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In this paper, we show how to construct a normalized B-spline basis for a special C1

continuous splines of degree 2, defined on Sibson–Thomson refinement. The basis functions
have a local support, they are nonnegative, and they form a partition of unity. The
dilatation equation can be found by applying the dyadic subdivision scheme directly to the
Sibson–Thomson spline basis functions. As an application, a quasi-interpolation method,
based on this Sibson–Thomson B-spline representation, is described which can be used for
the efficient visualization of gridded surface data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Sibson–Thomson (ST) splines are functions in the space S1
2(�∗

2) of C1 continuous piecewise quadratic functions on a ST
refinement (uniform criss-cross triangulation). Such a refinement �∗

2 can be obtained from a rectangular mesh by dividing
each rectangular patch into four rectangles by arbitrary parallels to its vertical and horizontal edges. Then, each subrectangle 
is subdivided into four triangles by its diagonals. The structure of these splines has been analyzed in Beatson and Ziegler
(1985), Lorente-Pardo et al. (2000), Sibson and Thomson (1981), Sibson (1980) and they can be computed in Bernstein–
Bézier form (Farin, 1986; Lorente-Pardo et al., 2000). In Dubuc and Merrien (1999), given f and ∇ f at the vertices of a 
rectangular mesh, Dubuc and Merrien have studied an algorithm H R1 building an interpolating C1 function. As an example, 
they show that the ST element can be obtained by H R1. The connection between the refinable Hermite interpolant and ST 
Hermite interpolation on subrectangles was described in Han et al. (2003).

Sorokina and Zeilfelder (2004) have presented a method to construct quasi-interpolation operators based on quadratic 
C1-splines on uniform type-2 triangulation. The Bernstein–Bézier coefficients of the piecewise quadratic polynomials are 
directly determined by appropriate combinations of the data values. Their motivation, it seems difficult – if not impossible 
– to construct local and stable bases for splines C1-splines on uniform type-2 triangulation. However, representing com-
plex surfaces requires the use of a large number of Bézier triangles. Preserving a certain degree of continuity between all 
patches results in a large set of non-trivial relations between their Bézier ordinates. These relations are hard to implement 
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Fig. 1. ST subdivision of a rectangle.

and they hinder the designer to make predictable local changes (Vanraes, 2004). On the other hand, the operator de-
scribed in Sorokina and Zeilfelder (2004) was first developed in Chui and He (1986) (see also Dagnino and Lamberti, 2005;
Sablonnière, 2003) by using a completely different approach based on the so-called box-splines, which are locally supported 
and not linearly independent splines. A well-known example where linear independence does not hold is the C1-quadratic 
Zwart–Powell element defined on a four-directional (criss-cross) partition of the plane (Wang, 2001).

The aim of this paper is to show that ST splines could be compactly represented in a normalized B-spline basis. The 
basis functions have a local support, they are nonnegative, and they form a partition of unity. This representation has an 
intuitive geometric interpretation involving tangent control triangles. There exist many sets of basis functions with a similar 
construction based on Powell–Sabin partitions with different degrees (see for example Dierckx, 1997; Lamnii et al., 2014;
Speleers, 2010a, 2013b). Similar B-spline representation for bivariate reduced Clough–Tocher splines has been considered in 
Speleers (2010b). Recently, a simplex spline basis for the C1-quadratics on the Powell–Sabin-12 with all the usual properties 
of the univariate B-spline basis was discovered (Cohen et al., 2013).

In addition, we discuss dyadic subdivision scheme for the ST spline surfaces. The goal is to calculate the B-spline repre-
sentation of a surface on a dyadic refinement of the given triangulation. More precisely, we show that the basis functions 
are translated and dilated of one vectors of scaling function. Hence, the dilatation equation can be found by applying the 
subdivision scheme directly to the ST spline basis functions. Moreover, we use some results on blossoming to establish 
general Marsden identities representing polynomials of at most degree 2 in terms of ST B-splines of C1-smoothness. As a 
consequence, we employ the bivariate polarization formulas to construct different families of differential and discrete quasi-
interpolants (q.i.s.) reproducing bivariate polynomials of degree 2 and have an optimal approximation order.

The paper is organized as follows. Section 2 recalls the definition of the ST spline space. Section 3 describes the construc-
tion of a normalized B-spline basis, which is based on determining a set of triangles that contain a specific set of points, 
and the Marsden’s identity for the C1-continuous ST splines. In Section 4 we discuss dyadic subdivision scheme for the ST 
spline surfaces. In Section 5, we present an approach to construct the q.i.s. based on this representation. The approach is 
illustrated by the construction of Hermite interpolant and particular q.i.s. based on function evaluations. Finally, in order to 
illustrate our results, we give in Section 6 some numerical examples.

2. ST splines

Let h > 0, n, m ≥ 2 and {(xi, y j) = (ih, jh), 0 ≤ i ≤ n, 0 ≤ j ≤ m} be the set of (n + 1) × (m + 1) points in the rectangular 
domain R := [0, nh] × [0, mh]. Then the collection of rectangles Ri, j := [xi, xi+1] × [y j, y j+1], where i = 0, . . . , n − 1, j =
0, . . . , m − 1, forms a partition of R . The so-called ST refinement �∗

2 of R is defined by dividing each rectangle Ri, j into four 
rectangles by arbitrary parallels to its vertical and horizontal edges. Then, each subrectangle is subdivided into four triangles 
by its diagonals: thus, ST partition does define a uniform criss-cross triangulation consisting of 16 triangles (see Fig. 1).

The ST space S1
2(�

∗
2) is the space of piecewise quadratic C1 continuous functions on a ST refinement �∗

2, with additional 
smoothness around some edges. More precisely, for each function s ∈ S1

2(�
∗
2), ∂s/∂x is linear along the edges x = xi and 

x = xi+1 of the subrectangle Ri, j and the derivative ∂s/∂ y is linear along the edges y = y j and y = y j+1. It is well known 
(cf. Sibson and Thomson, 1981) that the dimension of S1

2(�∗
2) is 3(n + 1)(m + 1). Furthermore, any element of s ∈ S1

2(�
∗
2)

is uniquely specified by its value and its gradient at V i, j := (xi, y j)
T , for i = 0, . . . , n and j = 0, . . . , m, and can be locally 

constructed on each triangle of �∗
2 once these values and gradients are given, see Farin (1986), Sibson and Thomson (1981). 

Hence, for any given set of ( f i, j, fx,i, j, f y,i, j)-values, a spline s ∈ S1
2(�

∗
2) can be defined by means of the following Hermite 

interpolation problem:
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Fig. 2. B-coefficients of s.

s(V i, j) = f i, j,
∂s

∂x
(V i, j) = fx,i, j,

∂s

∂ y
(V i, j) = f y,i, j, (1)

for i = 0, . . . , n and j = 0, . . . , m.
Let Pd denote the linear space of algebraic polynomials of degree less than or equal to d. We use the piecewise 

Bernstein–Bézier representation (B-form) of the splines, i.e., for each spline s ∈ S1
2(�

∗
2), the polynomial piece p = s|T ∈ P2

on a triangle T ∈ �∗
2 is given by

p(x, y) =
∑

i+ j+k=2

bi, j,kB
d
i, j,k(λ1, λ2, λ3).

Here Bd
i, j,k = 2

i! j!k!λ
i
1λ

j
2λ

k
3 are the six quadratic Bernstein polynomials associated with T , and λ = (λ1, λ2, λ3) are the 

barycentric coordinates of a point (x, y)T ∈R2 with respect to the triangle T .
We now show how to compute the Bernstein–Bézier representation of the ST spline satisfying (1). In order to simplify 

the construction, we develop the ST element on a reference square S(V 1, V 2, V 3, V 4) of vertices V i , i = 1, . . . , 4 (see Fig. 1). 
Setting

A1 = 1

2
(V 1 + V 2), A2 = 1

2
(V 2 + V 3), A3 = 1

2
(V 3 + V 4), A4 = 1

2
(V 4 + V 1),

B1 = 1

2
(Z + V 1), B2 = 1

2
(Z + V 2), B3 = 1

2
(Z + V 3), B4 = 1

2
(Z + V 4),

Z = 1

2
(V 1 + V 3).

Suppose that the ST-spline s is defined by means of interpolation problem (1). On each micro-triangle in the square 
S(V 1, V 2, V 3, V 4), the spline s is a quadratic polynomial that can be represented in its Bernstein–Bézier formulation. The 
corresponding Bézier ordinates are schematically represented in Fig. 2.

In view of the C1-smoothness at vertex V 1, the Bézier ordinates in the neighborhood of V 1 are found as

a1 = s(V 1), (2)

a2 = a1 + 1

2
(A1 − V 1).∇s(V 1), (3)

a3 = a1 + 1

2
(B1 − V 1).∇s(V 1). (4)

Similarly, the coefficients a5, . . . , a16 can be computed from the C1 smoothness condition at V i , i = 2, 3, 4. By the C1

smoothness at A1 we obtain

a17 = 1

2
(a2 + a8). (5)

The coefficients a18, a19, a20 can be computed in the same way.
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Using straightforward computations, we obtain

a21 = −a1

2
− a5

2
+ a3 + a7, (6)

with similar formulas for a22, a23 and a24.
We also have

a25 = 1

2
(a2 + a21). (7)

In the same way, a27, . . . , a32 can be determined.
Similarly, we have

a33 = 1

2
(a32 + a25), (8)

a37 = 1

2
(a24 + a21). (9)

Finally, we get

a41 = 1

2
(a21 + a23). (10)

By using a similar argument, we can determine the expression of a34, a35, a36, a38, a39, a40.

3. A normalized B-spline representation for ST-splines

In this section, a basis of S1
2(�∗

2) can be constructed in a similar way as for the basis described in Dierckx (1997) for the 
quadratic Powell–Sabin spline space. More precisely, we are looking a B-spline representation for ST-splines

s(x, y) =
n∑

i=0

m∑
j=0

3∑
k=1

ci, j,k Bi, j,k(x, y), (x, y)T ∈ R, (11)

where the basis functions satisfy

Bi, j,k(x, y) ≥ 0, 1 =
n∑

i=0

m∑
j=0

3∑
k=1

Bi, j,k(x, y), (12)

and have local support.
To construct the basis functions Bi, j,k , we use a geometric method suggested by Dierckx (1997) and some results pre-

sented in Speleers (2013b).
Let Mi, j be the subset of R consisting of the points belonging to the union of all the rectangles Ri1 , j1 = [xi1 , xi1+1] ×

[y j1 , y j1+1] containing the vertex V i, j . From the Bézier–Bernstein representation, it is immediate to see that if we would 
like ST B-splines to have minimal support then the support for any Bi, j,k is contained in Mi, j .

For each vertex V i, j the three functions Bi, j,k(x, y), k = 1, 2, 3, can be locally constructed over the Mi, j once their values 
and gradients at each vertex are given. Due to the structure of the support we have Bi, j,k is zero with its first derivatives at 
any vertex except for V i, j . Moreover, we denote:

βab
i, j,k := ∂a+b

∂xa∂ yb
Bi, j,k(V i, j) for 0 ≤ a + b ≤ 1. (13)

For each vertex V i, j we associate an arbitrary triangle ti, j(Q i, j,1, Q i, j,2, Q i, j,3) with vertices Q i, j,k = (Xi, j,k, Yi, j,k)
T , k =

1, 2, 3. From such a ST triangle one can uniquely determine the values {βab
i, j,k, 0 ≤ a + b ≤ 1} of the three B-splines Bi, j,k at 

the vertex V i, j as⎛
⎜⎝

β00
i, j,1 β00

i, j,2 β00
i, j,3

β10
i, j,1 β10

i, j,2 β10
i, j,3

β01
i, j,1 β01

i, j,2 β01
i, j,3

⎞
⎟⎠

⎛
⎝ Xi, j,1 Yi, j,1 1

Xi, j,2 Yi, j,2 1

Xi, j,3 Yi, j,3 1

⎞
⎠ =

⎛
⎝ xi y j 1

xi y j 1

xi y j 1

⎞
⎠

More precisely, from Speleers (2013b) we have

βab
i, j,1 = ∂a+b

a b
B1

100(V i, j),β
ab
i, j,2 = ∂a+b

a b
B1

010(V i, j),β
ab
i, j,3 = ∂a+b

a b
B1

001(V i, j), (14)

∂x ∂ y ∂x ∂ y ∂x ∂ y
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Fig. 3. Schematic representation of the Bézier ordinates of the B-spline.

for all 0 ≤ a + b ≤ 1, where B1
i1 i2 i3

are the Bernstein basis polynomials of degree 1 with respect to a triangle ti, j . Con-
sequently, the B-splines Bi, j,k(x, y) constructed using the set of triangles ti, j form a partition of unity and the following 
expansions hold

x =
n∑

i=0

m∑
j=0

3∑
k=1

Xi, j,k Bi, j,k(x, y), y =
n∑

i=0

m∑
j=0

3∑
k=1

Yi, j,k Bi, j,k(x, y).

The positivity of a normalized ST-basis depends on finding a set of ST-triangles that must contain a number of specified 
points. Let

Z := {Zi, j = (V i, j + V i+1, j+1)/2, 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1}
the set of the centers of all squares Ri, j . We can then give a geometric approach to satisfy the nonnegativity conditions.

Theorem 1. The B-splines Bi, j,k(x, y) constructed using a set of triangles ti, j are nonnegative on Ri, j if each triangle ti, j contains its 
corresponding vertex V i, j and the points

3

4
V i, j + 1

4
V i+1, j,

1

2
(V i, j + Zi, j),

3

4
V i, j + 1

4
V i, j+1.

Proof. We use a similar line of argument as in the Powell–Sabin splines (see Section 4 of Dierckx, 1997) and reduced 
cubic Clough–Tocher splines (see Section 3.2 of Speleers, 2010b). We consider again the macro-square S(V 1, V 2, V 3, V 4)

depicted in Fig. 1 such that the corresponding B-splines with respect to a vertex V 1 are noted by B1,k , k = 1, 2, 3. The 
Bernstein–Bézier representation of the B-spline B1,k is schematically represented in Fig. 3. In order to derive the conditions 
for the nonnegativity of B1,k on the square S(V 1, V 2, V 3, V 4), it is sufficient to request

di ≥ 0, i = 1, . . . ,6. (15)

Put

P1 = V 1, P2 = 1

2

(
V 1 + A1

)
, P3 = B1, P4 = 1

2

(
V 1 + A4

)
.

Without loss of generality we assume k = 1. We recall from (13) and (14) that

∂a+b

∂xa∂ yb
B1,1(V 1) = βab

1,1 for 0 ≤ a + b ≤ 1, (16)

where

βab
1,1 = ∂a+b

∂xa∂ yb
B1

100(V 1),

with B1 is the Bernstein polynomial of degree 1 with respect to a triangle t1(Q 1, Q 2, Q 3).
100
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Fig. 4. The split of a domain triangle.

Let us denote f (V ) := B1
100(V ), then

f (V ) = f (V 1) + (V − V 1).∇ f (V 1). (17)

As presented in above section, we have

d1 = f (V 1) = f (P1),

d2 = d1 + 1

2
(A1 − V 1).∇ f (V 1) = f

(
A1 + V 1

2

)
= f (P2),

d3 = f

(
P1 + P3

2

)
, d4 = f (P4),

d6 = d5 = −1

2
d1 + d3 = 1

2
f (V 1) + 1

2
(B1 − V 1).∇ f (V 1) = 1

2
f (P3) .

Each Bernstein polynomial is nonnegative on its domain triangle. It follows that f (V ) ≥ 0 for all V ∈ t1. It follows that the 
nonnegativity conditions (15) for B-spline B1,1 on rectangle S(V 1, V 2, V 3, V 4) are satisfied when the triangle t1 contains 
the points P1, P2, P3 and P4. �

Summarizing, the ST B-splines associated to each vertex V i, j are uniquely associated to the triple of points Q i, j,k , k =
1, 2, 3, forming the ST triangle. ST triangles are very useful to geometrically identify and describe ST B-splines and their 
properties. ST triangles are not uniquely defined (see Fig. 4). One possibility for their construction is to calculate a triangle 
of minimal area subjected to the constraints of Theorem 1. As Powell–Sabin B-splines (Dierckx, 1997), we can propose an 
optimization strategy to select triangles with minimal area ensuring positivity of the corresponding ST B-splines.

In the following result, we give Hermite interpolation rules for C1 quadratic ST-splines in the normalized B-spline repre-
sentation which is completely identical to what is known for Powell–Sabin splines, see Section 4.1 of Speleers (2013a) and 
reduced Clough–Tocher splines, see Eq. (4.2) given in Speleers (2010b).

Proposition 2. Let s ∈ S1
2 (�∗

2), then

s(x, y) =
n∑

i=0

m∑
j=0

3∑
k=1

(s(V i, j) + (Q i, j,k − V i, j).∇s(V i, j))Bi, j,k(x, y), (x, y)T ∈ R.

We shall study a ST B-spline representation of ST-splines of class C1 or all quadratic polynomials in terms of their 
blossoms. The blossom of a polynomial p ∈ Pd (introduced in Ramshaw, 1989) is the unique multivariate polynomial B[pd]
that satisfies the following three conditions:

• B[pd] is symmetric,

B[pd](z1, . . . , zd) = B[pd](zπ(1), . . . , zπ(d)),

for any permutation π of the integers 1, . . . , d.
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Fig. 5. ST-points and ST-triangle containing the ST-points.

• B[pd] is multiaffine,

B[pd](z1, (α̂z + β z̃ ), z3, . . . , zd) = αB[pd](z1, ẑ, z3, . . . , zd) + βB[pd](z1, z̃, z3, . . . , zd),

where α + β = 1.
• B[pd] is diagonal, pd(z) = B[pd](z, . . . , z︸ ︷︷ ︸

d

), for all z ∈ R2.

With blossoming we have a simple but powerful tool for determining the B-spline coefficients of ST-splines. Put Q̃ i, j,k =
−V i, j +2Q i, j,k, i = 0, . . . , n, j = 0, . . . , m, and k = 1, 2, 3. We can also express the coefficients of ST splines using blossoming 
in a similar way as in Theorem 7 of Sbibih et al. (2009) (see also Theorem 7 in Lamnii et al., 2014).

Proposition 3. For any s ∈ S1
2 (�∗

2) we have

s(x, y) =
n∑

i=0

m∑
j=0

3∑
j=1

B[si, j]
(

V i, j, Q̃ i, j,k
)

Bi, j,k(x, y),

where si, j is the restriction of s to one of the triangles of �∗
2 having V i, j as vertex.

Corollary 1. For any polynomial p ∈P2 , we have

p(x, y) =
n∑

i=0

m∑
i=0

3∑
k=1

B[p] (V i, j, Q̃ i, j,k
)

Bi, j,k(x, y), ∀(x, y)T ∈ R.

4. Dyadic subdivision scheme

Dubuc and Merrien (1999) show that the quadratic finite element of ST can be constructed by Hermite dyadic inter-
polation. Lounsberg et al. (1997) proved that with every subdivision scheme, a sequence of nested linear spaces, with the 
corresponding basis functions, the scaling functions can be associated. It is then possible to associate the ST B-splines and 
H R1 presented in Dubuc and Merrien (1999).

4.1. Uniform ST B-splines

In order to simplify the construction the uniform ST B-splines, we give explicitly the 3 B-spline functions Bk(x, y), 
k = 1, 2, 3, on a reference square [−1, 1] ×[−1, 1], where the center of their support is at (0, 0)T . The three ST B-splines as-
sociated to a vertex (0, 0)T are uniquely associated to the triple of points Q 1 = (0, − 1

2 )T , Q 2 = ( 3
4 , 14 )T and Q 3 = (− 3

4 , 14 )T , 
see Fig. 5.

Any point V = (x, y)T in the plane of the triangle can be uniquely expressed in terms of the barycentric coordinates 
λ j(x, y), j = 1, 2, 3 with respect to t(Q 1, Q 2, Q 3).
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Fig. 6. The Bézier coefficients of B-spline B1 divided by 24.

Since,

x = 3

4
λ2(x, y) − 3

4
λ3(x, y),

y = −1

2
λ1(x, y) + 1

4
λ2(x, y) + 1

4
λ3(x, y),

1 = λ1(x, y) + λ2(x, y) + λ3(x, y),

it follows that

λ1(x, y) = 1

3
− 4y

3
, (18)

λ2(x, y) = 2x

3
+ 2y

3
+ 1

3
, (19)

λ3(x, y) = −2x

3
+ 2y

3
+ 1

3
. (20)

From (13), the three B-splines Bk(x, y), k = 1, 2, 3 are determined by

(β00
0,1, β

10
0,1, β

01
0,1) = (

1

3
,0,−4

3
), (β00

0,2, β
10
0,2, β

01
0,2) = (

1

3
,

2

3
,

2

3
)

(β00
0,3, β

10
0,3, β

01
0,3) = (

1

3
,−2

3
,

2

3
).

Hence, Figs. 6, 7 and 8 show respectively the Bézier representation of B-splines Bk(x, y), k = 1, 2, 3. From the previous, it 
follows that for a given uniform ST-triangulation, the basis functions are translations of three functions Bk :

B(u) =
⎡
⎣ B1(u)

B2(u)

B3(u)

⎤
⎦

4.2. Refinement of B-spline functions

Noted by φ j, j = 1, 2, 3 the classical Hermite basis of ST element. Let 	 = (φ1, φ2, φ3)
T . From Dubuc and Merrien (1999), 

we have the following refinement equation:

	 =
∑

2

A(α)	(2. − α), (21)

α∈Z
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Fig. 7. The Bézier coefficients of B-spline B2 divided by 24.

Fig. 8. The Bézier coefficients of B-spline B3 divided by 24.

where

A(0,0) =
⎡
⎢⎣

1 0 0

0 1
2 0

0 0 1
2

⎤
⎥⎦ , A(η1,0) =

⎡
⎢⎣

1
2 −η1 0
η1
8 − 1

4 0

0 0 1
4

⎤
⎥⎦ ,

A(0, η2) =
⎡
⎢⎣

1
2 0 −η2

0 1
4 0

η2
8 0 − 1

4

⎤
⎥⎦ , A(η1, η2) =

⎡
⎢⎣

1
4 −η1

2 −η2
2

η1
16 − 1

8 −η1η2
8

η2
16 −η1η2

8 − 1
8

⎤
⎥⎦ ,

with η1, η2 ∈ {±1} and supp A = {(0, 0), ±(1, 0), ±(0, 1), ±(1, 1)}.
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Let us denote

M =
⎛
⎜⎝

β00
0,1 β00

0,2 β00
0,3

β10
0,1 β10

0,2 β10
0,3

β01
0,1 β01

0,2 β01
0,3

⎞
⎟⎠ .

It is easy to see that

B(u) = M.	(u). (22)

The dilatation equation, which expresses the multi-scaling function in terms of translations and dilations of itself, can be 
found by applying the subdivision scheme directly to the uniform ST-spline basis functions:

B =
∑
α∈Z2

M A(α)M−1B(2 · −α). (23)

Here, we are primarily interested in the case where

Q 1 = (0,−1

2
), Q 2 = (

3

4
,

1

4
) and Q 3 = (−3

4
,

1

4
).

Then, we have

M =
⎡
⎢⎣

1
3 0 − 4

3
1
3

2
3

2
3

1
3 − 2

3
2
3

⎤
⎥⎦ and M−1 =

⎡
⎢⎣

1 1 1

0 3
4 − 3

4

− 1
2

1
4

1
4

⎤
⎥⎦ .

By (23), we have

B =
∑
α∈Z2

A(α)B(2. − α),

where

A(0,0) =
⎡
⎢⎣

2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3

⎤
⎥⎦ , A(η1,0) =

⎡
⎢⎣

1
3

1
12 (1 − 3η1)

1
12 (3η1 + 1)

1
12 (η1 + 1) 1

12 (1 − 2η1)
1
3 (η1 + 1)

1
12 (1 − η1)

1
3 (1 − η1)

1
12 (2η1 + 1)

⎤
⎥⎦ ,

A(0, η2) =
⎡
⎢⎣

0 1
4 (1 − η2)

1
4 (1 − η2)

1
4 (η2 + 1) 1

4 0
1
4 (η2 + 1) 0 1

4

⎤
⎥⎦ ,

A(η1, η2) =
⎡
⎢⎣

0 1
8 (η1 − 1) (η2 − 1) − 1

8 (η1 + 1) (η2 − 1)

1
24 (η1 + 3) (η2 + 1) − 1

12η1 (η2 + 1) 1
24 (η1 (η2 + 4) + 3)

− 1
24 (η1 − 3) (η2 + 1) 1

24 (3 − η1 (η2 + 4)) 1
12η1 (η2 + 1)

⎤
⎥⎦ ,

and supp A = {(0, 0), ±(1, 0), ±(0, 1), ±(1, 1)}.

5. Local quadratic C1 spline quasi-interpolants

We can now define a linear operator Q mapping C(R) onto the space S1
2(�

∗
2). More precisely, for each f ∈ C(R) we 

define

Q f =
n∑

i=0

m∑
j=0

3∑
k=1

λi, j,k( f )Bi, j,k (24)

where λi, j,k are suitable linear functionals. First of all we note that, if

f (V i, j), ∇ f (V i, j), i = 0, . . . ,n, j = 0, . . . ,m, (25)

are given, setting

λi, j,k( f ) := f (V i, j) + (Q i, j,k − V i, j).∇ f (V i, j), (26)
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then, from Proposition 2, expression (24) provides the unique element in S1
2(�∗

2) which interpolates the data (25). So, the 
scheme (24) with coefficients given by (26) is a quasi-interpolating (actually Hermite interpolating) scheme in S1

2(�∗
2) which 

obviously reproduces S1
2(�

∗
2).

5.1. A general method for constructing quasi-interpolants based ST splines

In this subsection we introduce general methods that will be applied in Subsections 5.2 and 5.3 for the construction of 
bivariate quadratic q.i.s. More precisely, we introduce general methods for constructing q.i.s. of the form

Q [r] f =
n∑

i=0

m∑
j=0

3∑
k=1

λ
[r]
i, j,k f Bi, j,k(x, y) (27)

and satisfying

Q [r] f = f , for all f ∈ Pr, (28)

where r = 0, 1, 2 and λ[r]
i, j,k , i = 0, . . . , n, j = 0, . . . , m, k = 1, 2, 3, are suitable linear functionals. The following results are 

essentially taken from Sbibih et al. (2009).

Theorem 4. Let r = 0, 1, 2. For each 0 ≤ i ≤ n, 0 ≤ j ≤ m and k = 1, 2, 3, let I [r]i, j,k f be the unique polynomial in Pr |Mi, j that 
interpolates or approximates some scattered data values and derivatives of f such that for all p ∈Pr , we have

I [r]i, j,k p(x, y) = p(x, y), for all (x, y)T ∈ Mi, j.

Then, the q.i. Q [r] of the form (27) with λ[r]
i, j,k defined by

λ
[r]
i, j,k = B

[
I [r]i, j,k f

] (
V i, j, Q̃ i, j,k

)
satisfies (28).

Proposition 5. For each 0 ≤ i ≤ n, 0 ≤ j ≤ m and k = 1, 2, 3, suppose that there exists a subtriangle τi, j,k of �∗
2 , with V i, j as vertex, 

that contains the data sites which determine the polynomial I [2]
i, j,k f . Then the q.i. Q [2] f of the form (27) reproduces S1

2 (�∗
2), i.e.,

Q [2] f = f , for all f ∈ S1
2 (�∗

2).

5.2. A quasi-interpolant based on the Taylor polynomial

Let f be a function of class C3 on R . For each 0 ≤ i ≤ n, 0 ≤ j ≤ m, and k = 1, 2, 3, we let I [r]i, j,k f be the Taylor polynomial 

of degree r ≤ 2 at the point Z (k)
i, j =

(
x(k)

i, j , y(k)
i, j

)T
,

I [r]i, j,k f (x, y) :=
∑

0≤l1+l2≤r

1

l1!l2!
∂ l1+l2

∂xl1∂ yl2
f
(

x(k)
i, j , y(k)

i, j

)(
x − x(k)

i, j

)l1 (
y − y(k)

i, j

)l2
.

Consider the q.i.

Q [r] f (x, y) =
n∑

i=0

m∑
j=0

3∑
k=1

B[I [r]i, j,k f ](V i, j, Q̃ i, j,k)Bi, j,k(x, y). (29)

Hence, from Theorem 4, Q [r] f reproduces all polynomials of degree r.
We now give some examples with different choices of Z (k)

i, j . The Schoenberg–Marsden type scheme

Q [1] f (x, y) =
n∑

i=0

m∑
j=0

3∑
k=1

f (Q i, j,k) Bi, j,k(x, y),

can be obtained by choosing Z (k)
i, j = Q i, j,k in (29), with r = 1. So that,

Q [1]p = p, ∀ p ∈P1.
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This Schoenberg operator has excellent shape preserving properties. For instance, it maps convex functions on convex func-
tions.

For r = 2, if we choose Z (k)
i, j = V i, j , 0 ≤ i ≤ n, 0 ≤ j ≤ m and k = 1, 2, 3. Then, we have

B[I [2]
i, j,k f ] (V i, j, Q̃ i, j,k

) = f (V i, j) + (Q i, j,k − V i, j).∇ f (V i, j). (30)

Hence, from Proposition 2 we deduce that the scheme (29) with Z (k)
i, j = V i, j , is the Hermite interpolating scheme which 

obviously reproduces the whole spline space S1
2 (�∗

2).

Now, by choosing Z (k)
i, j = Q i, j,k in (29), for 0 ≤ i ≤ n, 0 ≤ j ≤ m, k = 1, 2, 3, we get

B[I [2]
i, j,k f ] (V i, j, Q̃ i, j,k

) = f (Q i, j,k) − 1

2
(Q i, j,k − V i, j)

T ∇2 f (Q i, j,k)(Q i, j,k − V i,k).

Finally, as ∇2 p(Q i, j,k) = ∇2 p(V i, j) for all p ∈ P2, we deduce that the q.i. (29) with coefficients

f (Q i, j,k) − 1

2
(Q i, j,k − V i, j)

T ∇2 f (V i, j)(Q i, j,k − V i,k) (31)

reproduces P2. We note that the formula (31) has also an equivalent for Powell–Sabin splines, see Theorem 2 in Manni and 
Sablonnière (2007).

5.3. Quasi-interpolants based on point evaluators

Frequently in practice one has to approximate given values at scattered data points where no derivative information is 
provided. In this case, we propose some q.i.s. based on point evaluators. More precisely, we look for q.i.s. of the form (27)
with

λ
[2]
i, j,k( f ) =

6∑
l=1

q(l)
i, j,k f

(
Z (k,l)

i, j

)
, q(l)

i, j,k ∈R. (32)

More precisely, let Z (k,l)
i, j , l = 1, . . . , 6, be six points satisfying a specific geometric configuration, for example the GC 

condition (see Chui and He, 1986). Then there exists a Lagrange basis L(k,l)
i, j (x, y), such that L(k,l)

i, j

(
Z (k,m)

i, j

)
= δl,m, l, m =

1, . . . , 6, and the polynomial of degree 2

I [2]
i, j,k f (x, y) =

6∑
l=1

f
(

Z (k,l)
i, j

)
L(k,l)

i, j (x, y),

interpolates f at the points Z (k,l)
i, j , l = 1, . . . , 6.

Consequently, from Theorem 4, we have the following result.

Proposition 6. Let Q [2] f be any q.i. of the form (27) such that

λ
[2]
i, j,k( f ) =

6∑
l=1

B
[

L(k,l)
i, j

] (
V i, j, Q̃ i, j,k

)
f
(

Z (k,l)
i, j

)
. (33)

Then, Q [2] p = p, for all p ∈P2 .

In order to minimize the number of needed values of f , it is convenient to select the points Z (k,l)
i, j , l = 1, . . . , 6 as follows.

Proposition 7. For each 0 ≤ i ≤ n, 0 ≤ j ≤ m and k = 1, 2, 3, if the points Z (k,l)
i, j , l = 1, 2, 3 are collinear with V i, j and Q̃ i, j,k. Then, 

we have

B
[

L(k,l)
i, j

] (
V i, j, Q̃ i, j,k

) = 0, for l = 4,5,6. (34)

Proof. For each 0 ≤ i ≤ m, 0 ≤ j ≤ n and k = 1, 2, 3 we assume that Z (k,l)
i, j , l = 1, . . . , 6, satisfy the GC condition. The GC 

condition implies that

L(k,l)
i, j (x, y) = R(l,1)

i, j,k(x, y)R(l,2)

i, j,k(x, y)

R(l,1)
(Z (k,l)

)R(l,2)
(Z (k,l)

)
, (35)
i, j,k i, j i, j,k i, j
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where R(l,1)

i, j,k , R(l,2)

i, j,k are two lines containing Z (k,m)
i, j , m = 1, . . . , 6, and m �= l. Hence, if Z (k,l)

i, j , l = 1, 2, 3 are collinear with V i, j

and Q̃ i, j,k , we deduce that for l = 4, 5, 6, R(l,1)

i, j,k or R(l,2)

i, j,k is the line 
(

V i, j Q̃ i, j,k
)
. Consequently, it is easy to verify that (34) is 

satisfied. �
We will work out a specific case study. Given a polynomial p ∈ P2. Let Zijk , i + j + k = 2, be 6 points satisfying a 

specific geometric configuration, for example the GC condition (see Chui and He, 1986). The geometric condition for bivariate 
interpolation is equivalent to the existence of a Lagrange formulas whose terms are products of linear factors. Then there 
exists a Lagrange basis pijk such that

pijk(V ) =
i−1∏
μ=0

aμ(V )

aμ(Zijk)

j−1∏
ν=0

bν(V )

bν(Zijk)

k−1∏
κ=0

cκ (V )

cκ (Zijk)

where aμ , bν and cκ are linear polynomials such that

aμ : the line passing through the points Zμ jk with μ + j + k = 2,

bν : the line passing through the points Ziνk with i + ν + k = 2,

cκ : the line passing through the points Zijκ with i + j + κ = 2.

Then,

p =
∑

i+ j+k=2

p(Zijk)pijk.

We can then find the polar form B[p] by substituting the elementary symmetric functions into the Lagrange interpolant. 
Consequently, we get

B[p] =
∑

i+ j+k=2

p(Zijk)B[pijk].

An interesting question is how to construct sets of points satisfying the GC condition. Busch (1990) has been proved that 
the set of 6 points in the plane satisfying the GC condition must contain 3 collinear points. Some important examples have 
been given in Chui and He (1986), such as natural lattices and principal lattices. First example, consider the triangle T with 
vertices A1, A2, A3. Let

Zijk = i A1 + j A2 + kA3

2
, i + j + k = 2.

Then, these points satisfy the geometric characterization, see Chui and He (1986). Let λl = (λl
1, λ

l
2, λ

l
3) be the barycentric 

coordinates of the points Pl , l = 1, 2, with respect to the triangle T . Using straightforward computations (see Speleers, 
2014), we obtain

B[pijk](P1, P2) = B[pijk](λ1, λ2)

= 1

i! j!k!
1

2

∑
π∈S2

i−1∏
μ=0

(
2λ

π(μ+1)

1 − μ
)

×
j−1∏
ν=0

(
2λ

π(i+ν+1)
2 − ν

) k−1∏
κ=0

(
2λ

π(i+ j+κ+1)
2 − κ

)
,

where S2 is the group of all permutations on the 2 first natural numbers.
We then arrive at the following theorems.

Theorem 8. Let Q [2] f be any q.i. of the form (27) with λ[2]
i, j,k( f ) defined according to (32). For i = 0, . . . , n, j = 0, . . . , m and k =

1, 2, 3, let

Z (k,1)
i, j = V i, j, Z (k,2)

i, j = ζ
(k,2)
i, j V i, j + (1 − ζ

(k,2)
i, j )Q̃ i, j,k, Z (k,3)

i, j = Q̃ i, j,k with ζ
(k,2)
i, j �= 0,1,

and
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q(k,1)
i, j = 1

2

⎛
⎝1 − 1

ζ
(k,2)
i, j

⎞
⎠ , q(k,2)

i, j = 1

2

1

ζ
(k,2)
i, j

(
1 − ζ

(k,2)
i, j

) , q(k,3)
i, j = −1

2

ζ
(k,2)
i, j(

1 − ζ
(k,2)
i, j

) ,

q(k,4)
i, j = q(k,5)

i, j = q(k,6)
i, j = 0,

the q.i. Q [2] f satisfies Q [2] p = p, ∀ p ∈P2 .

Theorem 9. Let Q [2] f be any q.i. of the form (27) such that λ[2]
i, j,k( f ) are defined according to (32). For i = 0, . . . , n, j = 0, . . . , m and 

k = 1, 2, 3, let

Z (k,1)
i, j =

⎛
⎝1 − 1

ζ
(k)
i, j

⎞
⎠ V i, j + 1

ζ
(k)
i, j

Q i, j,k, Z (k,2)
i, j = − ζ

(k)
i, j

1 − ζ
(k)
i, j

V i, j + 1

1 − ζ
(k)
i, j

Q i, j,k,

with ζ (k)
i, j �= 0, 12 , 1, and

q(k,1)
i, j =

(
ζ

(k)
i, j

)2

2ζ
(k)
i, j − 1

, q(k,2)
i, j =

(
1 − ζ

(k)
i, j

)2

2ζ
(k)
i, j − 1

, q(k,3)
i, j = q(k,4)

i, j = q(k,5)
i, j = q(k,6)

i, j = 0,

then, the q.i. Q [2] f satisfies Q [2] p = p, ∀ p ∈P2 .

For the second example, we consider

Z (k,1)
i, j = V i, j = (ih, jh)T , Z (k,2)

i, j =
(

ih, jh − h

2

)T

, Z (k,3)
i, j =

(
ih, jh + h

2

)T

,

Z (k,4)
i, j =

(
ih − h

2
, jh

)T

, Z (k,5)
i, j =

(
ih + h

2
, jh − h

2

)T

, Z (k,6)
i, j =

(
ih + h

2
, jh + h

2

)T

.

Then, it is well known that 
{

Z (k,l)
i, j

}6

l=1
satisfies node configuration A (see Chui and Lai, 1987), hence it admits unique 

Lagrange interpolation. Using straightforward computations, we have an interesting spline q.i.

Theorem 10. Let Q [2] f be any q.i. of the form (27) such that λi, j,k( f ) are defined according to (32). For i = 0, . . . , n, j = 0, . . . , m
and k = 1, 2, 3, let

λ
[2]
i, j,1( f ) = f (ih, jh) + 1

2

(
f

(
ih, jh − h

2

)
− f

(
ih, jh + h

2

))

λ
[2]
i, j,2( f ) = 1

4

(
− f

(
ih, jh − h

2

)
− 3 f

(
ih − h

2
, jh

)
+ 4 f (ih, jh)

+ 3 f

(
ih + h

2
, jh

)
+ f

(
ih, jh + h

2

))

λ
[2]
i, j,3( f ) = 1

4

(
− f

(
ih, jh − h

2

)
+ 3 f

(
ih − h

2
, jh

)
+ 4 f (ih, jh)

− 3 f

(
ih + h

2
, jh

)
+ f

(
ih, jh + h

2

))
. (36)

The q.i. Q [2] f satisfies Q [2] p = p, ∀ p ∈P2 .

5.4. Bounding the norm of quasi-interpolants

For f ∈ C(R) and any compact subset G ⊆ R , we let ‖ f ‖D := sup{ f (u), u ∈ G} be the uniform norm. By standard 
arguments (see, e.g., Lai and Schumaker, 2007) we can establish an optimal order error bound of ‖ f − Q [2] f ‖R , where f is 
a function in the classical space C3(R) and Q [2] is a q.i. defined by (27) which satisfies (28). In the next theorem, for any 
f ∈ C3(R), we let

‖D3 f ‖G := sup{‖Da
x Db

y f ‖G , a + b = 3}
where G ⊆ R and Dx f and D y f denote the first derivatives of a function f in x and y directions, respectively.
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Proposition 11. There exists a constant C2, depending only on the smallest angle in �∗
2 such that for every f ∈ C3(R),

‖Da
x Db

y( f − Q [2] f )‖R ≤ C2h3−a−b‖D3 f ‖R . (37)

We now derive error bounds for the discrete q.i.s. Q [2] defined in the previous section where the interpolation points 
verify the GC condition. Denoting by ‖Q [2]‖R the corresponding induced norm, then if Q [2] reproduces quadratic polyno-
mials, we have

‖ f − Q [2] f ‖R ≤ (1 + ‖Q [2]‖R) inf
p∈P2

‖ f − p‖R .

From properties (12) and (27), we have

‖Q [2]‖R ≤ max
i=0,...,n

max
j=0,...,m

max
k=1,2,3

∣∣∣λ[2]
i, j,k

∣∣∣ . (38)

Using (33), we obtain

‖Q [2]‖R ≤ max
i=0,...,n

max
j=0,...,m

max
k=1,2,3

∣∣∣∣∣
6∑

l=1

B[L(l)
i, j,k]

(
V i, j, Q̃ i, j,k

)
f
(

Z (k,l)
i, j

)∣∣∣∣∣ ,
≤ 6‖ f ‖R max

i=0,...,n
max

j=0,...,n
max

k=1,2,3
max

l=1,...,6

∣∣∣B[L(l)
i, j,k]

(
V i, j, Q̃ i, j,k

)∣∣∣ .
Using some elementary manipulations (see also Theorem 8 in Speleers, 2014), we can show that

∣∣∣B[L(l)
i, j,k]

(
V i, j, Q̃ i, j,k

)∣∣∣ ≤
⎛
⎝ max

{A(p,q,r)
i, j,k >0, p,q,r=1,...,6}

1

A(p,q,r)
i, j,k

⎞
⎠2

(
max

p=1,...,6
‖V i, j − Z (k,p)

i, j ‖2

)2 (
max

p=1,...,6
‖Q̃ i, j,k − Z (k,p)

i, j ‖2

)2

,

where A(p,q,r)
i, j,k = area(Z (k,p)

i, j , Z (k,q)

i, j , Z (k,r)
i, j ).

We now give an error bound for f − Q [2] f , where Q [2] f is the q.i. presented in Theorem 10.

Theorem 12. Let Q [2] be any q.i. of the form (27) with λ[2]
i, j,k defined according to (36). Then, for any f ∈ C3(R),

‖ f − Q [2] f ‖R ≤ 18h3‖D3 f ‖R . (39)

Proof. Since the proof is similar to the one of Theorem 6 given in Sorokina and Zeilfelder (2004), we can be brief. Let us 
fix T a split of �∗

2, then there exists a p ∈ P2 such that

‖ f − p‖T ≤ ‖ f − p‖�T ≤ 9

2
h3‖D3 f ‖�T , (40)

where �T is the union of the triangles in the star(T ) (for the definition of star(T ), see Lai and Schumaker, 2007). Using the 
linearity of Q [2] and the fact that Q [2] reproduces polynomials of degree 2, we can write

‖ f − Q [2] f ‖T ≤ ‖ f − p‖T + ‖Q [2]( f − p)‖T . (41)

It suffices to estimate the second quantity. By applying (27) and (38), it follows that

‖Q [2]( f − p)‖T ≤ 3‖ f − p‖�T . (42)

Finally, we take the maximum over all T ∈ �∗
2 to get (39). �

6. Numerical results

In order to illustrate the approximation properties and the visual quality of our splines, in this section we present some 
numerical results. We approximate the smooth bivariate test function of Franke type

f (x, y) = 3

4
exp

(
− (9x − 2)2 + (9y − 2)2

4

)
+ 3

4
exp

(
− (9x + 1)2

49
− (9y + 1)

10

)
1

2
exp

(
− (9x − 7)2 + (9y − 3)2

4

)
− 1

5
exp

(
−(9x − 4)2 − (9y − 7)2

)
,

on the domain R = [0, 1] × [0, 1].
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Table 1
Error behavior of different q.i.s.

h Hermite interp. q.i. TH. 8 q.i. TH. 9 q.i. TH. 10

1/8 1.1089 × 10−2 5.4427 × 10−2 1.2617 × 10−1 2.0352 × 10−2

1/16 1.2872 × 10−3 1.32746 × 10−2 3.0541 × 10−2 2.5762 × 10−3

1/32 7.7198 × 10−5 1.3437 × 10−3 3.6389 × 10−3 1.3656 × 10−4

To measure the accuracy of a q.i. Q [2] f we have computed the maximum error on a 50 × 50 uniform grid on R:

max
r,s=1,...,50

| f (xr, ys) − Q [2] f (xr, ys)|. (43)

The numerical results are given in Table 1. The first column indicates the refinement level. In the remaining columns, 
we have the values of the tabulated absolute error (43) for different q.i.s. In column 2 we have considered the Hermite 
interpolant see (30). Column 3 shows the results for the q.i. presented in Theorem 8 with ζ (k,2)

i, j = 1
2 . Column 4 refers to the 

q.i. presented in Theorem 9 with ζ (k)
i, j = 1

4 . Finally, column 5 shows the results for the q.i. presented in Theorem 10.
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