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We present ELIoT, a development platform for Internet-connected smart devices. Unlike most solutions 

for the emerging “Internet of Things” (IoT), ELIoT allows programmers to implement functionality run- 

ning within the networks of smart devices without necessarily leveraging the external Internet, and yet 

enables the integration of such functionality with Internet-wide services. ELIoT thus reconciles the de- 

mand for efficient localized performance, e.g. , reduced latency for implementing control loops, with the 

need to integrate with the larger Internet. To this end, ELIoT’s programming model provides IoT-specific 

inter-process communication facilities, while its virtual machine-based execution caters for the need of 

software reconfiguration and the devices’ heterogeneity. Moreover, ELIoT addresses network-wide integra- 

tion concerns by enabling standard-compliant interactions through REST and CoAP interfaces, with the 

added ability to dynamically reconfigure REST interfaces as application requirements evolve. We demon- 

strate the features and effectiveness of ELIoT based on a smart-home application, and quantitatively de- 

rive performance figures atop two hardware platforms compared to implementations using plain C or 

Java using the AllJoin framework. Compared to the C implementation, our results indicate that the per- 

formance cost for the increased programming productivity brought by ELIoT is still viable; for example, 

memory consumption in ELIoT is comparable, whereas the processing overhead remains within practical 

limits. Compared to the Java implementation using AllJoin, ELIoT provides a similar level of abstraction in 

programming, with much better performance both in memory consumption and processing overhead. 

© 2016 Elsevier B.V. All rights reserved. 

1

 

t  

i  

o  

c  

c  

r  

i  

[  

T  

w  

i  

t

(

1

 

t  

s  

a  

d  

t  

s  

 

e  

c  

p  

i  

c  

h

0

. Introduction 

The “Internet of Things” (IoT) is emerging from sensors and ac-

uators aboard physical objects equipped with computing capabil-

ties and able to access the larger Internet. Most often, a blend

f localized and Internet-wide interactions characterizes IoT appli-

ations, as we exemplify next. How to effectively develop appli-

ation software for such settings is an open problem [1] : cur-

ently available platforms rarely provide support for implement-

ng applications that combine sharply different interaction patterns

2–4] . This greatly impacts the operational costs of IoT systems [5] .

he same platforms often pay little tribute to the concerns arising

hen integrating different IoT systems. When standard-compliant

nterfaces are supported [6] , they are typically carved in stone and

herefore unable to accommodate evolving requirements. 
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.1. Problem 

Fig. 1 describes an example smart-home [7] application. A con-

rol panel provides a user interface to coordinate the operation of

everal home appliances, such as HVAC systems, kitchen machines,

nd in-house entertainment, possibly based on environmental con-

itions gathered through sensors. Users input to the control panel

heir preferences, e.g. , the desired average temperature, and con-

traints, e.g. , the latest time for a dishwasher to complete washing.

Based on this information, per-appliance models of expected

nergy consumption, and energy prices found on the Internet, the

ontrol panel determines a schedule of activities to meet the user

references while minimizing energy consumption, e.g. , by operat-

ng the dishwasher when energy is cheapest, but within the user

onstraints. Meanwhile, the control panel offers information on the

nstantaneous energy consumption over the Internet. The energy

rovider uses this information to estimate the city-wide load and

o take informed decisions in case of unexpected peaks. Individual

ppliances should also be reachable through the Internet, e.g. , for

ppliance manufacturers to update their on-board software. 

In this application, localized interactions are required to ef-

ciently realize the control loops to configure home appliances

http://dx.doi.org/10.1016/j.comcom.2016.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
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Fig. 1. Smart-home application. 
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f  
based on user preferences and sensed data. On the other hand,

Internet-wide interactions characterize the exchange of information

between the smart-home installation and energy providers or ap-

pliance manufacturers. These traits are germane to many IoT ap-

plications [1,8] , including patient monitoring [9] , vehicular traffic

control [10] and smart logistics [11] . 

Although the devices typically employed in this kind of IoT ap-

plications feature sufficient resources to implement localized inter-

actions [12,13] , existing software platforms almost exclusively dele-

gate the application-specific functionality to the Internet, e.g. , using

Cloud services such as Xively [14] , ThingSpeak [15] , and OpenSense

[16] . There, sensor data is processed and actuator commands are

remotely generated. The application logic thus resides entirely out-

side the networks of smart devices. This approach provides a quick

path to working implementations, but it falls short if stricter per-

formance requirements, e.g. , low latency for closed-loop control,

become mandatory. 

1.2. Contribution and road-map 

This paper presents ELIoT, a programming platform for Internet-

connected smart devices, which allows programmers to implement

functionality running within the local network, while still sup-

porting interactions with Internet-wide services. ELIoT is based on

three cornerstones: 

(1) An IoT-tailored programming model: this includes, for exam-

ple, dedicated language constructs to discern different com-

munication guarantees due to the unreliability of the wire-

less channel, and dedicated addressing schemes to effec-

tively support IoT interactions. 

(2) Support for standard-compliant interactions through REST

and CoAP interfaces: while the latter seamlessly enable em-

bedding low-power sensors and actuators in ELIoT applica-

tions, we also allow dynamic reconfiguration of REST inter-

faces to keep up with evolving requirements. 

(3) A custom run-time system fitting embedded devices the

size of a gum stick and costing less than 10$: this also in-

cludes integrated simulation support for testing and debug-

ging, with the ability of running hybrid scenarios that in-

clude simulated and real devices. 

ELIoT programs are written in a dialect of Erlang [17] : an

industry-strength language originally designed for fault-tolerant

applications in the telecommunication domain. Erlang provides a

stepping stone to implement IoT applications, because of its sup-

port for parallel and distributed programming. 

Our evaluation indicates that ELIoT allows programmers to ob-

tain concise code that is easy to debug, maintain, and reason

about. The corresponding performance penalty is limited: by as-

sessing the performance of a fault-tolerant ELIoT implementation
f the smart-home application against a C-based counterpart with

o embedded fault tolerance, we show that the overall memory

onsumption is comparable to the C implementation, whereas CPU

sage remains within practical limits. Such a C-based implemen-

ation represents current practice in embedded system program-

ing [18] . Nevertheless, compared to a non-fault tolerant Java im-

lementation using the AllJoin framework, ELIoT shows orders of

agnitude smaller memory consumption and CPU overhead. No-

ably, AllJoin explicitly targets IoT applications with requirements

kin to ours, while Java offers similar levels of abstraction as ELIoT

nd a virtual machine-based implementation as well. 

The paper unfolds as follows. In Section 2 , we further analyze

he smart-home application, which serves as a running example

hroughout the paper. Section 3 provides a concise Erlang primer.

e describe ELIoT’s programming model in Section 4 . The sup-

ort to standard-compliant interfaces, along with their dynamic re-

onfiguration, is discussed in Section 5 , whereas ELIoT’s run-time

ystem is illustrated in Section 6 . Next, Section 7 reports on our

xperimental evaluation. We end the paper by surveying related

ork in Section 8 and with concluding remarks in Section 9 . 

. Motivating application 

The smart-home scenario we hint in Section 1 provides a

aradigmatic example of the issues in developing IoT applications.

ere we discuss a base design for this application, together with

ifferent deployment scenarios. 

.1. Base design 

The devices in Fig. 1 generally demand Internet access, e.g. ,

he control panel must be able to obtain energy rates from the

rovider and be accessible from the Internet, while appliance man-

facturers must be able to remotely update the appliances’ on-

oard software. At the same time, a local control loop, guided by

he control panel, is beneficial to reduce communication costs and

mprove performance. In particular, the control panel acts as a

ront end for the users and coordinates the appliances’ activities,

ealing with: 

Functionality F1: discovery and bookkeeping of home ap-

pliances, obtaining the data to compute their operating

schedules; 

Functionality F2: processing of the user inputs and computation

of a schedule of appliance operation; 

Functionality F3: external communication, e.g. , to query the en-

ergy providers for energy prices or to offer ener gy consum p-

tion information over the Internet. 

To ease the installation, smart-home devices are expected to

eature wireless communication. Because of this, one designs the
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Fig. 2. Different scenarios in the smart-home application. 
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iscovery functionality required in F1 using a soft-state approach

19] . The control panel periodically broadcasts beacons that run-

ing appliances immediately acknowledge, either to join the sys-

em initially or to confirm their presence afterwards. In absence of

n acknowledgment, the control panel removes the appliance from

he application state. 

The design of the remaining functionality depends on applica-

ion requirements and hardware platforms: 

Scenario A: if home appliances can locally compute their ex-

pected energy consumption, one can design the schedule

computation of F2 by issuing remote queries from the con-

trol panel to obtain the necessary information. This is shown

in the black sequence of message exchanges in Fig. 2 a:

whenever the user inputs new information, the control

panel queries the appliances for their expected energy con-

sumption according to different operating settings (steps 1

and 2), and asks the energy provider for the energy rates

at different times (steps 3 and 4). Based on this and en-

vironmental data collected from sensors, the control panel

distributes an operating schedule back to the appliances

(step 5). 

Scenario B: if an appliance is computationally constrained,

e.g. , in the case of a light fixture, or the amount of data

to exchange is excessive, the estimation of expected en-

ergy consumption for F2 should be performed at the con-

trol panel. The blue sequence of message exchanges in

Fig. 2 a illustrates the corresponding interactions, which re-

quire computationally-constrained appliances to provide the

control panel with an executable model of their expected

energy consumption. The light fixture acknowledges the
control panel’s beacon (step 1) by shipping the model to

compute its energy consumption (step 2). The control panel

locally runs the model (step 3) to compute an estimate of

the fixtures’ energy consumption (step 4) before determin-

ing and transmitting the schedule (step 5). 

Scenario C: if some devices run different platforms, the nec-

essary coordination must rely on standard-compliant inter-

faces. Such interfaces may serve to access low-power sen-

sors and actuators, but they may also need to evolve after

the system is installed, especially for F3 . For example, land-

lords may decide to install solar panels and to sell the excess

energy back to the grid. As shown in Fig. 2 b, whenever this

happens, the control panel should offer an additional inter-

face to query the amount of produced energy. This is imple-

mented by letting the newly installed solar panel answering

the control panel’s beacon (step 1) by requesting the addi-

tion of a new software component (step 2). This component

will receive messages from the solar panel to periodically in-

form the control panel about the produced energy (step 3).

The same component will make this information available

over the Internet, e.g. , to the energy provider (steps 4 and

5), in a standard-compliant and vendor-independent man-

ner, e.g. , using a REST interface. 

. Erlang primer 

ELIoT devices are programmed using a dialect of Erlang: an

ndustrial-strength functional language designed to ease develop-

ent of communication protocols, data manipulation algorithms,

nd distributed applications. 
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Fig. 3. Erlang code sample. 
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1 Mainstream Erlang implementations use TCP to provide this guarantee. 
Erlang’s concurrency model follows the actor model [20] : Erlang

processes are named entities that do not share data, but commu-

nicate through asynchronous message passing, only. The example

code in Fig. 3 shows the core of an Erlang process that waits for

incoming messages, processes them, and returns the result to the

original sender. The receive statement in line 7 takes the first

message from the process’ incoming queue, while the ! operator

is used at line 13 to communicate the result back to the original

sender. Notably, the syntax for inter-process communication is in-

dependent of whether the communicating processes are local or

remote, which simplifies distributed programming by blurring the

boundary between local and remote context. 

As shown at lines 9 and 15, distinguishing between mes-

sage types is specified declaratively using pattern matching , i.e. ,

by stating constraints on the message format. In our example,

msg_type_1 and msg_type_2 are two atoms that appear at

the beginning of messages to distinguish them, while SenderPID ,
ListOfNumbers , and Content are unbound variables that are

assigned a value at the time of performing the pattern match-

ing. The same mechanism also allows one to parse and filter bi-

nary data, such as message payloads, using very compact code,

as shown later in the paper. This is an asset for implement-

ing low-level communication protocols, as often required in IoT 

applications. 

Erlang code is compiled into a bytecode, which is interpreted

or compiled just-in-time by a virtual machine (VM). ELIoT borrows

the same approach, which elegantly addresses the issue of hard-

ware heterogeneity typical of IoT applications. However, the origi-

nal Erlang’s syntax, semantics, and system support are not straight-

forwardly applicable in IoT scenarios. The IoT communication pat-

terns and resulting communication guarantees differ from those

of traditional Erlang networks. Moreover, mainstream Erlang VMs

demand hardware resources rarely found in IoT settings. Finally,

debugging and testing IoT applications cannot be oblivious to the

real-world interactions IoT systems are exposed to. ELIoT tackles

these issues as described next. 

4. Communication and coordination in ELIoT 

ELIoT’s dedicated language constructs concerns four key aspects

of IoT inter-process communication and coordination: (i) handling

different communication guarantees, (ii) supporting code migration

and remote process spawning, (iii) offering extended addressing

schemes, and (iv) providing access to low-level information from

the networking stack. 
.1. Running example 

To make our explanation concrete, we consider the smart-home

pplication introduced above. Fig. 4 reports snippets of ELIoT code

hat implements different control panel’s functionality: discovery

f home appliances, as per functionality F1 in the application base

esign (lines 16 to 23); gathering of the appliances’ operating pa-

ameters, as per scenario A (lines 28 to 34); and installing of the

xecutable model of an appliance’s expected energy consumption,

s per scenario B (lines 36 to 45). 

After defining constants and structured types, the code in Fig. 4

efines the recursive function receiver run by the control panel

line 12), which takes the current set of known appliances as input.

rocessing suspends at the receive statement (line 13) and then

nfolds depending on the type of received message. 

.2. Communication guarantees 

As mentioned in Section 3 , Erlang inter-process communication

s based on the ! operator, which is equally used for sending mes-

ages to a local or to a remote process. In blurring the distinction

etween local and remote communication, Erlang assumes that the

nderlying protocol for sending messages among Erlang VMs is re-

iable. 1 This is a strong assumption in the IoT scenarios we target,

here wireless communication is the rule more than the excep-

ion. At the same time, several IoT applications do not need reliable

ommunication and may sacrifice that for better efficiency. Accord-

ngly, ELIoT complements Erlang’s ! operator, with a new operator:

, which implements unreliable, best effort, sending of messages.

e see it at work in line 19 of Fig. 4 : after creating the single byte

eacon (line 18), the control panel sends it unreliably using the ∼∼∼
perator. 

Besides adding the ∼∼∼ operator, ELIoT also changes the seman-

ics of the ! operator. Instead of assuming reliable links and fail-

ng silently in presence of unrecoverable faults, it places a special

ack message into the sender’s incoming message queue when-

ver a communication fault happens that cannot be automatically

ecovered by the VM. This enables programmers to implement

heir own application-specific failure-handling mechanisms, possi-

ly based on the actual destination and payload of the failing mas-

age, which are returned as part of the nack message. 

ELIoT saves memory and processing overhead for processes that

o not require network interactions by adopting a two step ap-
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Fig. 4. Excerpt of control panel code. 
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roach in mapping processes to names. A process register s un

er a symbolic name to allow (local) communication without the

assle of knowing the process identifier assigned by the VM. For

he process to become accessible from the network, its name must

e explicitly export ed. It is this step that activates the (some-

ime expensive) run-time infrastructure that allows the process to

e reached from remote devices. 

More generally, the need to carefully control the costs associ-

ted with wireless communication—both in terms of energy and

andwidth consumed—hardly match the level of abstraction inher-

nt in Erlang’s original inter-process communication model. Pro-

iding a best-effort message send operator, alongside a more reli-

ble one, while explicitly requiring processes to be exported rec-

nciles the need for keeping a reasonably high level of abstrac-

ion with the reality of unreliable wireless communications. Notice

hat ELIoT retains the blurred distinction between local and remote

ommunication of Erlang by allowing both message sending oper-

tors to be used with local processes, also. In this case, both oper-

tors straightforwardly guarantee message delivery. 

.3. Code transfer and remote process spawning 

As we mentioned in Section 3 , ELIoT uses a VM to execute

 platform-independent bytecode. While elegantly supporting the

eterogeneity typical of IoT scenarios, this approach also allows

ode fragments to be sent over the network from device to device.

his, together with the ability of dynamically spawning processes

cross devices, eases the dynamic (re)deployment of distributed
pplications. Devices can be dynamically added new capabilities

y transferring the code that implements them and dynamically

pawning the processes that execute such code. 

This feature is used at lines 36 to 40 of Fig. 4 , which imple-

ent scenario B of our running example. Such fragment of code

arses messages containing a binary blob (line 36), links the re-

eived code to the application, and instantiates a process to run

t under the control of a supervisor process (line 40). In this case

he spawning of the new process is triggered by the device that

eceives the code, but in principle a remote device may also send

ome code to a remote device and remotely spawn the correspond-

ng process. The fact that spawning a process remotely uses the

ame primitives as in a local setting, while the message-passing

unctionality remains the same for local or remote communication,

lso allows ELIoT applications to move functionality from a local

ontext to a distributed setting with minimal effort. 

.4. Addressing schemes 

The ! operator, originally offered by Erlang, allows single pro-

esses to be easily reached once programmers know their unique

dentifier or the name they registered to, together with the address

f the VM they run on. While intuitive and easy to use, this form

f unicast communication is insufficient to efficiently support sce-

arios where a process needs to send a message to multiple other

rocesses. This form of broadcast communication is often used in

oT applications, either as a primitive at the application level, e.g. ,
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for discovery, or as a low-level mechanism to implement higher-

level protocols. 

ELIoT supports these scenarios by offering a richer addressing

scheme than Erlang. In particular, ELIoT messages addressed to

{n, all} arrive at processes registered under name n running

on all reachable VMs. 2 We use this feature to implement the dis-

covery of new appliances in Fig. 4 (line 19). The same address-

ing scheme may be used within the spawn primitive, e.g. , when

a new functionality is to be deployed on multiple nodes at once.

To further control the nodes where process spawning must hap-

pen, programmers may use ad-hoc scoping filters . They express a

condition—in the form of a lambda function—that predicates over

the devices’ environment variables or that invokes functions avail-

able within the application itself. The process is actually spawned

only onto those nodes where the scoping filter evaluates true. 

4.5. Low-level network stack information 

Full isolation of the various layers that build a networking stack

is sometimes impossible to achieve and often not beneficial. Some

form of cross-layering is often required to improve efficiency, espe-

cially with embedded devices and wireless communication, which

are the norm for IoT. 

ELIoT makes these considerations concrete by exposing infor-

mation coming from the networking stack to the receiver. More

specifically, while Erlang fills the incoming message queue of the

receiver only with the payload of the message, ELIoT’s communica-

tion driver explicitly exposes additional information. In the current

prototype, the IP address of the source node and the Received Sig-

nal Strength Indicator (RSSI) obtained from the radio are added,

but the communication driver can be extended to add other infor-

mation. Line 25 of Fig. 4 shows how this information is easily ac-

cessible. This sharply contrasts the way programmers access simi-

lar information using low-level embedded system languages, like C.

The IP source address and RSSI reading in ELIoT are treated as any

other type of data, and automatically materialized by ELIoT into

the receiver’s incoming message queue, without requiring intricate

platform-dependent code. As a result, ELIoT simplifies not only the

development of application-level functionality, but also the imple-

mentation of system-level services, e.g. , RSSI-based localization al-

gorithms [21] required for location-aware services. 

5. Standard-compliant interfaces 

IoT applications are foreseen to emerge from the integration of

a plethora of different platforms communicating through standard-

compliant interfaces [22] . 

One such example is the Constrained Application Protocol

(CoAP) [23] : an IETF proposal to allow wireless sensors and ac-

tuators to collaborate over low-power lossy networks. To accom-

modate for similarly constrained devices, we implement the CoAP

standard in ELIoT and integrate it with the underlying run-time

system. This allows an ELIoT node to natively integrate in a CoAP

network, by invoking CoAP services to query a sensor or to send

a command to an actuator. As an example, in our smart-home

application, native support to CoAP may allow the control panel

to query a CoAP-compliant weather station to enrich the schedul-

ing algorithm with information about external conditions, or to di-

rectly control a CoAP-compliant appliance. 

Dually, scenario C in the smart-home application requires

standard-compliant access to ELIoT devices from an external en-
2 The ELIoT prototype implements the sending to all by using broadcast UDP; 

thus, the span of message spreading (and the notion of reachability) depends on 

the network configuration. 

s  

d

ity. To this end, ELIoT provides support to reconfigurable REST in-

erfaces, which provides two key features: 

(1) by facilitating the implementation of flexible REST interfaces,

ELIoT enables rapid prototyping of distributed interactions

based on standard protocols and inter-operable message for-

mats. For example, any web browser may be used to query

sensors attached to an ELIoT node, with no ad-hoc program-

ming. 

(2) ELIoT offers a means to dynamically extend existing REST in-

terfaces. For example, upon installation of the solar panel

of scenario C , the attached ELIoT device can deploy an ad-

ditional function onto the control panel to extend its REST

interface with a new operation that allows interested par-

ties to access information on generated energy. The energy

provider can access such data in a platform-independent

manner, facilitating interoperability. Note that this kind of

dynamic reconfiguration, enabled by ELIoT’s ability to spawn

new processes at run-time based on binary code received

from the network, is rarely available in existing REST-

enabled IoT platforms [6] . 

. Run-time system 

ELIoT provides two system functionality to effectively support

he application execution and development: a lightweight VM that

mplements the language and a dedicated simulator for testing and

ebugging. 

.1. Virtual machine 

Over time, Erlang has grown to support a wide range of sce-

arios, by means of a large set of libraries and a complex run-

ime infrastructure. Most of these features find limited application

n IoT applications, unnecessarily increasing the hardware require-

ents. To address this issue, we develop a custom VM for ELIoT,

hich uses the Erlang VM as a foundation, keeping the available

unctionality to the bare minimum required in our target applica-

ions, and integrating the communication and coordination exten-

ions that are unique to ELIoT. 

At the communication layer, the ELIoT VM uses a custom

etworking stack with a double objective: improving efficiency

nd supporting the new communication primitives and address-

ng mechanisms described in Section 4 . In particular, we employ

DP-based communication instead of TCP. 3 This applies to support

oth the reliable and unreliable communication primitives, and for

emote spawning of processes. On top of UDP we implemented

ur own reliability layer, which supports the nack mechanisms

escribed in Section 4 . For better efficiency we also simplify the

hole communication layer, limiting it to the minimum function-

lity required for the IoT scenarios we target. 

As a result of this work the ELIoT VM has very low hardware re-

uirements, especially in terms of memory consumption. This en-

bles ELIoT to run on devices that are quite unusual in the tradi-

ional Erlang realm. We test two such platforms: (i) a Raspberry Pi

oard model A with 256 MB of RAM, and (ii) a custom embedded

oard with a RT3050 MIPS processor called “Carambola”, featuring

2 MB of RAM and 8 MB of embedded flash. Both can run ELIoT. 

.2. Simulator 

Debugging and testing IoT applications is a key area scarcely

upported by most platforms. Gaining the required visibility into
3 In general, this is a custom choice, which can be easily changed by providing a 

ifferent im plementation for the ELIoT’s communication driver. 
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he system state, in particular, is deemed to be a crucial issue [24] .

y leveraging ELIoT’s VM-based run-time and the blurred distinc-

ion between local and distributed functionality, we develop a cus-

om simulator that allows programmers: 

• to simulate an entire system by instantiating a set of virtual

nodes running unmodified ELIoT code; 

• to model communication between nodes according to real wire-

less traces for increased fidelity 4 ; 

• to interact with the simulation, if required, via a shell, e.g. , to

proactively inject messages or to overhead transmitted ones; 

• to run a hybrid deployment where virtual nodes seamlessly in-

teract with physical devices, 5 thus creating a hardware-in-the-

loop configuration [26] . 

ELIoT programmers can thus start debugging a system in a fully

imulated deployment, and then progressively move to a setting

here the execution also spans physical nodes. This retains visibil-

ty into the system state through the simulated nodes, but it also

llows one to check the execution on real devices and the interac-

ions with the physical environment. As we discuss next, we lever-

ge ELIoT’s simulator for debugging and testing our implementa-

ion of the smart-home application, using a Raspberry Pi as the

ontrol panel and simulated nodes as home appliances. This hap-

ens with the guarantee that the code being tested coincides, line

y line, with the code that developers deploy. 

. Evaluation 

We evaluate ELIoT by considering two aspects: the benefits it

rings to developers’ productivity and the run-time overhead it in-

roduces to offer such benefits. 

As a baseline for comparison, we use a C implementation of

he smart-home application that realizes the same core function-

lity using the pthread library for multi-processing and standard

DP sockets for communication. This largely reflects the current

ractice in programming networked embedded systems [18] . To

rovide a comparison with a platform expressly conceived for IoT

evelopment, we consider the AllJoyn [27] framework, using the

ava language. AllJoyn is a state-of-the art, open-source network-

ng framework developed by a consortium that includes most of

he key players in the IoT panorama. The goal of the framework

s to provide as easy-to-use platform to address the communica-

ion needs of IoT devices, covering, like ELIoT, both local and re-

ote interactions. AllJoyn supports multiple platforms (Android,

OS, Linux, Open WRT, OS X, and Windows), languages (mainly

 ++ , ObjectiveC, and Java), and networking technologies (Blue-

ooth and WiFi). Our decision of using Java is motivated by the

esire to compare a programming environment whose ease-of-

se, level of abstraction, and VM-based implementation are akin

o ELIoT. 

.1. Benefits to IoT software development 

ELIoT provides two benefits to programmers: it increases their

roductivity by rising the level of abstraction compared to low-

evel languages, and it eases debugging with custom tools. 

.1.1. Programmers’ productivity 

It is notoriously difficult to objectively compare the implemen-

ation effort using different programming languages. In absence of
4 We use the traces from the TOSSIM simulator [25] . Using different traces is 

ossible by developing the needed model translation. 
5 The current prototype supports hybrid deployments with hardware devices that 

rovide an Ethernet or WiFi connection, but nothing precludes supporting other 

etworks, like 802.15.4, provided the PCs running the simulator can access such 

etworks, e.g. , via an ad-hoc gateway. 

i  

r  

u

 precise tool, measuring the lines of code provides a rough, yet

uantitative indication often used in the literature [28] . In our case,

he C-based smart home application requires 1623 lines of code,

hile the ELIoT-based implementation merely requires 649 lines,

orresponding to a 60% saving. The AllJoyn-based implementation

equires 1408 lines of code. The latter shows better figures than C

ut still more than double the size of the ELIoT version. 

These improvements become even more relevant as one consid-

rs that the C and AllJoyn implementations only provide the core

unctionality of the smart-home application. Indeed, 187 lines of

LIoT code, out of the 649 total, are actually used to set up the

pplication supervisor, which handles process crashes as well as

he testing and debugging services. These functionalities are not

vailable in the C and AllJoyn implementations. Nevertheless, these

ragments of ELIoT code are largely borrowed from existing tem-

lates; thus, the number of application-specific lines of ELIoT code

s effectively 462, for a 71.5% reduction compared to the C imple-

entation and a 67% reduction compared to the AllJoyn imple-

entation. Such a big difference makes the result, even in presence

f an approximate metric like the number of code lines, hardly

uestionable. 

Beyond the raw numbers, the higher level of abstraction in

LIoT improves code readability, facilitating reuse and mainte-

ance. This becomes visible by looking at the structure of the con-

rol panel code, shown in Fig. 4 . This structure is typical of ELIoT

pplications that implement communication protocols. The code

s organized as a single receive statement with multiple cases,

ach associated to a specific message type determined declara-

ively by pattern matching. 

As an example, line 36 in Fig. 4 uses binary pattern matching to

etermine when the message payload contains a function to be ex-

cuted locally. Matching happens in blocks: the first 8 bits are in-

erpreted as a user-defined code indicating the message type; the

ext 20 bytes are a SHA-1 hash code; then a single byte speci-

es the length of the string that follows. Variable L1 is assigned

he latter value and immediately used as the length of the next

eld, namely the function name. The rest of the sequence is a bi-

ary block that holds the function’s bytecode. 6 The name, hash,

nd code of the received function are then passed to the appli-

ation supervisor (line 40) to spawn a new process executing the

ode and to monitor its execution should run-time errors occur. 

Fig. 5 provides additional insights into the expressive power

f ELIoT, focusing on deserializing the operating parameters of a

ewly discovered appliance, as required in line 29 of Fig. 4 . In C,

s shown in Fig. 5 a, this requires writing error-prone code that ex-

licitly manages type conversions, memory allocation, and copy-

ng. Developers achieve the same functionality recursively and in a

eclarative fashion with ELIoT, again using binary pattern match-

ng. The decode_params function in line 3 of Fig. 5 b takes the

essage payload as input and invokes a function with the same

ame and an additional argument: an initially empty list of appli-

nce operating parameters. In line 7, if the payload is empty, in-

icating that message deserialization is complete, the list of dese-

ialized parameters is returned as the final result. Otherwise, the

rst parameter is matched and decoded, as in lines 11 and 12.

ach parameter includes the length of the parameter’s name ( L1 )
ollowed by the name itself ( SerializedName ), the parameter’s

ype ( Type ), its value ( Value ), and a Boolean indicating whether

he parameter is read only ( Ro ). The decoded information is used

n line 14 to build a record prepended to the list of decoded pa-

ameters in the recursive call of line 17. Overall, the 25 lines of C
6 The bit syntax allows one to specify the length of each field using different 

nits (bits or bytes), depending on the field’s type. 
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Fig. 5. Deserializing appliance operating parameters. 
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code in Fig. 5 a reduce to 7 lines of (uncommented) ELIoT code in

Fig. 5 b. 

A comparison with the AllJoyn implementation is harder as

AllJoyn adopts an RPC-based communication model rather than a

message-based one as in ELIoT and C. This choice has the ben-

efit of hiding most of the communication details and in particu-

lar the steps required to serialize and de-serialize RPC parameters.

At the same time, the need of supporting multiple languages and

platforms requires AllJoyn programmers to use ad-hoc code to let

AllJoin know the format and size of involved data types. Consid-

ering the data types that encode the operating parameters of a

newly discovered appliance, the code programmers need to imple-

ment to let AllJoin correctly handle this information amounts to

12 Java lines. In addition, 70 Java lines are needed to implement

the hashCode and equals methods that need to be redefined

for Java objects passed around a network. This compares with the

7 lines of ELIoT code mentioned above. 

One might argue that the compact ELIoT code, which results

from its functional paradigm, may lead to higher chances of pro-

gramming errors, essentially because the code is semantically more

dense. The evidence, however, demonstrates that this is not the

case. On the contrary, and especially for highly distributed func-
 t
ionality, the more compact code resulting from the use of func-

ional programming ultimately yields more dependable systems

29,30] . 

ELIoT also simplifies implementing concurrent functionality,

y virtue of its functional nature and system support to multi-

hreading. As an example, mutexes and condition variables, re-

uired in C (but also in Java) to synchronize concurrent threads,

re unnecessary with ELIoT. Already in the relatively simple smart-

ome application, nonetheless, C and Java programmers (albeit the

atter with the help of higher-level language constructs) heavily

ely on these synchronization primitives to coordinate access to

he shared list of appliances. ELIoT programmers can organize the

ode in such a way that the list of appliances is modified by the

eceiving thread only, whereas other threads operate on an im-

utable copy of such data structure, included in the message that

riggers their processing. 

.1.2. Testing and debugging 

The real-world dynamics and the decentralized operation of IoT

pplications complicate testing and debugging. The ELIoT simulator

elps deal with these tasks by providing monitoring and inspection

ools for hybrid configurations of real and simulated nodes. 
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Fig. 6. Simulator user interface. 
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Fig. 7. Memory consumption (pmap). 
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7 The default stack size in the pthread library is 8 MB for the Raspberry Pi (vanilla 

Linux) and 2 MB for Carambola (OpenWrt). 
Fig. 6 shows the simulator at work. When debugging the smart-

ome application, we use a real Raspberry Pi to run the control

anel, plus four simulated appliances. Developers interact with the

LIoT simulator in three ways: (i) a process monitor shows the ELIoT

rocesses running on simulated nodes, identified according to their

egister -ed names; (ii) a code monitoring tool enables inspec-

ion of the currently running code and allows to step through in-

tructions and set breakpoints, as well as to manipulate the values

f variables; (iii) a custom shell allows developers to trigger spe-

ific executions, e.g. , the schedule computation on the Raspberry

i. The simulator then shows how the appliances answer to the

ontrol panel through the process and code monitors. The shell al-

ows one to automatize these operations by scripting sequences of

est cases. 

The ELIoT simulator offers functionality that are rarely available

sing mainstream programming platforms for networked embed-

ed systems [19] . The VM-based execution, together with the ac-

or model that simplifies inter-process communications, facilitates

uilding tools that effectively support developers in testing and de-

ugging distributed functionality. 

.2. System performance 

Increasing developers’ productivity comes at a cost. This is also

he case for ELIoT, where such cost materializes as performance

verhead. To precisely evaluate this aspect, we compare the perfor-

ance of the C, AllJoyn, and ELIoT implementations of the smart-

ome application by measuring memory consumption, CPU usage

nd power consumption, as well as network traffic and latency. For

he C version, we perform this comparison on both embedded de-

ices currently running the ELIoT VM, while the AllJoyn version is

nly tested on the Raspberry Pi board, since a Java VM is not avail-

ble for the Carambola board. 

.2.1. Memory 

We measure memory usage with pmap : a Linux utility that re-

orts the entire memory allocated for a given application, includ-

ng code, libraries, stack, and heap. This gives a precise indication

f the amount of memory a device needs to run the application:

evices with less memory would just be unable to run the same

pplication implementation. 

Fig. 7 reports the results. The caveat in the results we obtain

rom the C implementation is that it uses the pthread library for

ultiprocessing, which leaves programmers with the burden to ex-

licitly choose the stack size for each thread. Over-provisioning

his value is common practice in mainstream programming, as
lenty of memory is typically available. In embedded program-

ing, however, this is conducive to interesting observations: a

aive C programmer who uses the default stack size 7 would build

n application that uses the same or more memory than the corre-

ponding ELIoT implementation. ELIoT programmers, on the other

and, rely on lightweight multiprocessing provided by the VM and

o not need to worry about such system configuration. Neverthe-

ess, a skilled C programmer able to manually fine-tune the system

onfiguration—a typically error-prone and time-consuming task—

ould find working settings at 1 MB or even 256 KB per-thread

tack space, the latter being the minimum that allows the applica-

ion to run correctly. In this case, the C implementation consumes

ess than half the memory of the ELIoT implementation. With the

pplication running, instead, AllJoyn using Java consumes one or-

er of magnitude more memory than ELIoT, even after fine tuning

he Java VM’s heap size. 

To better characterize memory usage in AllJoyn and ELIoT, we

eparately assess the two VMs with no application loaded and

hen the smart-home application is running. As shown in Fig. 7 ,

t turns out that both VMs are responsible for most of the mem-

ry used. But while in ELIoT the application consumes a few addi-

ional KB, in AllJoyn using Java the amount of additional memory

equired to run the application is significant. This analysis points at

he VM as an avenue for further improvements to battle the mem-

ry overhead in ELIoT. At the same time, it also suggests that the
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Fig. 8. CPU times (in hundreds of seconds). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Power consumption (The idle power consumption is factored out.). 
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gap between C and the other two, higher-level platforms, would

likely reduce with more complex applications, as the memory oc-

cupation due to the VM is a fixed cost that ELIoT and AllJoin pay

once and for all, with ELIoT showing better relative performance

on this metric. 

7.2.2. CPU usage and power consumption 

We measure the time the CPU is busy processing using the

getrusage primitive, which returns per-process CPU time split be-

tween user and system time. At the control panel, we run 50 con-

secutive executions of the operations to compute the appliances’

schedule, as per functionality F2 , by assuming that the expected

energy consumption at the appliances is computed remotely, cor-

responding to scenario A . We also include six rounds of beaconing

for discovery and monitoring of appliances between scheduling op-

erations, as per functionality F1 . Such setting is representative of

foreseeable usages of the smart-home application. Each cycle lasts

60 s. We repeat the 50 iterations across 30 different runs, and plot

the resulting average with the 95% confidence intervals. 

Fig. 8 depicts the results. Using the C implementation, the user

time is much lower than the system time, especially on a relatively

powerful device like the Raspberry Pi. Differently, the time spent

by the CPU using ELIoT on the Raspberry Pi is split almost equally

between user and system time, while on the Carambola most time

is spent executing user code. Using ELIoT, both user and system

times are larger compared to the C counterparts. In absolute terms,

however, the latency that such CPU times may introduce are less

than 30 ms per iteration, which includes a schedule computation

and six rounds of beaconing. These are reasonably within tolerance

of non-realtime applications such as a smart-home. The numbers

we gather from the AllJoyn implementation tell a different story.

While the system time is comparable with ELIoT, the user time is

18 times greater. Considering that AllJoyn is a state-of-the-art plat-

form for IoT development, this result puts ELIoT’s performance in

a different perspective. Albeit offering a high-level programming

model similar to using Java with AllJoyn, ELIoT has a much lower

overhead compared to a pure C implementation, providing a much

better compromise between ease of use and performance. 

Increased CPU times also correspond to higher power consump-

tion. To assess this aspect, we hook the Raspberry Pi and the

Carambola to a professional voltage generator/multimeter to mea-

sure their average power consumption throughout a single applica-

tion iteration. Fig. 9 shows the results of our measurements by fac-

toring out the power consumption when the board is completely

idle. Compared to the C implementation of the smart-home ap-
lication core functionality, ELIoT imposes an overhead of about

 mW on the Carambola and of 6 mW on the Raspberry Pi, ar-

uably negligible for the scenarios we consider. The power con-

umption of the AllJoyn version reflects the CPU usage we reported

bove, consuming 30 times more than the ELIoT version. 

On a general note, we may observe that adding the idle base-

ine to the measures above results in a relatively high overall figure

or the platforms we tested, which are not optimized for limiting

ower usage. On the other hand, better engineered platforms exist,

hich are powerful enough to run ELIoT and still have a reduced

ower usage, in particular at idle. For example, a modern smart-

hone using a Samsung S3C2442 SoC absorbs about 268 mW when

dle [31] , while the ARM board that runs the Amazon Kindle 4—

 device explicitly designed for low power consumption—absorbs

5 mW when idle with WiFi enabled and connected, as we mea-

ured using the same equipment used for the other platforms. 

.2.3. Network traffic and latency 

Using a standard network inspection tool, we measured the

mount of bytes transferred through the network during a single

teration of the smart-home application. This includes several mes-

ages exchanged between the control panel and the appliances of

ur smart-home example. While the application payload of such

essages in the same for the three platforms we tested, the header

nd format differ. For ELIoT this is a result of its specific features

latform, such as the abstract addressing mechanism it provides,

or example, to reach specific ELIoT processes within a given node.

sing AllJoyn results in a complete change of the communication

aradigm, which moves from message passing to RPC. In com-

arison with C, ELIoT shows a 10.21% overhead (2126 bytes vs.

929). The number of messages, however, is the same in both im-

lementations. Overall, this small overhead appears acceptable. Us-

ng AllJoyn results in much greater overhead, with a total traffic of

572 bytes, adding to 496% overhead compared to C. The number

f messages also greatly increases, as AllJoyn employs its own bea-

oning mechanism to discover new devices and maintain reacha-

ility and bookkeeping information for all devices involved. 

We also measure the network latency of ELIoT messages in LAN

nd Internet-scale interactions. The first two sets of bars in Fig. 10

how the round-trip time of two exemplary ELIoT messages used

n our scenario: the “schedule” message exchanged between the

ontrol panel and an appliance to inform it of the new agreed

chedule and the “company” message exchanged between the elec-

rical company and the control panel. They are both representa-

ive examples of complex interactions that may happen in an ELIoT

pplication. 
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Fig. 10. Network delay (LAN and Internet). 
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The LAN measurements (first set of bars) have been taken using

wo Raspberry Pis on a wired connection to the same router, while

he WAN measurements (second set of bars) have been taken us-

ng two Raspberry Pis situated in Italy and Sweden. The two de-

ices execute a control panel and an appliance in the first case

nd a control panel and the company functionality in the second

ase. The chart shows also the network delay measured through

CMP ping messages. In all cases, the interactions have been exe-

uted 10,0 0 0 times, and the plot shows the 95% confidence inter-

als, barely visible since they are under 0.5%. We observe that, re-

ardless of the network delay, it takes about 20 to 25 ms for each

LIoT message to traverse the network stack from the application

evel down to the Ethernet interface on the sender, traverse back

he stack on the receiver, elaborate the response and send it back

o the sender. We expect such small latency to be acceptable in

ost practical IoT applications. 

To complement these measures, the rightmost bars in Fig. 10

how the time required for the control panel running on a Rasp-

erry Pi to invoke a CoAP service offered by a TMote Sky node run-

ing Contiki on an 802.15.4 network. As in the previous case, we

lso plotted the delay measured on the same 802.15.4 link using

CMP v6 ping messages. We note that the time required to perform

his interaction is below 150 ms. More interesting is the compari-

on between the round trip time measured through ICMP and the

oAP invocation latency. The two measures looks very similar. This

an be explained because of the Contiki-based implementation at

he TMote Sky device, whereby there is not much difference in the

rocessing to receive, decode, and answer an ICMP packet vs. a

oAP request. In both cases, most of the processing time is actually

pent in the routing (RPL), MAC (802.15.4), and physical layers. 

.2.4. Spawn time 

We assess the time needed by ELIoT to spawn a new process

hose bytecode comes from the network. This is key to evaluate

he actual usability of the ELIoT mechanisms to upload new func-

ionality on a running node; for example, in the smart-home ap-

lication where appliance manufacturers need to update the on-

oard software. Particularly, we measure the time it takes from

hen a message with the necessary bytecode is received at the

ode to when the new functionality is ready to accept input data.

n average, this goes from 50 ms on the Raspberry Pi to less than

0 ms on the Carambola: arguably acceptable in most practical IoT

pplications. 

. Related work 

Works closely related to ELIoT mainly target IoT software archi-

ectures and IoT application frameworks. From a conceptual stand-
oint, the body of work on sensor network programming and per-

asive computing also shares some objectives with ELIoT, along

ith some existing application-specific frameworks. 

.1. IoT architectures and frameworks 

Significant activities are undergoing to define software architec-

ures for the IoT. At the lowest layers, for example, Calipso [32]

ims to define a global network architecture for IPv6-based smart

bjects. The IoT6 project [22] exploits an IPv6-based network layer

o build CoAP services atop. The IoT-A project [33] defines an ar-

hitectural reference model for the interoperability of IoT devices,

hereas Spitfire [34] investigates unified concepts for facilitating

he effective development of IoT applications. 

ELIoT is largely complementary to these efforts. It already inte-

rates with the results of the IoT6 project thanks to the embed-

ed support to CoAP, and fits the IoT-A architecture as a possible

ool to implement the functionality offered by Internet-connected

mart devices. Generally, sound software architectures are neces-

ary to improve interoperability, organize applications’ functional-

ty, and reason about the system operation. Orthogonal to these

spects is how to specify the actual application processing within

he individual components and how to establish and perform com-

unication and coordination across the network of devices and

ith Internet-wide services. ELIoT provides support for the latter

spects. 

Integrating smart devices with the Internet may follow differ-

nt approaches. Solutions exist to proactively export sensor data to

he Internet, such as Publish/Subscribe middleware [3] and shared

emory systems [35] . Cloud-hosted platforms providing storage

nd processing facilities for sensor data also exist, such as Xively

14] , ThingSpeak [15] , and OpenSense [16] . Other solutions instead

rovide remote access to sensors and actuators from the Inter-

et, such as sMAP [6] . A notion of “physical mashup” [36] is also

merging, e.g. , as in systems like IBMs Node-RED [37] . Mitton et al.

38] present a concept of sensor virtualization applied to a smart-

ity use case. 

In all these approaches, the application logic runs outside

he network of embedded sensor and actuators. This simpli-

es quickly prototyping IoT applications, yet it does not allow

n efficient implementation of combined Internet-wide and lo-

alized interactions. ELIoT aims at efficiently enabling the lat-

er by retaining the ability to coordinate with Internet-wide ser-

ices. For example, as seen in the smart-home scenario, ELIoT

evelopers can implement control loops that span neighboring

LIoT- enabled devices; coordinate with non ELIoT- enabled de-

ices using standard protocols; and integrate them with externally-

unning services. Moreover, ELIoT’s REST interface enables the in-

egration with systems based on RESTful interactions, such as

ctinium [4] . 

There also exist works tackling different facets of IoT applica-

ions. Srijan [39] , for example, presents a model-driven develop-

ent approach by establishing specific roles for the involved stake-

olders, and by introducing domain-specific languages to model

oth the application and the underlying systems. Latronico et al.

40] present the notion of “accessor” as a way to tackle hetero-

eneity in IoT applications. An accessor is a software wrapper that

xports the functionality of sensors, actuators, and Internet-wide

ervices according to an actor-like model. These works are comple-

entary to ELIoT , which focuses on providing effective program-

ing and system support. For example, ELIoT may serve as a target

anguage for Srijan, to simplify code generation. Even more strik-

ngly, as ELIoT natively supports the actor model, it becomes a nat-

ral candidate for supporting the implementation and execution of

ccessors. 



152 A. Sivieri et al. / Computer Communications 89–90 (2016) 141–153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

A  

a  

b  

m

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2. Pervasive computing and sensor networking 

Most pervasive computing platforms are conceived as stand-

alone systems, where Internet-wide interactions are typically me-

diated by ad-hoc gateways designed and implemented on a per-

application basis. For example, Aura [41] and Gaia [42] focus on

effective development of on-the-fly interactions between users and

nearby pervasive computing devices, whereas MundoCore [43] pro-

vides a low-level framework and middleware for developing plat-

forms integrating diverse devices, from mobile systems to main-

stream PCs. Although MundoCore caters for effective integration of

heterogeneous hardware—an issue we also tackle in ELIoT using a

VM-based execution—these system do not tackle the problem of

effectively developing systems featuring both Internet-wide and lo-

calized interactions. 

Similar considerations apply to traditional sensor networking.

Although based on a different hardware, existing solutions in the

field [19] do enable the implementation of localized interactions—

especially by deploying the application logic right onto the em-

bedded devices—but lack support for Internet-wide interactions.

Programming may occur at the operating system level [44,45] ,

by relying on custom virtual machines [46] , or by using higher-

level abstractions [19] . Conceptually, ELIoT aims at bringing the

localized interactions already enabled by sensor network pro-

gramming in Internet-connected embedded networks. For exam-

ple, support to CoAP-based interactions in ELIoT helps achieve this

goal. 

8.3. Application-specific frameworks 

We use a smart-home application to exemplify the use of ELIoT.

Ad-hoc solutions exist for developing software in specific domains.

For example, HomeOS [47] is a middleware layer implementing

higher-level abstractions for smart-home applications, giving the

illusion that the house itself can be treated as a single computing

device. ELIoT’s applicability extends beyond this particular context.

For example, in the logistics domain, sensor attached to packages

may provide fine-grained continuous monitoring of the shipped

goods, used to inform business analysts at the back-end of item

availability and market trends [11] . Such applications show simi-

lar combinations of localized and Internet-wide interactions as our

smart-home example. ELIoT precisely aims at enabling both kinds

of interactions within the same platform. 

9. Conclusions 

We presented ELIoT, a development platform for the IoT that

allows developers to combine localized and Internet-wide inter-

actions. ELIoT builds upon Erlang by adapting its inter-process

communication facilities to the specifics of IoT applications, us-

ing custom language syntax and semantics. The VM-based execu-

tion supports the diverse IoT hardware and provides the necessary

software reconfiguration capabilities. ELIoT nodes export reconfig-

urable REST interfaces for standard-compliant interactions, while a

dedicated VM tailored to mainstream IoT devices supports the dis-

tributed executions of ELIoT applications, and a custom simulator

aids testing and debugging using hybrid configurations of real and

simulated devices. 

By comparing, both qualitatively and quantitatively, the imple-

mentation of a smart-home application using ELIoT and standard

C, we found that the former facilitates development by produc-

ing more concise and more readable code that is easier to test

and debug. The performance penalty is, on the other hand, limited.

For example, memory usage in ELIoT is often comparable to the C

counterparts, whereas CPU usage remains within practical limits.
he comparison with the state-of-the-art programming framework

llJoyn, paired with Java to offer a high-level programming style

nalogous to that of ELIoT, shows how the latter provides a much

etter compromise between ease-of-use and performance, with a

uch lower performance overhead. 
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