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We present a novel, deterministic, and efficient method to detect whether a given rational 
space curve is symmetric. By using well-known differential invariants of space curves, 
namely the curvature and torsion, the method is significantly faster, simpler, and more 
general than an earlier method addressing a similar problem (Alcázar et al., 2014b). To 
support this claim, we present an analysis of the arithmetic complexity of the algorithm 
and timings from an implementation in Sage.
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1. Introduction

The problem of detecting the symmetries of curves and surfaces has attracted the attention of many researchers through-
out the years, because of the interest from fields like Pattern Recognition (Boutin, 2000; Calabi et al., 1998; Huang and 
Cohen, 1996; Lebmeir and Richter-Gebert, 2008; Lebmeir, 2009; Suk and Flusser, 1993, 2005; Tarel and Cooper, 2000;
Taubin and Cooper, 1992; Weiss, 1993), Computer Graphics (Berner et al., 2008; Bokeloh et al., 2009; Lipman et al., 2010;
Martinet et al., 2006; Mitra et al., 2006; Podolak et al., 2006; Schnabel et al., 2008; Simari et al., 2006), and Com-
puter Vision (Alt et al., 1988; Brass and Knauer, 2004; Jiang et al., 1996; Li et al., 2008, 2010; Loy and Eklundh, 2006;
Tate and Jared, 2003; Sun and Sherrah, 1997). The introduction in Alcázar et al. (2014b) contains an extensive account of 
the variety of approaches used in the above references.

A common characteristic in most of these papers is that the methods focus on computing approximate symmetries 
more than exact symmetries, which is perfectly reasonable in many applications, where curves and surfaces often serve 
as merely approximate representations of a more complex shape. Some exceptions appear here: If the object to be con-
sidered is discrete (e.g. a polyhedron), or is described by a discrete object, like for instance a control polygon or a control 
polyhedron, then the symmetries can be determined exactly (Alt et al., 1988; Brass and Knauer, 2004; Jiang et al., 1996;
Li et al., 2008). Examples of the second class are Bézier curves and tensor product surfaces. Furthermore, in these cases 
the symmetries of the curve or surface follow from those of the underlying discrete object. Another exception appears in 
Lebmeir and Richter-Gebert (2008), where the authors provide a deterministic method to detect rotation symmetry of an 
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implicitly defined algebraic plane curve and to find the exact rotation angle and rotation center. The method uses a complex 
representation of the curve and is generalized in Lebmeir (2009) to detect mirror symmetry as well.

Rational curves are frequently used in Computer Aided Geometric Design and are the building blocks of NURBS curves. 
Compared to implicit curves, rational parametric curves are easier to manipulate and visualize. Space curves appear in a 
natural way when intersecting two surfaces, and they play an important role when dealing with special types of surfaces, 
often used in geometric modeling, like ruled surfaces, canal surfaces or surfaces of revolution, which are generated from a 
directrix or profile curve. Furthermore, in geometric modeling it is typical to use rational space curves as profile curves.

In this paper we address the problem of deterministically finding the symmetries of a rational space curve, defined by 
means of a proper parametrization. Notice that since we deal with a global object, i.e., the set of all points in the image of 
a rational parametrization, and not just a piece of it, the discrete approach from Alt et al. (1988), Brass and Knauer (2004), 
Jiang et al. (1996), Li et al. (2008) is not suitable here. Determining if a rational space curve is symmetric or not is useful in 
order to properly describe the topology of the curve (Alcázar and Díaz Toca, 2010). Furthermore, if the space curve is to be 
used for generating, for instance, a canal surface or a surface of revolution, certain symmetries of the curve will be inherited 
by the generated surface. Hence, for modeling purposes it can be interesting to know these symmetries in advance.

Recently, the problem of determining whether a rational plane or space curve is symmetric has been addressed in Alcázar
(2014), Alcázar et al. (2014a, 2014b) using a different approach. The common denominator in these papers is the following 
observation: If a rational curve is symmetric, i.e., invariant under a nontrivial isometry f , then this symmetry induces an-
other parametrization of the curve, different from the original parametrization. Assuming that the initial parametrization is 
proper (definition below), the second parametrization is also proper. Since two proper parametrizations of the same curve 
are related by a Möbius transformation (Sendra et al., 2008), determining the symmetries is reduced to finding this transfor-
mation, therefore translating the problem to the parameter space. This observation leads to algorithms for determining the 
symmetries of plane curves with polynomial parametrizations (Alcázar, 2014) and of plane and space curves with rational 
parametrizations (Alcázar et al., 2014b), although in the latter case of general space curves only involutions were considered. 
The more general problem of determining whether two rational plane curves are similar was considered in Alcázar et al.
(2014a).

In this paper we again employ the above observation, but in addition we now also use well-known differential invariants 
of space curves, namely the curvature and the torsion. The improvement over the method in Alcázar et al. (2014b) is 
threefold: First of all, we are now able to find all the symmetries of the curve instead of just the involutions. Secondly, 
the new algorithm is considerably faster and can efficiently handle even curves with high degrees and large coefficients in 
reasonable timings. Finally, the method is simpler to implement and requires fewer assumptions on the parametrization.

Some general facts on symmetries of rational curves are presented in Section 2. Section 3 provides an algorithm for 
checking whether a curve is symmetric. The determination of the symmetries themselves is addressed in Section 4. Finally, 
in Section 5 we report on the performance of the algorithm, by presenting a complexity analysis and providing timings for 
several examples, including a comparison with the curves tested in Alcázar et al. (2014b).

2. Symmetries of rational curves

Throughout the paper, we consider a rational space curve C ⊂ R
3, neither a line nor a circle, parametrized by a rational 

map

x : R ��� C ⊂ R
3, x(t) = (

x(t), y(t), z(t)
)
. (1)

The components x(t), y(t), z(t) of x are rational functions of t with rational coefficients, and they are defined for all but a 
finite number of values of t . Let the (parametric) degree m of x be the maximal degree of the numerators and denominators 
of the components x(t), y(t), z(t). Note that rational curves are irreducible. We assume that the parametrization (1) is proper, 
i.e., birational or, equivalently, injective except for perhaps finitely many values of t . This can be assumed without loss of 
generality, since any rational curve can quickly be properly reparametrized. For these claims and other results on properness, 
the interested reader can consult (Sendra et al., 2008) for plane curves and (Alcázar, 2012, §3.1) for space curves.

We recall some facts from Euclidean geometry (Coxeter, 1969). An isometry of R3 is a map f : R3 −→ R
3 preserving 

Euclidean distances. Any isometry f of R3 is linear affine, taking the form

f (x) = Q x + b, x ∈R
3, (2)

with b ∈ R
3 and Q ∈ R

3×3 an orthogonal matrix. In particular det( Q ) = ±1. Under composition, the isometries of R3

form the Euclidean group, which is generated by reflections, i.e., symmetries with respect to a plane, or mirror symmetries. An 
isometry is called direct when it preserves the orientation, and opposite when it does not. In the former case det( Q ) = 1, 
while in the latter case det( Q ) = −1. The identity map of R3 is called the trivial symmetry.

The classification of the nontrivial isometries of Euclidean space includes reflections (in a plane), rotations (about an 
axis), and translations, and these combine in commutative pairs to form twists, glide reflections, and rotatory reflections. 
Composing three reflections in mutually perpendicular planes through a point p yields a central inversion (also called central 
symmetry), with center p, i.e., a symmetry with respect to the point p. The particular case of rotation by an angle π is 
of special interest, and it is called a half-turn. Rotation symmetries are direct, while mirror and central symmetries are 
opposite.
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Lemma 1. A rational space curve C ⊂ R
3 different from a line cannot be invariant under a translation, glide reflection, or twist.

Proof. If C were invariant under translation by a vector b, then, for any point x on C , the line L = {x + tb : t ∈ R} would 
intersect C in infinitely many points, implying that L ⊂ C and contradicting that C is an irreducible curve different from 
a line. Since applying a glide reflection twice yields a translation, C cannot be invariant under a glide reflection either. 
Suppose C is invariant under a twist f with axis A and angle α, and let π : R3 −→ � be the orthogonal projection onto a 
plane � ⊥ A. Then the projection C′ := π(C) is a plane algebraic curve invariant under the rotation π ◦ f by the angle α
about the point A ∩ �. By Lemma 1 in Alcázar et al. (2014b), α = 2π/k with k ≤ deg(C′). But then C is invariant under the 
translation f k , which is a contradiction. �

Therefore, the rotations, reflections, and their combinations (like central inversions) are the only isometries leaving an ir-
reducible algebraic space curve, different from a line, invariant. We say that an irreducible algebraic space curve is symmetric, 
if it is invariant under one of these (nontrivial) isometries. In that case, we distinguish between a mirror symmetry, rotation 
symmetry and central symmetry. If the curve is neither a line nor a circle, it has a finite number of symmetries (Alcázar et 
al., 2014b).

We recall the following result from Alcázar et al. (2014b). For this purpose, let us recall first that a Möbius transformation
(of the affine real line) is a rational function

ϕ : R ��� R, ϕ(t) = at + b

ct + d
, � := ad − bc �= 0. (3)

In particular, we refer to ϕ(t) = t as the trivial transformation. It is well known that the birational functions on the real line 
are the Möbius transformations (Sendra et al., 2008).

Theorem 2. Let x : R ��� C ⊂ R
3 be a proper parametric curve as in (1). The curve C is symmetric if and only if there exist a nontrivial 

isometry f and nontrivial Möbius transformation ϕ for which we have a commutative diagram

C f C

R

x

ϕ R

x

(4)

Moreover, for each isometry f there exists a unique Möbius transformation ϕ that makes this diagram commute.

Note that ϕ(t) is the parameter value corresponding to the image under the symmetry f of the point on C with param-
eter t .

Lemma 3. Let ϕ be a Möbius transformation associated to a parametrization x and isometry f in the sense of Theorem 2. Then its 
coefficients a, b, c, d can be assumed to be real, by dividing by a common complex number if necessary.

Proof. For any proper parametrization x and isometry f the associated Möbius transformation ϕ = x−1 ◦ f ◦ x maps the 
real line to itself. In particular, since

0 = ϕ(t) − ϕ(t) = (ac − ac)t2 + (bc − bc + ad − ad)t + (bd − bd)

(ct + d)(ct + d)

for any t for which ϕ(t) is defined, ac and bd are real, so that arg(a) = arg(c) and arg(b) = arg(d). A similar argument for 
ϕ−1 yields that −dc/|ad −bc|2 and −ba/|ad −bc|2 are real, implying that arg(c) = arg(d) and arg(a) = arg(b). It follows that 
all coefficients of ϕ have a common argument θ . Therefore, after dividing the coefficients of ϕ by exp(iθ), the coefficients 
of ϕ can be assumed to be real. �

Let the curvature κ and torsion τ of a parametric curve x be the functions

κ = κx := ‖x′ × x′′‖
‖x′‖3

, τ = τx := 〈x′ × x′′, x′′′〉
‖x′ × x′′‖2

of the parameter t . Note that κ is non-negative. The functions κ2 and τ 2 are well-known rational differential invariants of 
the parametrization x, in the sense that

κ f ◦x = κx, τ f ◦x = det( Q ) · τx (5)

for any isometry f (x) = Q x + b. This follows immediately from Q being orthogonal and the identity
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(Ma) × (Mb) = det(M)M−T(a × b), (6)

which holds for any invertible matrix M and follows from a straightforward calculation. Although τx and κ2
x are rational for 

any rational parametrization x, the curvature κx is in general not rational.
The following lemma describes the behavior of the curvature and torsion under reparametrization, for instance by a 

Möbius transformation.

Lemma 4. Let x be the rational parametrization (1) and let φ ∈ C3(U ), with U ⊂ R open. Then

κx◦φ = κx ◦ φ, τx◦φ = τx ◦ φ,

whenever both sides are defined.

Proof. Writing x̃ := x ◦ φ and using the chain rule, one finds

x̃′
(t) = x′(φ(t)

) · φ′(t),

x̃′′
(t) = x′′ (φ(t)

) · (φ′(t)
)2 + x′(φ(t)

) · φ′′(t),

x̃′′′
(t) = x′′′ (φ(t)

) · (φ′(t)
)3 + 3x′′(φ(t)

) · φ′(t) · φ′′(t) + x′(φ(t)
) · φ′′′(t),

whenever t ∈ U and x is defined at φ(t). Therefore

κx◦φ(t) =
∥∥x̃′

(t) × x̃′′
(t)

∥∥∥∥x̃′
(t)

∥∥3
=

∥∥x′(φ(t)
) × x′′(φ(t)

)∥∥ · ∣∣φ′(t)
∣∣3∥∥x′(φ(t)

)∥∥3 · |φ′(t)|3
= (

κx ◦ φ
)
(t),

and similarly one finds τx◦φ = τx ◦ φ. �
3. Symmetry detection

In this section we derive a criterion for the presence of nontrivial symmetries f (x) = Q x + b of curves of type (1), 
together with an efficient method for checking this criterion. The cases det( Q ) = ±1 need to be checked separately, but 
are considered simultaneously using linked ± and ∓ signs consistently throughout the paper. The resulting method is 
summarized in Algorithm Symm±.

3.1. A criterion for the presence of symmetries

For any parametric curve x as in (1), write

κ2
x (t) =: A(t)

B(t)
, τx(t) =: C(t)

D(t)
,

with (A, B) and (C, D) pairs of coprime polynomials. Let

G±
x := gcd

(
Kx, T ±

x

)
, (7)

with

Kx(t, s) := A(t)B(s) − A(s)B(t), T ±
x (t, s) := C(t)D(s) ∓ C(s)D(t) (8)

the result of clearing denominators in the equations

κ2
x (t) − κ2

x (s) = 0, τx(t) ∓ τx(s) = 0. (9)

Similarly, associate to any Möbius transformation ϕ the Möbius-like polynomial

F (t, s) := (ct + d)s − (at + b), ad − bc �= 0, (10)

as the result of clearing denominators in s −ϕ(t) = 0. We call F trivial when F (t, s) = s − t , i.e., when the associated Möbius 
transformation is the identity. Note that F is irreducible since ad − bc �= 0.

Theorem 5. Consider the curve C defined by x in (1) and let G±
x be as above. Then C has a nontrivial symmetry f (x) = Q x + b, with 

det( Q ) = ±1, if and only if there exists a nontrivial polynomial F of type (10), associated with a Möbius transformation ϕ , such that 
F divides G±

x and the parametrizations x and x ◦ ϕ have identical speed,

‖x′‖ = ‖(x ◦ ϕ)′‖. (11)
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Fig. 1. The zeroset (solid) of the polynomial G = G±
x intersects the vertical line L (dashed) in the points (2,±√

8) and (2,±1/
√

12) in Example 1.

The zeroset of F is the graph of ϕ , which is either a rectangular hyperbola with horizontal and vertical asymptotes when 
c �= 0, or a line with nonzero and finite slope a/d when c = 0. Whenever F is a factor of G±

x , the corresponding hyperbola 
or line is contained in the zeroset of G±

x ; see Fig. 1.

Proof of Theorem 5. “�⇒”: If C is invariant under a nontrivial isometry f (x) = Q x + b, with det( Q ) = ±1, by Theorem 2
there exists a Möbius transformation ϕ such that f ◦ x = x ◦ ϕ . Let F be the Möbius-like polynomial associated with ϕ . The 
points (t, s) for which Kx(t, s) = T ±

x (t, s) = 0 are the points satisfying κx(s) = κx(t) and τx(s) = ±τx(t). This includes the 
zeroset 

{(
t, s

) : s = ϕ(t)
}

of F (t, s), since

κx ◦ ϕ = κx◦ϕ = κ f ◦x = κx, τx ◦ ϕ = τx◦ϕ = τ f ◦x = det( Q )τx = ±τx

by Lemma 4 and (5). Since F is irreducible, Bézout’s theorem implies that F divides Kx and T ±
x , and therefore G±

x as well. 
Furthermore, since Q is orthogonal, the parametrizations have equal speed,

‖(x ◦ ϕ)′‖ = ‖( f ◦ x)′‖ = ‖( Q x + b)′‖ = ‖ Q x′‖ = ‖x′‖.
“⇐�”: Let ϕ be the nontrivial transformation associated to F . Let t0 ∈ I ⊂ R be such that x(t) is a regular point on C for 

every t ∈ I , and consider the arc length function

s = s(t) :=
t∫

t0

‖x′(t)‖dt, t ∈ I,

which (locally) has an infinitely differentiable inverse t = t(s). By (11),∥∥∥∥ d

ds

(
x ◦ t

)∥∥∥∥ =
∥∥∥∥dx

dt

dt

ds

∥∥∥∥ = 1 =
∥∥∥∥ d

dt

(
x ◦ ϕ

) dt

ds

∥∥∥∥ =
∥∥∥∥ d

ds

(
x ◦ ϕ ◦ t

)∥∥∥∥ ,

so that x ◦ t and x ◦ϕ ◦ t are parametrized by arc length. Since F divides G±
x , any zero 

(
t, ϕ(t)

)
of F is also a zero of Kx and 

T ±
x , implying that κx = κx ◦ ϕ and τx = ±τx ◦ ϕ . Then, by repeatedly applying Lemma 4,

κx◦t = κx ◦ t = κx◦ϕ ◦ t = κx◦ϕ◦t, τx◦t = τx ◦ t = ±τx◦ϕ ◦ t = ±τx◦ϕ◦t . (12)

The Fundamental Theorem of Space Curves (Do Carmo, 1976, p. 19) then implies that x ◦ t and x ◦ ϕ ◦ t coincide on s(I) up 
to an isometry f (x) = Q x + b with det( Q ) = ±1. Therefore C and f (C) have infinitely many points in common. Since C
and f (C) are irreducible algebraic curves, it follows that C = f (C) and therefore f is a symmetry of C . �

Note that the polynomial G±
x cannot be identically 0. Indeed, G±

x is identically 0 if and only if Kx and T ±
x are both 

identically 0, which happens precisely when κx and τx are both constant. If κx = 0 then C is a line, if τx = 0 and κx
is a nonzero constant then C is a circle, and if κx, τx are both constant but nonzero then C is a circular helix, which is 
non-algebraic. All of these cases are excluded by hypothesis.
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3.2. Finding the Möbius-like factors F of G±
x

The criterion in Theorem 5 requires to check if a bivariate polynomial G = G±
x has real factors of the form F (t, s) =

(ct + d)s − (at + b), with ad − bc �= 0. However, a, b, c, d need not be rational numbers, so that we need to factor over 
the algebraic or real numbers. This problem has been studied by several authors (Cheeze, 2004; Cheeze and Galligo, 2006;
Corless et al., 2002; Galligo and Rupprecht, 2002). However, since in our case we are looking for factors of a specific form, 
we develop an ad hoc method to check the condition.

Let G be the curve in the (t, s)-plane defined by G(t, s). Let t0 be such that the vertical line L at t = t0 does not contain 
any zero of G where the partial derivative Gs := ∂G

∂s vanishes; see Fig. 1. These are the points t0 for which the discriminant 
of g(s) := G(t0, s) does not vanish, which is up to a factor equal to the Sylvester resultant Ress(G, Gs) and has degree at 
most (2ms − 1)mt in t0, with (mt , ms) the bidegree of G . Therefore one can always find an integer abscissa t0 with this 
property by checking for at most (2ms − 1)mt + 1 points t0 whether the gcd of g(s) and Gs(t0, s) is trivial.

If G has a Möbius-like factor F as in (10), then the zeroset of F intersects L in a single point p0 = (t0, ξ) satisfying

(ct0 + d)ξ − (at0 + b) = 0. (13)

Since Gs(p0) �= 0, the equation F (t, s) = 0 implicitly defines a function s = s(t) in a neighborhood of p0. Moreover, by 
differentiating the identity F

(
t, s(t)

) = 0 once and twice with respect to t , and evaluating at p0, we find the relations

−a + ds′
0 + c · (ξ + t0s′

0) = 0, (14)

ds′′
0 + c · (2s′

0 + t0s′′
0) = 0, (15)

where ξ = s(t0), s′
0 := s′(t0), and s′′

0 := s′′(t0). In order to find expressions for s′
0, s′′

0, we now use that the function s(t) is 
also implicitly defined by G(t, s) = 0, because F is a factor of G and Gs(p0) �= 0. Differentiating once and twice the identity 
G
(
t, s(t)

) = 0 with respect to t gives

s′ = − Gt(t, s)

Gs(t, s)
, s′′ = − Gtt(t, s) + 2Gts(t, s)s′ + Gss(t, s)

(
s′)2

Gs(t, s)
. (16)

Evaluating these expressions at p0 yields expressions s′
0 = s′

0(ξ) and s′′
0 = s′′

0(ξ).
Now we distinguish the cases d �= 0 and d = 0. In the first case, we may assume d = 1 by dividing all coefficients in the 

Möbius transformation by d. In that case 2s′
0 + t0s′′

0 = 2�/(ct0 + 1)3 �= 0 and (13)–(15) yield rational expressions

c1(ξ) := −s′′
0

2s′
0 + t0s′′

0
, a1(ξ) := s′

0 + c1(ξ)(ξ + t0s′
0), b1(ξ) := −a1(ξ)t0 + ξ + c1(ξ)t0ξ. (17)

The polynomial F is a factor of G if and only if the resultant Ress(F , G) is identically 0. Substituting a1(ξ), b1(ξ), c1(ξ), and 
d = 1 into this resultant yields a polynomial P1(t), whose coefficients are rational functions of ξ . Let R1(ξ) be the gcd of 
the numerators of these coefficients and of g(ξ). The real roots ξ of R1(ξ) for which a1(ξ), b1(ξ), c1(ξ) are well defined and 
�1(ξ) := a1(ξ) − b1(ξ)c1(ξ) �= 0 correspond to the Möbius-like factors F of G as in (10) with d = 1.

On the other hand, when d = 0 we may assume c = 1, and (13)–(15) yield rational expressions

a0(ξ) := ξ + t0s′
0, b0(ξ) := −a0(ξ)t0 + t0ξ. (18)

Substituting a0(ξ), b0(ξ), c = 1, and d = 0 into the resultant Ress(F , G) yields a polynomial P0(t), whose coefficients are 
rational functions of ξ . Let R0(ξ) be the gcd of the numerators of these coefficients and g(ξ). The real roots ξ of R0(ξ) for 
which a0(ξ) and b0(ξ) are well defined and �0(ξ) := −b0(ξ) is nonzero correspond to the Möbius-like factors F of G as in 
(10) with d = 0. We obtain the following theorem.

Theorem 6. The polynomial G has a real Möbius-like factor F as in (10) with d �= 0 (resp. d = 0) if and only if R1(ξ) (resp. R0(ξ)) has 
a real root. Furthermore, every such real root provides a factor of this form.

Note that the cases d = 0 and d �= 0 can be computed in parallel.

Example 1. Consider the bivariate polynomial

G(t, s) = 3s4t4 − 6s4t3 + 3s4t2 − 6s2t4 − s2t2 + 2s2t − s2 + 2t2.

The vertical line L := {t = t0 := 2} does not intersect the zeroset of G in a point where Gs vanishes, since the discriminant 
of g(ξ) := G(t0, ξ) = 12ξ4 − 97ξ2 + 8 is nonzero (see Fig. 1). Evaluating (16) at p0 = (2, ξ) yields
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s′
0 = −18ξ4 − 97ξ2 + 4

ξ(24ξ2 − 97)
,

s′′
0 = 16 416ξ10 − 206 316ξ8 + 879 669ξ6 − 1 387 682ξ4 + 55 302ξ2 + 1552

ξ3(24ξ2 − 97)3
.

When d �= 0, we may assume d = 1 and Eqs. (17) yield

c1(ξ) = −1

2

16 416ξ10 − 206 316ξ8 + 879 669ξ6 − 1 387 682ξ4 + 55 302ξ2 + 1552

6048ξ10 − 66 636ξ8 + 25 6371ξ6 − 456 385ξ4 + 17 666ξ2 + 1552
,

a1(ξ) = −1

2

ξ(72ξ8 + 2019ξ6 − 21 192ξ4 + 40 138ξ2 − 4656)

504ξ8 − 5511ξ6 + 20 905ξ4 − 36 290ξ2 − 1552
,

b1(ξ) = − (9504ξ10 − 163 836ξ8 + 879 621ξ6 − 1 434 145ξ4 + 133 646ξ2 − 4656)ξ

(504ξ8 − 5511ξ6 + 20 905ξ4 − 36 290ξ2 − 1552)(12ξ2 − 1)
.

Substituting these expressions into the resultant Ress(F , G) and taking the gcd of the numerators of its coefficients and g
yields a polynomial R1(ξ) = ξ2 − 8. We find F1(t, s) = −st + √

2t + s for ξ = √
8 and F2(t, s) = −st − √

2t + s for ξ = −√
8

as factors of G . In the case d = 0, we may assume c = 1 and we get

a0(ξ) = − (ξ2 − 8)(12ξ2 − 1)

ξ(24ξ2 − 97)
, b0(ξ) = 4

18ξ4 − 97ξ2 + 4

ξ(24ξ2 − 97)
.

Here R0(ξ) = 12ξ2 − 1 and we obtain F3(t, s) = st − 1
3

√
3 for ξ = 1/

√
12 and F4(t, s) = st + 1

3

√
3 for ξ = −1/

√
12. The 

entire computation takes a fraction of a second when implemented in Sage on a modern laptop. For more details we refer 
to the worksheet accompanying this paper (Muntingh, personal website).

Algorithm Symm±.
Require: A proper parametrization x of a space curve C, not a line or a circle.
Ensure: The number of symmetries f (x) = Q x + b, with det( Q ) = ±1, of C.

1: Find the bivariate polynomials K , T ± , and G± from (7) and (8).
2: Find the resultant Ress(F , G±), with F as in (10).
3: Let t0 be such that the discriminant of g±(ξ) := G±(t0, ξ) does not vanish.
4: Find the gcd R1(ξ) of g± and the numerators of the coefficients of the polynomial P1(t) obtained by substituting d = 1 and (17) into Ress(F , G±).
5: Find the real roots of R1(ξ) for which (9) is well defined, each defining a Möbius transformation by substituting (17) and d = 1 in (3).
6: Let n1 be the number of these Möbius transformations satisfying (11).
7: Find the gcd R0(ξ) of g± and the numerators of the coefficients of the polynomial P0(t) obtained by substituting c = 1, d = 0, (18) into Ress(F , G±).
8: Find the real roots of R0(ξ) for which (9) is well defined, each defining a Möbius transformation by substituting (18), c = 1 and d = 0 in (3).
9: Let n0 be the number of these Möbius transformations satisfying (11).

10: Return “The curve has n0 + n1 symmetries with det( Q ) = ±1”.

3.3. The complete algorithm

Let x : R ��� C as in (1) be a parametric curve of degree m. Distinguishing the cases d = 0, 1, each tentative Möbius 
transformation can be written as

ϕξ (t) = ad(ξ)t + bd(ξ)

cd(ξ)t + d
,

with ξ a root of Rd and ad, bd, cd as in (17), (18). Condition (11) can be checked as follows. Squaring and clearing denomi-
nators yields an equivalent polynomial condition

Wξ (t) = wn(ξ)tn + wn−1(ξ)tn−1 + · · · + w0(ξ) ≡ 0 (19)

of degree n ≤ 24m − 4. By Theorem 5, a root ξ of Rd corresponds to a symmetry of C precisely when Wξ (t) vanishes 
identically. In other words, every root ξ of

gcd(Rd, w0, . . . , wn) (20)

defines a Möbius transformation ϕξ corresponding to a symmetry fξ := x ◦ ϕξ ◦ x−1 as in Theorem 2. We thus arrive at 
Algorithm Symm± for determining the number of symmetries of the curve C .
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4. Determining the symmetries

Algorithm Symm± detects whether the parametric curve x from (1) has nontrivial symmetries. In the affirmative case we 
would like to determine these symmetries. By Theorem 2, every such symmetry corresponds to a Möbius transformation 
ϕ = (at + b)/(ct + d), which corresponds to a Möbius-like factor F of G computed by Algorithm Symm±. In this section we 
shall see how the symmetry f (x) = Q x + b can be computed from ϕ .

The commutative diagram in Theorem 2 describes the identity

Q x(t) + b = x
(
ϕ(t)

)
. (21)

Let us distinguish the cases d �= 0 and d = 0. In the latter case, (21) becomes

Q x(t) + b = x
(
ϕ(t)

) = x
(
ã/t + b̃

)
, ã := b/c, b̃ := a/c.

Applying the change of variables t �−→ 1/t and writing x̃(t) := x(1/t), we obtain

Q x(t) + b = x̃
(
ãt + b̃

)
. (22)

Without loss of generality, we assume that x(t) (respectively x̃(t)), and therefore any of its derivatives is well defined at 
t = b̃ (respectively t = 0), and that x′(0), x′′(0) are well defined, nonzero, and not parallel. The latter statement is equivalent 
to requiring that the curvature κx(t) at t = 0 be well defined and distinct from 0. This can always be achieved by applying 
a change of parameter of the type t �−→ t + α. Observe that ϕ(t) can be determined before applying this change, because 
afterwards the new Möbius transformation is just ϕ(t + α).

Evaluating (22) at t = 0 yields

Q x(0) + b = x̃(b̃), (23)

while differentiating once and twice and evaluating at t = 0 yield

Q x′(0) = ã · x̃′
(b̃), Q x′′(0) = ã2 · x̃′′

(b̃). (24)

Using (6) and that Q is orthogonal, taking the cross product in (24) yields

Q
(
x′(0) × x′′(0)

) = det( Q ) · ã3 · x̃′
(b̃) × x̃′′

(b̃). (25)

Multiplying Q by the matrix B := [x′(0), x′′(0), x′(0) × x′′(0)] therefore gives

C := [
ã · x̃′

(b̃), ã2 · x̃′′
(b̃), det( Q ) · ã3 · x̃′

(b̃) × x̃′′
(b̃)

]
and Q = C B−1. One sets det( Q ) = 1 to find the orientation-preserving symmetries, and det( Q ) = −1 to find the 
orientation-reversing symmetries. One finds b from (23).

Next we address the case d �= 0. After dividing the coefficients of ϕ by d, we may assume d = 1. As before, we assume 
that x(t) is well defined at t = 0, and we again assume that the curvature κx(0) is well defined and nonzero. Differentiating 
(21) once and twice,

Q x′(t) = x′(ϕ(t)
) · ϕ′(t) = x′

(
at + b

ct + 1

)
�

(ct + 1)2
, (26)

Q x′′(t) = x′′(ϕ(t)
) (

ϕ′(t)
)2 + x′(ϕ(t)

)
ϕ′′(t)

= x′′
(

at + b

ct + 1

)
�2

(ct + 1)4
− 2x′

(
at + b

ct + 1

)
c�

(ct + 1)3
. (27)

Evaluating (26) and (27) at t = 0 yields

Q x′(0) = x′(b) · �, Q x′′(0) = x′′(b) · �2 − 2x′(b) · c�. (28)

Using (6) and that Q is orthogonal, taking the cross product in (28) yields

Q
(
x′(0) × x′′(0)

) = det( Q ) · �3 · x′(b) × x′′(b). (29)

Since ϕ is known, the matrix Q can again be determined from its action on x′(0), x′′(0), and x′(0) × x′′(0), which is given 
by Eqs. (28) and (29). One finds b by evaluating (21) at t = 0.

Once Q and b are found, one can compute the set of fixed points of f (x) = Q x + b to determine the elements of the 
symmetry, i.e., the symmetry center, axis, or plane.
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Fig. 2. Left: The crunode curve from Example 2, together with the fixed points of the half-turn and mirror symmetries. Right: The daisy of degree 8 from 
Example 3, together with the fixed points of the central inversion, half-turn, and mirror symmetries.

Example 2. Let C ⊂R
3 be the crunode space curve parametrized by

x : t �−→
(

t

t4 + 1
,

t2

t4 + 1
,

t3

t4 + 1

)
.

Applying Algorithm Symm+ we get G+(t, s) = (t − s)(t + s). The first factor corresponds to the identity map ϕ1(t) = t and 
the trivial symmetry f1(x) = x. The second factor corresponds to the Möbius transformation ϕ2(t) = −t . Clearly ϕ2 satisfies 
Condition (11), so that Theorem 5 implies that C has a nontrivial, direct symmetry f2(x) = Q 2x + b2. With a = −1, b = 0, 
c = 0, d = 1, and using that det( Q ) = 1,

B =
[1 0 0

0 2 0
0 0 2

]
, C =

[−1 0 0
0 2 0
0 0 −2

]
, Q 2 := C B−1 =

[−1 0 0
0 1 0
0 0 −1

]
.

Evaluating (21) at t = 0 gives b2 = (I − Q 2)x(0) = 0, so that C is invariant under f2(x) = Q 2x, which is a half-turn about 
the y-axis. Since there are no other factors in G+ , there are no direct symmetries corresponding to a Möbius transformation 
with d = 0.

As for the opposite symmetries, applying Algorithm Symm− yields G−(t, s) = (st −1)(st +1), whose factors correspond to 
the Möbius transformations ϕ3(t) = 1/t and ϕ4(t) = −1/t . A direct computation shows that ϕ3 and ϕ4 satisfy Condition (11), 
and that they correspond to symmetries f3(x) = Q 3x and f4(x) = Q 4x, with

Q 3 =
[ 0 0 1

0 1 0
1 0 0

]
, Q 4 =

[ 0 0 −1
0 1 0

−1 0 0

]
.

The sets of fixed points of these isometries are the planes �3 : z − x = 0 and �4 : z + x = 0, which intersect in the symmetry 
axis of the half-turn; see Fig. 2.

Example 3. Consider the family of daisies of increasing degree m = 4 j + 4, which are given parametrically by

x(t) =
⎛
⎝u

j∑
i=0

(−1)i
(

2 j

2i

)
u2 j−2i v2i, v

j∑
i=0

(−1)i
(

2 j

2i

)
u2 j−2i v2i,

1 − t4 j+4

1 + t4 j+4

⎞
⎠ , (30)

with

u = 1 − t2

1 + t2
, v = 2t

1 + t2
, j = 0,1, . . .

Applying Algorithm Symm+ for the case j = 1, we get G+(t, s) = (t − s)(st − 1). The first factor again corresponds to the 
trivial symmetry f1(x) = x. The second factor corresponds to the Möbius transformation ϕ2(t) = 1/t . Clearly ϕ2 satisfies 
Condition (11), so that Theorem 5 implies that C has a nontrivial, direct symmetry f2(x) = Q 2x + b2. With a = 0, b = 1, 
c = 1, d = 0, and using that det( Q ) = 1,

B =
[0 −20 0

2 0 0
0 0 40

]
, C =

[0 20 0
2 0 0
0 0 −40

]
, Q 2 := C B−1 =

[−1 0 0
0 1 0
0 0 −1

]
.

Eq. (23) gives b2 = x̃(b̃) − Q 2x(0) = 0, so that C is invariant under f2(x) = Q 2x, which is a half-turn about the y-axis.
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Similarly applying Algorithm Symm−, we get G−(t, s) = (s + t)(st + 1), whose factors correspond to the Möbius trans-
formations ϕ3(t) = −t and ϕ4(t) = −1/t . A direct computation shows that ϕ3 and ϕ4 satisfy Condition (11), and that they 
correspond to symmetries

f3(x) =
[1 0 0

0 −1 0
0 0 1

]
x, f4(x) =

[−1 0 0
0 −1 0
0 0 −1

]
x,

which are a reflection in the plane �3 : y = 0 and a central inversion about the point (0, 0, 0), respectively; see Fig. 2.

5. Performance

5.1. Complexity

Let us determine the arithmetic complexity of Algorithm Symm±, i.e., the number of integer operations needed. In addi-
tion to using the standard Big O notation O for the space- and time-complexity analysis, we use the Soft O notation Õ to 
ignore any logarithmic factors in the time-complexity analysis. The bitsize τ of an integer k is defined as τ = �log2 k� + 1; 
the bitsize of a parametrization x (taken with integer coefficients) is the maximum bitsize of the coefficients of the numer-
ators and denominators of the components. The following theorem presents the arithmetic complexity of Algorithm Symm±
when applied to parametric curves of varying degree m and of fixed bitsize.

Theorem 7. For a parametric curve x as in (1) with degree m, Algorithm Symm± finishes in Õ(m5) integer operations.

Proof. Step 1. Using the Schönhage–Strassen algorithm, two polynomials of degree m with integer coefficients can be mul-
tiplied in Õ(m) operations (Von zur Gathen and Gerhard, 2003, Table 8.7). Therefore the computation of κ2 and τ can be 
carried out in Õ(m) operations as well, resulting in rational functions whose numerators and denominators have degree 
O(m). As a consequence, K and T = T ± can also be computed in Õ(m) operations, and have degrees O(m) in t and s. The 
bivariate gcd G = G± can be computed in Õ(m5) operations using the ‘half-gcd algorithm’ (Reischert, 1997), and has degree 
O(m) in both variables. Step 1 therefore takes at most Õ(m5) operations.

Step 2. Since F (t, s) = (ct + d)s − (at + b), the resultant Ress(F , G) is the polynomial in t obtained by replacing s by 
(at + b)/(ct + d) and clearing denominators. Writing G(t, s) = ∑m0

k=0 Gk(t)sk as a sum of m0 + 1 = O(m) terms, with each 
Gk(t) polynomial of degree O(m), gives

Ress(F , G) =
m0∑

k=0

Gk(t)(at + b)k(ct + 1)m0−k, (31)

which is a polynomial of degree O(m) in a, b, c, and t .
Step 3. For any integer t0, the two polynomials G(t0, s), Gs(t0, s) have degree O(m), so that their (univariate) gcd can 

be computed in Õ(m) operations (Von zur Gathen and Gerhard, 2003, Corollary 11.6). Since we need to consider at most 
O(m2) values of t0, Step 3 takes Õ(m3) operations.

Step 4. For any integer t0 and unknown ξ , evaluating (16) at (t0, ξ) takes O(m2) operations, yielding rational functions 
s′

0(ξ) and s′′
0(ξ) whose numerator and denominator have degree O(m). Substituting these rational functions into (17) takes 

Õ(m) operations and yields rational functions

a(ξ) = a1(ξ)

a2(ξ)
, b(ξ) = b1(ξ)

b2(ξ)
, c(ξ) = c1(ξ)

c2(ξ)
, (32)

whose numerator and denominator have degree O(m). Substituting these rational functions into (31) followed by binomial 
expansion, i.e., computing

k∑
n=0

(
k

n

)
an

1bm0−k+n
2 bk−n

1 am0−n
2 tn

am0
2 bm0

2

,

m0−k∑
n=0

(
m0 − k

n

)
cn

1cm0−n
2 tn

cm0
2

, (33)

involves raising polynomials of degree O(m) to the power O(m), which can be computed in Õ(m2) operations using 
repeated squaring, i.e., O(logm) multiplications of polynomials of degree O(m2). All powers al

i, b
l
i, c

l
i , with i = 1, 2 and 

l = 0, . . . , m0, in the above expression can therefore be computed in Õ(m3) operations, resulting in polynomials of degree 
O(m2) in ξ . All remaining products can be computed in Õ(m3) operations, resulting in polynomials of degree O(m2).

Now the rational functions in (33) are determined, the product of their numerators can be carried out in Õ(m) ring 
operations, the ring now being the polynomials in ξ . Since these polynomials have degree O(m2), the product of Gk(t)
and the rational functions in (33) take Õ(m2) integer operations, and yield the terms in the sum (31). After factoring out 
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Table 1
Average CPU time (seconds) of the algorithm in Alcázar et al. (2014b) (told) and Algo-
rithm Symm± (tnew) for parametric curves given in Alcázar et al. (2014b).

Curve Degree told tnew

twisted cubic 3 0.26 0.15
cusp 4 0.52 0.16
half-turn 1 4 2.22 0.14
crunode 4 39.60 0.42
inversion 1 7 6.80 0.19
space rose 8 57.60 0.25
inversion 2 11 75.60 0.22

the common denominator (a2b2c2)
m0 , this sum involves O(m) polynomials of degree O(m) in t , which requires O(m2)

additions of polynomials of degree O(m2) in ξ . This involves O(m4) integer operations and yields a polynomial of degree 
O(m) in t , whose coefficients Pi(ξ) are polynomials of degree O(m2). The gcd of g(ξ) with the Pi(ξ) can be computed 
in Õ(m3) operations, resulting in a polynomial R1(ξ) of degree O(m), since g(ξ) has degree O(m). Step 4 therefore takes 
O(m4) operations.

Step 5. One determines whether R1(ξ) has real roots using root isolation, which takes Õ(m) operations using Pan’s 
algorithm for root isolation (Pan, 2002; Mehlhorn et al., 2015).

Step 6. Writing x = (x, y, z) = (x1/x2, y1/y2, z1/z2), we find that

‖x′‖2 = (x2x′
1 − x1x′

2)
2 y4

2z4
2 + (y2 y′

1 − y1 y′
2)

2x4
2z4

2 + (z2z′
1 − z1z′

2)
2x4

2 y4
2

x4
2 y4

2z4
2

can be computed in O(m) operations. From Step 3 we already know the expansions of the powers (at + b)l, (ct + d)l and 
their products, thus determining x ◦ ϕ . Taking the derivative of x ◦ ϕ and then squaring involves multiplying and adding 
polynomials of degree O(m) in t and O(m2) in ξ , which requires Õ(m2) operations. Similarly we determine [(y ◦ ϕ)′]2 and 
[(z ◦ ϕ)′]2 in Õ(m2) operations. The resulting rational functions have numerator and denominator of degree O(m) in t and 
O(m2) in ξ , and can be added in Õ(m2) operations. Clearing denominators again takes Õ(m2) operations and results in 
the polynomial Wξ (t) from (19) of degree O(m) in t and of degree O(m2) in ξ . To compute (20), we need to compute 
O(m) times the univariate gcd of polynomials of degree O(m) and degree O(m2), which requires Õ(m3) operations. Step 6 
therefore requires Õ(m3) operations.

Steps 7–10. These steps have the same complexity as Steps 4–6. �
Note that resorting to probabilistic algorithms, the bivariate gcd G in Step 1 can be computed in Õ(m2) operations 

using the ‘small primes modular gcd algorithm’ and fast polynomial arithmetic (Von zur Gathen and Gerhard, 2003, Corol-
lary 11.9.(i)). Thus a probabilistic version of Algorithm Symm± uses O(m4) operations.

5.2. Experimentation

Algorithm Symm± was implemented in the computer algebra system Sage (Stein et al., 2013), using Singular (Decker 
et al., 2011) as a back-end, and was tested on a Dell XPS 15 laptop, with 2.4 GHz i5-2430M processor and 6 GB RAM. 
Additional technical details are provided in the Sage worksheet, which can be downloaded from the third author’s website 
(Muntingh, personal website) and can be tried out online by visiting SageMathCloud (Alcázar et al., 2015).

We present tables with timings corresponding to different groups of examples. Table 1 corresponds to the set of examples 
in Alcázar et al. (2014b), making it possible to compare the timing tnew of Algorithm Symm± to the timing told of the 
algorithm in Alcázar et al. (2014b). It is clear from the table that the algorithm introduced in this paper is considerably 
faster for each curve.

To test Algorithm Symm± for symmetric curves with higher degree, Table 2 lists the timings for a family of daisies of 
increasing degree m = 4 j + 4, parametrically given by (30). The algorithm quickly finds the symmetries of these symmetric 
curves, also for high degree.

Table 3 lists average timings for random dense rational parametrizations with various degrees m and coefficients with 
bitsizes at most τ . To study the effect of an additional nontrivial symmetry, we consider random parametrizations x =
(x1, x2, x3) with antisymmetric numerators and symmetric denominators of the same degree m and with bitsize at most τ , 
i.e., of the form

xi(t) = ci,0 + ci,1t + · · · − ci,1tm−1 − ci,0tm

di,0 + di,1t + · · · + di,1tm−1 + di,0tm
, i = 1,2,3,

with �log2 |ci, j |�, �log2 |di, j|� ≤ τ − 1. Since x(1/t) = −x(t), such parametric curves have a central inversion about x(1) = 0. 
Table 4 lists average timings for these curves with various degrees m and bitsizes at most τ .
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Table 2
Average CPU time tnew (seconds) of Algorithm Symm± for daisies of various degrees.

degree 8 12 16 20 24
tnew 0.66 0.92 1.47 2.30 4.38

degree 28 32 36 40 44
tnew 5.33 6.53 8.77 15.88 18.11

Table 3
CPU times tnew (seconds) for random dense rational parametrizations of various degrees m and coefficients with bitsize bounded by τ .

tnew τ = 4 τ = 8 τ = 16 τ = 32 τ = 64 τ = 128 τ = 256

m = 4 0.61 0.62 0.66 0.73 0.83 1.14 1.88
m = 6 1.65 1.76 1.72 1.89 2.13 2.80 4.55
m = 8 3.50 3.54 3.55 3.84 4.27 5.36 8.59
m = 10 7.53 7.47 7.30 7.98 8.42 9.76 15.35
m = 12 14.46 14.35 14.30 14.84 15.98 18.35 25.87
m = 14 22.31 23.24 22.39 22.71 24.93 27.35 38.36
m = 16 34.86 35.60 35.38 35.27 38.14 41.91 55.74
m = 18 53.03 52.78 52.78 51.16 54.49 60.44 78.27

Table 4
CPU times tnew (seconds) for random dense rational parametrizations with a central inversion of various degrees m and coefficients with bitsize bounded 
by τ .

tnew τ = 4 τ = 8 τ = 16 τ = 32 τ = 64 τ = 128 τ = 256

m = 4 0.85 0.89 0.91 0.97 1.12 1.51 2.39
m = 6 1.89 2.02 1.99 2.21 2.57 3.36 5.40
m = 8 4.08 4.24 4.52 5.16 5.45 7.42 10.41
m = 10 8.29 8.80 8.88 9.30 10.74 12.64 19.87
m = 12 17.47 18.20 17.96 17.12 18.49 25.19 34.11
m = 14 28.54 28.72 29.55 28.54 31.87 34.71 44.19
m = 16 41.20 41.53 42.02 43.07 45.55 51.36 65.58
m = 18 58.42 58.91 59.54 61.08 64.31 71.89 94.33

For very large coefficient bitsizes (>256, i.e., coefficients with more than 77 digits) and high degrees (>20) the ma-
chine runs out of memory. We have therefore analyzed separately the regime with high degree and the regime with large 
coefficient bitsize.

Fig. 3 presents log-log plots of the CPU times against the degree (left) and against the coefficient bitsizes (right). The 
(eventually) linear nature of these data suggests the existence of an underlying power law. Least squares approximation 
yields that, as a function of the degree m, the average CPU time tnew satisfies

tnew ∼ αmβ, α ≈ 6.7 · 10−3, β ≈ 3.2 (34)

in case of random dense rational parametrizations with coefficient bitsize at most τ = 4,

tnew ∼ αmβ, α ≈ 4.7 · 10−3, β ≈ 3.3, (35)

in case of random dense rational parametrizations with a central inversion and with coefficient bitsize at most τ = 4, and

tnew ∼ αmβ, α ≈ 7.9 · 10−5, β ≈ 3.2 (36)

for the daisies. Note that these timings are close to the Õ(m3) operations needed by Brown’s modular gcd algorithm 
(Brown, 1971), which is used in the implementation in Sage for bivariate gcd computations. The reason is that in the 
analyzed examples almost all time is spent computing the bivariate gcd in Step 1, which then typically has low degree, so 
that the remaining calculations take relatively little time.
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Fig. 3. Left: The average CPU time tnew (seconds) versus the degree m for daisies and random dense rational parametrizations with bitsize τ = 4 and with 
only the trivial symmetry (random) and with an additional central inversion (central), fitted by the power laws (34)–(36) (dotted). Right: The average CPU 
time tnew (seconds) versus the coefficient bitsizes for degree m = 4. The symbols indicate the average CPU times, and the error bars show the interval of 
CPU times.

5.3. An observation on plane curves

If C is planar, then τ and T ± are identically zero, so that G± = K . Although Algorithm Symm± is still valid for such 
curves, we have observed a very poor performance in this case. The reason is that, for non-planar curves, the degree of G±
is typically small compared to the degrees of K and T ± . However, for plane curves the degree of G± is equal to the degree 
of K , and then the computation takes a very long time. Therefore, for plane curves, the algorithms in Alcázar et al. (2014a, 
2014b) are preferable.

5.4. Comparison to previous method

Table 1 indicates a dramatic improvement of the CPU time of Symm± over the method described in Alcázar et al. (2014b). 
In that paper the symmetry f (x) = Q x + b and Möbius transformation ϕ(t) = (at + b)/(ct + d) are first expressed polyno-
mially in terms of some (yet unknown) algebraic number β . By far the most CPU time is spent after that, on substituting 
a(β), b(β), c(β), Q (β) and b(β) into the relation

f
(
x(t)

) − x
(
ϕ(t)

) ≡ 0.

Since the degrees can get very high in this relation, this substitution can take a long time. Then the algebraic numbers β , 
and therefore the symmetry and Möbius transformation, are found by requiring that this relation holds identically.

Furthermore, the method described in Alcázar et al. (2014b) requires that the parametrization x satisfies rather strict 
conditions. Quite often, a reparametrization is needed in order to achieve these conditions, which can result in destroying 
sparseness and increasing the coefficient size. This, in turn, has an impact on the time taken by the substitution step.

By contrast, in Algorithm Symm± we use additional information provided by the curvature and torsion of the curve to 
compute G±

x = gcd(Kx, T ±
x ), whose degree is generally low. The Möbius transformations are then computed in just one step 

as factors of G±
x . As a consequence, no substitution step is needed. Moreover, unless x is not proper, no reparametrization 

is required.

6. Conclusion

We have presented a new, deterministic, and efficient method for detecting whether a rational space curve is symmetric. 
The method combines ideas in Alcázar (2014), Alcázar et al. (2014b) with the use of the curvature and torsion as differential 
invariants of space curves. The complexity analysis and experiments show a good theoretical and practical performance, 
clearly beating the performance obtained in Alcázar et al. (2014b). The algorithm also improves in scope on the algorithm of 
Alcázar et al. (2014b), which can only be applied to find the symmetries for Pythagorean-hodograph curves and involutions 
of other curves. Finally Algorithm Symm± is simpler than the algorithm in Alcázar et al. (2014b), which imposes certain 
conditions on the parametrization that often lead to a reparametrized, non-sparse curve whose coefficients have a large 
bitsize. By contrast, the algorithm in this paper has fewer requirements and is efficient even with high degrees.
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Note that Algorithm Symm± is based on two conditions in Theorem 5, one involving the curvature and torsion of the 
curve and the other one involving the arc length. One might wonder whether these two conditions really are independent 
for the case of rational curves. We included both conditions because we did not succeed in proving that they are dependent, 
but neither did we find an example of a tentative Möbius transformation not satisfying Condition (11). The relation between 
the conditions is therefore undetermined, and we pose the question here as an open problem. In any case, in the complexity 
analysis and experiments we observed that the cost of checking (11) is small compared to the rest of the algorithm.

The implementation in Sage can be improved in several ways. First, several of the methods named in the complexity 
section are not included in Sage, which carries out the corresponding tasks by using other algorithms. Furthermore, almost 
all space curves are asymmetric, and these cases can be identified faster. In order to do this, one can first remove all factors 
s − t from Kx and T ±

x , and then check whether the remaining polynomials are coprime using modular arithmetic. In the 
affirmative case, the conclusion that the curve has no nontrivial symmetries could be obtained at very little computational 
cost.

As a final remark, as this paper sets forth a method for computing exact symmetries of parametric curves with rational 
coefficients, one could ask whether a similar development could yield a method for computing approximate symmetries of 
parametric curves with floating point coefficients. This is an open question that we would like to address in the future.
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