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a b s t r a c t 

Cognitive networking deals with using cognition to the entire network protocol stack to achieve stack- 

wide, as well as network-wide performance goals; unlike cognitive radios that apply cognition only at the 

physical layer to overcome the problem of spectrum scarcity. Adding cognition to the existing Wireless 

Sensor Networks (WSNs) with a cognitive networking approach brings about many benefits. To the best 

of our knowledge, almost all the existing researches on the Cognitive Wireless Sensor Networks (CWSNs) 

have focused on spectrum allocation and interference reduction, which are related to the physical layer 

optimization. In this paper, an inference and learning model for CWSNs, named LA-CWSN, is proposed. 

This model uses learning automata to bring cognition to the entire network protocol stack, with the aim 

of providing end-to-end goal. Learning automata are assigned to the parameters of the important network 

protocols. Each automaton has a finite set of possible values of the corresponding parameter, and it tries 

to learn the best one, which maximize the network performance. Each node in the network has its own 

group of learning automata, which act independently, however all nodes receive the same feedbacks from 

the environment. To clarify the proposed model a traffic control scenario in WSN is considered. Using the 

network simulator ns-2.35, we test the proposed inference and learning model for traffic control in a 

WSN. The results show that learning automata approach works well to apply cognition in WSNs. 

© 2016 Published by Elsevier B.V. 
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1. Introduction 

Wireless Sensor Networks (WSNs), which consist of small and

inexpensive communication nodes, are the results of recent ad-

vances in processing capability, memory capacity, and radio tech-

nology [1] . These networks can sense their environments and com-

municating with each other. They are also developed at a cost

much lower than traditional wired sensor systems. However, the

design of WSNs is facing many challenges; some of them are as

follows. Since the power source of the sensor nodes is limited

and un-chargeable, energy efficiency and life time maximization

are two key design factors. Spectrum allocation is another im-

portant problem in WSNs, because of the limited bandwidth and

the spectrum scarcity, which cause interference in WSNs. Another

challenge, which causes an end-to-end delay, is the sensing dura-

tion time. Collision occurs in WSNs because of the hidden termi-

nal problem, whereupon control and data packets may be lost; so,
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anaging access to the common medium is another important fea-

ure in designing WSNs. 

To overcome some of the above designing challenges in a WSN,

 cognitive technology has been proposed in [2–7] ; the proposed

olution, which has used cognitive radio, has been a new approach

o the spectrum allocation and utilization concept. Generally, a

ognitive radio [8] applies cognition only at the physical layer to

ynamically detect and use spectrum holes, focusing strictly on

ynamic spectrum access; whereas, the objective of cognitive net-

orking [9–12] is to apply cognition to the entire network protocol

tack for reaching network-wide performance goals. 

Cross-layer design is another approach, which has used to over-

ower the designing challenges in WSNs. The cross-layer design

efers to an explicit violation of the reference layer architecture

10] , and it usually focuses on merging and/or splitting of layers, to

chieve a particular goal. Every cross-layer design proposal serves

o highlight a specific shortcoming of the traditional protocol lay-

ring [13] , not end-to-end network goals. In addition, the cross-

ayer design is based on an algorithmic approach and does not

earn and adapt according to an end-to-end communication goal

12] . So, cross-layer design is just a way to apply cognition to the

ntire network protocol stack in cognitive networks. 

http://dx.doi.org/10.1016/j.comcom.2016.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.07.006&domain=pdf
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Overall, unlike the cognitive radio and the cross-layer design,

ognitive networks consider the entire network protocol stack to

reate a self-organized, self-aware, self-control, self-adaptive, and

n short, an intelligent network. In a Cognitive Wireless Sensor

etwork (CWSN), sensor nodes would have additional state called

ensing state [14] ; they sense the environment, and use their ob-

ervation to tune the controllable parameters of different protocols

f the network protocol stack, in order to adapt with the environ-

ent and satisfy end-to-end goals. It has been shown that the co-

xistence of such networks can significantly increase a WSN’s per-

ormance [15] . Raising the network efficiency by selecting proper

arameters, and carrying out cross-layer optimization on the re-

ulting stack, is a key functionality of any CWSN. Moreover, by the

daptive changes in the parameters of the network stack protocol,

ifferent data rates can be achieved, which in turn can directly in-

uence power consumption and network lifetime. 

In this study, we have focused on designing a learning

utomata-based CWSN. In the proposed model, which named LA-

WSN, a group of learning automata is assigned to each node to

mplement the cognition in a distributed way, and the nodes self

djust dynamically. To tune the parameters of the network stack

rotocol, in each node a learning automaton is assigned to each

ffective and controllable parameter; so all learning automata to-

ether, configure the network, to achieve the maximum network-

ide performance. After setting the parameters, network starts its

ork and each automaton receives a reinforcement signal, which

eflects the affect of the adjusted controllable parameter on the

erformance of the network. The reinforcement signal is one or

ore observable parameters 1 in the network. According to the re-

eived reinforcement signal, the automaton updates its probabil-

ty vector. Gradually, each automaton learns the best value of the

orresponding parameter, and consequently, all automata learn the

onfiguration of the network protocol stack, which satisfies the

etwork-wide performance metrics. To the best of our knowledge

his is the first study, which proposes a practical solution for de-

igning the CWSN. The proposed solution is neither a cognitive ra-

io approach nor a cross-layer design; it is completely a cognitive

etwork approach, in which the whole network protocol stack is

onsidered to create a self-organized, self-aware, self-control, and

elf-adaptive network. The solution also takes advantage of the

enefits of learning automata such as learning capability and low

omputational cost. 

The rest of the paper is structured as follows. In Section 2 re-

ated works are briefly introduced. Learning automata is described

n Section 3 . The proposed model is explained in Section 4 . Traffic

ontrol scenario in WSNs and the cognitive solution are presented

n Section 5 . In Section 6 performance evaluation is reported and

he experimental results are shown in the form of charts and ta-

les. Finally we conclude the paper in Section 7 . 

. Related works 

Since cognitive networks were introduced by Thomas in [12] ,

uch research has been done in the context of adding cognition to

ifferent networks such as, wireless networks, wireless mesh net-

orks, wireless sensor networks, and etc. In this section, we survey

he existing research works on cognitive wireless sensor networks

CWSNs). Research in the field of CWSNs can be classified into two

ain approaches; the first approach has studied the concept of

WSNs and some requirements for implementing them [14–20] ,

hile the second has studied specific issues such as routing, se-

urity, or channel assignment in CWSNs [21–24] . In this paper we

ave focused on the former and proposed a novel architecture. 
1 In some references observable parameters are known as the attributes of the 

etwork. 

i  

m  

s  

t  
In the first class of approaches, Zahmati et al. [14] have pre-

ented an overview of CWSNs; emerging topics, main advantages,

nd recent challenges in this area have been discussed, and also

ossible remedies to overcome the challenges have been suggested.

eshkova et al. in [16] have discussed the design of cross-layer

ptimization algorithm for cognitive wireless networks. They took

 “black box” approach and studied the use of simulated anneal-

ng to maximize the network performance. To improve the conver-

ence rate of the basic algorithm they have also applied graphical

odels on the perceived relations between network parameter and

etwork utilities. Finally, they tested the proposed algorithm in

imple WSNs. In [17] the concept of CWSNs has been reviewed and

 preliminary case study has been illustrated. Vijay et al. [15] have

rovided the vision and the advantage of a holistic approach to add

ognition in sensor networks, which can be achieved by incorpo-

ating learning and reasoning in the upper layer, and opportunis-

ic spectrum access at the physical layer; the paper provides the

eader with a framework based on knowledge and cognition that

elp to achieve end-to-end goals of application-specific sensor net-

orks. In [18] a novel multilevel architecture for CWSNs has been

roposed; the architecture has consisted of a Forest of Distributed

inimum Spanning Trees. Rovcanin et al. in [19] have analyzed

nd proposed a conceptual solution to determine which network

ervices would be beneficial to enable cooperation in CWSN; a re-

nforcement learning technique known as the Least Square Policy

teration has been used, and a self-learning entity, which negoti-

tes between different independent and co-located networks has

een proposed. In [20] a versatile platform has been presented

hat brings cognitive properties into WSNs; it has combined hard-

are and software modules as an entire instrument to investigate

WSN. 

The mentioned works have focused on foundations of CWSNs,

uch as network architecture; however, some more specialized

orks, which place in the second class, have also been done as

he following. In [21] a distributed leveling and clustering-based

uality of service routing protocol has been presented, which can

ncrease the network lifetime in CWSN by saving some battery

ower. In [22,23] security and privacy challenges in CWSNs have

een mentioned and various security threats and defense mecha-

isms have been discussed. In [24] the problem of robust topology

ontrol in CWSNs with the purpose of assigning a channel to each

adio such that the resulting topology is robust to the presence of

 primary user [8] has been addressed and also a distributed algo-

ithm for channel assignment has been proposed. 

As mentioned previously, in this paper a novel learning

utomata-based architecture for CWSN has been proposed. How-

ver Meshkova et al. [16] . have proposed a cross-layer optimization

ather than a cognitive network, their model is the most similar

ne to our proposed model named LA-CWSN. Some of the main

ifferences between LA-CWSN and their model are: using learn-

ng automata rather than simulated annealing; having dynamic

elf-adjusting in each node, which separates the cognition con-

ept from the cross-layer design; and ignoring any added graphical

odel to show the relationship between the parameters. 

. Learning automata 

In this section, learning automata [25,26] will be briefly re-

iewed. 

A learning automaton is an adaptive decision-making device

hat enhances its functionality through learning how to choose the

ptimal action from a finite set of permitted actions by repeated

nteractions with a random environment. In this case, the environ-

ent evaluates this taken action and responds by a reinforcement

ignal. The learning automaton then updates its internal informa-

ion, which is in the form of a probability vector, according to both
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Fig. 1. The interaction between learning automaton and the environment. 
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the chosen action and the received reinforcement signal. Then, the

learning automaton adjusts its action repeatedly, until a termina-

tion condition is satisfied. Fig. 1 represents the interaction between

a learning automaton and its environment. 

Every environment is indicated by E = { α, β, c } , wher e α =
{ α1 , α2 , . . . , αr } is the set of inputs, β = { β1 , β2 , . . . , βr } is the

set of outputs, and c = { c 1 , c 2 , . . . , c r } is the set of penalty proba-

bilities. Depending on the nature of the reinforcement signal β , the

environments are classified into P-model, Q-model, and S-model.

Whenever the set β has just two members, β1 = 1 and β2 = 0 , the

environment belongs to the class of P-model. In the Q-model class,

the environment contains a finite number of values in the interval

[0,1]. In contrast, the S-model environment has an infinite num-

ber of members. Finally, c i denotes the penalty probability of each

taken action αi . 

Learning automaton is categorized into fixed structure and vari-

able structure. Learning automaton with variable structure, which

will be used in this paper, is represented by { α, β , p , T }, where α =
{ α1 , α2 , . . . , αr } is the finite set of actions, β = { β1 , β2 , . . . , βr } is
the set of inputs, p = { p 1 , p 2 , . . . , p r } is the action probability vec-

tor, and p( n + 1 ) = T [ α(n ) , β(n ) , p(n ) ] is the learning algorithm.

After choosing an action, αi , the learning automaton, upon receipt

of a reinforcement signal from the environment, updates its action

probability vector according to Eq. (1) . 

p i ( n + 1 ) = p i ( n ) + a [ 1 − p i ( n ) ] , 

p j ( n + 1 ) = p j ( n ) − a p j ( n ) ∀ j, 

j � = i If the received signal is taken as desirable 

p i ( n + 1 ) = ( 1 − b ) p i ( n ) , 

p j ( n + 1 ) = 

b 

r − 1 

+ 

[
( 1 − b ) p j ( n ) 

]∀ j, 

j � = i If the received signal is taken as undesirable . (1)

Where, p i (.) is the probability of the selected action, and p j (.) de-

fines the probability of other actions in the action-set α; r denotes

the number of actions in the action-set α; and finally, the parame-

ters a and b denote reward and penalty parameters, respectively. If

a = b , the algorithm is called L R-P .; if b = 0 , the automaton is called

L R-I , and if b = εa , with ε < 1 being a small number the automaton

is called L R εP [26] . More information about learning automata can

be found in [25,26] . 

For a more complete description of learning automata, a sin-

gle automaton is generally sufficient for learning the optimal value

of one parameter. But for multidimensional optimization problems,

we need a system consisting of as many automata as there are pa-

rameters [25] . Let A 1 , … , A N be the automata involved in an N -

player game. Each play of game consists of each of the automaton

choosing an action and then getting the payoffs or reinforcements

from the environment for this choice of actions by the group of

learning automata. Let p 1 (n ) , p 2 (n ) , . . . , p N (n ) be the action prob-

ability distributions of N automata. Then at each instant n , each

automaton A chooses an action αi ( n ) independently and at ran-
i 
om, according to p i ( n ), 1 ≤ i ≤ N . This set of N actions is input to

he environment, which responds with N random payoffs. Random

ayoffs are supplied as reinforcements to the corresponding au-

omaton. Special case of this model is a game with common payoff;

ere, all the automata get the same payoff from the environment

that is, β i = β). Learning automata in a common payoff game is

ften referred as a team of learning automata. 

. Proposed model for CWSNs 

In this section, the problem of designing LA-CWSN, which is a

earning model for CWSN, has been described and our suggested

odel has been presented. Then, some assumptions have been

iscussed and a formal description has been expressed. Finally,

he major properties of LA-CWSN and the implementation require-

ents have been given. 

.1. Problem formulation 

As already mentioned implicitly, the parameters of the network

rotocol stack are classified to controllable and observable param-

ters; and observable parameters, consisting application-level pa-

ameters, are affected by controllable parameters. Some examples

f controllable parameters in a CWSN are: the duration of sens-

ng interval in the application level, the value of congestion win-

ow in the transport protocol, and the maximum number of trans-

ission in the MAC protocol. Similarly, some examples of observ-

ble parameters are: power consumption, Round Trip Time (RTT)

n the transport protocol, and the number of retransmission in the

AC protocol. Such representation of parameters allows for a sim-

le control loop, in which controllable parameters are tuned in ac-

ord with observable parameters to improve the performance of

he network. The quality of the observable parameters can be mea-

ured individually or using an application specific utility function

27] . In the former, each controllable parameter associates with

ne or more observable parameters and directly uses their values,

o tune itself. In the later, utility functions are used, as a flexible

ay, to define the satisfaction; they allow for a quantifiable ex-

ression of user needs [28] and they are used by controllable pa-

ameters to tune themselves. The common forms of utilities are

inear, logarithmic and step-wise functions, with components that

an be additive, weighted additive, or raised to power of a weight.

owever, other forms of objective functions can be used as well. 

In this study, the controllable parameters adjustments are con-

ucted by learning automata; each controllable parameter also as-

ociates with one or more observable parameters, whose qualities

re measured individually and used by learning automata to tune

he controllable parameters. The overall proposed network model

s represented in Fig. 2. 

.2. Assumption 

WSNs and also CWSNs are characterized by their applications

r objectives that their users want to achieve. Network parameters

re optimized at different time scales; for example, switching be-

ween sensor states takes longer than adjustment of a single MAC

arameter. We consider this fact, and update the interior state of

ach learning automaton in the right time. Also, to have a more

ffective learning, the network-wide performance is also measured

t specific times, by using a utility function. 
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Fig. 2. The proposed model of CWSN. 
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.3. Formal description 2 

In LA-CWSN, each group of learning automata, corresponding

ith a node, searches among all permutations of controllable pa-

ameters values of the network protocol stack to maximize the

etwork-wide performance. The formal description of the problem

s as follows. 

Let S be the collection of all possible configurations of the net-

ork protocol stack in a node; each configuration is subject to sev-

ral constraints, c : S → {0, 1}, such as, protocols that are mutually

xclusive, or protocols, which are a subset of each other and do

ot add to the overall functionality, or users’ constraints. The set

f configurations, which satisfy the constraints, is simply defined

y, S c = { x ∈ S| c(x ) = 1 } . 
Let CP ( s ) be the list of controllable parameters in the network

rotocol stack. Controllable parameters themselves, may also be

ubject to further constrains, c ′ s : CP (s ) → { 0 , 1 } , which are either

lobally delimited, or are a result of a combination of several pro-

ocols in the network protocol stack. We can therefore derive a set

f valid controllable parameter value vectors that are applicable to

he stack, which is given by, C P c ′ s = { x ∈ CP | c ′ s = 1 , s ∈ S} . 
The performance of the applied network protocol stack is de-

cribed by a set of observable parameters OP . The OP is not always

efined only from a technical point of view. Economic considera-

ions, such as the cost of deploying a certain topology, bandwidth-

ased fees and other application-specific parameters may also be

aken into account. According to Fig. 2 , we classify the observ-

ble parameters corresponding with each controllable parameter,

nd then evaluate their values individually to feed the control-

able parameters. In this situation, the desirable network protocol

tack configuration is described as the result of separated eval-

ations. However, as mentioned in Section 4.2 , to evaluate the

etwork-wide performance periodically, a utility function is also

sed. The utility function, U ( OP ( s , cp , E )), maps the observable pa-

ameters’ values to a single numerical, according to the deployed

tack ( s ∈ S , cp ∈ CP ), and the operational environment E . Higher

alues of the utility function show the better adjusted controllable

arameters’ values, over the other. Finally, finding the maximum

alue of the utility function, which is represented in Eq. (2) , is the
2 In this section we have widely used the reference [16] formulations. 

m  

s  

D  
ltimate goal of the proposed model. 

( s, cp ) = argmax 

( s,cp ) ∈ 
(

S c ×C P 
c ′ 
S c 

)U ( OP ( s, cp, E ) ) (2) 

.4. The properties of LA-CWSN 

LA-CWSN has several properties, which distinguish it from clas-

ical pre-planning in WSNs. First, it does not need any definite

tarting point, which is a default setting of the controllable param-

ters of the network protocol stack. In the beginning, all possible

alues of controllable parameters have the same chance to be cho-

en and in each repetition, the probability vectors of the learning

utomata update according to the received reinforcement signals

rom the network environment. This property helps to prevent of

ticking in a local optima; however, it may cause execution time

verhead. 

Moreover, LA-CWSN is carried out in two phases: offline learn-

ng phase, and inference and online learning phase. The offline

tage is regarded as a long-term learning, i.e. the performance of

he network is monitored for a long time without any need to keep

igh average reward, during the learning period. This stage can

ake place at times, when the network load is low; for example,

uring the night times. The offline learning phase leads to better

etwork protocol stack configurations; however, for all networks is

ot possible to have such stage. The online phase has more con-

traints. First, it must have shorter learning periods, not to disturb

he user. Second, reinforcement values must be kept high for sat-

sfying users. For the same reason, the network must react fast to

he changes of the network conditions, which can be stated as in-

erring in a cognitive network. Ideally, in a cognitive network we

ave both of these phases. 

Finally, sudden changes in the utility function value may

appen due to a temporary and unimportant event, and the

etwork protocol stack configuration should not be affected by

uch changes. However, for an exception, which is a drastic change

n the network’s performance, LA-CWSN should recognize the

hange, and react immediately. As an example for the later, there

ight be a sudden raise in the node failure rate when the network

hifts from low-power message delivery to just message delivery.

istinguishing these two cases depends on the time limitations in
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different applications; and in a LA-CWSN, the network gradually

learns to react automatically and appropriately in both situations. 

4.5. The implementation 

In this section, we describe the proposed learning automata-

based model for adding cognition to the WSN. A pre-defined

threshold, max it is determined, and the learning phase is repeated

up to max it times. After that, the search procedure stops and the

parameters values, which have yielded the highest utility, are re-

turned. So, each learning automaton should have a more memory

to keep the value, in which the network has had the best perfor-

mance. 

In the learning phase, each learning automaton, which has been

assigned to a controllable parameter, chooses an action from its

action sets. The action sets of learning automata contain the possi-

ble values of their corresponding controllable parameters. As men-

tioned in Section 3 , action sets are finite and if any continuous

parameter exists, it should be quantized. Using the chosen values,

the parameters are set and therefore, the network protocol stack is

configured. The configured network then interacts with the envi-

ronment and does its functionalities; based on this interaction the

observable parameters are affected. Learning automata get their

own feedbacks from the environment according to the correspond-

ing observable parameters. Whenever an automaton receives the

feedback, it individually evaluates that it is a desirable or unde-

sirable one. For a desirable value of the observable parameter an

automaton rewards its chosen action and for an undesirable one it

penalizes the action. All automata act autonomously and in a dis-

tributed form. Progressively, the probability vectors of the actions

in all automata will converge and they can choose the best val-

ues for the controllable parameters; so the whole network will be

configured properly to adapt with the environment situation. 

In order to overcome temporary and unimportant variations in

utility (basically background noise because of the changing utiliza-

tion of the network), we extended the LA-CWSN by a system of

comparing the values of two sliding windows, with window sizes

adjustable to the variance in the utility. 

Since the learning is usually applied at runtime, we have fur-

ther tried to limit the negative impact of the online learning to the

users. As the network (especially during early stages) tries to find

the parameters combination that yields high utility, we add sev-

eral conditional barriers; so, we would be able to cope with high

fluctuations in the utility. For example, once the LA-CWSN con-

verges to a good stable solution, the learning is stopped; however,

the observable parameters and the utility values are continuously

monitored over the time. If the system notices a sudden drop in

the performance that cannot be traced back to a temporary and

unimportant variance, but indicates a change in the network us-

age, learning phase is restarted with agility. A static memory of

the best parameter values, discovered over time, is used to boost

up the algorithm performance by letting it first try those combina-

tions. 

We are also able to make a tradeoff between the duration of the

learning period and the average utility achieved during the learn-

ing period. The learning iterations may be conducted only every

N 

th iteration, for all other returning to the best state. This allows

limiting the negative experience for users at the expense of a pro-

longed convergence time. 

5. Traffic control scenario in LA-CWSN 

WSNs and also CWSNs have important features, which affect

the network performance; some of them are listed below. They

have low-power radios because the power sources of the sen-

sor nodes are limited and un-chargeable. Their performance is
xtremely sensitive to the deployment environment, because the

ignals of the low-power radios are easily disrupted. There are

o widely accepted well-performing protocol stacks for these net-

orks, and several protocols and many parameters might be con-

idered for deployment. 

Traffic control generally refers to set policies and mechanisms

hat allow a network to efficiently satisfy a diverse range of ser-

ice requests; traffic control is also needed for providing quality of

ervice. According to the mentioned features of WSNs and CWSNs,

wo basic challenges exist for traffic control [29] : efficient resource

tilization and quality of service guarantee. 

In this section, first, we determine the traffic control parame-

ers and then, we examine how learning automata will be able to

djust these performance. 

.1. Traffic control parameters 

There are many parameters in a WSN protocol stack, which

hould be considered in order to efficiently control the traffic.

ere, we have chosen seven controllable parameters: Sensing In-

erval (SI) in the application layer, which determines the duration

f asleep and awake; Congestion Window (CW) in the transport

ayer, i.e., the maximum number of packets that can remain un-

cknowledged at any time; Beaconing Interval (BI) in the network

ayer, which defines routing duration in a routing protocol, i.e. a

aximum number of slots a node wait after sending rout request

acket; and in the MAC layer, Duty-Cycle (Du.C), i.e. the maximum

umber of slots a node waits to receive the acknowledgment of a

ent packet and then retransmit the packet; the Maximum number

f Retransmission (Mx.R), which limits the retransmission attempts

fter an unsuccessfully packet transmission; Contention Window

Ct.W), i.e. the maximum number of slots a node wait before send-

ng a packet according to a random back off interval between zero

nd contention window; and Acknowledgement-enable (ACK), a bi-

ary variable, which determines if a node must wait for the ac-

nowledgement after sending a single packet or not. 

To examine the effectiveness of a selected network protocol

tack configuration, nodes must be able to observe the feedback

f the environment; for this reason, some observable parameters

re considered, which can be listed as below. Event Duration (ED)

n the application layer, i.e. duration of time that the nodes of the

etwork must be awake and sense the environment, correspond-

ng with the event occurred in the environment. In the transport

ayer, Congestion Status (CS), which is a binary variable to define

he occurrence of the congestion; Round Trip Time (RTT), which

s the time between when a packet is sent and when the corre-

ponding acknowledgment is received; Throughput (Thp), i.e. the

otal amount of unique data [bytes] acknowledged in a sampling

nterval. Rout Request Ack (RRA), in the network layer, a binary

ariable, which specifies that a rout is found. In the MAC layer,

acket Loss (PL), which is a binary variable and defines either the

cknowledgment of a sent packet has been received or not; Total

ransmission (TT), i.e. the total number of original MAC packets

ent in the sampling interval; Total Retransmission (TR), which is

he total number of MAC retransmissions in the sampling interval;

nally, Power Consumption. 

Since we want to evaluate the performance of the algorithm

n scenarios, where an exhaustive search is possible, total number

f controllable parameters values permutations have to be limited,

nd also each parameter must have a finite set of the values to be

djusted. Most of the above parameters have a finite number of

utcomes; also some of them, such as RTT, have been quantized to

 q levels, so, all variables are multinomial, which is computation-

lly more efficient. 
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Table 1 

Defining the parameter used in flow the flow chart of traffic control in LA-CWSN. 

Abbreviation Definition 

SI Sensing Interval: duration of asleep and awake and is set by learning automaton LA1 

BI Beaconing Interval: routing duration in a routing protocol and is set by learning automaton LA2 

CW Congestion Window: the maximum number of packets that can remain unacknowledged at any time and is set by learning automaton LA3 

ACK Acknowledgment: a binary variable, which determines if a node must wait for the acknowledgement after sending a single packet or not 

and is set by learning automaton LA4 

Du.C Duty cycle: the maximum number of slots a node wait to receive the acknowledgment of a sent packet and then retransmit the packet 

and is set by learning automaton LA5 

Mx.R Maximum number of Retransmission: the number of retransmission attempts after an unsuccessfully packet transmission and is set by 

learning automaton LA6 

Ct.W Contention Window: the maximum number of slots a node wait before sending a packet according to a random back off interval between 

zero and contention window and is set by learning automaton LA7 

RRA Rout Request Acknowledgment: a binary variable, which specifies that a rout is found 

CS Congestion Status: a binary variable to define the occurrence of the congestion 

PL Packet Loss: a binary variable and defines either the acknowledgment of a sent packet has been received or not 

ED Event Duration: duration of time that the nodes of the network must be awake and sense the environment, corresponding with the event 

occurred in the environment 
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Table 2 

controllable parameters and their values. 

Protocol Parameter Values 

Application SI 20 0, 80 0, 140 0 

Transport CW 1, 3, 5 

Routing BI 5, 20, 40 

MAC Du.C 10, 50, 80, 100 

Mx.R 1, 3, 9 

Ct.W 5, 30, 40 

ACK “on”, “off”

t  

c  

o

6

 

i  

f  

i  

f  

a  

u  

h  

e  

p

 

t  

t  

m  

c  

a

6

 

a  

m  

b  

L  

f  

i  

l  

L  

v  
.2. Learning automata settings 

After determining the parameters and the finite sets of their

alues, a learning automaton is assigned to each controllable pa-

ameter in each node. Each learning automaton has the following

haracteristics: 

Set of actions ( α): the finite set of possible values of each con-

rollable parameter. 

Output ( β): the output or feedback of each automaton is com-

uted based on the value of its corresponding observable parame-

er(s) value(s); for example, for the learning automaton, which is

ssigned to BI the value of RRA will be checked; for the learn-

ng automaton, which is assigned to CW the value of CS will be

hecked; for the learning automaton, which is assigned to Du.C the

alue of PL will be checked, and …. If the value of the observable

arameter, which is usually a binary value, is desirable the corre-

ponding automaton will reward the selected action and otherwise

t will penalize it (a P-model environment is considered). 

Probability vector (p): initially, we use the uniform probability

istribution, and as the algorithm runs, the probability vectors of

earning automata will be updated using a learning function. 

Learning function (T): linear reward penalty algorithm pre-

ented in Section 3 is used. 

In each repetition, each automaton chooses an action from its

ction set; actions chosen by all automata configure the network

rotocol stack. Then the values of the observable parameters are

sed to update the probability vectors of the learning automata.

ll steps should be repeated for max it iterations and the param-

ter values, which yielded the highest utility, are returned. Fig. 3

epicts the flow chart of traffic control in LA-CWSN and Table 1

ummarized all abbreviations to clarify the figure. 

As it is shown in Fig. 3 , the learning automata, named LA1 is

ssigned to SI; likewise, LA2 to BI, LA3 to CW, LA4 to ACK, LA5 to

u.C, LA6 to Mx.R, and LA7 to Ct.W. 

Moreover, to evaluate the network-wide performance periodi-

ally, an application specific utility function, which allows for a

uantifiable expression of user needs, is used. In this paper, differ-

nt utility functions can be used; the utilities are functions of ob-

ervable parameters’ values, such as throughput, delay, reliability

maximum number of packet lost), and also power consumption.

s an example we use the utility as a function of power consump-

ion with a constraint on the reliability; because in a traffic con-

rol scenario in WSN energy and the number of packets lost are

wo key factors. Higher values of the utility function show the bet-

er adjusted controllable parameters’ values, over the other. After

nishing the offline learning phase (if having such phase is pos-

ible), LA-CWSN always monitors the output of the utility func-
 a  
ion to evaluate the performance of the configured network proto-

ol stack, and if a permanent or a drastic decrease in the utility is

bserved, learning phase restarts. 

. Performance evaluation 

LA-CWSN is implemented in NS-2.35 [30] and its performance

s evaluated over a wide range of scenarios. Network size is varied

rom fifty to four hundred nodes, with random topologies. Network

s queried every n milliseconds and information on the nodes per-

ormances is gathered, and parameters of the nodes are adjusted

s the result of learning process. As previously mentioned, to eval-

ate the performance of the algorithm on scenarios, where the ex-

austed search is possible, we have to limit total number of param-

ters values permutations. Table 2 shows the possible controllable

arameters values. 

We classify our experiments into two categories: experiments

o study the effect of algorithms and parameters of learning au-

omata (please refer to Section 3 ), and also comparative experi-

ents, in which LA-CWSN is compared against the WSN without

ognition and other proposed model in [16] , which uses simulated

nnealing and we will name it SA-CWSN. 

.1. Study the effect of learning algorithms and parameters 

In this section, we study the effect of the learning algorithms

nd the learning parameters on the performance of LA-CWSN. As

entioned in Section 3 , there are two learning parameters a and

 in Eq. (1) , and also three learning algorithms, L R-P , L R εP , and

 R-I based on the values of learning parameters. The main dif-

erences between L R-P and L R-I is that, under L R-I when the re-

nforcement signal is undesirable the action probability vector is

eft unchanged. It has been shown [26] that in the case of the

 R-I algorithm, the action probability vector converges to a unit

ector. Using the L R-P algorithm, which always updates the prob-

bility vector, the unit vector cannot be a stable point of the
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Fig. 3. Flow-chart of traffic control in LA-CWSN. 
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process p ( n ). It is reasonable, because there is always a chance

that the probability of the selected action is decreased and the

action probabilities converge in distribution. In this situation, if

the learning parameter ( a = b ) is sufficiently small, then the lim-

iting value of p i , probability of i th action, would essentially be

proportional to 1 
1 −d i 

, where, d i is the reward probability of i th 

action [31] . Compared to L , using L algorithm learning au-
R-I R-P 
omata can response to environment changes faster [26] and [31] .

he properties of L R εP are between those of L R-P and L R-I . Gen-

rally, we can conclude that, in a dynamic environment, such as

A-CWSN, using L R-P causes the values of controllable parameters

re updated more quickly when network conditions have changed;

herefore, L R-P has been chosen as the main learning algorithm in

A-CWSN. 
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Table 3 

The effect of learning parameters under L R-P learning algorithm. 

Learning parameters (a = b) 0 .0 0 01 0 .001 0 .01 0 .1 0 .2 0 .3 0 .5 0 .7 0 .99 

Performance metrics 

RTT (delay) 1 .002 0 .902 0 .715 0 .547 0 .671 0 .707 0 .750 0 .803 0 .957 

Throughput 75 .892 82 .225 90 .012 95 .978 92 .992 90 .525 89 .645 85 .078 80 .321 

Packet loss 750 .5 598 .0 537 .2 518 .1 525 .12 530 .0 545 .5 592 .5 600 .1 

Power consumption 20 .078 17 .001 8 .593 8 .237 8 .379 8 .503 9 .031 10 .017 17 .123 

Utility 0 .7215 0 .8151 0 .8975 0 .9740 0 .9450 0 .8813 0 .8228 0 .7730 0 .7002 

Table 4 

The effect of different learning algorithms. 

Learning parameters (a = b) LR-P LR εP LR εP LR-I 

a = b = 0.1 a = 0.1, b = 0.01 a = 0.1, b = 0.001 a = 0.1, b = 0 

Performance metrics 

RTT (delay) 0 .547 0 .701 0 .713 0 .721 

Throughput 95 .978 90 .222 90 .075 89 .165 

Packet loss 518 .1 591 .3 595 .5 599 .0 

Power consumption 8 .237 9 .071 9 .219 9 .563 

Utility 0 .9740 0 .9250 0 .9119 0 .9031 

Fig. 4. The effect of learning parameters, under L R-P learning algorithm, on the per- 

formance of LA-CWSN based on the utility value. 
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In the following, firstly, the effect of different values of the

earning parameters has been studied and then, a brief compari-

on between different learning algorithms has been done. The sim-

lation has been carried out in 400 × 400 area, with 200 sensor

odes, which have been set up at random. The number of itera-

ions has been set to 80. 

First simulation, whose results are given in Table 3 and Fig. 4 ,

as been conducted in order to study the effect of learning param-

ters a and b , under L R-P learning algorithm, on the performance of

he LA-CWSN. 

From the reported results in Table 3 and also Fig. 4 , we can con-

lude that, the best results are obtained with a = b = 0.1. As it can

e seen, smaller and larger values show worst performance based

n utility and also other metrics. This is justifiable because increas-

ng the value of learning parameter causes the probability vectors

onstantly change, and on the other hand, by decreasing the value

f learning parameter the speed of learning automata reduces and

hey achieve the desirable values very slowly. 

In the next simulation, the effect of different learning algo-

ithms L R-P , L R εP , and L R-I on the performance of the LA-CWSN, is

tudied. Based on the previous results, a = 0.1 and under the L R εP 

lgorithm b = 0.1a and b = 0.01a . The results are given in Table 4. 

Reported results in Table 4 depict that by choosing the smaller

alues of ε, the results will approach to the results of L R-I al-

orithm; anyway L R-P shows the best results based on the util-

ty value, in comparison with other learning algorithm. Thus, next

imulations are done using L R-P , as the learning algorithm, and

 = b = 0.1 as the learning parameters. 
.2. Compare the LA-CWSN against simple WSN and SA-CWSN 

In the following, the performance of the LA-CWSN is evaluated

ver a wide range of scenarios using different performance mea-

ures and network sizes. All network scenarios are carried out in

S-2.35. Fig. 5 illustrates the results. Experiments are repeated 50

imes, and the obtained results are averaged. Performance mea-

ures are power consumption depicted in Fig. 5 (a), average de-

ay shown in Fig. 5 (b), total number of packet loss represented in

ig. 5 (c), total amount of unique data, which are acknowledged

s throughput, illustrated in Fig. 5 (d), total number of delivered

acket depicted in Fig. 5 (e), and finally, the utility as a function

f power consumption with a constraint on the number of packet

oss shown in Fig. 5 (f). Network size varies from 50 to 400 nodes

ith random topology. 

As it can be seen in the charts, CWSNs usually have much bet-

er performance in comparison with WSN without cognition; it

as predictable, since CWSNs tune the parameters to improve the

erformance, whereas a WSN without cognition adjusts the pa-

ameters with no attention to the environment conditions. On the

ther hand, compared with SA-CWSN, LA-CWSN shows better per-

ormance. LA-CWSN is always superior to other networks based

n the performance measures; while SA-CWSN, which takes ad-

antage of simulated annealing and also simple graphical models,

ometime shows nearly the same performance with simple WSN.

oreover, SA-CWSN, actually, is a cross layer optimization design,

hich has a centralized view to tune the network protocol stack;

.e., all nodes use the same parameters’ values and all nodes evalu-

te their parameters in the same way; though, the main advantage

f “cognition” over “pre-planning” is the fact that the nodes self-

djust dynamically. In contrast, LA-CWSN is quite a cognitive ap-

roach, and nodes tune their protocol stacks in a distributed and

utonomous way. Also, using learning automata has more profits

n comparison with using simulated annealing; for example, learn-

ng automata, which have learning capability, test more states in

he search-space and are less likely to remain in the local optima. 

In next experiments, the effect of the number of iterations on

he performance of the algorithms is studied. In these simulations

e examine LA-CWSN in two cases: LA-CWSN1, which has been

iscussed till now, and LA-CWSN2, in which all learning automata,

A1 to LA7, receive the same feedback from the network environ-

ent; this identical feedback is the utility value as discussed be-

ore. Fig. 6 shows the results. Here, too, the experiments are re-

eated 50 times, and the obtained results are averaged. 
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Fig. 5. Comparison the performance of LA-CWSN with SA-CWSN and the basic WSN (the charts are obtained by conducting several experiments at random starting parameter 

configurations and then averaging over these results is done.) 
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As the results indicate, both LA- CWSNs converge to their

best performance faster than SA- CWSN. Also, comparing the LA-

CWSN1 with LA-CWSN2 demonstrates that the basic LA-CWSN, in

which learning automata receive different payoffs from the net-

work environment, has better results and it converges to its best

results faster. LA-CWSN1 converges to the best results almost al-

ways in iteration 70, and it converges to the 80% from maximum

after about 50–60 iterations; while the best results for LA-CWSN2

are usually reached after iteration 75. 

Fig. 6 (a) depicts that, power consumption of LA-CWSN1 is grad-

ually reduced and it can save more energy compared with LA-

CWSN2 and specially SA-CWSN. Similarly, Fig. 6 (b) for average de-

lay, Fig. 6 (c) for total number of packet loss, Fig. 6 (d) for through-
ut, and Fig. 6 (e) for utility illustrate that LA-CWSN1 is superior to

he both LA-CWSN2 and SA-CWSN 

However it seems that LA-CWSN has been tested only in one

cenario, traffic control is a comprehensive scenario, in which

any controllable parameters must be considered; so, we can

laim that LA-CWSN works well in other scenarios of WSNs, which

re often more simple. As an example target tracking [32–34] , in

hich predicting the target position and awakening right sensor

odes are two main problems, can be mentioned. Topology con-

rol [35–37] , in which the positions of nodes and the connectivity

f the network are two important issues, is another example. En-

rgy aware routing [38] is another instance that considers some

arameters. Overall, adding cognition to the existing WSNs with
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Fig. 6. The effect of the number of iterations on the performance metrics. 
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 cognitive networking approach brings about many benefits, and

sing learning automata, due to their learning capability and low

omputational cost, is an effective way to implement the cognition

oop in CWSNs. 

. Conclusion 

In this study, adding cognition to the common WSNs and the

roperties of the CWSNs have been discussed; then, a learning

utomata-based model, which called LA-CWSN, has been proposed.

n LA-CWSN, learning automata have been used to tune the net-

orks controllable parameters. Each learning automaton is as-

igned to one controllable parameter and it chooses one possible

alue to adjust the parameter. Each learning automaton receives

ts own payoff from the network environment, and updates its in-

ernal information using the payoff and the probability vector of

he actions. Over time, learning automata learn the suitable values

f the parameters, corresponding with the current situation of the

etwork. All the nodes in the network have this set of learning au-

omata to dynamically configure the network protocol stack by it-

elf; indeed, LA-CWSN is a distributed and intelligent model to im-
lement a CWSN. Finally, the proposed LA-CWSN has successfully

een tested. The results have represented the superior results com-

ared with a basic WSN and also the simulated annealing based

WSN. 

Cognitive networks are popular within the areas of communica-

ion networks and AI. The authors yearn to continue their investi-

ations in this field, by using other machine learning mechanisms

uch as Particle Swarm Optimization (PSO) and Bayesian Networks

BNs). In addition, other important scenarios in WSNs, such as tar-

et tracking, topology control, and energy aware routing are inter-

sting research topics, which can be considered in CWSNs and will

e the subject of the authors’ next investigations. 
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