
Computer Communications 87 (2016) 1–18 

Contents lists available at ScienceDirect 

Computer Communications 

journal homepage: www.elsevier.com/locate/comcom 

Opportunistic mobile social networks: From mobility and Facebook 

friendships to structural analysis of user social behavior 

A. Socievole 

∗, F. De Rango, A. Caputo 

Department of Informatics, Modeling, Electronics and Systems Engineering, University of Calabria, 87036, Rende (CS), Italy 

a r t i c l e i n f o 

Article history: 

Received 4 June 2015 

Revised 28 April 2016 

Accepted 29 April 2016 

Available online 30 April 2016 

Keywords: 

Opportunistic networks 

Mobility traces 

Online social networks 

Multi-layer networks 

a b s t r a c t 

In the last few years, several real-world mobility traces for opportunistic networks have been collected 

in order to explore node mobility and evaluate the performance of opportunistic networking protocols. 

These datasets, often including online social data of the mobile users involved, are increasingly driving 

the research towards the analysis of user social behavior. Within these challenged infrastructureless net- 

works where connectivity is highly intermittent and contact opportunities are exploited to allow commu- 

nication, node mobility is basically driven by human sociality. As such, understanding node sociality is of 

paramount importance, especially for finding suitable relays in message forwarding. This paper presents a 

detailed analysis of a set of six different mobility traces for opportunistic network environments including 

nodes’ Facebook friendships. Using a multi-layer social network approach and defining several similarity 

classes between layers, we analyze egocentric and sociocentric node behaviors on the two-layer social 

graph constructed on offline mobility and online social data. Results show that online and offline central- 

ities are not significantly correlated on most datasets. Also online and offline community structures are 

different. On the contrary, most of the offline strong social ties correspond to online social ties and in 

some cases, online and offline brokerage roles show high similarity. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The vision of a near future in which a multitude of human-

riven mobile devices can easily create local wireless networks

utside the public Internet is increasingly attracting several groups

f researchers in the areas of Delay Tolerant Networks (DTNs)

13,24,44] , opportunistic networks [39] and the more recent Do-

t-yourself (DIY) networks [2] . Considering the wide diffusion of

hese mobile devices (e.g., smartphones, tablets, etc.) and the im-

act their use has in the social life of every individual, the study

f infastructureless networks allowing short-range (e.g., Bluetooth

nd Wi-Fi) wireless communication between nodes is generating

 particularly hot research trend. When there is no suitable net-

ork architecture like the Internet one, for example, an alterna-

ive option for communication is necessary. DTNs were designed

o allow communication between devices distributed within a net-

orking scenario without fixed network infrastructure, forming

parse network topologies and having intermittent contacts. Us-

ng the store-carry-forward communication paradigm, the mobile
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TN node first stores the message, then carries it while moving,

nd then forwards it to an intermediate node or to the destina-

ion. A similar strategy is used in opportunistic networks where mo-

ile hand-held nodes forward messages during an encounter op-

ortunity. However, while in DTNs there are also cases where the

oints of disconnections are known and routing can be performed

n an Internet-like fashion, opportunistic networks routes are al-

ays computed dynamically. 

Opportunistic networks have been shown to be the suitable ar-

hitecture for several applications in scenarios where network cov-

rage is poor (e.g., dead spots, disaster-recovery situations, etc.)

r network access is expensive. Through an opportunistic network

nd cooperative sensing, for example, it is possible to build sens-

ng maps of air quality, noise, temperature, CO2 concentration, etc.,

atisfying a specific sensing quality with low delay and energy con-

umption [50] . Another interesting opportunistic networking appli-

ation refers to recommender systems. Such solution tracks users’

ctivities and mobility patterns, and utilizes the user’s contextual

nformation to provide recommendations on a variety of items

33] . Opportunistic networks are also used for mobile data offload-

ng in order to reduce the load on 3G networks [31] : with the

ncreasing number of smartphone users, in fact, most of the 3G

etworks have been shown to be often overloaded. Another well-

nown application proposed for such networks is MobiClique [41] :

http://dx.doi.org/10.1016/j.comcom.2016.04.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.04.025&domain=pdf
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a mobile social networking middleware exploiting ad hoc social

networks to disseminate content and leveraging existing social net-

works to bootstrap the system. More recently, opportunistic net-

works have been proposed as a promising technology also for big

data computing [48] and for connecting smart things in IoT ex-

ploiting the social side of things linked to human mobility [30] . 

It is a common belief that opportunistic networks are charac-

terized by a social-based nature that can be exploited to exchange

information. Recent works on opportunistic social routing have

shown that message delivery can be optimized selecting the best

relay nodes considering both their real-world (i.e., offline) wire-

less encounters and their online social interactions with the other

nodes [5,15,16,21,36,41,45,47] . Similarly to wireless encounters from

which extracting the offline social behavior of nodes, online social

networking services like Facebook, Twitter and LinkedIn, just to

provide some examples, are fostering the availability of additional

data useful for analyzing the overall social behavior of the oppor-

tunistic network nodes. From this perspective, we believe that the

analysis of sociality derived both from wireless encounters and on-

line data becomes a fundamental aspect within these networks. 

There are a lot of works studying encounters of people and so-

cial relations. However, while many of these works focus on ana-

lyzing the offline sociality extracted from encounters self-reported

or detected from wireless proximity, or online social relations such

as Facebook friendships or Twitter interactions, few of them ana-

lyze both aspects. Moreover, the few works analyzing both offline

and online sociality in order to understand how a user behaves

within the two contexts, often rely on self-reported meetings that

differently from detected Wi-Fi or Bluetooth contacts, may be er-

roneous because a user may not recall meetings correctly or de-

cide to provide wrong information. This work , differently from the

aforementioned works, explicitly focuses on analyzing the relation-

ship between offline sociality built on wireless encounters and online

sociality, where both socialities are built on the same set of users. 

In these last years, several real-world mobility traces for op-

portunistic network environments have been collected to explore

human-driven motion and sociality. These traces, including in

some cases nodes’ online social data/profiles, are usually acquired

through experiments tracking a set of participants carrying small

portable wireless devices in campuses, conferences, entertainment

environments, etc. Most of these data can be obtained through the

CRAWDAD 

1 repository. Although the work done so far analyzing

these traces evinced many important aspects on mobility data, the

relationship between the sociality built on mobility and the other

social dimensions has not been fully discovered yet. In our view,

the knowledge about the whole social behavior of mobile users

is essential for designing effective social-based algorithms for op-

portunistic networks. As such, the core of the analysis proposed in

this work is represented by the use of a multi-layer network approach

for comparing different kinds of social network layers extracted by an

heterogeneous set of six mobility traces covering several networking

environments: academic, conference and urban scenarios. 

Sociologists, anthropologists and psychologists have largely

studied human behavior using two different approaches. One ap-

proach, being egocentric , focuses on the individual, taking into ac-

count his personal network composed by the other individuals to

which is directly connected. The other approach, being sociocentric ,

focuses on large groups of individuals, quantifying internal rela-

tions and highlighting any interaction pattern that influences group

dynamics. The aim of this work is to study opportunistic nodes’ so-

cial behavior using both sociocentric and egocentric network measures

[46] . Specifically, we present a detailed analysis of six datasets for

mobile social opportunistic networks containing two layers of so-
1 http://www.crawdad.org/ . 

o  

c  

s  
iality: the social network graph built on offline wireless encoun-

ers and the online social network graph built on Facebook friend-

hips. Exploiting a multi-layer social network approach, we aim to

ontribute to enlarge the knowledge about the similarity between

nline and offline worlds in different opportunistic networking en-

ironments. This is a much more advanced analysis compared to

ther recent studies such as [43,46] . Firstly, we consider a repre-

entative collection of six different datasets thus extracting more

eaningful conclusions with respect to one single dataset. Sec-

ndly, we propose a novel analysis methodology based on egocen-

ric and sociocentric measures for examining the datasets consid-

red. Finally, we define several similarity layers that will be used

o uniform the results obtained through the different analysis ap-

roaches thus making easier an overall comparison between social

etwork layers. 

As a preliminary step, we focus on node centrality (i.e., the con-

ribution of network position to the importance of an individual in

he network), thus answering to the challenging question whether

nline and offline node centralities are correlated and hence, the

wo social behaviors are similar. Later, we focus on communities,

nalyzing the similarity between online and offline groups. Starting

rom this analysis, we exploit the communities detected for inves-

igating online and offline brokerage roles (i.e., nodes that act as

rokers between communities) and perform a correlation analysis

etween online and offline brokerage values. Finally, motivated by

ecent studies [15,17,35,43] demonstrating that mobile nodes en-

ounter other online socially connected nodes with high probabil-

ty, we compute offline tie strength in order to find matchings be-

ween strong ties and Facebook friendships. 

The paper has been organized as follows. Section 2 pro-

ides background information on multi-layer social network mod-

ls and analysis. Section 3 describes the datasets analyzed.

ection 4 briefly details the social network model adopted.

ection 5 and 6 describe the sociocentric and the egocentric mea-

ures used to perform our analysis. Finally, in Section 7 , we present

ur results, provide an overall comparison between the analysis

ethods used in Section 8 and draw the main conclusions in

ection 9 . 

. Related works 

The relationship between human encounters and online social

elations has been the focus of several researches in these last

ears. In [32] , for example, Hossman et al. analyze two datasets of

elf-reported data about social, mobility and communication ties of

nline social network users (Facebook, Twitter and Gowalla) show-

ng that social ties are tightly coupled with mobility and also with

ommunication. Dunbar et al., [23] explore the layered structure

f the nodes within two Facebook datasets and a Twitter dataset

o determine whether this structure is similar to the offline face-

o-face interactions previously studied on other datasets. The re-

ults of such analysis show that the absolute size of layers and the

ean contact frequency with alters within a layer in Facebook and

witter match very closely to the observed values from offline net-

orks. In addition, online communities have structural character-

stics very similar to offline face-to-face networks. Similarly, Arn-

boldi et al., [3] present a detailed analysis of a Facebook dataset

nding that the number of social relationships an individual can

ctively maintain is close to the Dunbar’s number (150) found in

ther examples of offline social networks. Moreover, they present

 number of linear models to predict virtual tie strength from a set

f Facebook variables. 

Although the above studies analyze the relationship between

nline and offline sociality, they do not explore the offline so-

iality built on Bluetooth or Wi-Fi encounters. As such, the re-

ults provided within these works may not reflect the typical social

http://www.crawdad.org/
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Table 1 

Characteristics of wireless contacts data. 

Experimental dataset UNICAL UPB LAPLAND SASSY Social Evolution SIGCOMM 

Environment Academic Academic Conference Academic/Urban Academic/Urban Conference 

Device type Phone Phone I-mote T-mote Phone Phone 

Radio range ∼10 m ∼10 m ∼10 m ∼10 m ∼10 m [10–20] m 

Granularity 180 s [5–30] min [120–600] s 6 .67 s 360 s [120 ± 10 .24] s 

Overall Duration 7 days 35 days 3 days 70 days 352 days 5 days 

Analyzed week from 28/01 to 

22/02 2014 

from 18/11 to 

24/11 2011 

from 09/08 to 

11/08 2009 

from 08/03 to 

14/03 2008 

from 02/03 to 

08/03 2010 

from 17/08 to 

21/08 2009 

Overall # of nodes 15 22 17 27 70 76 

# of analyzed nodes 15 15 17 24 55 67 
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ehavior of a mobile user within an opportunistic networking en-

ironment where many wireless encounters take place and those

ncounters will be used for exchange messages. Moreover, the

nalysis methodologies proposed within these works focus only on

ome social metrics (e.g., in [32] , degree and between ness as hubs

haracterization) not providing a wide view of user social behav-

or. Our work, on the contrary, analyzes a larger set of social met-

ics clarifying also the implications of the results for opportunistic

etworking. In the following sections, we thus review the works

hat explicitly rely on sociality built on wireless mobility and con-

idering that we exploit a multi-layer approach for analyzing our

ata, we first briefly describe the multi-layer social network mod-

ls present in the literature. 

.1. Multi-layer social networks models 

Social networks show a nontrivial topological structure where

ore than one kind of connection may exist between any pair

f nodes. Think, for example, to individuals having social links

ith friends in real-life, Facebook social links with virtual friends,

inkedIn links with co-workers, and so on. As a matter of fact,

or this type of networks there is not a unique word identifying

hem. Terms as multi-layer networks, multi-relational network, mul-

idimensional network and multiplex network are considered syn-

nyms [10] . To represent the variety of link types that may exist

etween nodes belonging to these networks, different architectural

efinitions have been provided. Bródka et al., [11] define a multi-

ayer social network as a set of single-layered social graphs where

ach graph has the same set of nodes and only the set of edges

etween them may vary. A similar model is proposed by Magnani

nd Rossi [34] , where a pillar multi-network in which every user

as exactly one account on each layer is proposed. In the same

ork, authors define also a ML-model mapping a group of nodes

elonging to one social network layer onto a single node belong-

ng to another social network layer. Berlingerio et al., [4] perform a

attening of the different network layers resulting in a single net-

ork layer where links belonging to different social dimensions are

epresented by separated labels. 

.2. Analysis of multi-layer social networks with wireless encounter 

ata 

Some recent works on multi-layer networks have focused on

ulti-layer structures where one of the several social dimen-

ions/layers is extracted by node mobility. Dong et al., [28] , for

xample, explore a collection of data describing the relationships

etween students of a dormitory tracked using their smartphones’

roximity and location sensors for a period of nine months. Their

ork highlights the existence of a relationship between the evolu-

ion of friendships and individual behavior in terms of space and

ime. In [6] , Bigwood et al., analyze in terms of structural equiv-

lence and role equivalence the Facebook social network and the

ocial network detected through physical encounters of a group
f individuals carrying T-mote ZigBee sensors at the University of

t. Andrews, showing that the two social graphs are different. Us-

ng the same dataset, Socievole and Marano [46] analyze the dif-

erences between the two networks using egocentric and socio-

entric structural measures showing that the two networks differ

xcept for betweenness centrality. In another work [15] , Ciobanu

t al., describe an experiment conducted at University Politehnica

f Bucharest in 2011, where the Bluetooth wireless contact data

nd Facebook friendships of a group of students were collected.

he gathered data were used to highlight key social aspects that

an be exploited in opportunistic network routing and in particu-

ar, that nodes with more online social links belong to more com-

unities (detected through mobility) and both the social and the

ogical grouping of nodes are in direct correlation with their inter-

ctions. In [27] , Gaito et al., present the results of an experiment

erformed at University of Milano tracing the encounters and the

acebook friendships of a group of students. They find that peo-

le popularity is most likely to change in the two networks. More

ecently, in a work [43] analyzing the multi-layer social network

onstructed on Bluetooth contacts, Facebook friendships and inter-

sts of a group of students at University of Calabria, we show that

luetooth contacts network layer and Facebook friendships layer

re similar in terms of communities, closeness between the social

raphs, and matching between strong offline ties and the other so-

ial ties. 

The works described above, even if demonstrate the effort s that

ave been carried out to explore multi-layer sociality where one

ayer is built on wireless proximity, have been only focused on

ome datasets, some of which are not public, exploiting different

nalysis criteria and providing different conclusions. To the best of

ur knowledge, there has never been a clear description of user

nline and offline behavior in opportunistic networks followed by

 comprehensive clarification on human offline mobility and on-

ine sociality and the implications these social dimensions have on

pportunistic networking algorithms. To this end, we consider a

ider set of datasets, propose a novel methodology for analyzing

uch data and provide more meaningful conclusions with respect

o the implications these results have on opportunistic networking.

. Datasets description 

To analyze online and offline sociocentric and egocentric behav-

ors of mobile opportunistic nodes, we consider a collection of six

eal-world datasets including mobility data and online social data.

ost of these datasets can be accessed on the CRAWDAD archive

nd will be shortly described in this section. 

Table 1 summarizes the characteristics of the selected datasets

n terms of wireless contacts data. For each experimental dataset,

he group of researchers who carried out the experiments in-

tructed the recruited participants to carry the wireless nodes

sensors or phones) in order to detect and log the nodes in prox-

mity range for all the duration of the experiment. Since the var-

ous datasets have very different overall durations, we choose to
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uniform them considering a maximum duration of 7 days or the

whole trace if its overall duration is shorter. In particular, for the

longer datasets, we focus on the week of wireless contacts having

the highest contact durations (see the value represented by the

row Analyzed week in the aforementioned table). Hence, we ana-

lyze parts of the wireless contacts data containing longer interac-

tions between mobile nodes. As a consequence, the total number

of nodes, indicated in the row Overall # of nodes , has been reduced

(see the row # of Analyzed nodes ) due to the absence of part of

them during the considered week. 

Choosing the links with the highest contact durations, we as-

sume that they represent a suitable social situation where a mes-

sage exchange can take place. Measuring, for example, centrality

on a graph with links representing a high contact rate could be

misleading. A node with high degree centrality would be consid-

ered more central and hence, a suitable relay. However, this node

may have had many short contacts that do not reflect the social-

ity needed for the exchange of a message. As an example, think

to an individual moving from work to home by bus. His smart-

phone may encounter many other devices in range for few sec-

onds passing from a bus stop to another. These short interactions,

however, do not make this node more socially suitable than oth-

ers. Firstly, choosing this node as next hop, it may not have the

time needed to setup a connection for exchanging messages if it

detects a node with its Bluetooth and after few seconds this con-

nection goes down. Secondly, even if having the time to setup a

short connection, it may have to fragment the message thus lead-

ing to an overload of the network and node buffers with many

message copies. 

3.1. UNICAL 

UNICAL [12] dataset contains Bluetooth proximity data collected

by an ad-hoc Android application called SocialBlueConn and the so-

cial profiles in terms of Facebook friendships and interests of a

group of 15 postgraduate students at University of Calabria cam-

pus (Italy). The experiment lasted one week during a specialistic

course, from January 28, 2014 to February 5, 2014, including only

the week days. To gather the proximity information, each partici-

pant was instructed to keep the device powered on from 12 AM

to 8 PM. For collecting Facebook data, the participants were asked

to log in with their Facebook credentials to an ad-hoc website ac-

cessing the Facebook API. Once the students were logged in, their

friend lists and social profiles were collected and sent to a central

server. 

3.2. UPB 

UPB [14] dataset is composed by a Facebook friendships trace

and a Bluetooth contacts trace. These data were collected during

an experiment of 35 days, from November 18, 2011 to Decem-

ber 22, 2011, performed in an academic environment at University

Politehnica of Bucharest (Romania). The 22 recruited participants

were instructed to install an Android application to log their Blue-

tooth contacts and keep alive their smartphone between 8 AM and

8 PM during week days. 

3.3. L APL AND 

LAPLAND [49] is a dataset collected during the ExtremeCom09

workshop in Padjelanta National Park (Sweden). It contains Blue-

tooth co-location data of 17 conference attendees gathered during

the four consecutive days of the experiment, from August 9, 2009

to August 12, 2009 (here, we consider only the first three days,

since the fourth day results in few connections with low contact
urations). Each candidate was asked to carry iMotes with him de-

ecting devices in proximity range. Moreover the dataset includes

he participants’ Facebook friend lists and interests in terms of sci-

ntific topics. 

.4. SASSY 

SASSY [7] dataset consists of encounter records related to a

roup of 27 participants (22 undergraduate students, 3 postgrad-

ate students and 2 members of the staff) carrying IEEE 802.15.4

ensors (T-mote invent devices), and their social network, gener-

ted from Facebook data self-declared by candidates at the begin-

ing of the experiment. The experiment took place at University

f St. Andrews (United Kingdom) for an overall duration of three

onths between February 15, 2008 and April 29, 2008. 

.5. Social E volution 

MIT Social Evolution [1] is a dataset related to an experiment

erformed to closely track the everyday life of a whole under-

raduate dormitory of 70 students. The experiment duration cov-

rs about an entire academic year from April 6, 2009 to March

3, 2010. The dataset includes Facebook data, proximity, location,

nd call logs, collected through a mobile phone application that

canned nearby Wi-Fi access points and Bluetooth devices. 

.6. SIGCOMM 

SIGCOMM [40] dataset includes Bluetooth co-location data of 76

onference attendees collected by an opportunistic mobile phone

ocial application, called MobiClique . Each participant was also

sked to log in to his Facebook profile in order to include the list

f Facebook friends and interests. These data were collected during

he SIGCOMM conference held in Barcelona (Spain), from August

7, 2009 to August 21, 2009. 

. Multi-layer social network model 

Starting from mobility and Facebook data, we construct a multi-

ayer social network graph for each dataset and then, we use

his structure to perform sociocentric and egocentric analysis. In

his paper, we define a multi-layer social network as in [34] , and

onsider unweighted graph layers since we have Facebook links

friendships) without weights. 

• Definition 1 ( Social Network Layer ). A social network layer L

is an unweighted graph G( V, E ) with vertex set V corresponding

to users on the social network and edge set E ⊆V × V corre-

sponding to social links between users. 

• Definition 2 ( Multi-Layer Social Network ). A multi-layer

social network MLSN = (L 1 , L 2 , ..., L n ) is a tuple where L i =
G i (V, E i ) , i ∈ 1, ..., n are social network layers. 

For each dataset, we form a two-layer social network composed

s follows: 

• a first social layer composed by the offline social network de-

tected through wireless encounters, here called the detected so-

cial network (DSN) graph; 

• a second social layer composed by the Facebook friendships

network, here called the online social network (OSN) graph. 

Using the participants’ Facebook data in the form of a list with

#NODE ID1, #NODE ID2, #FRIENDSHIP FLAG} entries, where the

riendship flag indicates whether two nodes are friends on Face-

ook or not, we generate an OSN graph, where an edge exists if

wo nodes are friends. As far as the wireless encounters data are
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Fig. 1. Example of two-layer social network on a mobile social opportunistic net- 

work where each mobile node has a corresponding Facebook account. Nodes have 

different social connections at each social layer. 
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oncerned, the modeling of a unique social graph from a tempo-

al network is more complex and is still an open problem. In this

ork, we choose to form the DSN graph by setting an edge be-

ween two nodes if they had at least one contact during the ana-

yzed week, by using the contact data in the form of {#NODE ID1,

NODE ID2, #CONTACT TIMESTAMP} entries. We underline that

he DSN graph, even if unweighted, has been defined on a tempo-

al window of a week where took place the highest contact dura-

ions. In other words, a link between two nodes in the DSN graph

epresents a high contact duration. As such, even if on one hand

e loose some information on users’ social behavior (i.e., how long
Fig. 2. UNICAL (a) DSN and 

Fig. 3. UPB (a) DSN and (b
(b) OSN graph layers. 

) OSN graph layers. 

 contact is), on the other hand we preserve the aspect of long

ontacts and are able to easily compare the DSN and OSN graphs. 

Fig. 1 shows an example of the multi-layer network structure

dopted in this work. In Figs. 2 , 3 , 4 , 5 , 6 , 7 , we depict the two-

ayer graph for each dataset using different colors for nodes be-

onging to different communities. Here, we used the Louvain com-

unity detection method [8] (see Section 5 ). 

. Sociocentric analysis 

Sociocentric analysis method extends and complements tradi-

ional social science by focusing on the quantification of interac-

ions among a socially well-defined group of people and the iden-

ification of global structural patterns. In particular, the method

nalyzes sets of relationships among nodes that are considered as

ounded social collectives. In this section, we briefly describe the

ociocentric centrality measures and the community detection al-

orithms that we have chosen within this work to assess the sim-

larities between the DSN and the OSN. Even if several centrality

easures and community detection methods exist, we have chosen

 subset of them that we consider more relevant for this analysis.

he three centrality measures chosen, for example, are considered

n the literature on network graphs main measures of the contribu-

ion of network position to the importance of a node within a net-

ork graph. As far as the community detection is concerned, we

ave chosen two algorithms representative of two different classes,

ne partitioning the network in non-overlapping communities and

he other extracting overlapping communities. 



6 A. Socievole et al. / Computer Communications 87 (2016) 1–18 

Fig. 4. LAPLAND (a) DSN and (b) OSN graph layers. 

Fig. 5. SASSY (a) DSN and (b) OSN graph layers. 

Fig. 6. Social E volution (a) DSN and (b) OSN graph layers. 
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5.1. Betweenness centrality 

Between ness centrality [26] , also referred to as sociocentric be-

tween ness centrality, measures the frequency with which a node

is present on the shortest path or geodesic connection between

every couple of nodes in the network. This centrality measure is

important in opportunistic networks and in social networks since

it provides information concerning the influence a node has over

N

ata flow. For node i , it is defined as: 

 b (i ) = 

N ∑ 

i � = j � = k 

g jk (i ) 

g jk 
(1)

here g jk ( i ) is the number of shortest paths from j to k passing

hrough i, g jk is the total number of geodesic paths from j to k and

 is the network size. 
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Fig. 7. SIGCOMM (a) DSN and (b) OSN graph layers. 
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.2. Closeness centrality 

Closeness centrality [42] measures the inverse of the sum of the

hortest paths between a node towards each other node in the net-

ork. It is defined as: 

 c (i ) = 

1 ∑ N 
j=1 d(i, j) 

(2) 

here d ( i, j ) is the weighted shortest path from the reference node

 to each node in the network. This centrality measure assumes

he value 0 if we consider a disconnected graph, since the dis-

ance between two nodes belonging to two distinct components

n a graph has not a finite value. To overcome this problem, Dan-

alchev [19] redefined closeness as: 

 c (i ) = 

N ∑ 

j � = i 

1 

2 

d (i, j ) 
(3) 

.3. Eigenvector centrality 

Eigenvector centrality [9] measures the centrality of a node in

 circular way. Starting from the assumption that a node is cen-

ral if it is in relation with other central nodes, the centrality of a

ode is proportional to the sum of the centrality values of all its

eighboring nodes. Using the adjacency matrix A of the graph, the

igenvector centrality for a node i is proportional to the sum of the

igenvector centrality values of its neighbor nodes, and is defined

s: 

 e (i ) = 

1 

λ

N ∑ 

j=1 

A i j C e ( j) (4) 

here λ is the largest eigenvalue. 

.4. Louvain community detection 

Louvain method [8] partitions the network graph in disjoint

ommunities and is based on a greedy optimization technique that

ttempts at optimizing the modularity of a partition of the graph.

nitially, the method searches small communities by locally op-

imizing modularity. Then, it aggregates nodes belonging to the

ame community and builds a new network whose nodes are the

ommunities. These steps are repeated iteratively until a maximum

f modularity is attained and a hierarchy of communities is pro-

uced. 
.5. k-CLIQUE community detection 

This method, also known as Clique Percolation Method (CPM)

38] , finds overlapping communities where a community is de-

ned as the union of all k -cliques (complete subgraphs with k

odes) that can reach each other through a series of adjacent k -

liques, where two k -cliques are said to be adjacent if they share

 -1 nodes. Here, after several experiments, we have set k = 5 both

or the DSN and the OSN, being this value suitable for the datasets

hosen. 

. Egocentric analysis 

In the previous section, we focused on groups describing some

easures that we will use to analyze user sociocentric behaviors

n the DSN and the OSN. In order to understand the similarities

etween the two network layers focusing on the local behavior of

ndividuals more locally, we need to take a closer look to their lo-

al circumstances. Egocentric networks are defined as networks of

ingle actors together with the actors they are directly connected

o. In this section, we focus on egocentric analysis methods that

im at describing and quantifying the variation across individuals

n the way they are embedded in local social structures. 

.1. Degree centrality 

Degree centrality [25,37] is an example of egocentric measure

ounting the number of connections a node has towards its neigh-

oring nodes. Degree is considered a simple but fundamental cen-

rality measure. For a node i , it is defined as: 

 d (i ) = 

N ∑ 

j 

a i j (5)

here a i j = 1 if nodes i and j are connected by an edge, a i j = 0

therwise. 

.2. Ego between ness centrality 

Ego between ness centrality is computed considering just the

go network of a node, and hence, the shortest paths between ev-

ry pair of non-adjacent nodes will have length 2. Given the ad-

acency matrix A , A 

2 
i, j 

contains the number of walks of length 2

onnecting nodes i and j . It follows that A 

2 [1 − A ] i, j , where 1 is a

atrix of all 1’s, gives the number of shortest paths of length 2

oining i to j . The sum of the reciprocal of the entries gives then

he ego between ness. 
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Table 2 

Correlation between OSN and DSN centrality measures. 

Experimental dataset Correlation 

Between ness Closeness Eigenvector Degree Ego Between ness 

UPB 0 .2151 0 .0988 –0 .015 0 .1541 0 .2587 

LAPLAND 0 .1446 –0 .1454 –0 .1498 –0 .098 0 .1455 

SASSY 0 .05 0 .5791 0 .5135 0 .5251 0 .6224 

SOCIAL EVOLUTION 0 .0492 0 .0278 0 .1058 0 .089 0 .0816 

SIGCOMM 0 .0533 0 .1052 0 .0268 0 .0573 0 .0012 

Fig. 8. The five types of brokerage roles: the pink nodes are brokers, ellipses/circles 

correspond to community boundaries. 
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6.3. Brokerage 

Gould and Fernandez [28] explored the roles that ego plays in

connecting groups (i.e., communities) as broker. They listed five

types of brokerage roles (see Fig. 8 ): 

• coordinator : the broker mediates the contacts between two in-

dividuals from its own group; 

• gatekeeper : the broker mediates the incoming contacts from an

out-group member to an in-group member; 

• representative : the broker mediates the outgoing contacts from

an in-group member to an out-group member; 

• consultant : the broker mediates the contacts between two indi-

viduals from a different group; 

• liaison : the broker mediates the contacts between two individ-

uals from different groups, neither of which is the group to

which it belongs. 

The brokerage score for a given node with respect to a role is

the number of ordered pairs having their group memberships bro-

kered by that node. Note that in this paper, considering undirected

graphs, we do not take into account the representative score since

it is not different from the gatekeeper score. 

6.4. Tie strenght 

Tie strength [18,29] is a quantifiable property characterizing the

link between two nodes (here, the ego and its neighbor). The no-

tion of tie strength was introduced by Granovetter in 1973 stating

that this measure may deal with four different aspects: the fre-

quency of contacts, the contact durations, the history of relation-

ships and the number of transactions. Here, we consider contact

durations computing for each node pair the total contact duration

had during the experimental period. 

7. Results 

7.1. Centrality correlation 

We initially show the results obtained by computing sociocen-

tric and egocentric centrality measures on the multi-layer net-

works built on the datasets presented in Section 3 . Specifically,

within each multi-layer network and for each centrality measure

considered, we computed the Pearson’s correlation coefficient be-

tween the centrality values of the nodes on the OSN and their cen-

trality values on the DSN. The Pearson’s correlation coefficient is
efined as ρX,Y = 

COV (X,Y ) 
σX σY 

where COV ( X, Y ) is the covariance be-

ween the two random variables X and Y , and σ X and σ Y are the

tandard deviations. Correlation analysis aims at finding linear re-

ationships between the same centrality measure over the two so-

ial layers. In Table 2 , we show the correlation values obtained for

ach dataset, while in Figs. 9 , 10 , 11 , 12 , 13 we depict the relation-

hip between DSN and OSN centralities. Note that we do not report

he correlation values for UNICAL dataset since the DSN centrality

alues are 0 for between ness and ego between ness (see Figs. 9 and

3 ), and constant for the other centrality measures (see Figs. 10 ,

1 and 12 ). This results in covariance and standard deviations

roduct between OSN and DSN centrality that are 0. In the case of

etween ness and ego between nes, we can observe from Fig. 2 (a)

hat in the DSN graph, being complete, every node can be directly

eached by each other node, hence, no shortest paths where one

ode is between couple of nodes exist and this results in a cen-

rality value which is 0. UNICAL mobile users, in fact, were fre-

uently co-located in a classroom during lessons and this resulted

n mobile nodes able to easily detect all the other nodes of the ex-

eriment. The constant values for closeness, eigenvector centrality

nd degree are obviously related to UNICAL complete structure as

ell. On the contrary, UNICAL OSN graph (see Fig. 2 (b)) is more

parse considering that not all the students involved were Face-

ook friends (the participants were postgraduate students coming

rom different degree courses and academic years) and results in

on-zero values for all the considered centrality measures. Here,

e conclude that UNICAL online and offline user centrality be-

aviors are different for all the measures considered because of

he wireless co-presence between all the participants where many

f these are not online friends. Looking at the other datasets, we

ote that LAPLAND shows also different online and offline behav-

ors having low correlation values for all the centrality measures.

ere, the network size and the DSN structure is similar to UNI-

AL (17 nodes in LAPLAND and 15 nodes in UNICAL) and even if

he network environment is different (conf erence in an extreme

nvironment vs. university campus), online and offline behaviors

re again different because the participants are basically confer-

nce members working on complementary research areas, not al-

ays co-located and not all Facebook friends. Also UPB, with a low

etwork size (15 nodes) and dealing with an academic environ-

ent as UNICAL, shows low structural similarity between online

nd offline centrality. Unfortunately, for this dataset, there are not

etails concerning the type of participants to the experiment (e.g.

tudents of the same courses, undergraduate, postgraduate or PhD

tudents, etc.), hence, we hypothesize that UPB participants may

e students following different academic courses considering that

ot all the DSN nodes are connected and with few online connec-

ions (see Fig. 3 ). As far as SASSY is concerned, we observe that

his dataset is characterized by the highest correlation values, hav-

ng strong correlation for closeness, eigenvector centrality, degree

nd in particular, for ego betwen ness (0.6224). Here, the group of

racked participants shows interesting similar online and offline ca-

abilities of locally influencing data flow. SASSY between ness cor-

elation values, on the contrary, are very low. However, even if this
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Fig. 9. Correlation between OSN and DSN beetweenness centrality values. 

Fig. 10. Correlation between OSN and DSN closeness centrality values. 
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ataset shows similar online and offline behaviors for most of the

entrality types probably due to the group of undergraduate stu-

ents that may be friends, if we consider all the other datasets, we

an conclude that, in general, there is a weak correlation between

SN and DSN centralities. The obtained low correlation values, in

act, reflect online and offline behaviors different, both in the so-

iocentric and the egocentric case. In particular, we note that for

IGCOMM and Social Evolution datasets, characterized by a higher

umber of nodes (67 and 55, respectively), the correlation between
ach centrality measure assumes values very close to 0. In the first

ataset, for example, the participants are members of a big confer-

nce mostly working on different research topics that were located

n different areas during the experiment due to the different ses-

ions they attended, and few of them were Facebook friends (see

he very sparse OSN graph compared to the DSN graph in Fig. 7 ).

n the second dataset dealing with undergraduate students of a

ormitory, on the contrary, many of the participants are Facebook

riends as can be observed by the denser OSN graph in Fig. 6 (b).
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Fig. 11. Correlation between OSN and DSN eigenvector centrality values. 

Fig. 12. Correlation between OSN and DSN degree centrality values. 
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However, OSN and DSN graphs are significantly different consider-

ing centrality. Here, the students involved have more virtual rela-

tionships than physical encounter opportunities as can be observed

in Fig. 6 . 

The results of this analysis clearly show that the centralities

of the Bluetooth-based social networks differ from those of the

Facebook social networks. This happens because the co-location in

a wireless environment implies both connections between nodes
arried by individuals having an interaction (i.e., people knowing

ach other and talking together) and connections between nodes

hat are just in proximity (e.g., strangers in the same room). In

he Facebook case, on the contrary, a node has only connections

hat have been established intentionally. As such, the DSN and the

SN result in structures that are different and leading to differ-

nt node centralities. From the results of this analysis, we conclude

hat in the design of opportunistic networking algorithms, this low
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Fig. 13. Correlation between OSN and DSN ego between ness centrality values. 

Table 3 

Similarity (Normalized Mutual Information) between OSN and DSN communities. 

Experimental datasets 

UNICAL UPB LAPLAND SASSY Social Evolution SIGCOMM 

NMI (OSN , DSN) Louvain 0 .3975 0 .5738 0 .3192 0 .2521 0 .0864 0 .3466 

k-CLIQUE 0 .5026 0 .3849 0 0 .1611 0 0 .0103 
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7

 

a  
orrelation between online and offline behavior should be taken

nto account. As an example, when a social-based forwarding algo-

ithm needs to initialize the social behavior of a node in the boot-

trapping phase of the network, no information or partial social

nformation is available because of the short history of contacts. In

his case, the algorithm needs time to reconstruct the social behav-

or of a node in order to exploit this feature for improving message

elivery. Hence, the node’s online behavior could be considered.

owever, considering the results of our analysis, this node’s online

entrality should be conveniently leveraged with the available of-

ine social centrality in order to find good forwarding paths and

btain improvements in message delivery. 

.2. Community similarity 

To compute the similarity between communities belonging to

he two network layers, we use the normalized mutual information

20] measure. Given two networks A and B , the normalized mutual

nformation is defined as follows: 

MI(A, B ) = 

−2 

∑ c A 
i =1 

∑ c B 
j=1 

N i j log 

(
N i j N 

N i. N . j 

)
∑ c A 

i =1 
N i. log 

(
Ni. 
N 

)
+ 

∑ c B 
j=1 

N . j log 
(

N. j 
N 

) (6) 

here c A is the number of communities in network A, c B is the

umber of communities in network B, N ij is the number of nodes

n the intersection between community i from network A and com-

unity j from network B, N is the total number of nodes, and N i . 

nd N . j are the number of nodes in community i of network A
nd community j of network B , respectively. NMI ( A, B ) ranges be-

ween 0 and 1, where different communities have a mutual infor-

ation of 0 and identical communities have a mutual information

f 1. The NMI quantifying the similarity between layers in terms

f communities for each community detection method is shown

n Table 3 . UNICAL and UPB datasets, show a significant similar-

ty degree in forming online and offline groups, both with Louvain

see, for example, OSN and DSN red communities in Fig. 3 con-

aining both nodes 6, 22, 11, 13 and 10 and differing just for two

odes) and k-CLIQUE community detection methods, while, LAP-

AND, SASSY and SIGCOMM datasets show an overall low simi-

arity. Finally, Social Evolution shows OSN and DSN communities

hat are completely different. By focusing on the community detec-

ion method, we note that the two methods produce different NMI

alues. We thus conclude that the overlapping or non-overlapping

ommunities assumption influences the similarity between online

nd offline communities for a given dataset. However, UNICAL, UPB

nd SASSY academic environments show near NMI values for the

wo community detection methods. This leads us to conclude that

he three academic environments share a similar behavior even if

he community detection methods are different. In general, by con-

idering all the datasets, we can conclude that the structure of on-

ine and offline communities is different. 

.3. Brokerage 

For evaluating nodes’ brokerage roles, we computed the broker-

ge score corresponding to each role for each node in the DSN and
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Table 4 

Correlation between OSN and DSN brokerage roles. 

Experimental dataset Correlation 

Coordinator Gatekeeper Consultant Liaison Total Brokerage 

UPB 0 .1378 –0 .1861 –0 .1612 – –0 .0778 

LAPLAND 0 .0991 0 .7619 – – 0 .0845 

SASSY 0 .1984 0 .612 0 .228 0 .8036 0 .6103 

SOCIAL EVOLUTION –0 .038 0 .0563 –0 .0707 0 .836 0 .528 

SIGCOMM –0 .0557 –0 .0243 –0 .0636 –0 .0184 0 .0199 

Fig. 14. Correlation between OSN and DSN coordinator roles. 
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the OSN by grouping nodes with respect to Louvain community

detection algorithm. Table 4 shows the correlation between OSN

and DSN brokerage roles including also the total brokerage score

computed as the total frequency of each role type. In Figs. 14 ,

15 , 16 , 17 , 18 , we also depict the relationship between DSN and

OSN brokerage values. Overall, we found different behaviors for

each dataset. Similarly to centrality analysis, we do not report the

correlation values for UNICAL dataset since DSN brokerage values

are 0. This absence of brokerage roles is basically due to UNICAL

DSN complete structure (see Fig. 2 (a)) and its resulting unique

community detected. Also in other datasets like UPB and LAP-

LAND some roles are missing and we do not report the correla-

tion values (see UPB liaison role and LAPLAND consultant and liai-

son roles). UPB and SIGCOMM show in general very different OSN

and DSN roles, having negligible correlation values. On the con-

trary, SASSY shows a very strong correlation value for liaison role

and strong correlation values for gatekeeper and total brokerage.

Note that in the DSN and OSN graphs many nodes belonging to

a certain community are connected with other node pairs belong-

ing to distinct communities (liaison case) or a same community

(gatekeeper case). Also Social Evolution shows for some roles an

interesting similarity: liaison role has again a very strong corre-

lation value and as a consequence, the total brokerage is charac-

terized again by strong correlation. Finally, we observe that LAP-

LAND shows very strong correlation for DSN and OSN gatekeeper
roles. 
 

o  
.4. Tie strength 

After examining online and offline network centrality, commu-

ities and brokerage roles, we focused on analyzing strong ties.

pecifically, we computed for each node pair within the two graph

ayers the total contact duration in terms of number of granularity

ntervals (i.e., using the dataset’s granularity as time unit). Then,

e ordered the node pairs for decreasing contact durations choos-

ng the top-20 strong ties and analyzed the matchings between

he found strong ties on the DSN and the Facebook friendships at

he OSN layer for the same node pair. Figs. 19 , 20 , 21 , 22 , 23 , 24 ,

how that in most datasets, most of the strong ties correspond to

acebook friendships. Specifically, UNICAL, UPB, SASSY, Social Evo-

ution, and SIGCOMM show 75%, 80%, 70%, 70% and 70% of match-

ngs, respectively. Hence, differently from the other metrics and

lgorithms used for assessing the similarity between social net-

ork layers, the nodes’ online and offline behaviors in terms of tie

trength are common for many datasets. This result is interesting

ince by finding a good matching between the DSN strong ties and

he links on the OSN layer, we are able to evaluate if a DSN link is

 strong tie just considering the presence/absence of links on the

SN layer and thus avoiding the computation of contact durations.

. Discussion 

By proposing a novel methodology for analyzing data based

n egocentric and sociocentric measures, we categorized some
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Fig. 15. Correlation between OSN and DSN gatekeeper brokerage roles. 

Fig. 16. Correlation between OSN and DSN consultant brokerage roles. 

Table 5 

Segmentation of centrality correlation, community NMI, total brokerage correlation and percentage of 

strong ties values into several ranges for the assessment of similarity between OSN and DSN. 

Similarity layer 1 2 3 4 

Similarity percentage range 0–25% 25–50% 50–75% 75–100% 

Similarity degree Low (L) Medium-low (ML) Medium-high (MH) High (H) 
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ell-known measures in distinct approaches in order to have a

roader view of the user social behavior. Previous works only ex-

loited a subset of the measures we have chosen thus providing

artial results. In this section, we summarize the result of the dif-

erent analyses. This will allow the reader to have an overall clear

dea of the social behavior of mobile opportunistic nodes in the

ifferent networking environments considered in this work, thus
roviding final meaningful conclusions based on the datasets used.

n Table 5 , we show the similarity layers with the corresponding

ercentage ranges and degrees that we defined to provide a fi-

al assessment of similarity between OSN and DSN graphs. In par-

icular, we considered four similarity layers, converting each re-

ult (centrality, NMI and brokerage) in percentage values corre-

ponding to low, medium-low, medium-high and high similarity
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Fig. 17. Correlation between OSN and DSN liaison brokerage roles. 

Fig. 18. Correlation between OSN and DSN total brokerage values. 

Table 6 

Summary of the similarity degree between OSN and DSN values according to betweenness ( Bet ), close- 

ness ( Clo ), eigenvector centrality ( Eig ), Louvain method ( Lou ), k-CLIQUE method ( k − CLI), degree ( Deg ), ego 

betweenness ( Ego Bet ), total brokerage ( Total Bro ) and tie strength ( Tie Str ). 

Experimental dataset Similarity 

Bet Clo Eig Lou k -CLI Deg Ego Bet Total Bro Tie Str 

UNICAL – – – ML MH – – – H 

UPB L L L MH ML L ML L H 

LAPLAND L L L ML L L L L ML 

SASSY L MH MH ML L MH MH L MH 

SOCIAL EVOLUTION L L L L L L L MH MH 

SIGCOMM L L L ML L L L MH MH 
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Fig. 19. UNICAL - Relationship between strong ties with high contact durations and Facebook friendship. 

Fig. 20. UPB - Relationship between strong ties with high contact durations and Facebook friendship. 

d  

t  

e  

e  

c  

s  

p  

l  

t  

t  

9

 

o  

n  

s  

o  

o  

t  

w  

t  

t  

g  

m  

c  

fl  

s  

s  

b  

t  

o  

t  

h  

s  

s

 

d

egrees. Table 6 shows a summary of the similarity degree be-

ween OSN and DSN values according to between ness, closeness,

igenvector centrality, Louvain method, k-CLIQUE method, degree,

go between ness, total brokerage and tie strength. As can be

learly noted, the social feature that results in a very significant

imilarity for five of the six datasets is DSN tie strength that is well

redicted by OSN friendships. Even if some previous works high-

ighted that there can be a good matching between contact dura-

ions and friendships, this work offers a more complete view on

his aspect, proving that on several datasets this feature is present.

. Conclusions and future work 

In this paper, we have presented a novel and detailed method-

logy for analyzing a set of real mobility traces for opportunistic

etworks using a multi-layer network approach. The aim of this

tudy has been to better understand user social behavior in terms

f egocentric and sociocentric behaviors that can be derived not

nly from mobility data (encounters’ social network) but also from
he available additional information provided by the social net-

ork layer built on Facebook friendships. Our results have shown

hat online and offline social behavior computed in terms of cen-

rality measures like between ness, ego between ness, closeness, de-

ree and eigenvector centrality are not significantly correlated on

ost datasets. In other words, node popularity changes signifi-

antly on the online and offline social worlds. Also online and of-

ine community structures are different. Analyzing the two-layer

ocial network constructed on mobility data and Facebook friend-

hips we have also shown that in some cases, online and offline

rokerage roles show high similarity. However, the correlation be-

ween online and offline brokerage roles varies significantly from

ne dataset to another and it is not possible to extract a common

rend with respect to this kind of similarity analysis. Finally, we

ave shown that in five of the six datasets considered, most of the

trong ties in the social layer built on wireless encounters corre-

pond to Facebook friendships. 

Our results refer to an heterogeneous set of datasets covering

ifferent experimental environments (academic, conference, urban) 
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Fig. 21. LAPLAND - Relationship between strong ties with high contact durations and Facebook friendship. 

Fig. 22. SASSY - Relationship between strong ties with high contact durations and Facebook friendship. 
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n  
with different mobility patterns, durations, number of nodes and

Facebook friendship graphs. Choosing this set, our aim has been

to analyze users’ online and offline sociocentric and egocentric be-

haviors on social networks (specifically, the DSN and the OSN) ex-

tracted from the typical mobile social environments where oppor-

tunistic networking applications can be adopted as networking so-

lution. Think, for example, to a city where running social collabo-

rative monitoring and sensing, a conference where exploiting con-

textual information and sociality to provide recommendations on

interesting events, or a university campus where running emer-

gency social applications for launching SOS in case of terroristic

attacks. In conclusion, we believe that our findings, being repre-

sentative of several experimental environments, can be exploited
y the opportunistic networking research community when deal-

ng with the social aspects of its target users. Having assessed that

he network centralities and communities of a given user vary no-

ably in his online and offline social worlds, in the design of future

ocial algorithms, these features should be taken into account. For

xample, a social-based forwarding algorithm exploiting centrality

nd community as social metrics should properly leverage the on-

ine social information in the bootstrapping phase where the social

nformation about the user’s offline behavior is partial. On the con-

rary, the good matching between contact durations and Facebook

riendships could be exploited, for example, for predicting strong

SN social ties just knowing if two users are Facebook friends or

ot. As such, if a forwarding algorithm exploits, for example, tie



A. Socievole et al. / Computer Communications 87 (2016) 1–18 17 

Fig. 23. Social E volution - Relationship between strong ties with high contact durations and Facebook friendship. 

Fig. 24. SIGCOMM - Relationship between strong ties with high contact durations and Facebook friendship. 
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trength as social feature, the algorithm could avoid the comput-

ng of this metric on the history of the encounters by simply using

he Facebook friendship information. 

The results of this work, however, clearly need further investi-

ation. The DSN model presented in this paper, for example, char-

cterizes the entire experiment considering all the encounters ob-

erved between mobile devices without making differences be-

ween frequent and rare encounters and must be improved. More-

ver, further investigation on larger datasets and other social di-

ensions may be interesting. As such, in the future, we will con-

inue working on this research field including richer and larger

etwork data containing also more than two social network layers

nd considering in greater detail the dynamics and the evolution

f the social graph constructed on wireless encounters. 
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