
Computer Aided Geometric Design 33 (2015) 51–65
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Symmetry detection of rational space curves from their

curvature and torsion ✩

Juan Gerardo Alcázar a,1, Carlos Hermoso a, Georg Muntingh b,∗
a Departamento de Física y Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain
b SINTEF ICT, PO Box 124, Blindern, 0314 Oslo, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 June 2014
Received in revised form 25 January 2015
Accepted 29 January 2015
Available online 11 February 2015

Keywords:
Symmetry detection
Rational space curves
Pattern Recognition

We present a novel, deterministic, and efficient method to detect whether a given rational
space curve is symmetric. By using well-known differential invariants of space curves,
namely the curvature and torsion, the method is significantly faster, simpler, and more
general than an earlier method addressing a similar problem (Alcázar et al., 2014b). To
support this claim, we present an analysis of the arithmetic complexity of the algorithm
and timings from an implementation in Sage.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of detecting the symmetries of curves and surfaces has attracted the attention of many researchers through-
out the years, because of the interest from fields like Pattern Recognition (Boutin, 2000; Calabi et al., 1998; Huang and
Cohen, 1996; Lebmeir and Richter-Gebert, 2008; Lebmeir, 2009; Suk and Flusser, 1993, 2005; Tarel and Cooper, 2000;
Taubin and Cooper, 1992; Weiss, 1993), Computer Graphics (Berner et al., 2008; Bokeloh et al., 2009; Lipman et al., 2010;
Martinet et al., 2006; Mitra et al., 2006; Podolak et al., 2006; Schnabel et al., 2008; Simari et al., 2006), and Com-
puter Vision (Alt et al., 1988; Brass and Knauer, 2004; Jiang et al., 1996; Li et al., 2008, 2010; Loy and Eklundh, 2006;
Tate and Jared, 2003; Sun and Sherrah, 1997). The introduction in Alcázar et al. (2014b) contains an extensive account of
the variety of approaches used in the above references.

A common characteristic in most of these papers is that the methods focus on computing approximate symmetries
more than exact symmetries, which is perfectly reasonable in many applications, where curves and surfaces often serve
as merely approximate representations of a more complex shape. Some exceptions appear here: If the object to be con-
sidered is discrete (e.g. a polyhedron), or is described by a discrete object, like for instance a control polygon or a control
polyhedron, then the symmetries can be determined exactly (Alt et al., 1988; Brass and Knauer, 2004; Jiang et al., 1996;
Li et al., 2008). Examples of the second class are Bézier curves and tensor product surfaces. Furthermore, in these cases
the symmetries of the curve or surface follow from those of the underlying discrete object. Another exception appears in
Lebmeir and Richter-Gebert (2008), where the authors provide a deterministic method to detect rotation symmetry of an

✩ This paper has been recommended for acceptance by H.-P. Seidel.

* Corresponding author.
E-mail addresses: juange.alcazar@uah.es (J.G. Alcázar), carlos.hermoso@uah.es (C. Hermoso), georgmu@math.uio.no (G. Muntingh).

1 Supported by the Spanish Ministerio de Ciencia e Innovación under the Project MTM2011-25816-C02-01. Partially supported by the José Castillejos’
Grant CAS12/00022 from the Spanish Ministerio de Educación, Cultura y Deporte. Member of the Research Group asynacs (Ref. ccee2011/r34).
http://dx.doi.org/10.1016/j.cagd.2015.01.003
0167-8396/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2015.01.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:juange.alcazar@uah.es
mailto:carlos.hermoso@uah.es
mailto:georgmu@math.uio.no
http://dx.doi.org/10.1016/j.cagd.2015.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2015.01.003&domain=pdf

52 J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65
implicitly defined algebraic plane curve and to find the exact rotation angle and rotation center. The method uses a complex
representation of the curve and is generalized in Lebmeir (2009) to detect mirror symmetry as well.

Rational curves are frequently used in Computer Aided Geometric Design and are the building blocks of NURBS curves.
Compared to implicit curves, rational parametric curves are easier to manipulate and visualize. Space curves appear in a
natural way when intersecting two surfaces, and they play an important role when dealing with special types of surfaces,
often used in geometric modeling, like ruled surfaces, canal surfaces or surfaces of revolution, which are generated from a
directrix or profile curve. Furthermore, in geometric modeling it is typical to use rational space curves as profile curves.

In this paper we address the problem of deterministically finding the symmetries of a rational space curve, defined by
means of a proper parametrization. Notice that since we deal with a global object, i.e., the set of all points in the image of
a rational parametrization, and not just a piece of it, the discrete approach from Alt et al. (1988), Brass and Knauer (2004),
Jiang et al. (1996), Li et al. (2008) is not suitable here. Determining if a rational space curve is symmetric or not is useful in
order to properly describe the topology of the curve (Alcázar and Díaz Toca, 2010). Furthermore, if the space curve is to be
used for generating, for instance, a canal surface or a surface of revolution, certain symmetries of the curve will be inherited
by the generated surface. Hence, for modeling purposes it can be interesting to know these symmetries in advance.

Recently, the problem of determining whether a rational plane or space curve is symmetric has been addressed in Alcázar
(2014), Alcázar et al. (2014a, 2014b) using a different approach. The common denominator in these papers is the following
observation: If a rational curve is symmetric, i.e., invariant under a nontrivial isometry f , then this symmetry induces an-
other parametrization of the curve, different from the original parametrization. Assuming that the initial parametrization is
proper (definition below), the second parametrization is also proper. Since two proper parametrizations of the same curve
are related by a Möbius transformation (Sendra et al., 2008), determining the symmetries is reduced to finding this transfor-
mation, therefore translating the problem to the parameter space. This observation leads to algorithms for determining the
symmetries of plane curves with polynomial parametrizations (Alcázar, 2014) and of plane and space curves with rational
parametrizations (Alcázar et al., 2014b), although in the latter case of general space curves only involutions were considered.
The more general problem of determining whether two rational plane curves are similar was considered in Alcázar et al.
(2014a).

In this paper we again employ the above observation, but in addition we now also use well-known differential invariants
of space curves, namely the curvature and the torsion. The improvement over the method in Alcázar et al. (2014b) is
threefold: First of all, we are now able to find all the symmetries of the curve instead of just the involutions. Secondly,
the new algorithm is considerably faster and can efficiently handle even curves with high degrees and large coefficients in
reasonable timings. Finally, the method is simpler to implement and requires fewer assumptions on the parametrization.

Some general facts on symmetries of rational curves are presented in Section 2. Section 3 provides an algorithm for
checking whether a curve is symmetric. The determination of the symmetries themselves is addressed in Section 4. Finally,
in Section 5 we report on the performance of the algorithm, by presenting a complexity analysis and providing timings for
several examples, including a comparison with the curves tested in Alcázar et al. (2014b).

2. Symmetries of rational curves

Throughout the paper, we consider a rational space curve C ⊂ R
3, neither a line nor a circle, parametrized by a rational

map

x : R ��� C ⊂ R
3, x(t) = (

x(t), y(t), z(t)
)
. (1)

The components x(t), y(t), z(t) of x are rational functions of t with rational coefficients, and they are defined for all but a
finite number of values of t . Let the (parametric) degree m of x be the maximal degree of the numerators and denominators
of the components x(t), y(t), z(t). Note that rational curves are irreducible. We assume that the parametrization (1) is proper,
i.e., birational or, equivalently, injective except for perhaps finitely many values of t . This can be assumed without loss of
generality, since any rational curve can quickly be properly reparametrized. For these claims and other results on properness,
the interested reader can consult (Sendra et al., 2008) for plane curves and (Alcázar, 2012, §3.1) for space curves.

We recall some facts from Euclidean geometry (Coxeter, 1969). An isometry of R3 is a map f : R3 −→ R
3 preserving

Euclidean distances. Any isometry f of R3 is linear affine, taking the form

f (x) = Q x + b, x ∈R
3, (2)

with b ∈ R
3 and Q ∈ R

3×3 an orthogonal matrix. In particular det(Q) = ±1. Under composition, the isometries of R3

form the Euclidean group, which is generated by reflections, i.e., symmetries with respect to a plane, or mirror symmetries. An
isometry is called direct when it preserves the orientation, and opposite when it does not. In the former case det(Q) = 1,
while in the latter case det(Q) = −1. The identity map of R3 is called the trivial symmetry.

The classification of the nontrivial isometries of Euclidean space includes reflections (in a plane), rotations (about an
axis), and translations, and these combine in commutative pairs to form twists, glide reflections, and rotatory reflections.
Composing three reflections in mutually perpendicular planes through a point p yields a central inversion (also called central
symmetry), with center p, i.e., a symmetry with respect to the point p. The particular case of rotation by an angle π is
of special interest, and it is called a half-turn. Rotation symmetries are direct, while mirror and central symmetries are
opposite.

J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65 53
Lemma 1. A rational space curve C ⊂ R
3 different from a line cannot be invariant under a translation, glide reflection, or twist.

Proof. If C were invariant under translation by a vector b, then, for any point x on C , the line L = {x + tb : t ∈ R} would
intersect C in infinitely many points, implying that L ⊂ C and contradicting that C is an irreducible curve different from
a line. Since applying a glide reflection twice yields a translation, C cannot be invariant under a glide reflection either.
Suppose C is invariant under a twist f with axis A and angle α, and let π : R3 −→ � be the orthogonal projection onto a
plane � ⊥ A. Then the projection C′ := π(C) is a plane algebraic curve invariant under the rotation π ◦ f by the angle α
about the point A ∩ �. By Lemma 1 in Alcázar et al. (2014b), α = 2π/k with k ≤ deg(C′). But then C is invariant under the
translation f k , which is a contradiction. �

Therefore, the rotations, reflections, and their combinations (like central inversions) are the only isometries leaving an ir-
reducible algebraic space curve, different from a line, invariant. We say that an irreducible algebraic space curve is symmetric,
if it is invariant under one of these (nontrivial) isometries. In that case, we distinguish between a mirror symmetry, rotation
symmetry and central symmetry. If the curve is neither a line nor a circle, it has a finite number of symmetries (Alcázar et
al., 2014b).

We recall the following result from Alcázar et al. (2014b). For this purpose, let us recall first that a Möbius transformation
(of the affine real line) is a rational function

ϕ : R ��� R, ϕ(t) = at + b

ct + d
, � := ad − bc �= 0. (3)

In particular, we refer to ϕ(t) = t as the trivial transformation. It is well known that the birational functions on the real line
are the Möbius transformations (Sendra et al., 2008).

Theorem 2. Let x : R ��� C ⊂ R
3 be a proper parametric curve as in (1). The curve C is symmetric if and only if there exist a nontrivial

isometry f and nontrivial Möbius transformation ϕ for which we have a commutative diagram

C f C

R

x

ϕ R

x

(4)

Moreover, for each isometry f there exists a unique Möbius transformation ϕ that makes this diagram commute.

Note that ϕ(t) is the parameter value corresponding to the image under the symmetry f of the point on C with param-
eter t .

Lemma 3. Let ϕ be a Möbius transformation associated to a parametrization x and isometry f in the sense of Theorem 2. Then its
coefficients a, b, c, d can be assumed to be real, by dividing by a common complex number if necessary.

Proof. For any proper parametrization x and isometry f the associated Möbius transformation ϕ = x−1 ◦ f ◦ x maps the
real line to itself. In particular, since

0 = ϕ(t) − ϕ(t) = (ac − ac)t2 + (bc − bc + ad − ad)t + (bd − bd)

(ct + d)(ct + d)

for any t for which ϕ(t) is defined, ac and bd are real, so that arg(a) = arg(c) and arg(b) = arg(d). A similar argument for
ϕ−1 yields that −dc/|ad −bc|2 and −ba/|ad −bc|2 are real, implying that arg(c) = arg(d) and arg(a) = arg(b). It follows that
all coefficients of ϕ have a common argument θ . Therefore, after dividing the coefficients of ϕ by exp(iθ), the coefficients
of ϕ can be assumed to be real. �

Let the curvature κ and torsion τ of a parametric curve x be the functions

κ = κx := ‖x′ × x′′‖
‖x′‖3

, τ = τx := 〈x′ × x′′, x′′′〉
‖x′ × x′′‖2

of the parameter t . Note that κ is non-negative. The functions κ2 and τ 2 are well-known rational differential invariants of
the parametrization x, in the sense that

κ f ◦x = κx, τ f ◦x = det(Q) · τx (5)

for any isometry f (x) = Q x + b. This follows immediately from Q being orthogonal and the identity

54 J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65
(Ma) × (Mb) = det(M)M−T(a × b), (6)

which holds for any invertible matrix M and follows from a straightforward calculation. Although τx and κ2
x are rational for

any rational parametrization x, the curvature κx is in general not rational.
The following lemma describes the behavior of the curvature and torsion under reparametrization, for instance by a

Möbius transformation.

Lemma 4. Let x be the rational parametrization (1) and let φ ∈ C3(U), with U ⊂ R open. Then

κx◦φ = κx ◦ φ, τx◦φ = τx ◦ φ,

whenever both sides are defined.

Proof. Writing x̃ := x ◦ φ and using the chain rule, one finds

x̃′
(t) = x′(φ(t)

) · φ′(t),

x̃′′
(t) = x′′ (φ(t)

) · (φ′(t)
)2 + x′(φ(t)

) · φ′′(t),

x̃′′′
(t) = x′′′ (φ(t)

) · (φ′(t)
)3 + 3x′′(φ(t)

) · φ′(t) · φ′′(t) + x′(φ(t)
) · φ′′′(t),

whenever t ∈ U and x is defined at φ(t). Therefore

κx◦φ(t) =
∥∥x̃′

(t) × x̃′′
(t)

∥∥∥∥x̃′
(t)

∥∥3
=

∥∥x′(φ(t)
) × x′′(φ(t)

)∥∥ · ∣∣φ′(t)
∣∣3∥∥x′(φ(t)

)∥∥3 · |φ′(t)|3
= (

κx ◦ φ
)
(t),

and similarly one finds τx◦φ = τx ◦ φ. �
3. Symmetry detection

In this section we derive a criterion for the presence of nontrivial symmetries f (x) = Q x + b of curves of type (1),
together with an efficient method for checking this criterion. The cases det(Q) = ±1 need to be checked separately, but
are considered simultaneously using linked ± and ∓ signs consistently throughout the paper. The resulting method is
summarized in Algorithm Symm±.

3.1. A criterion for the presence of symmetries

For any parametric curve x as in (1), write

κ2
x (t) =: A(t)

B(t)
, τx(t) =: C(t)

D(t)
,

with (A, B) and (C, D) pairs of coprime polynomials. Let

G±
x := gcd

(
Kx, T ±

x

)
, (7)

with

Kx(t, s) := A(t)B(s) − A(s)B(t), T ±
x (t, s) := C(t)D(s) ∓ C(s)D(t) (8)

the result of clearing denominators in the equations

κ2
x (t) − κ2

x (s) = 0, τx(t) ∓ τx(s) = 0. (9)

Similarly, associate to any Möbius transformation ϕ the Möbius-like polynomial

F (t, s) := (ct + d)s − (at + b), ad − bc �= 0, (10)

as the result of clearing denominators in s −ϕ(t) = 0. We call F trivial when F (t, s) = s − t , i.e., when the associated Möbius
transformation is the identity. Note that F is irreducible since ad − bc �= 0.

Theorem 5. Consider the curve C defined by x in (1) and let G±
x be as above. Then C has a nontrivial symmetry f (x) = Q x + b, with

det(Q) = ±1, if and only if there exists a nontrivial polynomial F of type (10), associated with a Möbius transformation ϕ , such that
F divides G±

x and the parametrizations x and x ◦ ϕ have identical speed,

‖x′‖ = ‖(x ◦ ϕ)′‖. (11)

J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65 55
Fig. 1. The zeroset (solid) of the polynomial G = G±
x intersects the vertical line L (dashed) in the points (2,±√

8) and (2,±1/
√

12) in Example 1.

The zeroset of F is the graph of ϕ , which is either a rectangular hyperbola with horizontal and vertical asymptotes when
c �= 0, or a line with nonzero and finite slope a/d when c = 0. Whenever F is a factor of G±

x , the corresponding hyperbola
or line is contained in the zeroset of G±

x ; see Fig. 1.

Proof of Theorem 5. “�⇒”: If C is invariant under a nontrivial isometry f (x) = Q x + b, with det(Q) = ±1, by Theorem 2
there exists a Möbius transformation ϕ such that f ◦ x = x ◦ ϕ . Let F be the Möbius-like polynomial associated with ϕ . The
points (t, s) for which Kx(t, s) = T ±

x (t, s) = 0 are the points satisfying κx(s) = κx(t) and τx(s) = ±τx(t). This includes the
zeroset

{(
t, s

) : s = ϕ(t)
}

of F (t, s), since

κx ◦ ϕ = κx◦ϕ = κ f ◦x = κx, τx ◦ ϕ = τx◦ϕ = τ f ◦x = det(Q)τx = ±τx

by Lemma 4 and (5). Since F is irreducible, Bézout’s theorem implies that F divides Kx and T ±
x , and therefore G±

x as well.
Furthermore, since Q is orthogonal, the parametrizations have equal speed,

‖(x ◦ ϕ)′‖ = ‖(f ◦ x)′‖ = ‖(Q x + b)′‖ = ‖ Q x′‖ = ‖x′‖.
“⇐�”: Let ϕ be the nontrivial transformation associated to F . Let t0 ∈ I ⊂ R be such that x(t) is a regular point on C for

every t ∈ I , and consider the arc length function

s = s(t) :=
t∫

t0

‖x′(t)‖dt, t ∈ I,

which (locally) has an infinitely differentiable inverse t = t(s). By (11),∥∥∥∥ d

ds

(
x ◦ t

)∥∥∥∥ =
∥∥∥∥dx

dt

dt

ds

∥∥∥∥ = 1 =
∥∥∥∥ d

dt

(
x ◦ ϕ

) dt

ds

∥∥∥∥ =
∥∥∥∥ d

ds

(
x ◦ ϕ ◦ t

)∥∥∥∥ ,

so that x ◦ t and x ◦ϕ ◦ t are parametrized by arc length. Since F divides G±
x , any zero

(
t, ϕ(t)

)
of F is also a zero of Kx and

T ±
x , implying that κx = κx ◦ ϕ and τx = ±τx ◦ ϕ . Then, by repeatedly applying Lemma 4,

κx◦t = κx ◦ t = κx◦ϕ ◦ t = κx◦ϕ◦t, τx◦t = τx ◦ t = ±τx◦ϕ ◦ t = ±τx◦ϕ◦t . (12)

The Fundamental Theorem of Space Curves (Do Carmo, 1976, p. 19) then implies that x ◦ t and x ◦ ϕ ◦ t coincide on s(I) up
to an isometry f (x) = Q x + b with det(Q) = ±1. Therefore C and f (C) have infinitely many points in common. Since C
and f (C) are irreducible algebraic curves, it follows that C = f (C) and therefore f is a symmetry of C . �

Note that the polynomial G±
x cannot be identically 0. Indeed, G±

x is identically 0 if and only if Kx and T ±
x are both

identically 0, which happens precisely when κx and τx are both constant. If κx = 0 then C is a line, if τx = 0 and κx
is a nonzero constant then C is a circle, and if κx, τx are both constant but nonzero then C is a circular helix, which is
non-algebraic. All of these cases are excluded by hypothesis.

56 J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65
3.2. Finding the Möbius-like factors F of G±
x

The criterion in Theorem 5 requires to check if a bivariate polynomial G = G±
x has real factors of the form F (t, s) =

(ct + d)s − (at + b), with ad − bc �= 0. However, a, b, c, d need not be rational numbers, so that we need to factor over
the algebraic or real numbers. This problem has been studied by several authors (Cheeze, 2004; Cheeze and Galligo, 2006;
Corless et al., 2002; Galligo and Rupprecht, 2002). However, since in our case we are looking for factors of a specific form,
we develop an ad hoc method to check the condition.

Let G be the curve in the (t, s)-plane defined by G(t, s). Let t0 be such that the vertical line L at t = t0 does not contain
any zero of G where the partial derivative Gs := ∂G

∂s vanishes; see Fig. 1. These are the points t0 for which the discriminant
of g(s) := G(t0, s) does not vanish, which is up to a factor equal to the Sylvester resultant Ress(G, Gs) and has degree at
most (2ms − 1)mt in t0, with (mt , ms) the bidegree of G . Therefore one can always find an integer abscissa t0 with this
property by checking for at most (2ms − 1)mt + 1 points t0 whether the gcd of g(s) and Gs(t0, s) is trivial.

If G has a Möbius-like factor F as in (10), then the zeroset of F intersects L in a single point p0 = (t0, ξ) satisfying

(ct0 + d)ξ − (at0 + b) = 0. (13)

Since Gs(p0) �= 0, the equation F (t, s) = 0 implicitly defines a function s = s(t) in a neighborhood of p0. Moreover, by
differentiating the identity F

(
t, s(t)

) = 0 once and twice with respect to t , and evaluating at p0, we find the relations

−a + ds′
0 + c · (ξ + t0s′

0) = 0, (14)

ds′′
0 + c · (2s′

0 + t0s′′
0) = 0, (15)

where ξ = s(t0), s′
0 := s′(t0), and s′′

0 := s′′(t0). In order to find expressions for s′
0, s′′

0, we now use that the function s(t) is
also implicitly defined by G(t, s) = 0, because F is a factor of G and Gs(p0) �= 0. Differentiating once and twice the identity
G
(
t, s(t)

) = 0 with respect to t gives

s′ = − Gt(t, s)

Gs(t, s)
, s′′ = − Gtt(t, s) + 2Gts(t, s)s′ + Gss(t, s)

(
s′)2

Gs(t, s)
. (16)

Evaluating these expressions at p0 yields expressions s′
0 = s′

0(ξ) and s′′
0 = s′′

0(ξ).
Now we distinguish the cases d �= 0 and d = 0. In the first case, we may assume d = 1 by dividing all coefficients in the

Möbius transformation by d. In that case 2s′
0 + t0s′′

0 = 2�/(ct0 + 1)3 �= 0 and (13)–(15) yield rational expressions

c1(ξ) := −s′′
0

2s′
0 + t0s′′

0
, a1(ξ) := s′

0 + c1(ξ)(ξ + t0s′
0), b1(ξ) := −a1(ξ)t0 + ξ + c1(ξ)t0ξ. (17)

The polynomial F is a factor of G if and only if the resultant Ress(F , G) is identically 0. Substituting a1(ξ), b1(ξ), c1(ξ), and
d = 1 into this resultant yields a polynomial P1(t), whose coefficients are rational functions of ξ . Let R1(ξ) be the gcd of
the numerators of these coefficients and of g(ξ). The real roots ξ of R1(ξ) for which a1(ξ), b1(ξ), c1(ξ) are well defined and
�1(ξ) := a1(ξ) − b1(ξ)c1(ξ) �= 0 correspond to the Möbius-like factors F of G as in (10) with d = 1.

On the other hand, when d = 0 we may assume c = 1, and (13)–(15) yield rational expressions

a0(ξ) := ξ + t0s′
0, b0(ξ) := −a0(ξ)t0 + t0ξ. (18)

Substituting a0(ξ), b0(ξ), c = 1, and d = 0 into the resultant Ress(F , G) yields a polynomial P0(t), whose coefficients are
rational functions of ξ . Let R0(ξ) be the gcd of the numerators of these coefficients and g(ξ). The real roots ξ of R0(ξ) for
which a0(ξ) and b0(ξ) are well defined and �0(ξ) := −b0(ξ) is nonzero correspond to the Möbius-like factors F of G as in
(10) with d = 0. We obtain the following theorem.

Theorem 6. The polynomial G has a real Möbius-like factor F as in (10) with d �= 0 (resp. d = 0) if and only if R1(ξ) (resp. R0(ξ)) has
a real root. Furthermore, every such real root provides a factor of this form.

Note that the cases d = 0 and d �= 0 can be computed in parallel.

Example 1. Consider the bivariate polynomial

G(t, s) = 3s4t4 − 6s4t3 + 3s4t2 − 6s2t4 − s2t2 + 2s2t − s2 + 2t2.

The vertical line L := {t = t0 := 2} does not intersect the zeroset of G in a point where Gs vanishes, since the discriminant
of g(ξ) := G(t0, ξ) = 12ξ4 − 97ξ2 + 8 is nonzero (see Fig. 1). Evaluating (16) at p0 = (2, ξ) yields

J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65 57
s′
0 = −18ξ4 − 97ξ2 + 4

ξ(24ξ2 − 97)
,

s′′
0 = 16 416ξ10 − 206 316ξ8 + 879 669ξ6 − 1 387 682ξ4 + 55 302ξ2 + 1552

ξ3(24ξ2 − 97)3
.

When d �= 0, we may assume d = 1 and Eqs. (17) yield

c1(ξ) = −1

2

16 416ξ10 − 206 316ξ8 + 879 669ξ6 − 1 387 682ξ4 + 55 302ξ2 + 1552

6048ξ10 − 66 636ξ8 + 25 6371ξ6 − 456 385ξ4 + 17 666ξ2 + 1552
,

a1(ξ) = −1

2

ξ(72ξ8 + 2019ξ6 − 21 192ξ4 + 40 138ξ2 − 4656)

504ξ8 − 5511ξ6 + 20 905ξ4 − 36 290ξ2 − 1552
,

b1(ξ) = − (9504ξ10 − 163 836ξ8 + 879 621ξ6 − 1 434 145ξ4 + 133 646ξ2 − 4656)ξ

(504ξ8 − 5511ξ6 + 20 905ξ4 − 36 290ξ2 − 1552)(12ξ2 − 1)
.

Substituting these expressions into the resultant Ress(F , G) and taking the gcd of the numerators of its coefficients and g
yields a polynomial R1(ξ) = ξ2 − 8. We find F1(t, s) = −st + √

2t + s for ξ = √
8 and F2(t, s) = −st − √

2t + s for ξ = −√
8

as factors of G . In the case d = 0, we may assume c = 1 and we get

a0(ξ) = − (ξ2 − 8)(12ξ2 − 1)

ξ(24ξ2 − 97)
, b0(ξ) = 4

18ξ4 − 97ξ2 + 4

ξ(24ξ2 − 97)
.

Here R0(ξ) = 12ξ2 − 1 and we obtain F3(t, s) = st − 1
3

√
3 for ξ = 1/

√
12 and F4(t, s) = st + 1

3

√
3 for ξ = −1/

√
12. The

entire computation takes a fraction of a second when implemented in Sage on a modern laptop. For more details we refer
to the worksheet accompanying this paper (Muntingh, personal website).

Algorithm Symm±.
Require: A proper parametrization x of a space curve C, not a line or a circle.
Ensure: The number of symmetries f (x) = Q x + b, with det(Q) = ±1, of C.

1: Find the bivariate polynomials K , T ± , and G± from (7) and (8).
2: Find the resultant Ress(F , G±), with F as in (10).
3: Let t0 be such that the discriminant of g±(ξ) := G±(t0, ξ) does not vanish.
4: Find the gcd R1(ξ) of g± and the numerators of the coefficients of the polynomial P1(t) obtained by substituting d = 1 and (17) into Ress(F , G±).
5: Find the real roots of R1(ξ) for which (9) is well defined, each defining a Möbius transformation by substituting (17) and d = 1 in (3).
6: Let n1 be the number of these Möbius transformations satisfying (11).
7: Find the gcd R0(ξ) of g± and the numerators of the coefficients of the polynomial P0(t) obtained by substituting c = 1, d = 0, (18) into Ress(F , G±).
8: Find the real roots of R0(ξ) for which (9) is well defined, each defining a Möbius transformation by substituting (18), c = 1 and d = 0 in (3).
9: Let n0 be the number of these Möbius transformations satisfying (11).

10: Return “The curve has n0 + n1 symmetries with det(Q) = ±1”.

3.3. The complete algorithm

Let x : R ��� C as in (1) be a parametric curve of degree m. Distinguishing the cases d = 0, 1, each tentative Möbius
transformation can be written as

ϕξ (t) = ad(ξ)t + bd(ξ)

cd(ξ)t + d
,

with ξ a root of Rd and ad, bd, cd as in (17), (18). Condition (11) can be checked as follows. Squaring and clearing denomi-
nators yields an equivalent polynomial condition

Wξ (t) = wn(ξ)tn + wn−1(ξ)tn−1 + · · · + w0(ξ) ≡ 0 (19)

of degree n ≤ 24m − 4. By Theorem 5, a root ξ of Rd corresponds to a symmetry of C precisely when Wξ (t) vanishes
identically. In other words, every root ξ of

gcd(Rd, w0, . . . , wn) (20)

defines a Möbius transformation ϕξ corresponding to a symmetry fξ := x ◦ ϕξ ◦ x−1 as in Theorem 2. We thus arrive at
Algorithm Symm± for determining the number of symmetries of the curve C .

58 J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65
4. Determining the symmetries

Algorithm Symm± detects whether the parametric curve x from (1) has nontrivial symmetries. In the affirmative case we
would like to determine these symmetries. By Theorem 2, every such symmetry corresponds to a Möbius transformation
ϕ = (at + b)/(ct + d), which corresponds to a Möbius-like factor F of G computed by Algorithm Symm±. In this section we
shall see how the symmetry f (x) = Q x + b can be computed from ϕ .

The commutative diagram in Theorem 2 describes the identity

Q x(t) + b = x
(
ϕ(t)

)
. (21)

Let us distinguish the cases d �= 0 and d = 0. In the latter case, (21) becomes

Q x(t) + b = x
(
ϕ(t)

) = x
(
ã/t + b̃

)
, ã := b/c, b̃ := a/c.

Applying the change of variables t �−→ 1/t and writing x̃(t) := x(1/t), we obtain

Q x(t) + b = x̃
(
ãt + b̃

)
. (22)

Without loss of generality, we assume that x(t) (respectively x̃(t)), and therefore any of its derivatives is well defined at
t = b̃ (respectively t = 0), and that x′(0), x′′(0) are well defined, nonzero, and not parallel. The latter statement is equivalent
to requiring that the curvature κx(t) at t = 0 be well defined and distinct from 0. This can always be achieved by applying
a change of parameter of the type t �−→ t + α. Observe that ϕ(t) can be determined before applying this change, because
afterwards the new Möbius transformation is just ϕ(t + α).

Evaluating (22) at t = 0 yields

Q x(0) + b = x̃(b̃), (23)

while differentiating once and twice and evaluating at t = 0 yield

Q x′(0) = ã · x̃′
(b̃), Q x′′(0) = ã2 · x̃′′

(b̃). (24)

Using (6) and that Q is orthogonal, taking the cross product in (24) yields

Q
(
x′(0) × x′′(0)

) = det(Q) · ã3 · x̃′
(b̃) × x̃′′

(b̃). (25)

Multiplying Q by the matrix B := [x′(0), x′′(0), x′(0) × x′′(0)] therefore gives

C := [
ã · x̃′

(b̃), ã2 · x̃′′
(b̃), det(Q) · ã3 · x̃′

(b̃) × x̃′′
(b̃)

]
and Q = C B−1. One sets det(Q) = 1 to find the orientation-preserving symmetries, and det(Q) = −1 to find the
orientation-reversing symmetries. One finds b from (23).

Next we address the case d �= 0. After dividing the coefficients of ϕ by d, we may assume d = 1. As before, we assume
that x(t) is well defined at t = 0, and we again assume that the curvature κx(0) is well defined and nonzero. Differentiating
(21) once and twice,

Q x′(t) = x′(ϕ(t)
) · ϕ′(t) = x′

(
at + b

ct + 1

)
�

(ct + 1)2
, (26)

Q x′′(t) = x′′(ϕ(t)
) (

ϕ′(t)
)2 + x′(ϕ(t)

)
ϕ′′(t)

= x′′
(

at + b

ct + 1

)
�2

(ct + 1)4
− 2x′

(
at + b

ct + 1

)
c�

(ct + 1)3
. (27)

Evaluating (26) and (27) at t = 0 yields

Q x′(0) = x′(b) · �, Q x′′(0) = x′′(b) · �2 − 2x′(b) · c�. (28)

Using (6) and that Q is orthogonal, taking the cross product in (28) yields

Q
(
x′(0) × x′′(0)

) = det(Q) · �3 · x′(b) × x′′(b). (29)

Since ϕ is known, the matrix Q can again be determined from its action on x′(0), x′′(0), and x′(0) × x′′(0), which is given
by Eqs. (28) and (29). One finds b by evaluating (21) at t = 0.

Once Q and b are found, one can compute the set of fixed points of f (x) = Q x + b to determine the elements of the
symmetry, i.e., the symmetry center, axis, or plane.

J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65 59
Fig. 2. Left: The crunode curve from Example 2, together with the fixed points of the half-turn and mirror symmetries. Right: The daisy of degree 8 from
Example 3, together with the fixed points of the central inversion, half-turn, and mirror symmetries.

Example 2. Let C ⊂R
3 be the crunode space curve parametrized by

x : t �−→
(

t

t4 + 1
,

t2

t4 + 1
,

t3

t4 + 1

)
.

Applying Algorithm Symm+ we get G+(t, s) = (t − s)(t + s). The first factor corresponds to the identity map ϕ1(t) = t and
the trivial symmetry f1(x) = x. The second factor corresponds to the Möbius transformation ϕ2(t) = −t . Clearly ϕ2 satisfies
Condition (11), so that Theorem 5 implies that C has a nontrivial, direct symmetry f2(x) = Q 2x + b2. With a = −1, b = 0,
c = 0, d = 1, and using that det(Q) = 1,

B =
[1 0 0

0 2 0
0 0 2

]
, C =

[−1 0 0
0 2 0
0 0 −2

]
, Q 2 := C B−1 =

[−1 0 0
0 1 0
0 0 −1

]
.

Evaluating (21) at t = 0 gives b2 = (I − Q 2)x(0) = 0, so that C is invariant under f2(x) = Q 2x, which is a half-turn about
the y-axis. Since there are no other factors in G+ , there are no direct symmetries corresponding to a Möbius transformation
with d = 0.

As for the opposite symmetries, applying Algorithm Symm− yields G−(t, s) = (st −1)(st +1), whose factors correspond to
the Möbius transformations ϕ3(t) = 1/t and ϕ4(t) = −1/t . A direct computation shows that ϕ3 and ϕ4 satisfy Condition (11),
and that they correspond to symmetries f3(x) = Q 3x and f4(x) = Q 4x, with

Q 3 =
[0 0 1

0 1 0
1 0 0

]
, Q 4 =

[0 0 −1
0 1 0

−1 0 0

]
.

The sets of fixed points of these isometries are the planes �3 : z − x = 0 and �4 : z + x = 0, which intersect in the symmetry
axis of the half-turn; see Fig. 2.

Example 3. Consider the family of daisies of increasing degree m = 4 j + 4, which are given parametrically by

x(t) =
⎛
⎝u

j∑
i=0

(−1)i
(

2 j

2i

)
u2 j−2i v2i, v

j∑
i=0

(−1)i
(

2 j

2i

)
u2 j−2i v2i,

1 − t4 j+4

1 + t4 j+4

⎞
⎠ , (30)

with

u = 1 − t2

1 + t2
, v = 2t

1 + t2
, j = 0,1, . . .

Applying Algorithm Symm+ for the case j = 1, we get G+(t, s) = (t − s)(st − 1). The first factor again corresponds to the
trivial symmetry f1(x) = x. The second factor corresponds to the Möbius transformation ϕ2(t) = 1/t . Clearly ϕ2 satisfies
Condition (11), so that Theorem 5 implies that C has a nontrivial, direct symmetry f2(x) = Q 2x + b2. With a = 0, b = 1,
c = 1, d = 0, and using that det(Q) = 1,

B =
[0 −20 0

2 0 0
0 0 40

]
, C =

[0 20 0
2 0 0
0 0 −40

]
, Q 2 := C B−1 =

[−1 0 0
0 1 0
0 0 −1

]
.

Eq. (23) gives b2 = x̃(b̃) − Q 2x(0) = 0, so that C is invariant under f2(x) = Q 2x, which is a half-turn about the y-axis.

60 J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65
Similarly applying Algorithm Symm−, we get G−(t, s) = (s + t)(st + 1), whose factors correspond to the Möbius trans-
formations ϕ3(t) = −t and ϕ4(t) = −1/t . A direct computation shows that ϕ3 and ϕ4 satisfy Condition (11), and that they
correspond to symmetries

f3(x) =
[1 0 0

0 −1 0
0 0 1

]
x, f4(x) =

[−1 0 0
0 −1 0
0 0 −1

]
x,

which are a reflection in the plane �3 : y = 0 and a central inversion about the point (0, 0, 0), respectively; see Fig. 2.

5. Performance

5.1. Complexity

Let us determine the arithmetic complexity of Algorithm Symm±, i.e., the number of integer operations needed. In addi-
tion to using the standard Big O notation O for the space- and time-complexity analysis, we use the Soft O notation Õ to
ignore any logarithmic factors in the time-complexity analysis. The bitsize τ of an integer k is defined as τ = �log2 k� + 1;
the bitsize of a parametrization x (taken with integer coefficients) is the maximum bitsize of the coefficients of the numer-
ators and denominators of the components. The following theorem presents the arithmetic complexity of Algorithm Symm±
when applied to parametric curves of varying degree m and of fixed bitsize.

Theorem 7. For a parametric curve x as in (1) with degree m, Algorithm Symm± finishes in Õ(m5) integer operations.

Proof. Step 1. Using the Schönhage–Strassen algorithm, two polynomials of degree m with integer coefficients can be mul-
tiplied in Õ(m) operations (Von zur Gathen and Gerhard, 2003, Table 8.7). Therefore the computation of κ2 and τ can be
carried out in Õ(m) operations as well, resulting in rational functions whose numerators and denominators have degree
O(m). As a consequence, K and T = T ± can also be computed in Õ(m) operations, and have degrees O(m) in t and s. The
bivariate gcd G = G± can be computed in Õ(m5) operations using the ‘half-gcd algorithm’ (Reischert, 1997), and has degree
O(m) in both variables. Step 1 therefore takes at most Õ(m5) operations.

Step 2. Since F (t, s) = (ct + d)s − (at + b), the resultant Ress(F , G) is the polynomial in t obtained by replacing s by
(at + b)/(ct + d) and clearing denominators. Writing G(t, s) = ∑m0

k=0 Gk(t)sk as a sum of m0 + 1 = O(m) terms, with each
Gk(t) polynomial of degree O(m), gives

Ress(F , G) =
m0∑

k=0

Gk(t)(at + b)k(ct + 1)m0−k, (31)

which is a polynomial of degree O(m) in a, b, c, and t .
Step 3. For any integer t0, the two polynomials G(t0, s), Gs(t0, s) have degree O(m), so that their (univariate) gcd can

be computed in Õ(m) operations (Von zur Gathen and Gerhard, 2003, Corollary 11.6). Since we need to consider at most
O(m2) values of t0, Step 3 takes Õ(m3) operations.

Step 4. For any integer t0 and unknown ξ , evaluating (16) at (t0, ξ) takes O(m2) operations, yielding rational functions
s′

0(ξ) and s′′
0(ξ) whose numerator and denominator have degree O(m). Substituting these rational functions into (17) takes

Õ(m) operations and yields rational functions

a(ξ) = a1(ξ)

a2(ξ)
, b(ξ) = b1(ξ)

b2(ξ)
, c(ξ) = c1(ξ)

c2(ξ)
, (32)

whose numerator and denominator have degree O(m). Substituting these rational functions into (31) followed by binomial
expansion, i.e., computing

k∑
n=0

(
k

n

)
an

1bm0−k+n
2 bk−n

1 am0−n
2 tn

am0
2 bm0

2

,

m0−k∑
n=0

(
m0 − k

n

)
cn

1cm0−n
2 tn

cm0
2

, (33)

involves raising polynomials of degree O(m) to the power O(m), which can be computed in Õ(m2) operations using
repeated squaring, i.e., O(logm) multiplications of polynomials of degree O(m2). All powers al

i, b
l
i, c

l
i , with i = 1, 2 and

l = 0, . . . , m0, in the above expression can therefore be computed in Õ(m3) operations, resulting in polynomials of degree
O(m2) in ξ . All remaining products can be computed in Õ(m3) operations, resulting in polynomials of degree O(m2).

Now the rational functions in (33) are determined, the product of their numerators can be carried out in Õ(m) ring
operations, the ring now being the polynomials in ξ . Since these polynomials have degree O(m2), the product of Gk(t)
and the rational functions in (33) take Õ(m2) integer operations, and yield the terms in the sum (31). After factoring out

J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65 61
Table 1
Average CPU time (seconds) of the algorithm in Alcázar et al. (2014b) (told) and Algo-
rithm Symm± (tnew) for parametric curves given in Alcázar et al. (2014b).

Curve Degree told tnew

twisted cubic 3 0.26 0.15
cusp 4 0.52 0.16
half-turn 1 4 2.22 0.14
crunode 4 39.60 0.42
inversion 1 7 6.80 0.19
space rose 8 57.60 0.25
inversion 2 11 75.60 0.22

the common denominator (a2b2c2)
m0 , this sum involves O(m) polynomials of degree O(m) in t , which requires O(m2)

additions of polynomials of degree O(m2) in ξ . This involves O(m4) integer operations and yields a polynomial of degree
O(m) in t , whose coefficients Pi(ξ) are polynomials of degree O(m2). The gcd of g(ξ) with the Pi(ξ) can be computed
in Õ(m3) operations, resulting in a polynomial R1(ξ) of degree O(m), since g(ξ) has degree O(m). Step 4 therefore takes
O(m4) operations.

Step 5. One determines whether R1(ξ) has real roots using root isolation, which takes Õ(m) operations using Pan’s
algorithm for root isolation (Pan, 2002; Mehlhorn et al., 2015).

Step 6. Writing x = (x, y, z) = (x1/x2, y1/y2, z1/z2), we find that

‖x′‖2 = (x2x′
1 − x1x′

2)
2 y4

2z4
2 + (y2 y′

1 − y1 y′
2)

2x4
2z4

2 + (z2z′
1 − z1z′

2)
2x4

2 y4
2

x4
2 y4

2z4
2

can be computed in O(m) operations. From Step 3 we already know the expansions of the powers (at + b)l, (ct + d)l and
their products, thus determining x ◦ ϕ . Taking the derivative of x ◦ ϕ and then squaring involves multiplying and adding
polynomials of degree O(m) in t and O(m2) in ξ , which requires Õ(m2) operations. Similarly we determine [(y ◦ ϕ)′]2 and
[(z ◦ ϕ)′]2 in Õ(m2) operations. The resulting rational functions have numerator and denominator of degree O(m) in t and
O(m2) in ξ , and can be added in Õ(m2) operations. Clearing denominators again takes Õ(m2) operations and results in
the polynomial Wξ (t) from (19) of degree O(m) in t and of degree O(m2) in ξ . To compute (20), we need to compute
O(m) times the univariate gcd of polynomials of degree O(m) and degree O(m2), which requires Õ(m3) operations. Step 6
therefore requires Õ(m3) operations.

Steps 7–10. These steps have the same complexity as Steps 4–6. �
Note that resorting to probabilistic algorithms, the bivariate gcd G in Step 1 can be computed in Õ(m2) operations

using the ‘small primes modular gcd algorithm’ and fast polynomial arithmetic (Von zur Gathen and Gerhard, 2003, Corol-
lary 11.9.(i)). Thus a probabilistic version of Algorithm Symm± uses O(m4) operations.

5.2. Experimentation

Algorithm Symm± was implemented in the computer algebra system Sage (Stein et al., 2013), using Singular (Decker
et al., 2011) as a back-end, and was tested on a Dell XPS 15 laptop, with 2.4 GHz i5-2430M processor and 6 GB RAM.
Additional technical details are provided in the Sage worksheet, which can be downloaded from the third author’s website
(Muntingh, personal website) and can be tried out online by visiting SageMathCloud (Alcázar et al., 2015).

We present tables with timings corresponding to different groups of examples. Table 1 corresponds to the set of examples
in Alcázar et al. (2014b), making it possible to compare the timing tnew of Algorithm Symm± to the timing told of the
algorithm in Alcázar et al. (2014b). It is clear from the table that the algorithm introduced in this paper is considerably
faster for each curve.

To test Algorithm Symm± for symmetric curves with higher degree, Table 2 lists the timings for a family of daisies of
increasing degree m = 4 j + 4, parametrically given by (30). The algorithm quickly finds the symmetries of these symmetric
curves, also for high degree.

Table 3 lists average timings for random dense rational parametrizations with various degrees m and coefficients with
bitsizes at most τ . To study the effect of an additional nontrivial symmetry, we consider random parametrizations x =
(x1, x2, x3) with antisymmetric numerators and symmetric denominators of the same degree m and with bitsize at most τ ,
i.e., of the form

xi(t) = ci,0 + ci,1t + · · · − ci,1tm−1 − ci,0tm

di,0 + di,1t + · · · + di,1tm−1 + di,0tm
, i = 1,2,3,

with �log2 |ci, j |�, �log2 |di, j|� ≤ τ − 1. Since x(1/t) = −x(t), such parametric curves have a central inversion about x(1) = 0.
Table 4 lists average timings for these curves with various degrees m and bitsizes at most τ .

62 J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65
Table 2
Average CPU time tnew (seconds) of Algorithm Symm± for daisies of various degrees.

degree 8 12 16 20 24
tnew 0.66 0.92 1.47 2.30 4.38

degree 28 32 36 40 44
tnew 5.33 6.53 8.77 15.88 18.11

Table 3
CPU times tnew (seconds) for random dense rational parametrizations of various degrees m and coefficients with bitsize bounded by τ .

tnew τ = 4 τ = 8 τ = 16 τ = 32 τ = 64 τ = 128 τ = 256

m = 4 0.61 0.62 0.66 0.73 0.83 1.14 1.88
m = 6 1.65 1.76 1.72 1.89 2.13 2.80 4.55
m = 8 3.50 3.54 3.55 3.84 4.27 5.36 8.59
m = 10 7.53 7.47 7.30 7.98 8.42 9.76 15.35
m = 12 14.46 14.35 14.30 14.84 15.98 18.35 25.87
m = 14 22.31 23.24 22.39 22.71 24.93 27.35 38.36
m = 16 34.86 35.60 35.38 35.27 38.14 41.91 55.74
m = 18 53.03 52.78 52.78 51.16 54.49 60.44 78.27

Table 4
CPU times tnew (seconds) for random dense rational parametrizations with a central inversion of various degrees m and coefficients with bitsize bounded
by τ .

tnew τ = 4 τ = 8 τ = 16 τ = 32 τ = 64 τ = 128 τ = 256

m = 4 0.85 0.89 0.91 0.97 1.12 1.51 2.39
m = 6 1.89 2.02 1.99 2.21 2.57 3.36 5.40
m = 8 4.08 4.24 4.52 5.16 5.45 7.42 10.41
m = 10 8.29 8.80 8.88 9.30 10.74 12.64 19.87
m = 12 17.47 18.20 17.96 17.12 18.49 25.19 34.11
m = 14 28.54 28.72 29.55 28.54 31.87 34.71 44.19
m = 16 41.20 41.53 42.02 43.07 45.55 51.36 65.58
m = 18 58.42 58.91 59.54 61.08 64.31 71.89 94.33

For very large coefficient bitsizes (>256, i.e., coefficients with more than 77 digits) and high degrees (>20) the ma-
chine runs out of memory. We have therefore analyzed separately the regime with high degree and the regime with large
coefficient bitsize.

Fig. 3 presents log-log plots of the CPU times against the degree (left) and against the coefficient bitsizes (right). The
(eventually) linear nature of these data suggests the existence of an underlying power law. Least squares approximation
yields that, as a function of the degree m, the average CPU time tnew satisfies

tnew ∼ αmβ, α ≈ 6.7 · 10−3, β ≈ 3.2 (34)

in case of random dense rational parametrizations with coefficient bitsize at most τ = 4,

tnew ∼ αmβ, α ≈ 4.7 · 10−3, β ≈ 3.3, (35)

in case of random dense rational parametrizations with a central inversion and with coefficient bitsize at most τ = 4, and

tnew ∼ αmβ, α ≈ 7.9 · 10−5, β ≈ 3.2 (36)

for the daisies. Note that these timings are close to the Õ(m3) operations needed by Brown’s modular gcd algorithm
(Brown, 1971), which is used in the implementation in Sage for bivariate gcd computations. The reason is that in the
analyzed examples almost all time is spent computing the bivariate gcd in Step 1, which then typically has low degree, so
that the remaining calculations take relatively little time.

J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65 63
Fig. 3. Left: The average CPU time tnew (seconds) versus the degree m for daisies and random dense rational parametrizations with bitsize τ = 4 and with
only the trivial symmetry (random) and with an additional central inversion (central), fitted by the power laws (34)–(36) (dotted). Right: The average CPU
time tnew (seconds) versus the coefficient bitsizes for degree m = 4. The symbols indicate the average CPU times, and the error bars show the interval of
CPU times.

5.3. An observation on plane curves

If C is planar, then τ and T ± are identically zero, so that G± = K . Although Algorithm Symm± is still valid for such
curves, we have observed a very poor performance in this case. The reason is that, for non-planar curves, the degree of G±
is typically small compared to the degrees of K and T ± . However, for plane curves the degree of G± is equal to the degree
of K , and then the computation takes a very long time. Therefore, for plane curves, the algorithms in Alcázar et al. (2014a,
2014b) are preferable.

5.4. Comparison to previous method

Table 1 indicates a dramatic improvement of the CPU time of Symm± over the method described in Alcázar et al. (2014b).
In that paper the symmetry f (x) = Q x + b and Möbius transformation ϕ(t) = (at + b)/(ct + d) are first expressed polyno-
mially in terms of some (yet unknown) algebraic number β . By far the most CPU time is spent after that, on substituting
a(β), b(β), c(β), Q (β) and b(β) into the relation

f
(
x(t)

) − x
(
ϕ(t)

) ≡ 0.

Since the degrees can get very high in this relation, this substitution can take a long time. Then the algebraic numbers β ,
and therefore the symmetry and Möbius transformation, are found by requiring that this relation holds identically.

Furthermore, the method described in Alcázar et al. (2014b) requires that the parametrization x satisfies rather strict
conditions. Quite often, a reparametrization is needed in order to achieve these conditions, which can result in destroying
sparseness and increasing the coefficient size. This, in turn, has an impact on the time taken by the substitution step.

By contrast, in Algorithm Symm± we use additional information provided by the curvature and torsion of the curve to
compute G±

x = gcd(Kx, T ±
x), whose degree is generally low. The Möbius transformations are then computed in just one step

as factors of G±
x . As a consequence, no substitution step is needed. Moreover, unless x is not proper, no reparametrization

is required.

6. Conclusion

We have presented a new, deterministic, and efficient method for detecting whether a rational space curve is symmetric.
The method combines ideas in Alcázar (2014), Alcázar et al. (2014b) with the use of the curvature and torsion as differential
invariants of space curves. The complexity analysis and experiments show a good theoretical and practical performance,
clearly beating the performance obtained in Alcázar et al. (2014b). The algorithm also improves in scope on the algorithm of
Alcázar et al. (2014b), which can only be applied to find the symmetries for Pythagorean-hodograph curves and involutions
of other curves. Finally Algorithm Symm± is simpler than the algorithm in Alcázar et al. (2014b), which imposes certain
conditions on the parametrization that often lead to a reparametrized, non-sparse curve whose coefficients have a large
bitsize. By contrast, the algorithm in this paper has fewer requirements and is efficient even with high degrees.

64 J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65
Note that Algorithm Symm± is based on two conditions in Theorem 5, one involving the curvature and torsion of the
curve and the other one involving the arc length. One might wonder whether these two conditions really are independent
for the case of rational curves. We included both conditions because we did not succeed in proving that they are dependent,
but neither did we find an example of a tentative Möbius transformation not satisfying Condition (11). The relation between
the conditions is therefore undetermined, and we pose the question here as an open problem. In any case, in the complexity
analysis and experiments we observed that the cost of checking (11) is small compared to the rest of the algorithm.

The implementation in Sage can be improved in several ways. First, several of the methods named in the complexity
section are not included in Sage, which carries out the corresponding tasks by using other algorithms. Furthermore, almost
all space curves are asymmetric, and these cases can be identified faster. In order to do this, one can first remove all factors
s − t from Kx and T ±

x , and then check whether the remaining polynomials are coprime using modular arithmetic. In the
affirmative case, the conclusion that the curve has no nontrivial symmetries could be obtained at very little computational
cost.

As a final remark, as this paper sets forth a method for computing exact symmetries of parametric curves with rational
coefficients, one could ask whether a similar development could yield a method for computing approximate symmetries of
parametric curves with floating point coefficients. This is an open question that we would like to address in the future.

Acknowledgements

We are very grateful for the detailed reports of the reviewers, which helped to improve the paper significantly, in
particular Section 5. We also thank Rob Corless for suggesting the term “daisies” for the curves in Table 2.

References

Alcázar, J.G., 2014. Efficient detection of symmetries of polynomially parametrized curves. J. Comput. Appl. Math. 255, 715–724.
Alcázar, J.G., Hermoso, C., Muntingh, G., 2014a. Detecting similarity of rational plane curves. J. Comput. Appl. Math. 269, 1–13.
Alcázar, J.G., Hermoso, C., Muntingh, G., 2014b. Detecting symmetries of rational plane and space curves. Comput. Aided Geom. Des. 31 (3–4), 119–209.
Alcázar, J.G., Hermoso, C., Muntingh, G., 2015. Symmetry detection of rational space curves from their curvature and torsion, SageMathCloud worksheet.

https://cloud.sagemath.com/projects/72d95ccb-dbdb-4abe-937b-59854c9a7c0e/files/Symmetries3D-Sage.sagews.
Alcázar, J.G., 2012. Computing the shapes arising in a family of space rational curves depending on one parameter. Comput. Aided Geom. Des. 29, 315–331.
Alcázar, J.G., Díaz Toca, G., 2010. Topology of 2D and 3D rational curves. Comput. Aided Geom. Des. 27 (7), 483–502.
Alt, H., Mehlhorn, K., Wagener, H., Welzl, E., 1988. Congruence, similarity and symmetries of geometric objects. Discrete Comput. Geom. 3, 237–256.
Berner, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.P., 2008. A graph-based approach to symmetry detection. In: Symposium on Volume and Point-

Based Graphics 2008, pp. 1–8.
Bokeloh, M., Berner, A., Wand, M., Seidel, H.P., Schilling, A., 2009. Symmetry detection using line features. Comput. Graph. Forum 28 (2), 697–706.
Boutin, M., 2000. Numerically invariant signature curves. Int. J. Comput. Vis. 40 (3), 235–248.
Brass, P., Knauer, C., 2004. Testing congruence and symmetry for general 3-dimensional objects. Comput. Geom. 27, 3–11.
Brown, W.S., 1971. On Euclid’s algorithm and the computation of polynomial greatest common divisors. J. ACM 18 (4), 478–504.
Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S., 1998. Differential and numerically invariant signature curves applied to object recognition. Int.

J. Comput. Vis. 26 (2), 107–135.
Cheeze, G., 2004. Absolute polynomial factorization in two variables and the knapsack problem. In: Proceedings ISSAC 2004. ACM, New York, NY, USA,

pp. 87–94.
Cheeze, G., Galligo, A., 2006. From an approximate to an exact absolute polynomial factorization. J. Symb. Comput. 41, 682–696.
Corless, R., Galligo, A., Kotsireas, I., Watt, S., 2002. A geometric–numeric algorithm for absolute factorization of multivariate polynomials. In: Proceedings

ISSAC 2002. ACM, New York, NY, USA, pp. 37–45.
Coxeter, H.S.M., 1969. Introduction to Geometry, second edition. John Wiley & Sons, Inc., New York, London, Sydney.
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H., 2011. Singular 3-1-3 — a computer algebra system for polynomial computations.

http://www.singular.uni-kl.de.
Do Carmo, M., 1976. Differential Geometry of Curves and Surfaces. Pearson Education, USA.
Galligo, A., Rupprecht, D., 2002. Irreducible decomposition of curves. J. Symb. Comput. 33 (5), 661–677.
Huang, Z., Cohen, F.S., 1996. Affine-invariant B-spline moments for curve matching. IEEE Trans. Image Process. 5 (10), 1473–1480.
Jiang, X., Yu, K., Bunke, H., 1996. Detection of rotational and involutional symmetries and congruity of polyhedra. Vis. Comput. 12 (4), 193–201.
Lebmeir, P., Richter-Gebert, J., 2008. Rotations, translations and symmetry detection for complexified curves. Comput. Aided Geom. Des. 25, 707–719.
Lebmeir, P., 2009. Feature detection for real plane algebraic curves. Ph.D. thesis. Technische Universität München.
Li, M., Langbein, F., Martin, R., 2008. Detecting approximate symmetries of discrete point subsets. Comput. Aided Des. 40 (1), 76–93.
Li, M., Langbein, F., Martin, R., 2010. Detecting design intent in approximate CAD models using symmetry. Comput. Aided Des. 42 (3), 183–201.
Lipman, Y., Cheng, X., Daubechies, I., Funkhouser, T., 2010. Symmetry factored embedding and distance. In: ACM Transactions on Graphics (SIGGRAPH 2010).
Loy, G., Eklundh, J., 2006. Detecting symmetry and symmetric constellations of features. In: Proceedings ECCV 2006, 9th European Conference on Computer

Vision, pp. 508–521.
Martinet, A., Soler, C., Holzschuch, N., Sillion, F., 2006. Accurate detection of symmetries in 3D shapes. ACM Trans. Graph. 25 (2), 439–464.
Mehlhorn, K., Sagraloff, M., Wang, P., 2015. From approximate factorization to real root isolation with application to cylindrical algebraic decomposition.

J. Symb. Comput., 34–69.
Mitra, N.J., Guibas, L.J., Pauly, M., 2006. Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25 (3), 560–568.
Muntingh, G., personal website. Software https://sites.google.com/site/georgmuntingh/academics/software.
Pan, V., 2002. Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding. J. Symb. Comput., 701–733.
Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T., 2006. A planar-reflective symmetry transform for 3D shapes. In: Proceedings SIG-

GRAPH 2006, pp. 549–559.
Reischert, D., 1997. Asymptotically fast computation of subresultants. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic

Computation. Kihei, HI, pp. 233–240.
Schnabel, R., Wessel, R., Wahl, R., Klein, R., 2008. Shape recognition in 3D-point clouds. In: The 16th International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision ’08.

http://refhub.elsevier.com/S0167-8396(15)00013-8/bib413133s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib41484D3133s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib41484D31332D32s1
https://cloud.sagemath.com/projects/72d95ccb-dbdb-4abe-937b-59854c9a7c0e/files/Symmetries3D-Sage.sagews
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib413132s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib41443130s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib416C743838s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4265726E65723038s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4265726E65723038s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib426F6B656C6F68s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib426F7574696Es1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4272617373s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib42726F776Es1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib43616C616269s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib43616C616269s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib433034s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib433034s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib43473036s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib43474B57s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib43474B57s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib436F7865746572s1
http://www.singular.uni-kl.de
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib446F6361726D6Fs1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib47523032s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4875616E67s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4A69616E67s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4C523038s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4C525468s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4C693038s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4C693130s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4C69706D616Es1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4C6F79s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4C6F79s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4D617274696E6574s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4D65686C686F726Es1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4D65686C686F726Es1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib4D697472613036s1
https://sites.google.com/site/georgmuntingh/academics/software
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib50616Es1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib506F646F6C616Bs1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib506F646F6C616Bs1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib526569736368657274s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib526569736368657274s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib5363686E6162656Cs1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib5363686E6162656Cs1

J.G. Alcázar et al. / Computer Aided Geometric Design 33 (2015) 51–65 65
Sendra, J.R., Winkler, F., Perez-Diaz, S., 2008. Rational Algebraic Curves. Springer-Verlag.
Simari, P., Kalogerakis, E., Singh, K., 2006. Folding meshes: hierarchical mesh segmentation based on planar symmetry. In: Proc. Symp. Geometry Processing,

pp. 111–119.
Stein, W.A., et al., 2013. Sage Mathematics Software (Version 5.9). The Sage Development Team. http://www.sagemath.org.
Suk, T., Flusser, J., 1993. Pattern recognition by affine moment invariants. Pattern Recognit. 26 (1), 167–174.
Suk, T., Flusser, J., 2005. Affine normalization of symmetric objects. In: Proceedings ACIVS 2005. In: Lect. Notes Comput. Sci., pp. 100–107.
Sun, C., Sherrah, J., 1997. 3-D symmetry detection using the extended Gaussian image. IEEE Trans. Pattern Anal. Mach. Intell. 19, 164–168.
Tarel, J.P., Cooper, D.B., 2000. The complex representation of algebraic curves and its simple exploitation for pose estimation and invariant recognition. IEEE

Trans. Pattern Anal. Mach. Intell. 22 (7), 663–674.
Tate, S., Jared, G., 2003. Recognising symmetry in solid models. Comput. Aided Des. 35 (7), 673–692.
Taubin, G., Cooper, D.B., 1992. Object recognition based on moments (or algebraic) invariants. In: Mundy, J.L., Zisserman, A. (Eds.), Geometric Invariance in

Computer Vision. MIT Press, pp. 375–397.
Von zur Gathen, J., Gerhard, J., 2003. Modern Computer Algebra, second edition. Cambridge University Press, Cambridge.
Weiss, I., 1993. Noise-resistant invariants of curves. IEEE Trans. Pattern Anal. Mach. Intell. 15 (9), 943–948.

http://refhub.elsevier.com/S0167-8396(15)00013-8/bib53575044s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib53696D617269s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib53696D617269s1
http://www.sagemath.org
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib53756B31s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib53756B32s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib53756Es1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib54433030s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib54433030s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib54617465s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib54617562696E32s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib54617562696E32s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib566F6E5A757247617468656E2E47657268617264s1
http://refhub.elsevier.com/S0167-8396(15)00013-8/bib5765697373s1

	Symmetry detection of rational space curves from their curvature and torsion
	1 Introduction
	2 Symmetries of rational curves
	3 Symmetry detection
	3.1 A criterion for the presence of symmetries
	3.2 Finding the Möbius-like factors F of G±x
	3.3 The complete algorithm

	4 Determining the symmetries
	5 Performance
	5.1 Complexity
	5.2 Experimentation
	5.3 An observation on plane curves
	5.4 Comparison to previous method

	6 Conclusion
	Acknowledgements
	References

