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a b s t r a c t 

The current age of increased people mobility calls for a better understanding of how people move: how 

many places does an individual commonly visit, what are the semantics of these places, and how do 

people get from one place to another. We show that the number of places visited by each person (Points 

of Interest – PoIs) is regulated by some properties that are statistically similar among individuals. Sub- 

sequently, we present a PoIs classification in terms of their relevance on a per-user basis. In addition to 

the PoIs relevance, we also investigate the variables that describe the travel rules among PoIs in particu- 

lar, the spatial and temporal distance. As regards the latter, existing works on mobility are mainly based 

on spatial distance. Here we argue, rather, that for human mobility the temporal distance and the PoIs 

relevance are the major driving factors. Moreover, we study the semantic of PoIs. This is useful for de- 

riving statistics on people’s habits without breaking their privacy. With the support of different datasets, 

our paper provides an in-depth analysis of PoIs distribution and semantics; it also shows that our results 

hold independently of the nature of the dataset in use. We illustrate that our approach is able to effec- 

tively extract a rich set of features describing human mobility and we argue that this can be seminal to 

novel mobility research. 

© 2016 Published by Elsevier B.V. 

1. Introduction 1 

In recent years we have witnessed a rapid increase of people 2 

mobility as the world population has become more interconnected 3 

and has begun relying on faster transportation methods, simplified 4 

connections and shorter commuting times. Unveiling and under- 5 

standing human mobility patterns has become a crucial issue in 6 

supporting decisions and prediction activities when managing the 7 

complexity of today’s social organization. In this, novel mobile 8 

communications technologies play a fundamental role. With such 9 

mobile technologies it is now possible to collect data about human 10 

habits and behavior all day long. Nowadays, people always carry 11 

their mobile phone with them. So, either in the form of Call 12 

Detail Records (CDRs) or with specialized apps [22,25] , people’s 13 

mobility data can be collected from mobile phones. Therefore, 14 

in the recent years, researchers have devoted considerable effort 15 

to collecting and studying human mobility patterns [7] and have 16 

applied their understanding to a variety of critical problems rang- 17 
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ing from disease spreading [2] , urban planning, smart and green 18 

transportation to network infrastructure [14,37] , economy and 19 

marketing [30] , and mobile network services [13] . Nonetheless, 20 

despite the advances in communications technologies and other 21 

important achievements, human mobility still represents an open 22 

and challenging research issue. In practice, the mobility pattern of 23 

each individual consists of the sequence of locations s/he visited. 24 

These locations and their correlations represent the core block of 25 

any modeling research and any activity aimed at understanding 26 

human mobility. Even though visited locations underlie all works 27 

in this field, their features remain largely unknown. This is due 28 

mainly to the fact that they have been considered as points in 29 

an area and social aggregation places, without anchoring spatial 30 

features to the behavior of each single user. 31 

This paper, which represents an extension of our previous 32 

works [31,44] , aims to fill the gap by providing a general frame- 33 

work for dealing with modeling locations from a per-user perspec- 34 

tive. Also, it paves the way towards enabling the semantic inter- 35 

pretation of locations to be overlaid on their spatial distribution. 36 

First, we introduce the notion of user’s Points of Interest (PoIs) 37 

along with the methodology to extract them from different types 38 

of data. Then we provide both a metric to measure the importance 39 

of PoIs for a person and a methodology to classify them in terms 40 
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of: (i) Most Visited Points (MVPs), the places that a person visits 41 

most regularly, e.g. home and work locations; (ii) Occasionally Vis- 42 

ited Points (OVPs), locations of interest for the user but visited just 43 

occasionally; and (iii) Exceptionally 1 Visited Points (EVPs), which 44 

correspond to seldom visited locations. This classification allows us 45 

to define a human mobility profile where the number of locations 46 

per each class and the time spent there are the characterizing at- 47 

tributes. We further study how people move across PoIs and PoI 48 

classes, enriching the knowledge derived from classification with 49 

the spatial as well as the temporal dimensions of mobility. The 50 

proposed classification and the PoIs and user features provide the 51 

basis for understanding human behavior by extracting the seman- 52 

tics of visited places. In line with similar works [10,15,23,33] , we 53 

used a heuristic approach for the semantic analysis and experi- 54 

mented it on a large dataset containing mobility patterns of hun- 55 

dred thousands of people in a metropolitan area. 56 

The paper supports its findings by extensively validating results Q2 
57 

on four different datasets. The first two datasets contain Call Detail 58 

Records of phone activities of a large mobile operator. The third 59 

dataset is mainly composed of trajectories (parts of a continuous 60 

mobility trace), while the last one consists of continuously sam- 61 

pled location data. The first two datasets have different character- 62 

istics in terms of spatial and temporal distribution of the visited 63 

places w.r.t the other two databases. By showing the validity of our 64 

approach throughout datasets with sometimes antithetical proper- 65 

ties, we demonstrate the independence of our results w.r.t. a spe- 66 

cific setting, and we are able to extract a deeper understanding of 67 

human mobility. 68 

As a result of this work, some interesting properties about hu- 69 

man mobility emerge. In fact, it turns out that people visit many 70 

locations in their life, but they have a very small number of pre- 71 

ferred locations (MVPs ) which are visited daily (e.g., home, work 72 

place), and a higher, but still limited, number of locations of inter- 73 

est (OVPs) which are visited with a lower frequency (e.g., gym, fa- 74 

vorite restaurant, parent’s house). We spend more than 50% of our 75 

time in MVPs. This indicates that those points are the ones that best 76 

represent and characterize our lives. On this basis, we propose an 77 

algorithm to identify home and work places which leverages the 78 

relevance of a place for a specific person and outperforms other 79 

algorithms in terms of semantic accuracy. 80 

By analyzing the transition rules between PoIs, we find that, in 81 

contrast with commonly accepted assumptions, the decision to move 82 

between two places is not taken on the basis of the geographical dis- 83 

tance, but according to the relevance individuals ascribe to them and 84 

to the travel time between places. Also, we show that the transition 85 

rule based on relevance follows the same distribution law indepen- 86 

dently of the mobility scenario. 87 

The key contributions of our mobility framework can be sum- 88 

marized as follows: 89 

• a novel per-user mobility analysis that highlights the following 90 

key properties: 91 

- people visit regularly just few places where they spend most 92 

of their time; 93 

- people also spend a significant amount of time in places 94 

they only visit once; 95 

- people commute between places based on their temporal 96 

distance and not the spatial distance; 97 

- HOME and WORK places are in the set of few places mostly 98 

visited, and, as such, the relevance R is a fundamental fea- 99 

ture for their semantic identification; 100 

• a classification of visited locations (PoIs) that enables the above 101 

mentioned analysis; 102 

1 We use the adverb ‘exceptionally’ as a synonym for rarely, seldom. 

• a classification of users, based on how people move across PoIs 103 

and PoIs classes, derived from our mobility analysis; 104 

• a semantic understanding of human behavior based on our mo- 105 

bility analysis; 106 

• a thorough experimental validation on datasets with different 107 

properties. 108 

The comprehension and the modeling of human mobility pat- 109 

terns play a key role in the design of protocols and forwarding 110 

strategies in contact-centric network infrastructure. These novel re- 111 

sults can change how mobility is analyzed and modeled. Indeed, 112 

we argue that, to produce more realistic mobility traces, a mobil- 113 

ity model needs to consider i) the new classifications introduced 114 

herein, and ii) the new features, their relationships and their dif- 115 

ferent laws. This work could impact several computer and commu- 116 

nications areas such as: localization [28,29] , where our results in- 117 

dicate that a person’s location can be predicted in the set of MVPs 118 

with a probability higher than 0.7; social interaction studies and 119 

data offloading [32] [16] , as people tend to meet more frequently 120 

people with some MVPs in common and the latter characterize the 121 

single individual’s mobility; human mobility modeling [41] , as mo- 122 

bility can be described in terms of regular movement among MVPs 123 

and OVPs and extemporarily EVPs; recommendations [26] as peo- 124 

ple can get recommended places close to their MVP and not far in 125 

time from their current location. 126 

2. Related work 127 

Nowadays smartphones have an important role in capturing 128 

various behavioral aspects of users, ranging from how the device 129 

is used across different contexts to analyzing the spatial, tempo- 130 

ral and social dimensions of everyday life through sources such as 131 

GPS, call and text logs, Internet access and Bluetooth logs. These 132 

data can be used in many areas, from urban planning, predicting 133 

and controlling epidemic infection diseases to planning and op- 134 

timization of wireless and infrastructure-less communication sys- 135 

tems. Fundamentally, these applications require the comprehen- 136 

sion and recognition of predictable mobility patterns. To gain a 137 

better understanding of the dynamics involved in mobility, many 138 

experiments, based on different detecting technologies and per- 139 

formed in various locations, have been conducted. Most of them 140 

have been made available in the public repository CRAWDAD [1] . 141 

Among these datasets we focus on GPS-based traces as they allow 142 

us to precisely determine the geographical positions of users. In 143 

this study we also compare mobility data from cellular network 144 

towers with the GPS positioning. We made this choice to high- 145 

light similarities and differences among the mobility habits, due to 146 

the different detecting technologies usually adopted to study them. 147 

That results in a heterogeneous set of data which require different 148 

pre-processing techniques to get a uniform representation through 149 

which we deal with the analysis. For the above reasons this work 150 

relates to different research topics. 151 

2.1. Significant location extraction 152 

Part of our work, which involves GPS data, has been devoted 153 

to detecting the significant locations of a user. Many authors have 154 

suggested different extraction methods [8,18,20,38–40] based on 155 

clustering algorithms. Ashbrook and Starner [8] have proposed a 156 

two-step method to infer the significant locations. In the first step, 157 

the loss of the GPS signal is used as an indicator of interesting lo- 158 

cations because it likely corresponds to buildings or indoor points. 159 

In the second step these points are clustered into locations using 160 

a variant of the k -means algorithm. In the clustering procedure, 161 

round clusters with a given radius are initially placed at k chosen 162 

points, and iteratively they move to a denser area, until no further 163 
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increases in the point density is observed. Since the loss of the 164 

GPS signal serves as the main clue to identify significant locations, 165 

main buildings are found; however, other types of interesting lo- 166 

cations where the signal is available, such as outdoor places, may 167 

be lost. Furthermore, rather than detecting locations with an arbi- 168 

trary shape, they retrieve only circular locations. On the contrary, 169 

we apply a clustering method able to find arbitrary shape clusters, 170 

independently of an a-priori number of places. 171 

Hariharan and Toyama [18] proposed an approach that uses 172 

time information to distinguish significant places. From the raw 173 

traces they identify a contiguous sequence of GPS points within 174 

a distance d and for a period t adopting a variation of an agglom- 175 

erative clustering algorithm. They called these areas ‘stays’. Since 176 

their algorithm is computationally expensive (the identification of 177 

a stay requires the distance between all pairs of coordinates within 178 

a specified time window to be computed after every new location 179 

measurement) we choose a more computationally efficient algo- 180 

rithm that neglects the temporal information since the GPS traces 181 

have been recorded with a fixed sample rate. 182 

Kang et al. [20] proposed a method, suitable for resource- 183 

limited mobile devices, that computes incrementally significant lo- 184 

cations. Their time-based approach clusters the stream of incoming 185 

location coordinates along the time axis and drops those clusters 186 

where little time is spent. In particular, the algorithm compares 187 

each new GPS point with the previous coordinates in the current 188 

cluster; if the stream of coordinates is far from the current clus- 189 

ter a new location is detected. The authors validate their algorithm 190 

with localization data inferred from RF(radio frequency)-emissions 191 

of known base stations. Since the main goal of the method is 192 

portability on mobile devices, authors did not investigate the tra- 193 

jectories of multiple users. 194 

Finally, to overcome the k-means limitations, a series of 195 

density-based approaches have been proposed. Zhou et al. 196 

[40] proposed a density- and join-based clustering algorithm called 197 

DJ-Cluster to infer significant locations. The dense points are those 198 

with at least a certain number of other points lying within a dis- 199 

tance of their neighborhood. Relaxing the DBSCAN conditions on 200 

reachability, the clusters are formed from a set of dense points, 201 

which are density-joinable: i.e. the neighborhood of the dense 202 
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ployment of different services (from opportunistic networks to link 227 

prediction in location-based social networks). 228 

In their seminal work Brockmann et al. [9] investigated human 229 

traveling statistics by analyzing the circulation of banknotes in the 230 

United States. Based on a huge dataset of over a million individ- 231 

ual displacements, they found that the distribution of the travel- 232 

ing distances decays as a power law, indicating that trajectories of 233 

bank notes are similar to Lévy flights. Secondly, they showed that 234 

the probability of staying in a confined region (pause time distri- 235 

bution) is characterized by a long tail leading to a sub-diffusive 236 

process. 237 

Gonzalez et al. [17] also focused on distances covered by people. 238 

In particular they analyzed mobile phone users for a six-month pe- 239 

riod in a large area. They found that the distribution of the dis- 240 

tance between two consecutive calls is well approximated by a 241 

truncated power-law. Moreover, each individual tends to return to 242 

a few frequented locations with high probability. 243 

Rhee et al. [33] were the first to deal with the statistical prop- 244 

erties of human mobility using GPS traces. By analyzing GPS traces 245 

collected on a campus they reported that bursty hot spot sizes 246 

play an important role in causing the heavy-tail distribution of dis- 247 

tances in human walk. They show that visit points are clustered 248 

and that pause time distribution in hot spots follows a truncated 249 

Pareto. 250 

A recent study cast some doubts on the power law distribution 251 

of the distance as a universal feature of human mobility. In fact 252 

Noulas et al. [27] focused on human mobility patterns in a large 253 

number of cities. Mobility data have been retrieved from mobile 254 

location-based social services. They first observed that mobility, 255 

when measured as a function of distance, does not exhibit uni- 256 

versal patterns. By contrast, considering another variable, they 257 

obtained more general results for all cities. Precisely, they discov- 258 

ered that the probability of transiting from one location to another 259 

is inversely proportional to a power of their rank, i.e. the number 260 

of intervening opportunities between them. 261 

Other works investigate characteristics other than distance. For 262 

instance, Song et al. [35] studied the predictability of human tra- 263 

jectories derived from the estimated entropy of the mobile phone 264 

data. The predictability is centered around 93% over a large pop- 265 
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oints shares a common point. A further preprocessing procedure,

hich removes GPS points corresponding to limited movements, is

ntroduced to improve the performance of the algorithm. The ex-

erimental results indicate great improvements in terms of both

ecall and precision w.r.t. those obtained from the k -means algo-

ithm. A similar approach has been adopted by Zheng et al. [38,39] .

hey applied a density based clustering algorithm (OPTICS [5] ) to

xtract significant locations in order to infer transportation modes

nd to predict users’ preferred locations. Our definitions, which

nherit preferred locations and the extraction algorithm, are in-

pired by the above methods. Nevertheless, in comparison with

hese works, we propose a more general definition of stay-location

hat enables us to consider temporal reappearances at the same

lace. 

.2. Statistical analysis of mobility. 
Spatial mobility patterns have been analyzed in different dis- 

iplines, from physics to pervasive computing. Works from the 

hysicists’ community focus on concepts from statistical mechan- 

cs and thermodynamics. Their main goal is to identify what kind 

f diffusion process is able to best reproduce human mobility. For 

hese reasons they analyze the displacement and the length of 

ovements, searching for evidence of sub- or super-diffusive pro- 

esses. On the contrary, works from computer science focus more 

n human mobility properties, which can be exploited in the de- 
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lation, independently of the size of the area covered by indi-

iduals’ mobility or other demographic factors. Probably, the high

redictability is obtained based on low resolution positioning data

ince the average size of a ’location’ is roughly 3 km 

2 . For higher

esolution positioning data such as the GeoLife dataset, Lin and

su [23] showed that a high predictability is still present at fine

patial/temporal resolutions. However, they observed an invariance

etween the predictability and spatial resolution. In other words,

e cannot obtain a high prediction accuracy and spatial precision

imultaneously. 

Kim et al. [21] used Access Point (AP) log data to extract infor-

ation about users’ movements and pause times but they did not

are about location distances in computing users’ transition proba-

ilities. They found that pause time and speed distributions follow

 log-normal distribution and that the directions of movement fol-

ow the direction of popular roads and walkways on the campus

howing a symmetry across 180 °. 

.3. Home/workplace recognition from cellular network data 

A great effort has been devoted to the assessment of the vis-

ted locations, trying to assign a particular meaning to each of
hem. Among the different problems in the evaluation of the loca- 286 

ion semantic, we focus on the detection of home and work places 287 

rom cellular network data, based on the frequency of daily visits, 288 

.k.a. relevance. To solve the aforementioned issue, Isaacman et al. 289 

19] have proposed a technique based on clustering and regression 290 

rties of human mobility, Computer Communications (2016), 
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 379 
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a  384 
to identify important places then assign them a semantic such as

home and work. By contrast, Csaji et al. [12] have combined prin-

cipal component analysis with clustering to robustly identify home

and work places. Finally, Arai and Shibasaki [6] have proposed a

methodology for the estimation of home and work locations based

on time windows. After recognizing important places according to

the length of stay and frequency of visits, they base the home/work

identification on core hours at home/work. Most of the approaches

require knowledge of the tower position (GPS or place names),

but this information is not always available. So the strategies and

methodologies proposed in above literatures are not applicable in

our case. 

An identification method not founded on knowledge of the

tower positions has been presented by Alhasoun et al. [4] . In their

work they identify the places where each user is more active (call)

by dividing a day into daytime and night. Home is the most ac-

tive place during the night window, while work is the most ac-

tive location during the day. Apart from being time window de-

pendent, the method does not consider regularity in visiting places

as the main feature defining home and work. However, it is com-

monly accepted that most users regularly visit and commute be-

tween home and place of work on workdays. Thus, solely the num-

ber of activities is not a good indicator for home and work, since

users may make a burst of on-phone activities in places which are

not frequently and regularly visited. 

In [15] the authors analyzed call and Bluetooth logs of approx-

imately a hundred users for a duration of nine months in order

to identify a structure in the daily life routine of mobile users.

They attempted to quantify the amount of predictable structure in

an individual’s life using an information entropy metric. They ex-

pected people with low-entropy lives to be more predictable across

all time scales. By using the discovered patterns and contextu-

alized proximity information extracted from Bluetooth logs, they

proposed a model for identifying location and activities. 

3. Datasets 

Since smartphones are carried by people, they can capture

movement patterns and behavioral aspects of their human carri-

ers [22] . These mobile devices enable the development of data col-

lection tools to record various behavioral aspects of users, ranging

from how the device is used across different contexts to the anal-

ysis of spatial, temporal and social dimensions of users’ everyday

lives, through sources such as GPS, call and SMS logs and Internet

accesses. 

In our paper we exploit all these data in order to highlight

mobility features common to different scenarios and geographi-

cal areas. Specifically, we performed our studies over four different

datasets. The first two datasets are Call Detail Records of smart-

phones collected by a mobile operator. The third dataset is mainly

composed of trajectories, while the fourth consists of continuously

sampled location data – with both sets collected by means of GPS

technology. The first two datasets have different characteristics in

terms of spatial and temporal distribution of the visited places w.r.t

the other two databases. We will discuss each dataset in greater

detail in the next sections. By showing the validity of our approach

in different types of datasets, we demonstrate the independence of

our results from the dataset characteristics. So, the novel features

and properties we are able to derive in this work are independent

of the analyzed scenario. 

3.1. Call Detail Records datasets 
In our research we used two smartphone datasets collected in 

the metropolitan area of Milan, Italy. This type of dataset, known 

as Call Detail Records, is collected automatically by the cellular 
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a  386 

t  387 

i  388 

Please cite this article as: M. Papandrea et al., On the prope

http://dx.doi.org/10.1016/j.comcom.2016.03.022 
ig. 1. The format and a small sample of the call, SMS and Internet records. The last

ample reports a mobility trace that combines the locations given by call, SMS and

nternet records associated to a random user. Bold and green entries highlight the

roblems related to the temporal sparsity of CDR traces. (For interpretation of the

eferences to color in this figure legend, the reader is referred to the web version

f this article). 

etwork operators for billing purposes. The first dataset includes

7 sampling days (May 1st –17th, 2013) and covers the whole

etropolitan area, i.e. the city of Milan and surrounding districts;

he second includes 67 days (March 26th –May 31st, 2012) and is

imited to the city proper. When a user makes a call, sends a text

essage or accesses the Internet, the user id, the cell id of the han-

ling towers, and also the date and time of established contacts

re all recorded. In Fig. 1 we report a small sample for each kind

f recorded activity accompanied by a mobility trace that comes

rom combining the CDR entries. One of the advantages of this

ataset with respect to other datasets [3,10,12,17,19] is the chance

o leverage the Internet access data for purposes of mobility pat-

ern analysis [4] . Although CDRs are rich sources for studying and

nalyzing human activities in different fields, they have two sig-

ificant drawbacks as to providing location information. Both the

patial and the temporal granularities of CDR data are quite coarse.

patially, CDRs are accurate only up to the granularity of cell tow-

rs spacing, which varies from a few hundred meters in urban ar-

as to several kilometers in rural areas. Moreover, in our datasets

he cell position is not available (see Fig. 1 ). Temporally, CDRs are

enerated only when phones are actively involved in a voice call,

ext message or Internet access. For instance, in Fig. 1 we report a

emporal gap on the same day (first green lines) and a 4-day long

eriod (last green lines). From here on in, we denote the 17-day

ataset as CDR-17 and the 67-day one as CDR-67. 

.2. Trajectories dataset 

We used the trajectories dataset collected in the GeoLife project

nd released by Microsoft Research Asia [38] . The dataset consists

f a collection of GPS coordinates related to the movements of

78 people in a period of over 4 years. In the Microsoft experi-

ent, people are equipped with GPS loggers or GPS-phones. Over-

ll the dataset provides 17,621 trajectories with a total distance of

,251,654 km and a total duration of 48,203 h . For purposes of our

nalysis, which is centered on the PoIs visited by the users during

heir daily lives, the most interesting characteristic of this dataset

s its temporal and spatial fine granularity: namely, 91% of the GPS
rties of human mobility, Computer Communications (2016), 
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ig. 2. On the top a sample of a GPS trace. The records in (a) capture a movement b

tops are close to PoIs). The map (a) shows the two locations. The path from 1 to 

ap concerning a user located at the same PoI. The user stays in position 1 for 9 m

rajectory are recorded with a dense representation, every 1 –5 s or

very 5 –10 m per location sample. However, the dataset has been

uilt for the transportation prediction task, and thus does not di-

ectly characterize places. For this reason we developed a method-

logy to extract the places visited during the day, as briefly intro-

uced in Section 3.4 and explained more in detail in Appendix A.2 .

n Fig. 2 we report and visualize on the map two small samples

aken from a user’s trajectory. They illustrate two typical issues

hich will be further discussed in the next section. 

.3. Continuous mobility dataset 

Although GeoLife represents the most reliable dataset pub-

icly available, even after pre-processing its nature remains trajec-

ory centered, and it differs from a continuously sampled dataset.

he main difference between the trajectories and the continuous

atasets consists of the fact that the first one contains only loca-

ion samples related to movements among PoIs, while the second

ne also includes location data collected while visiting PoIs. For a

learer idea of the difference between the two types of dataset,

e can think about how the mobile device collects the data: while

ollecting traces for a trajectory dataset, the user starts the lo-

ation sampling as soon as he/she starts traveling on a path to

 certain destination, and he/she stops the sampling as soon as

e/she reaches the desired location; by contrast, while collect-

ng continuous location data, after starting the sampling appli-

ation on the mobile phone (in our continuous mobility dataset

he sampling-start is automatic, performed by a background pro-

ess at the phone bootstrap), it never stops unless the phone gets

witched off. As opposed to the Microsoft one, which is a large

ataset collected in a metropolitan area, we collected a dataset of

ontinuously sampled coordinates locally in a small city environ-

ent during users’ daily routine. We performed an experiment to

ollect traces over a time period of 20 days, from a group of 12

sers [29] . The data collection system has been installed on the

rimary mobile phone of the users, to ensure they continuously

arry it with them. The mobile phone sampling service performs a

ocation reading every 60 s . The location information is provided

y the Android OS Localization Manager, which queries both GPS

nd Network (WiFi or UMTS) Providers, so ensuring a continuous

ocalization both outdoors and indoors. A sample of the resulting
Please cite this article as: M. Papandrea et al., On the prope
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n two PoIs not registered by the GPS device maybe due to the loss of signal (metro

wed by the user is missing due the loss of the signal. In (b) we report a temporal

n, after 9 min , s/he reappears in the close position 2. 

obility trace is shown in Fig. 3 , where, in addition to the geo-

raphic position, we report other information such as the speed,

he bearing and the accuracy of the measurement. The service

uns continuously, collecting data 24/7 in the best of cases, for the

hole duration of the experiment. For reasons of privacy , we gave

he users the option of pausing the service manually. Thus, the col-

ected data may present some holes rather than running non-stop

4/7. 

.4. PoI extraction 

In Appendix A we describe how we prepared our data to ob-

ain a homogeneous description of people mobility. For a variety of

easons, each dataset needed to be pre-processed firstly in order to

et the useful information and to make the users’ traces fit for our

urposes and analyses, and secondly to reconduct all the datasets

o a unique representation, i.e. a sequence of temporal annotated

oints of Interest (PoIs). 

Given the different nature of the employed datasets, the char-

cteristics of a PoI change slightly with respect to the analyzed

ata. Yet, its main meaning remains the same: namely, it is a place

r area which is visited by a user. For the CDR datasets, a PoI

s identified by a cell where a user is performing an on-phone

ctivity (e.g., call, SMS, Internet access). However, for the Trajec-

ory dataset, a PoI is identified by a place where the user is ei-

her standing still (data gap between consecutive trajectories) or

n area within which the user is moving very slowly. Similarly,

or the Continuous dataset, a PoI is identified by a high density of

ampled location data. This corresponds to a standstill activity on

he part of the user or to slow movements within a limited area.

ore details about the PoIs extraction methodology are presented

n Appendix A . 

The characteristics of the four datasets after the different pre-

rocessing phases have been summarized in Table 1 . The following

nalysis of the mobility behaviors is going to be based on the pre-

rocessed datasets. 

. Relevance 

We adopt a single user viewpoint to measure the importance

f a PoI for a specific user. In particular, we are interested in
rties of human mobility, Computer Communications (2016), 
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ides the position we have information about the accuracy of the measurement and the 

ap we visualize the first five lines of the sample. 
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Fig. 3. The format and a sample taken from the continuous mobility dataset. Bes

technology leveraged to measure the position (Android Location Provider). In the m

Table 1 

Summary about the four datasets: cardinality of

number of days each trace spans at least and the

Datasets Number of users 

Before preprocessing After p

CDR-17 1,291,416 543,08

CDR-67 734,149 17,400 

Trajectories 178 21 

Continuous 12 7 

a

Fig. 4. Cumulative distribution function (CDF) of the relevance. In (a) the relevanc

and continuous mobility datasets. 

evaluating the relevance of a place in the user’s daily mobility. The

relevance R of a PoI P for a user u is defined as: 

R (P, u ) = 

d visit (P, u ) 

d total 

(1)

where d visit ( P ) is the number of days a given PoI P has been visited

(one or more times) by the user u and d total is the total number of

sampling days, i.e. it is the fraction of days the user has visited this

PoI. Thus, R ( P , u ) represents the probability that the user u visits

the PoI P on any one day. We choose the day as temporal metric as

it represents the fundamental time window when considering life

routine of individuals. By means of the relevance we can capture

how likely it is that an individual will move towards a place or

return to it according to his/her tracking history. 

The relevance distributions obtained from all traces are shown

in Fig. 4 . CDR-17 and CDR-67 datasets, shown in Fig. 4 a, exhibit
Please cite this article as: M. Papandrea et al., On the prope
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essing 

17 12,898 

67 5 398 

20 3120 

14 115 

ributions in the CDR datasets. In (b) the relevance distributions in the trajectories

he same behavior, where a huge number of PoIs are visited only

 few times, while some other PoIs are visited quite frequently

almost daily) and have a very high value of relevance. The me-

ian values are approximately 0.65 across datasets accounting for

 highly regular pattern of PoI visits. A more pronounced trend

haracterizes the relevance distributions in the GPS traces, as re-

orted in Fig. 4 b. Here we measure a lower value of the medians,

hich implies a higher number of places scarcely visited. Despite

he fact that datasets are very different in nature, these results are

ery similar, thus confirming the generalizability of the relevance

etric. 

. Relevance classes 

People visit several PoIs per day, but different places play dif-

erent roles in their lives. We propose the following PoI taxonomy
rties of human mobility, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.03.022
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Fig. 5. Three classes of relevance in a sampled user. 
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rganized in three classes, where each class accounts for places

ith different im portance and semantic values in the user’s daily

ife. As the importance of a place for a user is revealed by the fre-

uency with which s/he happens to visit it, we resort to using rel-

vance to measure it. 

• Mostly Visited PoIs (MVP): locations most frequently visited by

the user. We can easily infer their semantic meaning, and asso-

ciate them to home location and work place. 
• Occasionally Visited PoIs (OVP): locations of interest for the

user, but visited just occasionally, such as the favourite place

locally for hanging out with friends. 
• Exceptionally Visited PoIs (EVP): rarely visited PoIs. 

The evaluation of the PoIs’ relevance allows us a straightforward

er-user identification of these three classes, as will be described

n the following section. But simply by examining the aggregated

elevance distribution shown in Fig. 4 we can assign most of the

robability distribution to the multitude of EVPs with very low rel-

vance. Meanwhile, the first set of points expresses the few albeit

ighly relevant MVPs. The central part of the distribution contains

VPs. 

.1. Relevance class detection algorithm 

Although the described classes of PoIs and their meanings are

hared among all users, the relevance class bounds we use to iden-

ify them could be different on a per-user basis and cannot be

xed a priori . This argument advocates a clustering algorithm that

daptively adjusts according to the single user’s mobility pattern.

n particular, we adopt an unsupervised approach which groups

he PoIs of a single user based on the PoI relevance and maximizes

heir separability. To this end we have chosen the k-means algo-

ithm. To avoid the problem related to the initial choice of the cen-

roids, we run 10 replicas of k-means with different initial seeds

nd choose the partition that minimizes the within-cluster sums of

oint-to-centroid distances, thus maximizing the separability. We

un k-means with k = 1 , 2 , 3 , then we assign to the user the num-

er of relevance classes corresponding to the value of k with the
Please cite this article as: M. Papandrea et al., On the prope
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est clustering performance, by choosing the value k which maxi-

izes the silhouette separability. In Fig. 5 , as an example we show

he result of the k-means, with k = 3 , clustering on a sampled user.

he EVP class (first box on the left) covers the range from 0.01 to

.12, the OVP (central box) spans the range from 0.16 to 0.46 and

he MVP class (first box on the right) contains only one PoI with

elevance 0.82. In GPS datasets the best separability is achieved by

 = 3 for nearly all users; however, the mobility captured by the

DR datasets is more varied and not every user satisfies the above

lassification. 

In this section, we apply the class detection algorithm described

bove on the PoIs derived from the different datasets and analyze

he obtained classes to extract their features. 

.1.1. Trajectories and continuous mobility datasets 

For each user, we apply the k-means algorithm (as explained

n Section 5.1 for nearly all users the best separability is achieved

y k = 3 ) to classify the related PoIs in three main classes of rel-

vance (4) and over these classes we study three main features:

i) the number of PoIs which reside within each class of relevance,

ii) the percentage of time spent in each class and (iii) the average

ime of the visits to the PoIs of the classes. 

The adoption of a clustering algorithm for detecting the three

elevance classes allows us to adaptively select their bounds and

void the choice of fixed thresholds. In fact, the application of a

lustering algorithm best suits the diverse human mobility pat-

erns and mitigates the spatio-temporal heterogeneity which char-

cterizes the trajectories dataset. However the clustering of the rel-

vance for each single user could generate overlappings among the

lasses of different users. For instance, relevance values which be-

ong to the OVP class for a user could correspond to the MVP class

or another user. To verify whether that marginally happens, in

ig. 6 we report the probability density function of the relevance

or each class, obtained by kernel density estimation (KDE). We

ote that the three distributions are separable in both datasets.

his suggests that the classes boundaries are similar among the

sers. 

In Fig. 7 we represent the per-user number of PoIs associated to

ach class of relevance. In Fig. 7 a we can observe the pronounced
rties of human mobility, Computer Communications (2016), 
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continuous mobility datasets. 
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behavior of the user. In the trajectories dataset (see Fig. 8 a) some 589 

of the users tend to spend a long time in their MVPs, while other 590 

users have very long visit times in OVPs. Otherwise, in the contin- 591 

uous mobility dataset the behaviors are more pronounced as users 592 

usually spend more time in the MVPs. However, by considering the 593 

PoIs classification, we can see that MVPs and OVPs are equally rel- 594 

evant to the user, even if MVPs are visited more frequently than 595 

OVPs. Instead, EVPs are locations that are not really important to 596 

the user; they are where (according to the figure) s/he spends on 597 

average a shorter span of time. 598 
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and its average value is 1.76. As expected, each user has a very

small number of preferred locations (MVPs) which are visited daily

(e.g., home, work place), and a higher yet still limited number of

locations of interest (OVPs) which are visited with a lower fre-

quency (e.g., gym, favorite restaurant, parent’s house). As we note

in Fig. 7 b the same behavior has been observed, with a few ex-

ceptions, in the continuous mobility dataset. In this dataset the av-

erage number of MVPs is similar (1.8) to the trajectories dataset,

while the average number of OVPs is lower, due to a shorter ob-

servation period. 

Fig. 8 shows the average visiting times in the PoIs, grouped ac-

cording to their class of relevance, and extracted from the trajec-

tories and the continuous mobility datasets. From the figures we

observe that for all users the average EVP visiting time is very lim-

ited and on average lower than one hour in both datasets. As for

the OVP and MVP visiting times, the scenario is more faceted since

the average visiting time for these classes depends on the mobility
Please cite this article as: M. Papandrea et al., On the prope
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hree different classes of relevance. According to this figure, a user

ends to spend half or more than half of the total time in the MVPs

nd the rest of the time is almost equally distributed between the

VPs and the OVPs. 

.1.2. CDR datasets 

Smartphone traces differ from GPS datasets in many respects, as

iscussed in Section 3 , both meaning and characteristics of PoIs ex-

racted from these datasets are radically different, especially with

eference to the relevance classes. First of all, the spatial granular-

ty of PoIs is wider in smartphone data than in GPS data. In the

ormer case, an urban PoI coincides with a cell tower and approx-

mates a hexagon with a few hundred meters side. When a PoI

s extracted from the GPS trajectory (see Section Appendix A ) it

pproximates a circle with a radius of 60 m. Consequently, a PoI

xtracted from a CDR dataset could actually aggregate other PoIs.
rties of human mobility, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.03.022
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Fig. 10. Probability density function estimated through KDE (kernel density estimation) of the relevance in each class. EVP and MVP functions have been resized for a better 

visualization. Classes are separable. 

Table 2 

Users’ distribution among groups identified by the number of 

mined relevance classes. 

Group Percentage of users (%) Distinct visited cells 

CDR-17 CDR-67 CDR-17 CDR-67 

1 25.16 18.42 11,534 2 509 

2 46.37 47.6 11,689 2 845 

3 26.94 33.97 11,425 2 643 
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his would require the finer grain of the GPS to emerge. For in-

tance, a cell-based PoI could aggregate workplace and coffee shop

r home and nearby stores. Moreover, the CDR datasets only record

he cell where the user is performing a phone activity. As a result,

he number of visited PoIs that can be extracted from a phone call

ataset is smaller than the one obtained from trajectory datasets. 

Users with fewer than 3 PoIs have been discarded: nevertheless,

hey represent only 1.53% and 0.01% of the users in the 67- and

7-day CDR traces, respectively. For all of the other users, we apply

he k-means algorithm, as explained in Section 5.1 . While in the

PS datasets for nearly all users the best separability was achieved

y k = 3 , in the CDR datasets the aggregation of PoIs in broader

ells led to different results. For many users, PoIs clusterization ac-

ording to their relevance achieves better performance when two

k-means with k = 2 ) or one (k-means with k = 1 ) classes are con-

idered. Thus we consider three groups of users, each character-

zed by the number of relevance classes achieving the best perfor-

ance in PoIs k-means clustering. The distribution of users among

hese groups is reported in Table 2 . Only for about one third of

sers, those belonging to group 3, it is possible to identify all three

lasses of PoIs: MVP, OVP, EVP. 

As mentioned above, the difference of k-mean algorithm output

s due mainly to the spatio-temporal nature of CDR traces. For this

eason, we limit our discussion to the 3-relevance class group. 

In Fig. 10 a and b we show the distributions of the relevance

haracterizing MVPs, OVPs and EVPs in CDR-17 and CDR-67, re-

pectively. In both CDR datasets, the relevance distributions re-

eal the high level of separability of the relevance classes. Besides,

VPs relevance is much higher than EVP and OVP ones, accounting

or places actually visited very frequently and regularly, versus the

wo other classes which are visited occasionally and exceptionally. 

In Fig. 11 we represent the distribution of the number of dis-

inct visited cells per user for each relevance class. In both cases,

VP and OVP distributions exhibit a heavy-tail behavior, while the

VP class covers a larger interval of relevance values. This result

atches the location preference property in human mobility ob-

erved in [17,36] . Moreover, we observe that the per-user number

f distinct visited places increases when moving from 17- to 67-
Please cite this article as: M. Papandrea et al., On the prope
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ig. 11. Distributions of number of distinct visited cells in group 3 in the different

elevance classes. 
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Fig. 12. Percentage of PoIs in the relevance classes. 

ay CDR traces, with the consequence that the number of visited

oIs grows over time. 

Finally, we enhance the generalizability of the feature of rele-

ance class throughout different datasets by analyzing the percent-

ge of PoIs lying in the 3 classes, as reported in Fig. 12 . The behav-

or is quite similar for all datasets. Most points belong to the EVP

lass; there are very few MVPs, while OVPs account for a number

f places similar to the MVPs class. 

We can therefore conclude that the classification we identified

n terms of relevance at the beginning of this section (MVPs, OVPs,

VPs) is generally significant, since the distribution of the per-user

umber of PoIs associated to each class of relevance is similar

cross datasets with very different characteristics. We have shown

hat, independently of the dataset characteristics, the points visited

y people fall mainly in the EVP class. However, most of the peo-

le spend most of their time in MVPs or OVPs; many of them can

e found more than half of the time in MVPs. 
rties of human mobility, Computer Communications (2016), 
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Fig. 13. (a) Complementary cumulative distribution function of the distance between consecutive PoIs for both datasets.(b) Complementary cumulative distribution function 

of the transfer time between consecutive PoIs for both datasets. 

6. Time distance versus spatial distance 671 

All mobility studies and models in literature are based on the 672 

geographic distance between places: they assume that this is what 673 

underlies people’s reasoning when moving. On the other hand, all 674 

services supporting human mobility – Google Maps, for instance –675 

recognize that to a great extent people give priority to saving time. 676 

In fact, beyond the geographic distance, they compute the dis- 677 

tance timewise between places for different modes of transporta- 678 

tion. This is all the truer in cities where many different transporta- 679 

tion systems offer people the opportunity to a minimum amount 680 

of time they need to get around town. Urban transportation sys- 681 

tems per se are designed to minimize travel time by leveraging 682 

time-based and isochrone maps. 683 

We aim to fill the gap between research studies and real-world 684 

mobility by analyzing the spatial and temporal distances between 685 

PoIs and the degree of correlation between them. This analysis 686 

is preliminary to the studying of the PoIs transition rules, since 687 

geographic distances, commuting time and PoIs relevance classes 688 

come into play in the decision process of the next PoI to be visited 689 

by individuals. The spatio-temporal features correlation requires a 690 

high level of accuracy. That’s why we limit our analysis to GPS- 691 

based datasets. They provide a very high level of precision about 692 

the position, while the CDR-based data have coarse granularity 693 

and, in our case, the location of the cellular towers is unavailable. 694 

695 
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 715 

Table 3 

Pearson correlation coefficient ( ρ) 

between geographical distances and 

transfer times on the trajectories and 

continuous mobility datasets. 

Dataset ρ

Continuous mobility dataset 0.4 

Trajectories dataset 0.1 

tail of the geographic distance distributions. Specifically, whereas 716 

in the spatial case both distributions have the same trend except 717 

in the tail, if we consider the transfer time, we see that people be- 718 

have differently. In fact the cut-off values are totally different; one 719 

and a half hours circa in the continuous dataset, and 4–5 h in the 720 

GeoLife dataset. 721 

The impact of this observation is fundamental as it suggests 722 

that time and space do not always match and are not always pro- 723 

portional. In particular, they do not match whenever long geo- 724 

graphic distances are considered. We argue that the shorter tail 725 

in the time distribution is due to the fact that, in contrast to ge- 726 

ographic distance distribution, in the time transfer analysis there 727 
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6.1. Geographic distance 

We measure the geographic distance between the departure PoI

D and the arrival PoI A by considering their centroids and adopt-

ing the haversine formula to incorporate the Earth curvature. Some

works in the literature [17,33] have shown that the distance trav-

eled and the radius of gyration follow a Pareto distribution with an

exponential cut-off due to the spatial limits of human mobility and

suggest that human movements can be modeled by a Levy-walk

process. As evident in Fig. 13 a, we qualitatively observe the same

kind of distribution in both datasets up to different geographic lim-

its (longer tail in the GeoLife Project dataset). Consequently, these

results are a further validation of previous works where only the

spatial distance is considered for describing mobility of human

beings [17] . 

6.2. Transfer time 

Taking inspiration from real life and from studies in urban plan-

ning, we do not limit our analysis to geographic distance. Rather,

we observe that distance can also be expressed in terms of transfer

time, i.e. the time needed to move from departure PoI D to arrival

PoI A . The transfer time distribution of the dataset, as shown in

Fig. 13 b, is also a power-law with a cut-off but it smooths the long
Please cite this article as: M. Papandrea et al., On the prope
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re fewer occurrences of events far from the mean. It is unusual to

pend more than a few hours in commuting between PoIs, while

t is not unusual for the PoIs to be far from one another yet con-

ected by fast transportation media. 

.3. Time transfer and geographical distance correlation 

In our daily lives, we decide to move towards a particular place

f we have enough time; by contrast, the current mobility analysis

s driven only by the geographic distance. This dichotomy derives

rom the implicit assumption that time and distance are strictly

elated. Although this is roughly true on small scales, we find that

he same does not hold in full when the mobility extends to, for

nstance, metropolitan or regional areas. To shed light on this as-

ect of human mobility we have computed the Pearson correla-

ion coefficient between geographic distances and transfer times

n both datasets, defined as: 

(t t , �r) = 

σ(t t , �r) 

σtt ∗ σ�r 

(2)

here σ ( tt , �r ) is the covariance between the temporal and the ge-

graphic distances respectively, σ tt and σ�r indicate their standard

eviations. 

As shown by Table 3 , when applied to the continuous mobil-

ty dataset, the Pearson coefficient is equal to 0.4. This indicates a

mall/medium degree of correlation; however, if we consider the

eoLife dataset it is equal to 0.1, meaning that the two quanti-

ies are not correlated. The above results indicate that in wider ar-

as the adoption of different commuting strategies decreases the
rties of human mobility, Computer Communications (2016), 
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Fig. 14. Relation between the traveled distance and the transfer time. Red dots de- 

note the sample extracted from the GeoLife dataset and the blue line represents 

the mean trend (error bars correspond to the standard deviation). (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article). 

proportionality between the transfer time and the distance, typi- 752 

cal of movement in small regions. Moreover they strengthen the 753 

difference between time and the geographic gap when measuring 754 

the distance among PoIs. To highlight this difference we show in 755 

Fig. 14 the relation between geographic distance and transfer time. 756 

Considering a displacement typical of the urban/metropolitan area, 757 

we observe that the average transfer time has a sub-linear trend 758 

that accounts for the increasing speed of the different forms of 759 

transportation adopted to contract the geographic distances. This 760 

observation corroborates the intuition that temporal and spatial 761 

metrics capture different distances as the latter contracts the for- 762 

mer. In particular these two factors should be considered sepa- 763 

r  764 

i765 

 766 

a  767 

F e PoI  

y t 500  

t ss = C  

I f the r  

t

fect people’s commuting between PoIs; in particular we want to 768 

measure the impact of the aforementioned features on the choice 769 

of the arrival PoI. Let us consider the transfers between the two 770 

PoIs D and A . Each transfer is characterized by the geographic dis- 771 

tance between the two PoIs, the transfer time, the class of rele- 772 

vance of departure PoI D and the class of relevance of arrival PoI 773 

A . Given the relevance class of a destination, first we study the ge- 774 

ographic distance or the transfer time a user is willing to spend. 775 

Second, we characterize the mobility among relevance classes ex- 776 

ploring the probability of passing from class to class. 777 

7. Transition rules 778 

The human decision to move from one point to another 779 

emerges from a complex decision making process that is influ- 780 

enced by a variety of human and contextual behaviors. To improve 781 

the understanding of this process, we want to measure the impact 782 

of relevance, distance and time on the chance to get to a given 783 

arrival PoI A . 784 

We start by investigating the impact of the geographic distance 785 

on the destination’s selection process. To this end, we specifically 786 

analyze human behavior for the three relevance classes, EVP, OVP 787 

and MVP and we group the distance values in 500 m bins. As 788 

shown in Fig. 15 a and c where the joint probability of distances 789 

and classes is depicted, the behavior is very similar in both tra- 790 

jectories and continuous datasets. In all three relevance classes of 791 

destination we note a nonmonotone decrease of the visiting prob- 792 

ability with a nonnegligible probability that people move also to- 793 

ward more distant PoIs, as predicted by a Levy-walk process and 794 

indicated by some peaks of brighter color in the right part of 795 

Fig. 15 a and c. 796 
ately whenever we study their impact on the human decisions

nvolving the choice of the next destination. 

Once the features characterizing the PoIs and the movement

mong them are illustrated, we aim to understand how they af-

ig. 15. a) and c): Joint probability distribution of the distance between consecutiv

ellow and white squares represent higher probability. As regards distance we adop

ransfer time between consecutive PoIs and the relevance classes P(x ≤ tt < x + δ, cla

n this case, we adopt 20 min bins from 0 to 4 h ( δ = 20 min) . (For interpretation o

his article). 
Please cite this article as: M. Papandrea et al., On the prope

http://dx.doi.org/10.1016/j.comcom.2016.03.022 
s and the relevance classes, P(x ≤ �r < x + δ, class = C) . According to the heat bar,

m bins from 0 to 20 km ( δ = 500 m). b and d: Joint probability distribution of the

) . According to the heat bar, yellow and white squares represent higher probability.

eferences to color in this figure legend, the reader is referred to the web version of
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ents the conditional probability to move from a PoI in a class c 1 to a PoI in a class c 2 , i.e. 

axis t

 797 

 798 

 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

832 

 833 

c  834 

i  835 

F  836 

t  837 

t  838 

e  839 

s  840 

t  841 

m 842 

8 843 

 844 

c  845 

a  846 

t  847 

t  848 

m  849 

i  850 

a  851 

a  852 

t 853 

 854 

a  855 

o  856 

a  857 

s  858 

f  859 

t  860 

i  861 

p  862 

d  863 

t  864 

s  865 

a  866 
Fig. 16. a and b: Transition probability among relevance classes. Each square repres

P(C new = c 2 | C old = c 1 ) . On the x -axis the conditioning variable C old and the on the y -

A different behavior can be observed when we consider the

transfer time instead of the geographic distance. The visiting prob-

ability in the OVP and MVP is monotonically decreasing (color

blurs from white to dark brown) with the temporal distance and

reaches values close to zero according to different cut-off values, as

shown in Fig. 15 b and d. This demonstrates that the transfer deci-

sion process of individuals is driven by the time they need to get to

a place, as people are prone to focus on saving time. This observa-

tion advocates the paradigm shift in the analysis of human mobil-

ity we observed in Section 6 : the amount of time, not the distance,

is the main parameter governing human decisions about movements .

Furthermore, although non monotone, the transfer time trend in

the EVP is much smoother than in the geographic case. In partic-

ular, we can say that people who want to visit EVPs are willing

to spend more time to reach these places, as the highest proba-

bilities shift to 2–3 h . This is due to the fact that a technologi-

cal component affects human mobility, too, as people use different

transportation means for different scales of distance. When peo-

ple move in small areas, as in the continuous mobility dataset and

in the right part of Fig. 14 , the commutation times do not differ

much w.r.t different types of transportation. By contrast, when we

consider a large dataset, the commutation times are highly affected

by the means of transport. 

Finally, the impact of the class of relevance of the departure PoI

is independent of the scale of the scenario when we analyze the

conditional probability to move from a PoI in a class c 1 to a PoI

in a class c 2 . As we can note in comparing Fig. 16 a and b, both

GPS-based datasets present the same characteristic despite the dif-

ferent geographic areas they span. Even if the conditional probabil-

ities are heavily affected by the great number of EVPs, people com-

mute to/from OVPs from/to MVPs, i.e. occasionally visited locations

such as pub or free time spaces are related to home/work places

(most visited PoIs). Clearly, even if people have to cover longer dis-

tances, they keep on moving between the places they frequent the

most (MVPs: home and work), and some other OVPs (e.g. gym),

and distance affects only the transitions to EVPs. 
Please cite this article as: M. Papandrea et al., On the prope
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he conditioned variable C new . 

CDR traces present contrasting results. In Fig. 16 c and d the

onditional probabilities of moving among the relevance classes

n CDR-17 and CDR-67, respectively, are depicted. As shown in

ig. 16 c, we observe that the most probable movements occur be-

ween the same classes, i.e. the relevance class of the destina-

ion will likely be the same class as the departure location. Oth-

rwise, movements among different classes are less probable. The

cenario and the mobility habits change in the CDR-67 dataset. In

his case (see Fig. 16 d), as in the GPS datasets, people mainly com-

ute to/from MVPs from/to OVPs. 

. Semantic analysis 

We have established that the locations visited by people can be

lassified in terms of their relevance as well as the rules that char-

cterize the mobility between them. However, it is also important

o understand the semantic value of such locations so as to bet-

er define human mobility. In particular, Home and Work are the

ost meaningful locations in human life. They are both character-

zed by a set of features, not shared with other places visited by

 user. First of all they are the places people visit more frequently

nd regularly than others. This characteristic is fully measured by

he relevance R described in the previous sections. 

Therefore we decide to exploit R to identify home and work

mong all visited places. Specifically, places belonging to the class

f most visited places (MVP) are the natural candidates for work

nd home identification as they have the highest relevance, as

hown in Fig. 10 a and b. Beyond this main measure, a set of other

eatures can help identifying home and work. Considering that

hese are the places where people spend the bulk of their lives, it

s also reasonable to assume that they are the places where people

erform the highest number of contact activities. Thus, we intro-

uce a feature to quantify this aspect. Finally, to distinguish be-

ween home and work, we argue that, on average, people rarely

pend most of the night at their workplace; therefore, we take into

ccount the initial time of on-phone activities. The overview of the
rties of human mobility, Computer Communications (2016), 
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Fig. 17. Home/Work place recognition process. (For interpretation of the references 

to color in this figure, the reader is referred to the web version of this article). 
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ecognition strategy is presented in Fig. 17 , and it is mainly based

n the relevance of a location. In the figure we represent only the

alues of the relevance which identify the MVP class for a given

ser. 

We then apply this strategy to the two CDR datasets, as the

wo other datasets present a smaller number of users (which is

tatistically less significant). Furthermore, CDR traces are more de-

anding for such an analysis. In fact, as already mentioned, the

DR traces do not ensure a continuous tracking. So, it happens that

ome locations are not recorded regularly. Also, the position of a

ell is not always a correct match w.r.t. the real user location, e.g.

n the case of a ping-pong effect between two very close cells [34] .

or this reason, CDR traces are perfect for illustrating that only the

elevance is not sufficient to identify a location, and that we need

o add some further features for assigning a meaning to the visited
laces. 

As evident in Fig. 17 , we identify three relevance intervals 

here we can look for home and work candidate locations. If a 

ocation belongs to the red interval (High RR- on the right), it be- 

omes the HOME. If more than one place have the same highest 

elevance due to the ping-pong effect, we recognize as HOME the 

lace where most of the user’s activities occur, discarding the other 

ocations in High RR from the candidates set for work recognition. 

ut as aforementioned, CDR traces are not punctual, so potentially 

he HOME location may not appear in the High RR interval. In this 

ase, we can have a situation where HOME and WORK both have 

edium relevance (Medium RR- orange middle interval). Conse- 

uently, we need to introduce a further feature: the starting time 

f contact activities. We distinguish between night and day time. 

ith this new feature, identifying contacts starting at nighttime, 

e again classify the highly ranked location as the HOME loca- 

ion. Otherwise, if it starts during day, we identify it as the WORK 

ocation. For low relevance (Low RR – on the left) home identifi- 

ation becomes less stringent since these users are very likely to 

ive outside the city and come into town only for work purposes, 

o we identify only the WORK location. This is further detailed in 

lgorithm 1 . The algorithm receives a list of locations and builds 

he heap H. In the heap, locations are primarily ordered by their 

elevance and by the number of activities on the part of user u in 

ase of relevance equality. At each iteration the algorithm extracts 

nd removes from the heap the maximum element and assigns it 

o the right relevance interval depicted in Fig. 17 . In the end the 

ariables H and W contain the home and work whereas they are 

etectable. 

The CDR traces we analyze are related to the urban area of Mi- 

an, which is why we consider the time interval 8 a.m. to 8 p.m. as 

ay time. Similarly, from the relevance distribution, we can clas- 

ify a point of interest as a location with high relevance when 

R > = 0 . 9 , i.e. being at home for at least 90% of the days. Medium 
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Algorithm 1: Home/Work Place Recognition. 

Data : L = list of the locations visited by the user u 

H, W = nul l ; 

H = heapi f y (L ); 

while H.size > 0 do 

L ← H.ext ract _ max () ; 

switch R (L, u ) do 

case R (L, u ) ≥ HighRR 

if H = null then H ← L ; 

end 

case R (L, u ) ∈ [ MediumRR, HighRR ) 
if Start time of contact activities during the NIGHT 

then 

if H = null then H ← L ; 

else 

if W = null then W ← L ; 

end 

end 

case R (L, u ) ∈ [ LowRR, MediumRR ) 

if Start time of contact activities during the DAY then 

if W = null then W ← L ; 

end 

end 

endsw 

end 

Table 4 

Percentage of recognized home/work locations. 

Dataset HOME WORK 

CDR-17 37 , 093 / 80 , 143 ≈ 46 . 28% 62 , 258 / 80 , 143 ≈ 77 . 68% 

CDR-67 2577/4578 ≈ 56.3% 3383/4578 ≈ 73.9% 

elevance corresponds to 0 . 8 < = RR < = 0 . 9 , which means visiting

 location at least 5–6 days per week. We classify the relevance

f a location as low as 0 . 65 < = RR < = 0 . 8 , which corresponds to 5

orking days and also possible holidays. Otherwise the informa-

ion is not significant. Also, the start time of the activities pro-

ides a semantic for distinguishing between home and work in

he case of medium relevance: home if it is between 8 p.m. and

 a.m. (when people are expected to be at home), work in all other

nstances. 

In Table 4 we report the number of users for whom the al-

orithm is able to recognize the home and work locations. Over-

ll we analyze 80,143 and 4 578 users belonging, respectively, to

DR-17 and CDR-67. Our methodology assigns a home location to

7,093 (46.28%) and 2 577 (56.3%) users, a work location to 62,258

77.68%) and 3 383 (73.9%) ones, respectively. For users with low

elevance in visiting MVP places, it is not possible to recognize

heir home/work places. Since a ground truth for the home/work

etection does not exist, the goodness of the recognition algorithm

s only partially verifiable. As already mentioned in Section 3 ,

e exploit the billing mechanism to get an approximation of the

round truth. In particular the billing system records an Internet

DR every day at midnight indicating the position of the user. The

ost visited location on weekdays at midnight can be reasonably

xpected to correspond to the home location. Since the billing sys-

em is operator-dependent and undocumented in most cases, we

ave decided not to include this heuristic in the detection algo-

ithm. Rather, we employ it in the evaluation. Keeping this setting,

e measure a true positive rate equal to 0.83 in CDR-67, which is
 good performance for the home detection task. 944 

rties of human mobility, Computer Communications (2016), 
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Table 5 

Conformity percentage of recognized Home/Work Places between Alhanson and 

Relevance based approaches. 

Dataset HOME WORK 

Cell level (%) Area level (%) Cell level (%) Area level (%) 

CDR-17 83 91.2 69.73 76.6 

CDR-67 83 91 56.5 77.74 

Relevance R
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Fig. 18. The CCDF distributions of the relevance of the places recognized as work 

places by Alhasoun’s approach but not identified as work places in our approach. 

Table 6 

Differences in the results among relevance-based and Alhanson approaches. 

Approach Dataset Relevance range Number of recognized 

Home places Work places Home places Work places 

Relevance CDR-17 0.80–1 0.65–0.90 37,093 62,258 
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975 

the duration of the collected datasets. Therefore, we can conclude 976 

that our approach based on relevance allows to reduce the num- 977 

ber of errors induced by the nature of CDR traces. Table 6 indicates 978 

the differences among the results obtained by the two approaches 979 

and highlights the relevance bounds which characterize home and 980 

work places extracted by Alhasoun’s approach. 981 

In the case of using GPS or WiFi datasets (high temporal conti- 982 

nuity) the approach would be similar to what is discussed above; 983 

all the same, pause time duration would be used instead of the 984 

number of contact activities. 985 

9. Conclusion and future work 986 

In this work we have taken a fresh look at the concept of loca- 987 

tion. We have proposed a general framework for extracting, char- 988 

acterizing, and classifying the Points of Interest of each individual 989 

according to their relevance for her/him. We have also proposed 990 

suitable metrics and algorithms to describe the semantic values of 991 

locations and the commuting rules among them. 992 

Our key observations are as follows: 993 

• individuals are regularly drawn to a limited set of locations 994 

where they spend most of their time; 995 

• they also spend a significant amount of time in locations they 996 

only visit once; 997 

• people commute between places based on temporal distance – 998 

not spatial distance – factors; 999 

• HOME and WORK are among the most frequently visited loca- 10 0 0 

tions, and, as such, the relevance R is a fundamental feature for 1001 

their semantic identification. 1002 
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based 

CDR-67 0.80–1 0.65–0.90 2577 3383 

Alhasoun CDR-17 0.42–0.88 0.27–0.93 80,143 80,143 

CDR-67 0.47–0.97 0.31–1 4578 4578 

In addition we want to show that the relevance is of paramount

importance and that our approach, where the main criteria is rel-

evance, has some advantages compared to similar approaches that

use different criteria. For that reason, we compare our algorithm to

the one proposed in Alhansoun et al. [4] which uses only the high-

est number of total contact activities in day and night windows, to

recognize home and work locations. The true positive rate of Al-

hansoun’s algorithm for the home detection task is 0.63 in CDR-

67, lower than the rate obtained by our algorithm. In Table 5 we

observe that there is 83% match of recognized home places be-

tween the two approaches. For work places, the percentage drops

to 69.73% and 56.5%, respectively, in CDR-17 and CDR-67 traces. If

we consider the spatial granularity of a tracking area (which cov-

ers several nearby cell towers) instead of a single cell tower, the

percentage of conformity between home places increases to 91.2

and 91, and the percentage between work places increases to 76.6

and 77.74 in CDR-17 and CDR-67. The differences in the recognized

home and work places between our approach and the one pre-

sented by Alhasoun et al. [4] are due to the poor correlation be-

tween number of contact activities in a place and its relevance. 

Fig. 18 depicts the distributions of relevance of places recog-

nized as work places by Alhasoun’s approach [4] , which are dif-

ferent from the places we recognize as work places. We observe

that the majority of the work places recognized by the approach

described in [4] have low relevance, as shown in Table 6 , although

they have the highest total number of contact activities (since they

get recognized). This means that most of these work places are

not visited regularly by users; they do have, however, the high-

est number of on-the-phone activities. Also, places that have rel-

evance higher than 0.9 can rarely be work places, since it is very
unlikely that people went to work almost every day throughout f  1035 
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These observations hold true across different datasets with

ompletely different properties. 

Based on above observations, we have derived a mobility

ramework where we are able to classify PoIs, the users and the

ay they move along PoIs, as well as the semantic meaning of

oIs. We have validated our framework with extensive experimen-

al work. 

These novel methods and results can change the way mobil-

ty is analyzed and modeled: we argue that, to produce more re-

listic mobility traces, a mobility model needs to consider (i) the

ew classifications of PoIs introduced, and (ii) the new features,

heir relationships and their different laws. Similarly, in localiza-

ion activity, such laws can enormously simplify the prediction of

he next location. In [29] , the use of PoIs classification allows us to

nhance the prediction (transition predictability) by a factor of 49%

fter fewer than 3 weeks of learning, while considerably reducing

he costs. Finally, our framework successfully and powerfully com-

ines social and physical characteristics, so it can serve as a basis

or social analysis of mobile complex networks. This can be used,

or example, in Recommendation Systems for Location Based So-

ial Networks [26] , where the next location can be recommended

ased on the class of locations that a user has already visited as

ell as on his/her own social history. 

ppendix A. Pre-processing and general statistics 

In this appendix we describe the filtering process and charac-

erize the datasets specifying their most important properties. In

articular we present some methods which allows us to reduce the

ifferent mobility traces to a sole representation, i.e. a sequence of

emporal annotated Points of Interest (PoIs). 

1. CDR datasets 

To extract mobility characteristics of individuals we need to

ave enough CDR samples to study the movement of users. There-

ore we select users with at least one activity per day in each trace
rties of human mobility, Computer Communications (2016), 
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Fig. A.19. (a) Distribution of the number of activities per user. (b) Distribution of the averaged number of activities per user per day. 

Table A.7 

The number of users and network cells in the CDR datasets. 

The last column reports the number of users that our analysis 
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In Fig. A.20 a we report the distributions of the number of dis- 1074 

tinct visited cells per user for each dataset. First of all, almost 90% 1075 

of users have visited fewer than 100 and 260 distinct cells, re- 1076 

spectively in CDR-17 and CDR-67 traces. This implies that most of 1077 

the people visit a limited number of cells (places), while only a 1078 

few of them visit a huge number of cells [36] . The CDF of CDR- 1079 

67 lies under the 17-day CDR trace, implying that over a longer 1080 

period people are more likely to discover and visit new places 1081 

[17] . The best fitted distributions (from those on the already men- 1082 

tioned list) of the number of distinct visited cells are Log-Normal 1083 

(3P) with parameters σ = 0 . 6108 , μ = 4 . 125 , γ = −14 . 693 and p- 1084 

value ≈ 0.646 for CDR-17, and Log-Logistic (3P) with parameters 1085 

α = 3 . 6538 , β = 183 . 1 and γ = −57 . 57 ( p - Value ≈ 0.6455) for the 1086 

CDR-67 dataset. In broader terms, the number of distinct visited 1087 

cells follows a heavy-tailed distribution. 1088 

Fig. A.20 b reports the CDF of the number of distinct visited cells 1089 

per day and per user. Most people visit on a daily basis a very low 1090 

number of cells, median values are 1 in CDR-67 and 2 in CDR-17; 1091 

but there is a long tail accounting for people who visit many cells 1092 

every day. As the considered mobility area is larger in the 17-day 1093 

CDR dataset, this dataset captures a higher number of locations 1094 

visited per day by users. 1095 

Although our CDR traces have a higher number of users than 1096 

t  1097 

m  1098 

o  1099 

b  1100 

n  1101 

f  1102 

a 1103 

A 1104 

 1105 

a  1106 

p  1107 

m  1108 

p  1109 

w  1110 

l  1111 

p  1112 

l 1113 

A 1114 

 1115 

G  1116 

b  1117 

a  1118 

d  1119 

a  1120 

a  1121 
is based on. 

Dataset Users Cells 

Users with at least one 

activity per day 

CDR-17 1,291,416 12,898 543,085 

CDR-67 734,149 5 398 17,400 

nd we restrict our analysis to this subset of users. Also, we com-

ine call/SMS and Internet traffic records to get more data about

sers’ positions. An Internet traffic record has the same format as

n SMS one. Specifically, it reports the position of the user ev-

ry 10 Mb of traffic and at midnight. This way, we can consider

s Points of Interest for a user, the cells he/she visits, i.e. where

e/she performs an on-the-phone activity. The number of users

nd the number of visited cells covered by each dataset have been

ndicated in Table A.7 . The results indicate the portion of active

sers w.r.t. the total number of users by increasing the geographic

rea. 

Fig. A.19 a reports the cumulative distribution function (CDF) of

he aggregated number of activities (SMS or call). To fit the em-

irical distributions, we compare different distributions, whose pa-

ameters have been estimated by MLE; and from those that pass

he Kolmogorov-Smirnov (KS) goodness-of-fit test, 2 we select the

odel which gets the lowest KS statistic. The evaluated distri-

utions are Log-Logistic (3P), Log-Logistic, Pearson, Log-Pearson,

og-Normal, Log-Normal (3P), Weibull (3P), Weibull, Gamma, Log-

amma, Exponential, Pareto, Levy, Chi-Squared. According to the

bove method the Log-Logistic (3P) distribution with parameters

= 2 . 4575 , β = 1978 . 8 and γ = 83 . 932 ( p -value ≈ 0.2632) ob-

ained the best result for CDR-67 traces. For CDR-17, none of the

entioned distributions passed the test. The average and standard

eviation of the number of activities per user in CDR-17 traces

re circa 532 and 412 contacts; in CDR-67 traces these values are

igher, 2 722 and 2 578 respectively, as the observation period is

uch longer. 

Fig. A.19 b shows the CDF of the number of activities per user,

veraged over the span of a day. We observe that the distribution

elated to CDR-17 is located above the one related to CDR-67. We

pplied the average over the day in order to have comparable val-

es: the measured average corresponds to 25 ( σ = 20 ) in CDR-17

nd 40 ( σ = 38 ) in CDR-67. In general, by combining the informa-

ion of the above distributions, the set of users captured by the

DR datasets are quite active and some of them are very active.

hat represents a good advantage since active users result in more

obility data. 

2 ‘Data follow the distribution X’ is the null hypothesis. A p - Value greater than

.05 usually indicates that the null hypothesis has not been rejected. 
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he other two GPS datasets, we should note that CDR traces are

ore sporadic in the temporal dimension and coarse in the spatial

ne w.r.t GPS dataset. However, we are able to extract the distri-

ution of the pause time in CDR-67 as reported in Fig. A.21 . We

ote that cells visited for periods shorter than an hour are very

requent, while locations where people spend more than 7 h exist

nd are limited in number (25% of visits). 

2. Trajectories dataset 

Although GeoLife represents the most reliable dataset publicly

vailable, it was not collected to find visited locations. So, for our

urposes, we had to pre-process trajectories in order to deter-

ine the most meaningful locations. The need for a pre-processing

hase is dictated by the dataset bias which favors movements,

hile we are interested in the activity of visiting PoIs. In particu-

ar we aim to densify trajectory points corresponding to the pause

hase by a filling heuristic. Meanwhile, we remove the points be-

onging to users’ movements. 

3. Indoor filling 

Mobility data collected by GPS devices present gaps because

PS signals are often disrupted inside buildings. This represents a

ig problem, especially if we are interested in detecting the PoIs of

 user. In fact, in many cases most of the PoIs visited by a person

uring the day are buildings or other indoor locations. This situ-

tion has been depicted in Fig. 2 b, where a user reappears after

bout 20 min at a position close to the previous one. To overcome
rties of human mobility, Computer Communications (2016), 
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Fig. A.20. (a) Distribution of number of distinct visited cells per user. (b) Dis

Fig. A.21. Probability Distribution Function (PDF) of the pause-time in the CDR-67 

dataset. Each bin is one hour size. 

the problem given by missing records [23] , and to avoid an un- 1122 

derestimation of the number of PoIs, we apply the following sim- 1123 

ple rule. When the ending and beginning GPS points of a gap are 1124 

within a distance of 35 m and the gap duration is greater than 1125 

5 min, the user is taken as residing at the same location during 1126 
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that time. This rule also works in the situation where the individ-

ual enters a building, or where the individual turns off the GPS

devices in an indoor place. Practically, we add as many GPS points

equal to the entry point as the duration in sec of the gap. After

the trajectory reconstruction phase, we noticed a big increment of

points, anyway limited by the threshold imposed on the gap dura-

tion. 

A4. Movement phase reduction 

We apply a filter with the goal of leaving out data which de-

scribe the movements among the PoIs that a user visits, thus re-

ducing the number of points to analyze. This way we consider the

periods in which a user stands still in a place, assuming that users

manifest their interests by spending a certain amount of time in

such places. In order to extract the pause periods and their related

GPS points from the whole individual trace, we apply the heuristic

proposed in [42,43] , where a similar but smaller dataset has been

analyzed. If two points p i and p i + 1 , with timestamps indicated by

t ( p . ), do not satisfy 

‖ 

p i +1 − p i ‖ 

t(p i +1 ) − t(p i ) 
≤ � (A.1)

then we delete p i +1 from the original trace, since it belongs to

the movement phase. Analyzing walking mobility data, we set

the threshold to the very low value of � = 1 . 3 m / s , according

to the fact that we observe that human walking speed is about

4–5 km/h (1.1–1.4 m/s). It seems a reasonable value as gener-

ally, in a location, people do not reach the maximum speed. This

way, we capture points where a person is standing still or is

moving very slowly inside a small area. The result of the speed
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tribution of averaged number of distinct visited cells per user per day. 

ltering process is a sequence of points that forms the trajec-

ory S = ((p 1 , t 1 ) , ..., (p n , t n )) , where t i is a timestamp and p i ∈ R 

2 ,

n which we apply the PoIs extraction methodology proposed in

ection Appendix A.7 . In Fig. A.23 b we show the results of the

ovement phase reduction applied to the raw trace reported in

ig. A.23 a. 

5. Users’ selection 

The point reduction also has effects on the number of users and

he number of days, per user, from which we can extract places of

nterest. The reduction is mainly due to the fact that the GeoLife

ataset has been built for the transportation prediction task, and,

s a consequence, it favors movements. 

To overcome these limitations we classify the users by consid-

ring two properties: the period ( h ) a single day trace spans and

he number of days the single user traces cover. In particular, for

ach user, we only consider the daily traces that record more than

 hours. On these tracks we count the number of users that have

ore than d days of data. In particular, for all the users of the

ataset we filter out all the days of sampling (data collected within

4 h , from 0 0:0 0 a.m. until 11:59 p.m. ) which have h ≤ 3 h of

ampling. All the remaining days are considered relevant days . Af-

er this first processing, we filter out all the users which collected

ewer than 20 relevant days of data ( d = 20 ): the resulting num-

er of users is 21, out the total number of 178 users. The above

hresholds have been chosen to optimize the trade-off among the

mportance of having a large number of users, the chance to gen-

ralize our analysis and the need to deal with sampled data which

oes not only correspond to trajectories. For example, only by in-

reasing the threshold h by one hour we obtain a number of users

nsufficient for purposes of our goal (10 users). Note that the re-

ulting dataset, even with a reduced number of users, still almost

ully spans the original GeoLife as to time period. 

6. Continuous mobility dataset 

Even if the tracking service runs continuously, for privacy rea-

ons we allowed the users to manually pause it. Thus, the collected

ata is not always a 24 h continuous data flow, but may present

ome holes. Also from this dataset we select a subset of significant

sers which have collected at least 14 relevant days of data (two

eeks), where a relevant day includes at least 6 h of location sam-

ling. The resulting number of relevant users we are considering

or our study is 7. To identify the user’s relevant PoIs, in this case,

e only act on the algorithm tuning [29] ). 

With respect to the number of detected places visited by users,

e observe that on average the number of distinct visited PoIs is

6, while the median amounts to 1, like the previous datasets. 
rties of human mobility, Computer Communications (2016), 
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Fig. A.22. CCDF of the aggregated pause times in the stay-locations. 

A7. From GPS traces to Points of Interest 1198 

GPS datasets, like the ones we are analyzing, present many dif- 1199 

ficulties concerning the PoIs extraction task as to the mobility data 1200 

inferred from geo-coded or geo-tagged social networks [11] (e.g. 1201 

Foursquare, Facebook Places, etc. ). In our context we do not have 1202 

any information about the interest expressed by the user, but we 1203 

must rely only on the periods when a user is standing still. 1204 

If we assume a constant sampling rate, as in our case, the pause 1205 

periods and the places visited by users translate into a higher 1206 

concentration of recorded points. Thus, the PoIs extraction corre- 1207 
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Definition 1. Let S be a trajectory and L = { L 1 , . . . , L k } a partition 1220 

of { p 1 , . . . , p n } s. t. for each L i ∈ L , L i is maximal w.r.t. the property 1221 

that for each p u , p v ∈ L i exists a sequence (p u = p w 

, ..., p w + j = p v ) 1222 

of points in L i , s.t. ‖ p w + k − p w + k +1 ‖ ≤ δ, k = 0 , ..., j − 1 for a fixed 1223 

δ. A stay-location is an element of L . 1224 

Informally, a stay-location is an area where a person stops, in- 1225 

dependently of how long s/he stays there. Let us consider individ- 1226 

ual traces in order to extract stay-locations and analyze their prop- 1227 

erties. To find stay-locations we apply the density-based clustering 1228 

algorithm DBSCAN [24] . As DBSCAN parameters we use δ = 10 m 

Q4 
1229 

and ε = 2 neighbors ( δ represents the maximum distance such 1230 

that two points are considered neighbors, while ε is the minimum 1231 

number of neighbors that a node must have to be considered in a 1232 

cluster). 1233 
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ponds to the unsupervised task of density-based clustering. In

articular, we are extending the methodology proposed in [43] ,

dopting a two-level density-based clustering combined with a

hresholding mechanism based on pause in the regions extracted

y the first clustering phase. 

All the points of a trajectory belong to the pause phase and are

he starting points for extracting the PoIs. To reach this goal, we

rst find the possible regions of interest via a clustering algorithm

nd then we detect the real PoIs considering the pause time fea-

ure. 

Formally, we capture the possible regions by introducing the

oncept of stay-location L . 
ig. A.23. PoIs extraction applied to the user 3’s trajectories. In (a) we plot all the recor  

he pre-processing phase. In (c) we depict the sub-PoIs that have to be grouped in the  

uring a single day. 
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ded points (raw data). In (b) we show the points resulting from the application of

real PoI (yellow circle) while (d) is a compact representation of user 3’s mobility

We observe that in daily movements there are many stay-

ocations where an individual stays for a short amount of time.

hese stay-locations are meaningless as they represent small

auses in the movement towards the real destinations that we call

oints of Interest. 

efinition 2. Let S be a trajectory and L i ∈ L a stay-location.

 i is a Point of Interest (PoI) if in S there exists a subsequence

((p i , t i ) , . . . , (p i + k , t i + k )) such that p i + j ∈ L i for j = 0 , . . . , k and

 i + k − t i ≥ φ. 

In the analysis of the dataset performed in this paper, we set

he threshold φ = 5 min, which corresponds to the average of the

ause distribution in stay-locations, shown in Fig. A.22 . We must

nderline that we do not consider the sum of the pause times in a

tay-location; rather, we consider the single values. The threshold-

ng results in the meaningful PoIs, although we observe situations,

ike those presented in Fig. A.23 c, where we have many sub-PoIs

f the same general PoI. To overcome this impasse we run DBSCAN

ith a larger ε on the centroids of the sub-PoIs detecting the real

oints of Interest. This way we obtain two important results: we

rastically reduce the number of stay-locations and we can infer

hich are the main destinations, i.e. the PoIs. 
rties of human mobility, Computer Communications (2016), 
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In addition to finding PoIs, the above methodology has the abil- 1255 

ity to express human mobility as a compact trace that summarizes 1256 

the transitions between PoIs and the users’ pause time in them as 1257 

shown in Fig. A.23 d. 1258 

The detection of the PoIs allows us to compare the mobility 1259 

habits in terms of visited places with the CDR datasets. In fact we 1260 

obtain an average number of PoIs per user comparable to CDR-67 1261 

datasets, i.e. 148, and the same median of the number of places 1262 

visited per day. 1263 

Supplementary material 1264 

Supplementary material associated with this article can be 1265 

found, in the online version, at 10.1016/j.comcom.2016.03.022 . 1266 
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