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In this study, we propose a robust algorithm for reconstructing free-form space curves 
in space using a Non-Uniform Rational B-Spline (NURBS)-snake model. Two perspective 
images of the required free-form curve are used as the input and a nonlinear optimization 
process is used to fit a NURBS-snake on the projected data in these images. Control points 
and weights are treated as decision variables in the optimization process. The Levenberg–
Marquardt optimization algorithm is used to optimize the parameters of the NURBS-
snake, where the initial solution is obtained using a two-step procedure. This makes the 
convergence faster and it stabilizes the optimization procedure. The curve reconstruction 
problem is reduced to a problem that comprises stereo reconstruction of the control points 
and computation of the corresponding weights. Several experiments were conducted to 
evaluate the performance of the proposed algorithm and comparisons were made with 
other existing approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The three-dimensional (3D) reconstruction of a space curve from its arbitrary perspective images is a core problem in 
computer vision. Many algorithms have been proposed for the 3D reconstruction of point features, where the scene is repre-
sented by a point cloud (Piegel, 1991; Flöry, 2009; Tomasi, 1992). However, model-based approaches that rely on the recon-
struction of basic shapes such as lines, circles, and ellipses are more effective for understanding a 3D scene (Hartley, 1994;
Piegel, 1991). The main reasons for using these primitive shapes are their availability and easy detection in images. The 
property of shape invariance under perspective projection makes the process of 3D reconstruction unambiguous for these 
primitive shapes. However, free-form curves and many complex objects cannot be represented easily using an analytical 
form, which makes the reconstruction of free-form curves and complex objects more difficult.

The Non-Uniform Rational B-Spline (NURBS) is a well-known mathematical technique, which addresses the problems of 
free-form shape representation (Farin, 1992; Piegel, 1991). NURBS has several properties that make it a suitable candidate 
for representing any shape or structure in two-dimensional (2D) and 3D geometry. With NURBS, the same representation 
can be used for 2D and 3D cases. Moreover, it can be determined completely by its control points in 2D and 3D cases. 
This implies that the problem of curve reconstruction in a 3D space may be treated as the reconstruction of a sparse set 
of points (i.e., control points). In Terzopoulos and Qin (1994), a new generalization of NURBS was proposed called dynamic 
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Table 1
Symbols and their meaning in the present study.

Roman
C Non-uniform rational B-spline curve in 3D space
u Independent variable of basis functions
B Normalized B-spline basis function
P Control points in 3D space
W Weight corresponding to the 3D control point
k Degree of B-spline basis function
N + 1 Total number of control points
R Rational B-spline basis function in 3D space
c Non-uniform rational B-spline curve in 2D space
p Control points in 2D space
w Weight corresponding to the 2D control point
r Rational B-spline basis function in 2D space
Eint Internal energy of planar NURBS curve c(u)
∂
∂u , ∂2

∂u2 , ∂3

∂u3 First, second, and third order partial derivatives with respect to parameter u
Eext External energy of planar NURBS curve c(u)

px , p y (x, y) coordinate of 2D control point
(x′, y′) Unorganized data point
n Total number of unorganized data points
t Degree of derivative
Q Residual function
d Unorganized data points
f Residual vector
J Jacobian matrix

m Number of iterations
�p Increment of parameter
− J (p)T Q Negative of gradient vector
cx

s , c y
s Value of 2D NURBS curve along x and y axes at each parameter value

px , p y Homogeneous vector of 2D control points along x and y axes
Dx , D y Diagonal matrices containing the values of 2D NURBS curve along x and y axes
M (N + 1) × (N + 1) symmetric and nonnegative matrix
b Binormal vector
T L , T R Left and right projection matrices
F RL Fundamental matrix

Greek symbols
ξ Knot
ζ Knot vector
α, β , γ , η Constant parameters
λ Damping factor
κ Curvature function
κmax Maximum curvature of 2D NURBS curve c(u)

ς Constant parameter

NURBS (D-NURBS). The D-NURBS model is governed by dynamic differential equations, where it evolves the control points 
and weights continuously in response to the applied force when integrated numerically over a time interval.

The problem of 3D reconstruction involves finding a curve in space, where its projection fits the given data in two images 
with the minimum error. To achieve this, we require a correspondence between the data in the left and right images, which 
is called stereo matching. An energy minimization-based spline ‘snake’ is quite useful for establishing this correspondence 
(Kass et al., 1988; Menet et al., 1990; Wang and Cohen, 1994). Basically, the shape of the snake is controlled by internal and 
external forces. An energy function defined by a linear combination of these forces is then minimized iteratively by taking 
a user-specified initial estimate (initial configuration). The internal energy describes the continuity of the required curve, 
which is determined in terms of its first and second order derivatives. The external energy is based on the positional error 
between two curves.

In previous studies, different algorithms related to the snake model were proposed that employed various strategies to 
facilitate the stabilization and faster convergence (Amini et al., 1990; Lam and Yan, 1994; Williams and Shah, 1992; Xu et al., 
1994) of the associated iterative energy minimization process. To overcome the limitations of the snake model, an improved 
version called B-snake was proposed in Flickner et al. (1994), Menet et al. (1990), Wang et al. (1996). In B-snake approaches, 
a parametric B-spline representation is used rather than the standard spline-based representation, which facilitates local 
control of the shape of the curve by regulating related control points.

A new version of B-snake called NURBS-snake was presented in Meegama and Rajapakse (2003). The NURBS-snake 
provides more flexibility than the B-snake model because the weight parameters can adapt to local curvature changes. 
Moreover, in Cai et al. (2011), a snake-based curve deformation model was proposed to reconstruct space curves, where the 
necessity of matching was relaxed. However, the order of the NURBS-snake, the weights, and the knot sequence is assumed 
to be fixed, although this limitation was relaxed in Xie et al. (2012), where a new method was proposed that employed 
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Table 2
Comparison with existing approaches in terms of objective and implementation details.

Approaches Objective Method Optimization 
Technique

Matching Results

Cai et al. (2011) 3D curve reconstruction NURBS-snake SDMa – Rectified
Meegama and Rajapakse (2003) Formulation of energy-

minimizing splines
Snake – – –

Menet et al. (1990) Implementation of snakes B-Snake – – –
Xiao and Li (2005) 3D curve reconstruction NURBS LMAb Epipolar constraints Rectified
Xie et al. (2012) 3D curve reconstruction NURBS HOAAIc – –
Proposed 3D curve reconstruction NURBS-snake LMA and QPPd Epipolar constraints Rectified/non-rectified

a Squared distance minimization.
b Levenberg–Marquardt algorithm.
c Hybrid optimization algorithm and an iterative scheme.
d Quadratic programming problem.

iterative optimization. A comparison of the proposed method with other relevant approaches in terms of the objectives and 
implementation details is shown in Table 2.

In this study, we use an optimization approach based on the NURBS-snake model to reconstruct free-form space curves 
from their stereo views. The proposed algorithm comprises the following major steps.

(1) An energy minimization-driven NURBS-snake is used to approximate the data points in both perspective views (stereo 
images).

(2) NURBS-snake fitting is used to initialize the parameters in both views.
(3) The Levenberg–Marquardt algorithm is used to optimize the parameters (control points).
(4) An epipolar constraint is used in the nondegenerate case (stereo matching).
(5) Stereo triangulation is used to recover the control points in space and to compute the weights.

In the proposed NURBS-snake model, the weight parameters control the flexibility of the curve at each control point. 
During the optimization process, the weight of each control point is refined according to the curvature of the relevant spline 
segment. This modification of weight parameters smooths the NURBS-snake rather than enforcing it by adding extra control 
points. To initialize the parameters during the optimization process, we use a method called NURBS-snake fitting, where a 
two-step process is used to fit the NURBS-snake points. The weights of the NURBS-snake are obtained by solving a quadratic 
programming problem in the first step and the control points are then obtained by solving a system of simultaneous linear 
equations in the second step. These control points and weights are used as the initial solution, which is refined later during 
the iterative process. This step makes the NURBS-snake converge faster and it improves the accuracy of 3D reconstruction.

2. Preliminaries and motivation

2.1. NURBS curves

The NURBS curves (Farin, 1992) are used to represent basic shapes as well as free-form shapes. They are generalizations 
of the B-spline and Bezier curves (Piegel, 1991). A rational B-spline curve C(u) : R3 → R is given as:

C(u) =
N+1∑
i=1

Pi Ri,k(u), (1)

where Pi represents the ith control point of the space curve C(u). The rational B-spline basis function is given as

Ri,k(u) = W i Bi,k(u)∑N+1
i=1 W i Bi,k(u)

, i = 1, · · · , N + 1, (2)

where W i is the weight that corresponds to the control point Pi and Bi,k(u) is the normalized B-spline basis function of 
degree k, which is defined recursively as follows:

Bi,1 =
{

1 if ξi ≤ u < ξi+1,

0 otherwise
(3)

and

Bi,k(u) = u − ξi

ξi+k − ξi
Bi,k−1(u) + ξi+k+1 − u

ξi+k+1 − ξi+1
Bi+1,k−1(u), (4)

where ξi denotes the knot that forms a knot sequence ζ = {ξ1, ξ2, . . . , ξN+k+1} with ξi ≤ ξi+1 and u denotes the indepen-
dent variable of the basis functions. In some cases, these curves are usually called NURBS when the knot sequence is not 
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restricted to being uniformly spaced. The NURBS curves are shape invariant under the perspective projections. This is the 
main motivation for using NURBS in the 3D reconstruction of free-form curves. Moreover, the NURBS can provide exact 
representations of all conic sections and all integral B-splines. This makes the NURBS more powerful and it can be used to 
assign a larger variety of shapes. The perspective transformation of the NURBS curve may be obtained based on the perspec-
tive transformation of the original control points after relevant changes in the corresponding weights, i.e., c(u) : R2 → R, 
which is defined as

c(u) =
N+1∑
i=1

piri,k(u), (5)

where pi is the ith control point (in 2D) for the rational B-spline curve, ri,k(u) is the basis function defined as:

ri,k(u) = wi Bi,k(u)∑N+1
i=1 wi Bi,k(u)

, i = 1, · · · , N + 1 (6)

where wi is the weight associated with pi in the planar NURBS curve (Eq. (5)).

2.2. NURBS-snake

Our main objective is to solve the problem stated as follows: given a set of unorganized data points in two image planes, 
compute the 3D NURBS curve for which the projections approximate the set of data points correctly. This problem may be 
formulated as a nonlinear optimization problem. To achieve this, we employ an energy minimization method based on the 
snake model (Kass et al., 1988). The internal energy of the 2D NURBS curve (Eq. (5)) is defined as:

Eint
(
c(u)

) =
[
α

∣∣∣∣∂c(u)

∂u

∣∣∣∣
2

+ β

∣∣∣∣∂2c(u)

∂u2

∣∣∣∣
2

+ γ

∣∣∣∣∂3c(u)

∂u3

∣∣∣∣
2]

, (7)

where α, β , and γ ≥ 0 are constants that need to be tuned before optimization. The local external energy of the 2D 
NURBS-snake can be defined as:

Eext
(
c(u)

) =
∑

j

[(
N+1∑
i=1

px
i ri,k(u j) − x′

j

)2

+
(

N+1∑
i=1

p y
i ri,k(u j) − y′

j

)2]
, (8)

where (x′
j, y

′
j) denotes the jth unorganized data point in the corresponding image plane. A base curve (Ma and Kruth, 

1995) is used to parameterize the unorganized data points. The base curve is usually created from a limited number of 
selected characteristic points from the data (including the two endpoints) and according to the local mapping property (Ma 
and Kruth, 1995). Each of the data points is allocated a location parameter by projecting or mapping all the points on this 
base curve. This parameterization technique is applicable to organized, unorganized, or randomly distributed points.

The total energy for the NURBS-snake is written as:

ETotal
(
c(u)

) =
∑

u

Eint
(
c(u)

) + η Eext
(
c(u)

)

=
∑

u

[
α

∣∣∣∣∂c(u)

∂u

∣∣∣∣
2

+ β

∣∣∣∣∂2c(u)

∂u2

∣∣∣∣
2

+ γ

∣∣∣∣∂3c(u)

∂u3

∣∣∣∣
2

+ η Eext
(
c(u)

)]

=
∑

j

[
α

(
N+1∑
i=1

∂

∂u j

(
piri,k(u j)

))2

+ β

(
N+1∑
i=1

∂2

∂u2
j

(
piri,k(u j)

))2

+ γ

(
N+1∑
i=1

∂3

∂u3
j

(
piri,k(u j)

))2

+ ηEext
(
c(u j)

)]

=
∑

j

[
α

(
N∑

i=1

p(1)
i

∂

∂u j

(
ri,k(u j)

))2

+ β

(
N−1∑
i=1

p(2)
i

∂2

∂u2
j

(
ri,k(u j)

))2

+ γ

(
N−2∑
i=1

p(3)
i

∂3

∂u3
j

(
ri,k(u j)

))2

+ ηEext
(
c(u j)

)]
, (9)

where η ≥ 0. The parameter u is discretized by the base curve (Ma and Kruth, 1995). The formulation of Eq. (9) is based on 
the discrete form of the energy functional, which is summed over all of the evaluated parameter values. The parameter p(t)

i
is described as (where t denotes the degree of derivative):
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p(t)
i =

{
pi, t = 0;

k−t
ξi+k−t−ξi

(pt−1
i+1 − pt−1

i ), t ≥ 0.
(10)

We assume that the order and knots of the NURBS curve are fixed, thus we only optimize the control points to reconstruct 
the 3D NURBS curve. However, the weights are not the subject of the optimization, but we can still modify the weights 
to obtain satisfactory results. To optimize the parameters, we use the Levenberg–Marquardt (LM) algorithm (Ranganathan, 
2004).

2.3. Levenberg–Marquardt (LM) algorithm

The LM algorithm (Gavin, 2013; Marquardt, 1963; Ranganathan, 2004) is an iterative optimization technique, which 
combines the steepest descent and Gauss–Newton methods.

Consider an optimization problem where we need to optimize f (p) as:

f (p) =
n∑

j=1

Q ′ 2
j (p), (11)

where Q ′ 2
j = Eint + Q 2

j and Q j is referred to as the residual

Q j = (c j − d j), (12)

where c j is the jth point of the planar NURBS curve and d j denotes the jth unorganized data point. Here, f is represented 
as a nonlinear function of the model parameter vector p = [p1, p2, . . . pN+1]. The objective function is minimized about p
to achieve the best approximation of the NURBS-snake on the projected data points. At the mth iteration, the increment 
�pm of parameter p is given as:

{
J
(

pm)T
J
(

pm) + λI
}
�pm = −

[
α

∣∣∣∣∂c(u)

∂u

∣∣∣∣
2

+ β

∣∣∣∣∂2c(u)

∂u2

∣∣∣∣
2

+ γ

∣∣∣∣∂3c(u)

∂u3

∣∣∣∣
2

+ J
(

pm)T
Q

]
, (13)

where J (p) is the Jacobian matrix defined as:

J (p) =
[

∂ Q j

∂ pi

]
, i = 1, · · · , N + 1, j = 1, · · · ,n. (14)

− J (pm)T Q is the gradient vector and λ is a constant called the damping factor, which is adjusted in each step. Parameter 
p is updated as:

pm+1 = pm + �pm. (15)

The implementation of the LM algorithm involves the following steps.

(1) Start with an initial best estimate of p1.
(2) Select the value of λ.
(3) At the mth iteration, calculate f (pm).
(4) Solve Eq. (13) and Eq. (15) to evaluate pm+1, and then calculate f (pm+1).
(5) If f (pm+1) ≥ f (pm), increase the value of λ and proceed to step 3.
(6) If f (pm+1) < f (pm), decrease the value of λ, update the starting solution, and proceed to step 4.

The convergence of the LM algorithm (Gavin, 2013) is achieved by selecting one of the following criteria:

• gradient convergence, max | J T (p − {p + �p})| < ε1;
• parameter convergence, max |�p

p | < ε2; or
• terminate when the iteration count exceeds the user-specified maximum number of iterations;

where ε1 and ε2 are the given error thresholds. If any of the above conditions is satisfied, the NURBS-snake is considered 
to have reached the equilibrium state and the iteration process is terminated. The initialization of the control point of 
the iterative NURBS-snake plays an important role in the convergence of the algorithm above. If the initial positions of 
the control points move the NURBS-snake away from the data points, then more computational time is required to reach 
convergence. To overcome this problem, we use a two-step method called “NURBS-snake fitting” to obtain the correct 
positions of the initial control points.
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3. Proposed algorithm

Section 3.1 and Section 3.2 describe the estimation of the initial control points and their corresponding weight adjust-
ments in 2D views that represent the projection of a 3D curve. The formulae used to compute the 3D control points and 
their corresponding weights from the 2D NURBS curves are explained in Section 3.3.

3.1. NURBS-snake fitting

In previous studies, the least squares method (Ma and Kruth, 1995) was used widely for fitting the NURBS curve. The 
main steps employed in the least squares-based techniques are the parameterization of measured points and knots, fol-
lowed by minimization of the residual error. The problem of fitting a B-spline from point clouds in a plane and space was 
studied in Flöry (2009). Various nonlinear optimization techniques such as quadratic programming (Luenberger, 1973) and 
evolutionary computation approaches (Zhang et al., 2009) have been used in different studies. These nonlinear optimization 
approaches are good in terms of their accuracy, but they require more computational time. Techniques have been proposed 
based on the interpolation of given data (Farin, 1992; Piegel, 1991). However, in the case of NURBS, these approaches are 
not suitable for practical applications due to the requirement for weight vectors. A two-step linear approach (Ma and Kruth, 
1998) was proposed for NURBS fitting by calculating the weights and control points separately during a linear optimization 
process. The method employed in the present study was inspired by the two-step linear approach. We decompose the co-
efficient matrix (containing B-spline function values) to obtain a homogeneous system of linear equations for an unknown 
weight vector. After computing the weights, we solve another system of linear equations to compute the control points.

As mentioned earlier, the 2D NURBS curve with N + 1 control points is defined as follows.

c(u) =
∑N+1

i=1 wi pi Bi,k(u)∑N+1
i=1 wi Bi,k(u)

(16)

The evaluation of this NURBS curve at n parameter values {u1, u2, . . . , un} yields n equations:

c j =
∑N+1

i=1 wi pi Bi,k(u j)∑N+1
i=1 wi Bi,k(u j)

, j = 1, · · · ,n (17)

where c j = c(u j), j = 1, · · · , n. As c(u) :R2 →R, each of these equations denotes a set of two separate observations. By mov-
ing the denominator to the other side and switching the left and right sides, Eq. (17) is reduced to the following form.

cx
j

N+1∑
i=1

wi Bi,k(u j) =
N+1∑
i=1

wi px
i Bi,k(u j) (18)

c y
j

N+1∑
i=1

wi Bi,k(u j) =
N+1∑
i=1

wi p y
i Bi,k(u j) (19)

Now, we define the vectors px = [px
1 w1, . . . , px

N+1 w N+1]T and p y = [p y
1 w1, . . . , p

y
N+1 w N+1]T in homogeneous form. The 

equations above can be written in a compact form as:

[
B 0 −Dx B
0 B −D y B

]
.

⎡
⎣ px

p y

w

⎤
⎦ = [0], (20)

where B is the matrix of B-spline basis functions and

Dx = diag
{

cx
1, cx

2, . . . , cx
n

}
D y = diag

{
c y

1 , c y
2 , . . . , c y

n
}
. (21)

These equations are fairly large, but it is possible to control the system of equations such that the weights can be calculated 
separately by solving another subsystem. After some manipulation, we may write Eq. (20) as:⎡

⎣ BT B 0 −BT Dx B
0 BT B −BT D y B
0 0 M

⎤
⎦ .

⎡
⎣ px

p y

w

⎤
⎦ = [0], (22)

where M = Mx + M y is an (N + 1) × (N + 1) symmetric, nonnegative matrix and

Mx = BT D2
x B − (

BT Dx B
)(

BT B
)−1(

BT Dx B
)

M y = BT D2
y B − (

BT D y B
)(

BT B
)−1(

BT D y B
)
. (23)
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Fig. 1. Effect of the parameterization errors on the 2D control points of the NURBS representation of a free-form curve: (a) initial parameterization, (b) pa-
rameterization error, (c) and (d) positions of the optimized control points in the two planes.

Here, M depends on the data points and the B-spline basis functions. The block matrix in Eq. (22) can be decomposed into 
two subsystems: one for the control points and another for the weights. The third row of the system given in Eq. (22) is 
used to identify the weights as:

M.w = 0. (24)

The use of the least squares norm to solve Eq. (24) was suggested in Ma and Kruth (1998). However, it is usually desirable to 
only have positive weights; otherwise, singularities may arise in the resulting curve. Furthermore, because we do not know 
the geometrical properties of M , it is not clear why the least squares norm is better than other approaches, as described 
in Ma and Kruth (1998). In the present study, we employed an algorithm based on quadratic programming (Boot, 1964;
Luenberger, 1973) to find a set of positive weights. Quadratic programming is a method for solving minimization problems 
with linear constraints and a quadratic objective function.

Using quadratic programming, a set of positive weights can be obtained by minimizing ‖M.w‖2
2 subject to wi > 0. In a 

quadratic programming problem, the minimization problem takes the form:

Minimize w T MT M w
subject to w > 0.

(25)

After the weights are computed by solving the above quadratic programming problem, the control points can be obtained 
from Eq. (20) by substituting the value of w . Thus, we use this method to obtain the initial control points and the corre-
sponding weights for the NURBS curves in both of the image planes.

Because 3D reconstruction is an inverse problem, a small error in the parameterization step may lead to a large error in 
the final 3D reconstructed curve. Thus, the unorganized input data are parameterized to facilitate the NURBS-snake fitting. 
We also present an analysis that shows the effect of the initial parameterization of the 2D data points on the estimation 
of the 2D control points. A base curve (Ma and Kruth, 1995) is used for parameterization, which is generated by a fitting 
process. The construction of the base curve uses all of the data points rather than selected points. The parameterization is 
achieved by projecting the data points onto the fitted base curve. The parameters of the projected points are used as the 
parameters of the data points. This technique is more robust and it yields accurate results in the fitting process. Fig. 1 depicts 
the results after considering errors in the parameterization step, which shows that small errors in the parameterization step 
do not affect the positions of the 2D control points and thus the parameterization procedure is less sensitive to a small 
amount of noise.
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3.2. Weight-based control

One of the most important properties in differential geometry is the curvature, which describes the local properties 
(edges, corners, etc.) of the curve. The curvature also relates the first and second order derivatives of the curve. In a para-
metric representation, the curvature κ(u) of a curve is computed by the formula:

κ(u) =
(

∂c(u)
∂u × ∂2c(u)

∂u2

)
.�b∣∣ ∂3c(u)

∂u3

∣∣ ,

where ‘×’ denotes the cross product and �b represents the binormal vector of the curve. An iterative scheme described in 
Meegama and Rajapakse (2003) for computing the curvature of the NURBS-snake is used in this study and the weights are 
modified accordingly. These weights are used to control the shape of a local segment u ∈ [ξi, ξi+k+1) of the NURBS-snake. 
If the weight is closer to zero, then the segment of the NURBS-snake is distant from the respective control point, and vice 
versa.

Let pi be the position of a control point with corresponding weight wi and κ(c(u)) denotes the curvature at a point of 
c(u). If the maximum curvature, κmax, within the spline segment c(u), u ∈ [ξi, ξi+k+1) exceeds the average curvature along 
the NURBS curve, then the weight of the control point pi is updated as:

wnew
i = wi + ς

κmax

κ(u)
, (26)

where the parameter ς controls the amount of attraction of the curve towards the control point and κ(u) is the global 
maximum curvature of the NURBS-snake.

3.3. Stereo reconstruction of the NURBS curve

Let (pL
i , w

L
i ) and (pR

i , w R
i ) be the pairs of control points and their corresponding weights in the left and the right image 

planes, respectively. We can reconstruct the required control points of the 3D NURBS curve, Pi , by triangulating (Kumar 
et al., 2009; Sukavanam et al., 2007) pL

i and pR
i . The weight W i associated with Pi on the 3D NURBS curve is calculated as:

W i = w L
i

[
T L

3 [Pi 1]T ]−1
, (27)

where T L
3 is the third row of the projection matrix T L . In nondegenerate cases, the epipolar constraint on the control points 

of the stereo pair, pL
i and pR

i , can be derived in the form:[
pR

i
1

]T

F RL
[

pL
i

1

]
= 0, (28)

where F RL is the fundamental matrix (Xiao and Li, 2005) of the stereo camera geometry, which can be determined using 
the left and right projection matrices T L and T R , respectively.

The overall algorithm for reconstructing the space curve is summarized in Algorithm 1 (Flowchart Fig. 2).

4. Results and discussion

The inputs of the proposed algorithm are the 2D images of the required curve. No 3D information is provided about 
the data. Optimization is performed to obtain the parameters of the NURBS curve using the discrete data from two image 
planes (perspective images of the required curve). The aim is to reconstruct the curve in 3D space by performing triangu-
lation on a sparse set of points (control points) instead of using all the digitized data. This gives a sense of compressive 
reconstruction. Therefore, we perform the optimization using 2D image planes and we then triangulate between the control 
points. Experiments (using synthetic and real data) were performed to verify this claim.

The code was developed in Matlab on a PC with a 2.53 GHz Intel(R) I3 processor and 3.0 GB RAM. During iterative 
minimization, the control points were initialized using the NURBS fitting of the snake points. These control points were 
then used as the initial solution by the LM optimization algorithm (second step). Table 3 shows the values of various 
parameters used in the experimental study. A large-scale experiment was performed to select for optimal set for these 
parameters.

4.1. Qualitative results

The results obtained with synthetic images are shown in Figs. 3–5 for the different space curves generated using the 
parametric equations in Table 4. A continuous 3D plot of these space curves is shown in each figure. The synthetic data in 
the projection planes (images) were obtained using the projection matrices in Table 5. The following steps were used to 
reconstruct the space curves in 3D using the proposed algorithm.
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Fig. 2. Flowchart illustrating the NURBS-Snake-based optimization process.

Algorithm 1 Space curve reconstruction algorithm.
Input: Data points Dx and D y in both the image planes
Perform parameterization in both the image planes using the base curve
Initialize c(u)

Set the knot vectors and degree of the B-spline basis function
for i = 1 to n do

Compute the normalized B-spline basis function B
end for
Compute M using Eq. (23)
Compute the weights w from M.w = 0 according to Section 3.1
Compute the control points P in both image planes using Eq. (20)
while (e > 10−3) do

Minimize ∑u ETotal(c(u))du
Update the locations of the control points {pi}N+1

Weight adjustments according to Section 3.2
Construct the NURBS curve based on the updated {pi}N+1

end while
Establish the correspondence using Eq. (28)
Reconstruct the 3D control points using triangulation and compute the corresponding weights as described in Section 3.3

Table 3
Values of various parameters used in the optimization 
process.

Parameter Selected value

α 1.0 × 10−3

β 1.0 × 10−3

γ 1.0 × 10−6

η 1.0 × 10−3

ς 1.0 × 10−2

(1) Select a set of data points in each image plane (the number was varied in each experiment, as shown in Table 4).
(2) Add Gaussian white noise with different standard deviations (Fig. 8(a)) to perturb the data points in each image plane. 

This noise was added to test the robustness of the algorithm.
(3) Initialize the snake fitting process in each image plane for each experiment, as shown in Figs. 3(b)–5(b) and 

Figs. 3(c)–5(c) for left and right perspective views, respectively.
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Fig. 3. Reconstruction results for a set of 41 points of a 3D curve: (a) 3D original curve; (b) and (c) projections of the initial curve and initial snake positions 
in both planes; (d) and (e) the fitted NURBS curves in the two planes with optimized control points; (f) 3D reconstructed curve.

Fig. 4. Reconstruction results for a set of 101 points of a 3D curve: (a) 3D original curve; (b) and (c) projections of initial curve and initial snake positions 
in both planes; (d) and (e) the fitted NURBS curves in the two planes with optimized control points; (f) 3D reconstructed curve.

(4) Minimize the error function to fit the best NURBS curve. The fitted NURBS curves in the two planes for each experiment 
are shown in Figs. 3(d)–5(d) and Figs. 3(e)–5(e) for left and right perspective views, respectively.

(5) Establish the correspondence between the control points in the two image planes and reconstruct the control points of 
the space curves by stereo triangulation. Moreover, assign appropriate weights to each of the 3D control points, which 
represented the complete NURBS curve in space, as shown in Figs. 3(f)–5(f).

The figures present qualitative results that validate the feasibility of the proposed algorithm. In all cases, the original 
and reconstructed curves are quite similar in shape. The reconstruction of a space curves with complex shapes are shown 
in Figs. 4–5. The qualitative accuracy of the reconstructed curve illustrates one of the most fascinating properties of the 
NURBS representation, i.e., its ability to describe complex shapes easily. The proposed reconstruction algorithm is well 
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Fig. 5. Reconstruction results for a set of 101 points of a 3D curve: (a) 3D original curve; (b) and (c) projections of initial curve and initial snake positions 
in both planes; (d) and (e) the fitted NURBS curves in the two planes with optimized control points; (f) 3D reconstructed curve.

Table 4
Various parametric equations used to generate synthetic curves in different experiments.

Experiments Parametric equations Range Points used

First (Fig. 3)

⎧⎨
⎩

x = cos(t)
y = sin(t)
z = cos2(t)

0 ≤ t ≤ 2π 41

Second (Fig. 4)

⎧⎨
⎩

x = 2 + 2 cos(θ + π/4) − 2 cos(3θ + 3π/4)

y = 2 + 2 sin(θ + π/4) − 2 sin(3θ + 3π/4)

z = 2 + 4 sin(2θ)

0 ≤ θ ≤ 2π 101

Third (Fig. 5)

⎧⎨
⎩

x = (2 + cos 3t) cos 2t
y = (2 + cos 3t) sin 3t
z = sin 3t

0 ≤ t ≤ 2π 101

Table 5
Projection matrices used to generate synthetic data in two image planes in various experiments.

Experiment T L T R Figs.

First (rectified)

⎛
⎝ 1 0 0 0

0 1 0 0
0 0 1 1

⎞
⎠

⎛
⎝ 1 0 0 −1

0 10 0 0
0 0 1 1

⎞
⎠ 3(b) and 3(c)

Second (rectified)

⎛
⎝ 10 1 1 10

1 10 1 1
1 1 1 1

⎞
⎠

⎛
⎝ 10 1 1 −1

1 10 1 1
1 1 1 1

⎞
⎠ 4(b) and 4(c)

Third (non-rectified)

⎛
⎝ 10 1 1 1

1 100 1 1
1 1 1 10

⎞
⎠

⎛
⎝ 10 10 10 400

1 10 10 800
1 1 1 400

⎞
⎠ 5(b) and 5(c)

suited to recovering the 3D shape of complex curves from their 2D images. We used two types of stereo configurations: 
rectified (in Figs. 3–4) and non-rectified stereo geometry (in Fig. 5). In both cases, the proposed algorithm performed very 
well.

Figs. 6 and 7 show the reconstruction results based on real images. Two images captured with a digital camera were 
employed as the inputs of the reconstruction algorithm. In Fig. 6, the object of interest is the boundary of the wire bent 
in a complex shape in 3D space. Our aim was to reconstruct the boundary of the wire using these two images. The image 
curves in Figs. 6(a) and 6(b) were extracted and sampled. Next, the sampled data were used to initialize the NURBS-snake 
in both image planes. The optimized control points in both images are shown in Figs. 6(c) and 6(d). The reconstructed curve 
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Fig. 6. Reconstruction results for real stereo images: (a) and (b) real stereo images of a wire; (c) and (d) results of NURBS-snake fitting with optimized 
control points; (e) 3D reconstructed curve.

Fig. 7. Reconstruction results for real stereo images: (a) and (b) Tsukuba stereo image pair; (c) and (d) the objects of interest; (e) and (f) results of 
NURBS-snake fitting with optimized control points; (g) 3D reconstructed curve.

Table 6
Error metrics.

Sample No. Error Formula

1. RmsErr
[ ∑n

j=1 ‖C j−C̄ j‖2

n

] 1
2

2. MeanErr
∑n

j=1 ‖C j−C̄ j‖
n

3. MaxErr max‖C j − C̄ j‖

4. StdErr
[ ∑n

j=1 ‖C1
j −C̄1

j ‖
2

n

] 1
2

n = total number of data points sampled on a curve; C1
j = C j − μ = points 

on the curve evaluated about the mean μ.

obtained using the proposed approach is shown in Fig. 6(e), which demonstrates that the reconstructed curve resembles the 
original curve. In another experiment, we used the Tsukuba stereo image pairs, as shown in Figs. 7(a) and 7(b) (available at 
vision.middlebury.edu/stereo/). In this experiment, the object of interest was the closed boundary of the statue, as shown 
in Figs. 7(c) and 7(d). Fig. 7(g) presents the reconstruction result, which is similar to the original closed boundary of the 
Tsukuba object.

http://vision.middlebury.edu/stereo/
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Fig. 8. Error in the reconstruction of a set of 41 points on a 3D curve (Fig. 3): (a) error versus noise, (b) error versus number of iterations (left image plane), 
(c) error versus number of iterations (right image plane).

4.2. Error analysis

In the quantitative analysis, we considered various error metrics to compare the original and reconstructed synthetic 
curves, i.e., root mean square error (RmsErr), mean error (MeanErr), maximum error (MaxErr), and standard deviation 
(StdErr). In this study, C(u) = [X(u), Y (u), Z(u)] is the original curve and C̄(u) = [ X̄(u), Ȳ (u), Z̄(u)] is the reconstructed 
curve. The error metrics are given in Table 6.

In Fig. 8(a), the robustness of the proposed algorithm is demonstrated by plotting the errors in reconstruction when 
the input data were perturbed by adding Gaussian noise (with zero mean and various standard deviations). The first curve 
in Table 4 was used in this study. We also show a graphical representation of the convergence rate in both views for 
the NURBS-snake fitting process. In Fig. 8(b), the graph shows the errors versus iterations for the left image plane, which 
indicates that each approximation error became stable after 8 iterations and the initial NURBS-snake fitted the data points 
smoothly. Similarly, Fig. 8(c) shows the graph for the right image plane, where the approximation errors became stable after 
11 iterations. These results demonstrate that the proposed algorithm converged rapidly during NURBS-snake fitting.

The quantitative measurements of reconstruction errors, which were obtained in 3D, are shown in Table 7. The data 
in the second row of Table 7 are the point-based reconstruction results obtained using the same measurement. Table 7
provides some statistics for the closest point distances, i.e., the root mean square values, mean values, maximum values, 
and standard deviations under different noise levels. Table 7 shows that the proposed reconstruction method performed 
better than point-based reconstruction because the root mean square, mean, maximum, and standard deviations of the 
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Table 7
Reconstruction errors in the presence of various amounts of noise.

Approach σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

NURBS-snake

⎛
⎜⎜⎝

0.0087
0.0051
0.0450
0.0030

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0095
0.0062
0.0305
0.0040

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0108
0.0074
0.0211
0.0054

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0102
0.0076
0.0266
0.0068

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0173
0.0141
0.0409
0.0101

⎞
⎟⎟⎠

Point-based

⎛
⎜⎜⎝

0.0102
0.0065
0.0590
0.0038

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0118
0.0085
0.0611
0.0052

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0145
0.0111
0.0335
0.0064

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0157
0.0121
0.0484
0.0076

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0220
0.0198
0.0796
0.0110

⎞
⎟⎟⎠

σ = 0.6 σ = 0.7 σ = 0.8 σ = 0.9 σ = 1.0

NURBS-snake

⎛
⎜⎜⎝

0.0214
0.0169
0.0545
0.0132

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0240
0.0176
0.0651
0.0164

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0345
0.0254
0.0756
0.0181

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0316
0.0256
0.0682
0.0186

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0317
0.0294
0.0684
0.0190

⎞
⎟⎟⎠

Point-based

⎛
⎜⎜⎝

0.0331
0.0231
0.0824
0.0142

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0349
0.0241
0.1021
0.0168

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0412
0.0304
0.1124
0.0182

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0498
0.0324
0.1261
0.0190

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0502
0.0389
0.1258
0.0198

⎞
⎟⎟⎠

Each column vector shows the RMS, mean, maximum, and SD in descending order.

Table 8
Mean errors with the proposed and point-based reconstruction algorithms.

Noise level NURBS-snake Point-based

σ = 0.1 0.0051 0.006500
σ = 0.2 0.0062 0.008590
σ = 0.3 0.0074 0.011092
σ = 0.4 0.0076 0.012121
σ = 0.5 0.0141 0.019850
σ = 0.6 0.0169 0.023130
σ = 0.7 0.0176 0.024110
σ = 0.8 0.0253 0.031990
σ = 0.9 0.0256 0.032460
σ = 1.0 0.0294 0.038930

Table 9
Standard deviation error with the proposed and point-based reconstruction 
algorithms.

Noise level NURBS-snake Point-based

σ = 0.1 0.0030 0.003833
σ = 0.2 0.0040 0.005233
σ = 0.3 0.0054 0.006404
σ = 0.4 0.0068 0.007600
σ = 0.5 0.0101 0.011086
σ = 0.6 0.0132 0.014217
σ = 0.7 0.0164 0.016805
σ = 0.8 0.0184 0.018666
σ = 0.9 0.0186 0.0190212
σ = 1.0 0.0190 0.0198955

NURBS-snake-based reconstruction errors were lower than those of the point-based reconstruction results. The proposed 
NURBS-snake-based reconstruction method obtained similar quality reconstruction results when the sample distributions of 
the image curves were varied.

4.3. Statistical analysis

A detailed statistical analysis was performed to analyze the efficiency of the results obtained using the proposed algo-
rithm. Two-tailed F-test and t-test were used in this analysis. The mean and standard deviation values of a data set are given 
in Table 8 and Table 9. The results obtained with the proposed method are compared with the point-based reconstruction 
results.
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Table 10
Statistical analysis (F-test) in the presence of noise for the proposed and point-based reconstruction algorithms.

Noise level H F-statistic Degrees of freedom

σ = 0.1 0 0.6125 (60,60)

σ = 0.2 0 0.6753 (60,60)

σ = 0.3 0 0.7109 (60,60)

σ = 0.4 0 0.7923 (60,60)

σ = 0.5 0 0.8300 (60,60)

σ = 0.6 0 0.8620 (60,60)

σ = 0.7 0 0.9523 (60,60)

σ = 0.8 0 0.9857 (60,60)

σ = 0.9 0 0.9562 (60,60)

σ = 1.0 0 0.9120 (60,60)

F-critical = (0.5999,1.6667)

Table 11
Statistical analysis (t-test) in the presence of noise for the proposed and point-based reconstruction algorithms.

Noise level H t-statistic Degrees of freedom sp

σ = 0.1 1 2.2740 120 0.0034
σ = 0.2 1 2.8083 120 0.0047
σ = 0.3 1 3.4540 120 0.0059
σ = 0.4 1 3.4670 120 0.0072
σ = 0.5 1 2.9958 120 0.0106
σ = 0.6 1 2.5114 120 0.0137
σ = 0.7 1 2.1658 120 0.0166
σ = 0.8 1 2.0079 120 0.0181
σ = 0.9 1 2.0152 120 0.0188
σ = 1.0 1 2.7129 120 0.1940

sp : pooled standard deviation t-critical = 1.9799

4.3.1. F-test
Two-tailed F-test were performed at a significance level of α = 0.05 to check the equality of variances for the results 

based on their variance values after adding different amounts of noise. The calculated F-statistic values are given in Table 10. 
All of the calculated F-statistic values were in the range of the two-tailed F-critical values (0.5999, 1.6667) with (60, 60) 
degrees of freedom. Thus, the null hypothesis for the population variances, i.e., equal variances, was accepted for all the 
datasets.

4.3.2. t-test
Two-tailed t-test with equal variances were performed to compare the proposed algorithm and the point-based recon-

struction results at a significance level of 5%. The t-test assesses whether the means of two groups differ significantly from 
each other. The results are shown in Table 11, which demonstrate that the calculated t-statistic values were much greater 
than the t-critical value (1.9799) in the comparison of all the datasets. Thus, the difference was highly significant and the 
null hypothesis, i.e., the means are identical with the two algorithms, was rejected in all cases. Thus, the two means differed 
significantly and we conclude that the proposed algorithm performed better than point-based reconstruction.

5. Conclusions

In this study, we proposed a method for reconstructing free-form space curves from their perspective projections using 
a NURBS-snake model. A nonlinear optimization problem is formulated to approximate the data using the NURBS-snake in 
the perspective images. We evaluated the performance of the proposed method based on synthetic and real data. We also 
compared the proposed method and triangulation-based approaches in terms of various types of error. We conclude that 
the proposed method performs better than the traditional point-based reconstruction approach with noisy images. We also 
found that the proposed NURBS-snake fitting process converges faster. Thus, the whole curve can be reconstructed accurately 
simply by performing triangulation based on the control points of the NURBS-snake in the two image planes.
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