by periodically turning off the Radio

requency (RF) front-end and most of the hardware in this mode.

rom the table, it can be seen that even the lowest values for

ower consumption are higher than the average power (0.13 mW)

onsumed by the pressure sensor. 

Finally, since the GPS accuracy is very low, the position of the

hone does not have a significant impact on activity detection. 

Table 8 recaps the features compared in our analysis for the

hree sensors, using star ratings (out of a maximum of 3 stars).

t can be noticed that GPS is the only sensor that is not working

ndoor, thus it cannot be used neither for activity detection nor for

Standing/Walking

Climbing stairs

Riding elevator

nferring VDAs with accelerometers. 
ata to recognize vertical displacement activities on smartphones, 
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(a) Detected activity and elevation profile (b

Fig. 10. GUI of the App impleme
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Table 8 

Comparison of sensors for VDA detection on a 3 star bases. 

Sensor Detection Energy Indoor Position 

accuracy efficiency effectiveness independence 

Accelerometer ∗∗∗ ∗∗ ∗∗∗ ∗
GPS ∗ ∗ N.A. ∗∗
Barometer ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

altitude estimation in that scenario. Barometer is the only sensor

that has a 3 star rating for all the metrics analy sed. 

To summarize, the performance of our proposed pressure-based

method is comparable and in most cases better than the perfor-

mance of traditional systems based on acceleration data, but it has

the significant advantage of being energy-efficient. 

7. Use case scenario: an application for detecting user activities

and measuring altitude differences 

As a use case scenario, we implemented an App for Android to

infer the VDAs carried out by a user and to show statistics about

them. 

We used the Weka library for Android 

4 and utilized a train-

ing set of instances that we collected during our experiments. Al-

though LSTM has better accuracy, its power consumption is sig-

nificant, as reported in [55] . To comply with energetic constraints,

we chose the J48 decision tree classifier. In fact, J48 provides very

good accuracy results and has a linear complexity for both training

and inferencing activities, resulting in a small impact on energy
consumption. 

4 https://github.com/rjmarsan/Weka- for- Android 
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w  741 
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) Occurrences (%) of detected activities

nting activity recognition. 

The App also estimates and shows the elevation profile dur-

ng a user’s journey. This is done by converting the pressure mea-

ured by the barometer to elevation information, using a simpli-

ed version of Eq. (1) . As it can be seen from that equation, ab-

olute height information cannot be calculated without the proper

nowledge of local sea level pressure, which varies depending on

eather conditions. Reference barometer information can be ob-

ained via an auxiliary TCP/IP server connection, which is not al-

ays available. Furthermore, a high level of accuracy for altitude is

ot required. For these reasons, we can use a simplified version of

q. (1) . Assuming constant weather conditions and that the typical

ir pressure at the sea level is 1013 hPa, it can be easily derived

hat near the Earth’s surface a difference of 1hPa corresponds ap-

roximately to 8.4 m in elevation. 

Finally, the information about elevation changes is also used to

erive the vertical speed of a user. 

This use case scenario shows the potential of pressure sensors

nd the large number of application fields where pressure sensors

an be employed. 

Fig. 10 shows the user interface of the App, which is com-

osed of two tabs. The home tab contains two buttons for starting

nd stopping activity detection. Elevation changes are shown in a

raph, while current activity and direction are shown as an icon.

ertical speed (in m / s ) is displayed at the cent re of the screen. The

econd tab contains a graph that shows statistics about the activi-

ies performed during a start-stop session and their occurrences. 

. Conclusion 

The barometer is one of the least frequently used sensors on

martphones, but is also one of the most promising. In this work,

e demonstrated the advantages of the use of barometric pressure
ata to recognize vertical displacement activities on smartphones, 

016.02.011 

https://github.com/rjmarsan/Weka-for-Android
http://dx.doi.org/10.1016/j.comcom.2016.02.011


S. Vanini et al. / Computer Communications xxx (2016) xxx–xxx 11 

ARTICLE IN PRESS 

JID: COMCOM [m5G; March 3, 2016;9:8 ] 

data from sensors embedded in mobile phones to recognize verti- 742 

cal displacement activities. We evaluated the performance of three 743 

different models to infer user activities and found that the LSTM 744 

recurrent neural network has a very high accuracy rate. How- 745 

ever, J48 decision tree algorithm is a good choice for resource- 746 

constrained devices owing to its fairly high accuracy, its low com- 747 

putational overhead, and (consequently) its low energy consump- 748 

tion. We implemented an Android application that integrates the 749 

J48 decision tree algorithm and infers the activity performed by 750 

a user. The application uses barometric pressure data to provide 751 

information on the vertical distance travelled by a user and also 752 

shows it instantaneously on a graph. We also showed that baro- 753 

metric pressure sensors have many advantages over sensors tradi- 754 

tionally used for activity recognition (namely, accelerometers and 755 

GPS) in terms of accuracy, energy efficiency, indoor effectiveness 756 

and independence from the phone position. The use of baromet- 757 

ric data for activity recognition is very advantageous, as many ap- 758 
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[15] Y. Man, E.C.-H. Ngai, Energy-efficient automatic location-triggered applications 817 
on smartphones, Comput. Commun. 50 (2014) 29–40. 818 

[16] B. Priyantha, D. Lymberopoulos, J. Liu, Littlerock: enabling energy-efficient 819 
continuous sensing on mobile phones, Pervasive Comput. IEEE 10 (2) (2011) 820 
12–15. 821 

[17] R.K. Ganti, S. Srinivasan, A. Gacic, Multisensor fusion in smartphones for 822 
lifestyle monitoring, in: Proceedings of 2010 International Conference on Body 823 
Sensor Networks (BSN), IEEE, 2010, pp. 36–43. 824 

[18] A .M. Khan, A . Tufail, A .M. Khattak, T.H. Laine, Activity recognition on smart- 825 
phones via sensor-fusion and kda-based svms, Int. J. Distrib. Sens. Netw. 2014 826 
(2014). 827 

[19] G. Liu, M. Iwai, Y. Tobe, D. Matekenya, K.M.A. Hossain, M. Ito, K. Sezaki, Beyond 828 
horizontal location context: measuring elevation using smartphone’s barome- 829 
ter, in: Proceedings of the 2014 ACM International Joint Conference on Perva- 830 
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lications that cannot be correctly recognized with accelerometer

an be easily inferred with pressure data. Furthermore, the baro-

etric sensor can enhance the quality of accelerometer sampling

henever a vertical displacement is present but is not the main

ovement. Finally, the barometer can also be used as a trigger to

ccelerometer sensing when the barometer itself cannot achieve a

ufficient quality, resulting in a more power-efficient approach. 

Future work includes the use of multiple sensors for activity

etection and the implementation of a mechanism for switching

etween sensors – and their underlying methodology – depending

n geo-position, predominant activity, and objective functions like

.g., battery life and accuracy optimization. 
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