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We present an efficient adaptive refinement procedure that preserves analysis-suitability 
of the T-mesh, that is, the linear independence of the T-spline blending functions. We 
prove analysis-suitability of the overlays and boundedness of their cardinalities, nestedness 
of the generated T-spline spaces, and linear computational complexity of the refinement 
procedure in terms of the number of marked and generated mesh elements.
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1. Introduction

T-splines (Sederberg et al., 2003) have been introduced as a free-form geometric technology and are one of the most 
promising features in the Isogeometric Analysis (IGA) framework introduced by Hughes et al. (2005), Cottrell et al. (2009). 
At present, the main interest in IGA is in finding discrete function spaces that integrate well into CAD applications and, at 
the same time, can be used for Finite Element Analysis. Throughout the last years, hierarchical B-Splines (Scott et al., 2014;
Kuru et al., 2014) and LR-Splines (Dokken et al., 2013; Johannessen et al., 2014) have arisen as alternative approaches to 
T-Splines for the establishment of an adaptive B-Spline technology. While none of these strategies has outperformed the 
other competing approaches until today, this paper aims to push forward and motivate the T-Spline technology.

Since T-splines can be locally refined (Sederberg et al., 2004), they potentially link the powerful geometric concept of 
Non-Uniform Rational B-Splines (NURBS) to meshes with T-junctions (referred as “hanging nodes” in the Finite Element 
context) and, hence, the well-established framework of adaptive mesh refinement. However, Buffa et al. (2010) have shown 
that T-meshes can induce linear dependent T-spline blending functions. This prohibits the use of T-splines as a basis for 
analytical purposes such as solving a partial differential equation. In particular, the mesh refinement algorithm presented 
by Sederberg et al. (2004) does not preserve analysis-suitability in general. This insight motivated the research on T-meshes 
that guarantee the linear independence of the corresponding T-spline blending functions, referred to as analysis-suitable 
T-meshes. Analysis-suitability has been characterized in terms of topological mesh properties in 2d (Li et al., 2012) and, 
in an alternative approach, through the equivalent concept of Dual-Compatibility (da Veiga et al., 2012), which allows for 
generalization to three-dimensional meshes.
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A refinement procedure that preserves the analysis-suitability of two-dimensional T-meshes was finally presented by 
Scott et al. (2012). The procedure first refines the marked elements, producing a mesh that is not analysis-suitable in 
general, and then computes a refinement which is analysis-suitable and generates a T-spline space that is a superspace of 
the previous one. This second refinement involves heuristic local estimates on how much refinement is needed to achieve 
the desired properties. Hence, the reliable theoretical analysis of the algorithm is very difficult and so is the analysis of 
corresponding automatic mesh refinement algorithms driven by a posteriori error estimators. Such analysis is currently 
available only for triangular meshes (Carstensen et al., 2014; Cascon et al., 2008; Stevenson, 2007), but is necessary to 
reliably point out the advantages of adaptive mesh refinement.

In this paper, we present a new refinement algorithm which provides

1. the preservation of analysis-suitability and nestedness of the generated T-spline spaces,
2. a bounded cardinality of the overlay (which is the coarsest common refinement of two meshes),
3. linear computational complexity of the refinement procedure in the sense that there is a constant bound, depending 

only on the polynomial degree of the T-spline blending functions, on the ratio between the number of generated 
elements in the fine mesh and the number of marked elements in all refinement steps.

This paper is organized as follows. We define the refinement algorithm along with a class of admissible meshes in 
Section 2. In Section 3, we prove that all admissible meshes are analysis-suitable. Section 4 proves essential properties 
of the overlay of two admissible meshes, and in Section 5 we prove nestedness of the T-spline spaces corresponding to 
admissible refinements. Section 6 shows linear complexity of the refinement procedure, and conclusions and an outlook to 
future work are finally given in Section 7. Sections 3, 4 and 6 independently rely on the definitions and results of Section 2, 
Section 5 also makes use of the definitions from Section 4.

2. Adaptive mesh refinement

This section defines the new refinement algorithm and characterizes the class of meshes which is generated by this 
algorithm. The initial mesh is assumed to have a very simple structure. In the context of IGA, the partitioned rectangular 
domain is referred to as index domain. This is, we assume that the physical domain (on which, e.g., a PDE is to be solved) is 
obtained by a continuous map from the active region (cf. Section 3), which is a subset of the index domain. Throughout this 
paper, we focus on the mesh refinement only, and therefore we will only consider the index domain. For the parametrization 
and refinement of the T-spline blending functions, we refer to Scott et al. (2012).

Definition 2.1 (Initial mesh, element). Given positive numbers M, N ∈ N, the initial mesh G0 is a tensor product mesh con-
sisting of closed squares (also denoted elements) with side length 1, i.e.,

G0 :=
{
[m− 1,m] × [n− 1,n] |m ∈ {1, . . . , M},n ∈ {1, . . . , N}

}
.

The domain partitioned by G0 is denoted by � :=⋃
G0.

The key property of the refinement algorithm will be that refinement of an element K is allowed only if elements in 
a certain neighbourhood are sufficiently fine. The size of this neighbourhood, which is denoted (p, q)-patch and defined 
through the definitions below, depends on the size of K and the polynomial bi-degree (p, q) of the T-spline blending 
functions.

Definition 2.2 (Level). The level of an element K is defined by

�(K ) := − log2 |K |,
where |K | denotes the volume of K . This implies that all elements of the initial mesh have level zero and that the bisection 
of an element K yields two elements of level �(K ) + 1.

Definition 2.3 (Vector-valued distance). Given x ∈ � and an element K , we define their distance as the componentwise 
absolute value of the difference between x and the midpoint of K ,

Dist(K , x) := abs
(
mid(K )− x

) ∈R2.

For two elements K1, K2, we define the shorthand notation

Dist(K1, K2) := abs
(
mid(K1)−mid(K2)

)
.
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Fig. 1. Example of the patch Gp,q(K ) in a uniform mesh and in a non-uniform mesh for even �(K ) and p = q = 5. K is marked in blue, and Gp,q(K ) is 
highlighted in light blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Definition 2.4. Given an element K and polynomial degrees p and q, the (p, q)-patch is defined by

Gp,q(K ) := {
K ′ ∈ G | Dist(K ′, K )≤ Dp,q(�(K ))

}
,

where

Dp,q(k)=
⎧⎨
⎩

2−k/2
(⌊ p

2

⌋+ 1
2 ,

⌈ q
2

⌉+ 1
2

)
if k is even,

2−(k+1)/2
(⌈ p

2

⌉+ 1
2 , 2

⌊ q
2

⌋+ 1
)

if k is odd.

Note as a technical detail that this definition does not require that K ∈ G .

Remark. In a uniform even-leveled mesh, 
⋃

Gp,q(K ) is obtained by extending K by a face extension length (cf. Defini-
tion 3.4) above and below and by an edge extension length to the left and to the right (Fig. 1). In a uniform odd-leveled 
mesh, 

⋃
Gp,q(K ) is obtained by extending K by a face extension length to the left and to the right and by an edge extension 

length above and below. The (p, q)-patch will be used to enforce a local quasi-uniformity of the mesh. Throughout the rest 
of this paper, we assume p, q ≥ 2. This guarantees that neighboring elements of K (elements that share an edge or vertex 
with K ) are always in Gp,q(K ), and that nested elements Ǩ ⊆ K̂ have nested (p, q)-patches Gp,q(Ǩ ) ⊆ Gp,q(K̂ ).

In the subsequent definitions, we will give a detailed description of the elementary bisection steps and then present the 
new refinement algorithm.

Definition 2.5 (Bisection of an element). Given an arbitrary element K = [μ, μ + μ̃] × [ν, ν + ν̃], where μ, ν, μ̃, ̃ν ∈ R and 
μ̃, ̃ν > 0, we define the operators

bisectx(K ) := { [μ,μ+ μ̃
2 ] × [ν,ν + ν̃], [μ+ μ̃

2 ,μ+ μ̃] × [ν,ν + ν̃]}
and bisecty(K ) := { [μ,μ+ μ̃] × [ν,ν + ν̃

2 ], [μ,μ+ μ̃] × [ν + ν̃
2 , ν + ν̃]}.

Note that bisectx adds an edge in y-direction, while bisecty adds an edge in x-direction.

Definition 2.6 (Bisection). Given a mesh G and an element K ∈ G , we denote by bisect(G, K ) the mesh that results from a 
level-dependent bisection of K ,

bisect(G, K ) := G \ {K } ∪ child(K ),

with child(K ) :=
{

bisectx(K ) if �(K ) is even,

bisecty(K ) if �(K ) is odd.

Definition 2.7 (Multiple bisections). We introduce the shorthand notation bisect(G, M) for the bisection of several elements 
M = {K1, . . . , K J } ⊆ G , defined by successive bisections in an arbitrary order,

bisect(G,M) := bisect(bisect(. . . bisect(G, K1), . . .), K J ).
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Fig. 2. First refinement example. The patch Gp,q(K ) (highlighted in light blue) is as fine as K . Consequently, Algorithm 2.8 stops after the first iteration. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Second refinement example. The patch Gp,q(K ) contains elements that are coarser than K . These are marked by Algorithm 2.8. Then the algorithm 
checks their patches for even coarser elements, which do not exist. Hence Algorithm 2.8 stops after two iterations.

We will now define the new refinement algorithm through the bisection of a superset closp,q
G (M) of the marked ele-

ments M. In the remaining part of this section, we characterize the class of meshes generated by this refinement algorithm.

Algorithm 2.8 (Closure). Given a mesh G and a set of marked elements M ⊆ G to be bisected, the closure closp,q
G (M) of M

is computed as follows.
∼M:=M

repeat
for all K ∈ ∼M do∼M:= ∼M ∪{K ′ ∈ Gp,q(K ) | �(K ′) < �(K )

}
end for

until ∼M stops growing
return closp,q

G (M) = ∼M

Algorithm 2.9 (Refinement). Given a mesh G and a set of marked elements M ⊆ G to be bisected, refp,q(G, M) is defined 
by

refp,q(G,M) := bisect(G, closp,q
G (M)).

Example 2.10. Figs. 2, 3 and 4 illustrate three successive applications of Algorithm 2.9 with p = q = 3. In each case, only one 
element K is marked. In the first case, the patch of K is as fine as K and hence no additional refinement is necessary. In 
the second case, one additional iteration of Algorithm 2.8 is needed to compute closp,q

G ({K }). In the third case, the algorithm
stops after three iterations.
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Fig. 4. Third refinement example. As in Fig. 3, Algorithm 2.8 marks coarser elements in the patch of the initially marked K . In this case, the computation 
of closp,q

G ({K }) involves three iterations of the algorithm.

In the subsequent definitions, we introduce a class of admissible meshes. We will then prove that Algorithm 2.9 preserves 
admissibility.

Definition 2.11 ((p, q)-admissible bisections). Given a mesh G and an element K ∈ G , the bisection of K is called 
(p, q)-admissible if all K ′ ∈ Gp,q(K ) satisfy �(K ′) ≥ �(K ).

In the case of several elements M = {K1, . . . , K J } ⊆ G , the bisection bisect(G, M) is (p, q)-admissible if there is an order 
(σ (1), . . . , σ( J )) (this is, if there is a permutation σ of {1, . . . , J }) such that

bisect(G,M)= bisect(bisect(. . . bisect(G, Kσ (1)), . . .), Kσ ( J ))

is a concatenation of (p, q)-admissible bisections.

Definition 2.12 (Admissible mesh). A refinement G of G0 is (p, q)-admissible if there is a sequence of meshes G1, . . . ,G J = G
and markings M j ⊆ G j for j = 0, . . . , J − 1, such that G j+1 = bisect(G j, M j) is a (p, q)-admissible bisection for all j =
0, . . . , J − 1. The set of all (p, q)-admissible meshes, which is the initial mesh and its (p, q)-admissible refinements, is 
denoted by Ap,q . For the sake of legibility, we write ‘admissible’ instead of ‘(p, q)-admissible’ throughout the rest of this 
paper.

Remark. This definition refers to the understanding of ‘admissible meshes’ in FE analysis. It does not match the definitions 
of admissible meshes from da Veiga et al. (2013), Li and Scott (2014).

Proposition 2.13. Any admissible mesh G and any set of marked elements M ⊆ G satisfy refp,q(G, M) ∈Ap,q.

The proof of Proposition 2.13 given at the end of this section relies on the subsequent results.

Lemma 2.14 (Local quasi-uniformity). Given K ∈ G ∈Ap,q, any K ′ ∈ Gp,q(K ) satisfies �(K ′) ≥ �(K ) − 1.

Proof. For �(K ) = 0, the assertion is always true. For �(K ) > 0, consider the parent K̂ of K (i.e., the unique element K̂ ∈⋃
Ap,q with K ∈ child(K̂ )). Since K results from the bisection of K̂ , we also have that

d(K ) := Dist(K , K̂ )=
{

(2−(�(K̂ )+4)/2,0) if �(K̂ ) is even
(0,2−(�(K̂ )+3)/2) if �(K̂ ) is odd

=
{

(0,2−(�(K )+2)/2) if �(K ) even,
(2−(�(K )+3)/2,0) if �(K ) odd.

Since G is admissible, there are admissible meshes G0, . . . , G J = G and some j ∈ {0, . . . , J − 1} such that K ∈ G j+1 =
bisect(G j, {K̂ }). The admissibility G j+1 ∈ Ap,q implies that any K ′ ∈ Gp,q

j (K̂ ) satisfies �(K ′) ≥ �(K̂ ) = �(K ) − 1. Since lev-
els do not decrease during refinement, we get
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�(K )− 1≤min
{
�(K ′) | K ′ ∈ G j and Dist(K̂ , K ′)≤ Dp,q(�(K̂ ))

}
≤min

{
�(K ′) | K ′ ∈ G and Dist(K̂ , K ′)≤ Dp,q(�(K̂ ))

}
=min

{
�(K ′) | K ′ ∈ G and Dist(K̂ , K ′)≤ Dp,q(�(K )− 1)

}
≤min

{
�(K ′) | K ′ ∈ G and Dist(K , K ′)+ d(K )≤ Dp,q(�(K )− 1)

}
. (1)

One easily computes Dp,q(�(K ) − 1) − d(K ) > Dp,q(�(K )), which concludes the proof. �
Corollary 2.15. Let K ∈ G ∈Ap,q and

U p,q(K ) := {x ∈ � | Dist(K , x)≤ Dp,q(�(K ))},
then

Gp,q(K )= {K ′ ∈ G | |K ′ ∩ U p,q(K )|> 0}.

Proof. This is a consequence of Lemma 2.14 in the strong version (1) that involves a bigger patch of K . �
Proof of Proposition 2.13. Given the mesh G ∈ Ap,q and marked elements M ⊆ G to be bisected, we have to show that 
there is a sequence of meshes that are subsequent admissible bisections, with G being the first and refp,q(G, M) the last 
mesh in that sequence. Set ∼M:= closp,q

G (M) and

L :=max�(
∼M), L :=min�(

∼M)

M j :=
{

K ∈ ∼M| �(K )= j
}

for j = L, . . . , L

GL := G, G j+1 := bisect(G j,M j) for j = L, . . . , L. (2)

It follows that refp,q(G, M) = G L+1. We will show by induction over j that all bisections in (2) are admissible.

For the first step j = L, we know {K ′ ∈ ∼M| �(K ′) < L} = ∅, and by construction of ∼M that for each K ∈ ∼ML holds 
{K ′ ∈ Gp,q(K ) | �(K ′) < �(K )} ⊆ ∼M. Together with �(K ) = L follows for any K ∈ ∼ML that there is no K ′ ∈ Gp,q(K ) with 
�(K ′) < �(K ). This is, the bisections of all K ∈ ∼ML are admissible independently of their order and hence bisect(GL, 

∼ML) is 
admissible.

Consider an arbitrary step j ∈ {L, . . . , L} and assume that GL , . . . , G j are admissible meshes. Assume for contradiction that 
there is K ∈M j of which the bisection is not admissible, i.e., there exists K ′ ∈ Gp,q

j (K ) with �(K ′) < �(K ) and consequently 
K ′ /∈ ∼M, because K ′ has not been bisected yet. It follows from the closure Algorithm 2.8 that K ′ /∈ G . Hence, there is K̂ ∈ G
such that K ′ ⊂ K̂ . We have �(K̂ ) < �(K ′) < �(K ), which implies �(K̂ ) < �(K ) − 1. Note that K ∈ G because M j ⊆ ∼M⊆ G . 
Moreover, from K ′ ⊂ K̂ and K ′ ∈ Gp,q

j (K ) it follows with Corollary 2.15 that K̂ ∈ Gp,q(K ). Together with �(K̂ ) < �(K ) − 1, 
Lemma 2.14 implies that G is not admissible, which contradicts the assumption. �
3. Analysis-Suitability

In this section, we give a brief review on the concept of Analysis-Suitability, using the notation from da Veiga et al.
(2013). We prove that all admissible meshes (in the sense of Definition 2.12) are analysis-suitable and hence provide linearly 
independent T-spline blending functions. In this paper, we omit the definition of the T-spline blending functions and details 
on their linear independence. We refer the reader to Li et al. (2012), da Veiga et al. (2012) and, in particular for the case of 
non-cubic T-splines (da Veiga et al., 2013).

Definition 3.1 (Active nodes). Consider an admissible mesh G ∈ Ap,q . The set of vertices (nodes) of G is denoted by N . We 
define the active region

AR := [⌈ p
2

⌉
, M − ⌈ p

2

⌉]× [⌈ q
2

⌉
, N − ⌈ q

2

⌉]
and the set of active nodes NA :=N ∩AR.

To each active node T , we associate local index vectors x(T ) and y(T ) that are defined below, depending on the mesh in 
the neighbourhood of T . These local index vectors are used to construct a tensor-product B-spline B T , referred to as T-spline 
blending function.

Definition 3.2 (Skeleton). We denote by hSk (resp. vSk) the horizontal (resp. vertical) skeleton, which is the union of all 
horizontal (resp. vertical) edges. Note that hSk ∩ vSk=N .
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Definition 3.3 (Global index sets). For any y in the closed interval 
[⌈ q

2

⌉
, N − ⌈ q

2

⌉]
, we set

X(y) := {
z ∈ [0, M] | (z, y) ∈ vSk

}
,

and for any x ∈ [⌈ p
2

⌉
, M − ⌈ p

2

⌉]
,

Y(x) := {
z ∈ [0, N] | (x, z) ∈ hSk

}
.

Note that in an admissible mesh, the entries 
{

0, . . . , 
⌈ p

2

⌉ − 1, M − ⌈ p
2

⌉ + 1, . . . , M
}

are always included in X(y) (and 
analogously for Y(x)).

Definition 3.4 (T-junction extension). (See da Veiga et al., 2013, Section 2.1.) We denote by T ⊂ NA the set of all active 
nodes with valence three (i.e., active nodes that are endpoints of exactly three edges) and refer to them as T-junctions. 
Following the literature (Li et al., 2012; da Veiga et al., 2012), we adopt the notation ⊥, �, �, � to indicate the four 
possible orientations of the T-junctions. T-junctions of type � and � (⊥, �, respectively) and their extensions are called 
horizontal (vertical, resp.). For the sake of simplicity, let us consider a T-junction T = (t1, t2) ∈ T of type �. Clearly, t1 is one 
of the entries of X(t2). We extract from X(t2) the p + 1 consecutive indices i−�p/2�, . . . , i�p/2� such that i0 = t1. We denote

extp,q
e (T ) := [

i−�p/2�, i0
]× {t2}, extp,q

f (T ) := ]
i0, i�p/2�

]× {t2},
extp,q(T ) := extp,q

f (T )∪ extp,q
e (T ),

where extp,q
e (T ) is denoted edge-extension, extp,q

f (T ) is denoted face-extension and extp,q(T ) is just the extension of the 
T-junction T .

Definition 3.5 (Analysis-suitability). (See da Veiga et al., 2013, Definition 2.5.) A mesh is analysis-suitable if horizontal T-
junction extensions do not intersect vertical T-junction extensions.

The main result of this section is the following theorem.

Theorem 3.6. All admissible meshes (in the sense of Definition 2.12) are analysis-suitable.

Proof. We prove the theorem by induction over admissible bisections. We know that the initial mesh G0 is analysis-suitable 
because it is a tensor-product mesh without any T-junctions. Consider a sequence G0, . . . , G J of successive admissible bisec-
tions such that G0, . . . , G J−1 are analysis-suitable. Without loss of generality we shall assume that elements are refined in 
ascending order with respect to their level, i.e., for G j+1 = bisect(G j, K j), we assume that 0 = �(K0) ≤ . . .≤ �(K J−1). There 
is such a sequence for any admissible mesh; see the proof of Proposition 4.3. We have to show that G J is analysis-suitable 
as well.

We denote K := K J−1 = [μ, μ + μ̃] × [ν, ν + ν̃] ∈ G J−1, and we assume without loss of generality that �(K ) is even. The 
assumption that elements are refined in ascending order with respect to their level implies that no element finer than K
has been bisected yet, i.e.,

max�(G J )= �(K )+ 1. (3)

Denote by

Gu|k :=
{

K ′ ∈⋃
Ap,q | �(K ′)= k

} ∈Ap,q (4)

the k-th uniform refinement of G0. Then Gu|�(K )+1 is a refinement of G J , in particular

hSk(G J ) ⊆ hSk(Gu|�(K )+1) = hSk(Gu|�(K )), (5)

since �(K ) is even. Since G J is admissible, all elements in Gp,q
J (K ) are at least of level �(K ) and hence

hSk(G J )∩ U p,q(K ) ⊇ hSk(Gu|�(K ))∩ U p,q(K ), (6)

and

∀ K̃ ∈ Gp,q
J (K ) : size(�(K̃ ))≤ size(�(K )) (7)

with the level-dependent size

size(�(K )) := (μ̃, ν̃)=
{

(2−�(K )/2,2−�(K )/2) if �(K ) even,

−(�(K )+1)/2 −(�(K )−1)/2
(8)
(2 ,2 ) if �(K ) odd.
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Fig. 5. Example of the (p, q)-patch in a uniform mesh for p = q = 5. The horizontal T-junction T̃ may be on a solid red line or outside of U p,q(K ), but not 
in the interior of U p,q(K ) (shaded area) or on the dashed blue lines, which are open at their endpoints. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. In both cases, the T-junction extension extp,q(T̃ ) (thick red line) does not intersect the set {μ + μ̃/2} ×[ν−2−�(K )/2� q
2 �, ν+ ν̃+2−�(K )/2� q

2 �] (dotted 
blue line), which includes extp,q(T ). The patch Gp,q

J (K ) is shaded in light blue. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Together, (5) and (6) read

hSk(G J )∩ U p,q(K ) = hSk(Gu|�(K ))∩ U p,q(K ). (9)

Consider a T-junction T ∈ T J \ T J−1 that is generated by the bisection of K . Then T is a vertical T-junction on the boundary 
of K , and with (7) follows

extp,q(T )⊆ {
μ+ μ̃/2

}× [
ν − 2−�(K )/2⌈ q

2

⌉
, ν + ν̃ + 2−�(K )/2⌈ q

2

⌉]
.

Consider an arbitrary horizontal T-junction T̃ = (t1, t2) ∈ T . We will prove that extp,q(T̃ ) does not intersect extp,q(T ). From 
(5) we conclude that extp,q(T̃ ) ⊆ hSk(Gu|�(K )), and (9) implies that the vertex T̃ is not in the interior of the (p, q)-patch of 
K and not on its top or bottom boundary, i.e.

T̃ /∈ ]
μ− 2−�(K )/2⌊ p

2

⌋
, μ+ μ̃+ 2−�(K )/2⌊ p

2

⌋[ × [
ν − 2−�(K )/2⌈ q

2

⌉
, ν + ν̃ + 2−�(K )/2⌈ q

2

⌉]
.

See Fig. 5 for a sketch. Assume without loss of generality that T̃ is on the left side of K , this is,

t1 ≤μ− 2−�(K )/2⌊ p
2

⌋
. (10)

If type(T̃ ) =�, then the edge-extension extp,q
e (T̃ ) points towards K in the sense that

∀ (x, t2) ∈ extp,q(T̃ ) : x− t1 ≤ 2−�(K )/2⌊ p
2

⌋ (10)≤ μ− t1

⇔ ∀ (x, t2) ∈ extp,q(T̃ ) : x≤μ < μ+ μ̃/2.

This means that extp,q(T̃ ) does not intersect extp,q(T ). See Fig. 6 for an illustration.
If type(T̃ ) =�, then there is an odd-level element K ′ on the right side of T̃ , and two finer even-level elements on the left 

side. Since there are no elements in G J with a level higher than �(K ) + 1, which is odd, the two elements on the left side 
of T̃ have at most level �(K ), and hence �(K ′) ≤ �(K ) − 1. Consequently, K ′ /∈ Gp,q

J (K ), and the length of the intersection of 
the face extension extp,q

(T̃ ) with the (p, q)-patch of K is at most 2−�(K )/2
(⌈ p ⌉− 1

)≤ 2−�(K )/2
⌊ p ⌋

. This leads to the same 
f 2 2
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result as the previous case and is illustrated in Fig. 6. Since T̃ was chosen arbitrary, G J is analysis-suitable. This concludes 
the proof. �
Corollary 3.7. All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a 
partition of unity (da Veiga et al., 2013, 2014). Moreover, on each element K ∈ G ∈ Ap,q, there are not more than 2(p + 1)(q + 1)

T-spline basis functions that have support on K (da Veiga et al., 2014, Proposition 7.6).

This means that on each element, each T-Spline function communicates only with a finite number of other T-spline 
functions, independent of the total number of functions. This is an important requirement for sparsity of the linear system 
to be solved in Finite Element Analysis, in the sense that every row and every column of a corresponding stiffness or mass 
matrix is a sparse vector.

4. Overlay

This section discusses the coarsest common refinement of two meshes G1, G2 ∈ Ap,q , called overlay and denoted by 
G1 ⊗ G2. We prove that the overlay of two admissible meshes is also admissible and has bounded cardinality in terms of 
the involved meshes. This is a classical result in the context of adaptive simplicial meshes and will be crucial for further 
analysis of adaptive algorithms (cf. Assumption (2.10) from Carstensen et al., 2014).

Definition 4.1 (Overlay). We define the operator Min⊆ which yields all minimal elements of a set that is partially ordered 
by “⊆”,

Min⊆(M) := {
K ∈M | ∀K ′ ∈M : K ′ ⊆ K ⇒ K ′ = K

}
.

The overlay of G1, G2 ∈Ap,q is defined by

G1 ⊗ G2 :=Min⊆
(
G1 ∪ G2

)
.

Proposition 4.2. G1 ⊗ G2 is the coarsest refinement of G1 and G2 in the sense that for any Ĝ being a refinement of G1 and G2 , and 
G1 ⊗ G2 being a refinement of Ĝ , it follows that Ĝ = G1 ⊗ G2 .

Proof. G1 is a refinement of G2 if and only if for each K1 ∈ G1, there is K2 ∈ G2 with K1 ⊆ K2, which is equivalent to 
G1 = G1 ⊗ G2. Given that G1 ⊗ Ĝ = Ĝ = G2 ⊗ Ĝ and G1 ⊗ G2 = (G1 ⊗ G2) ⊗ Ĝ , we have

G1 ⊗ G2 = (G1 ⊗ G2)⊗ Ĝ =Min⊆(G1 ⊗ G2 ∪ Ĝ)

=Min⊆(Min⊆(G1 ∪ G2)∪ Ĝ)=Min⊆(G1 ∪ G2 ∪ Ĝ)

=Min⊆(G1 ∪Min⊆(G2 ∪ Ĝ))=Min⊆(G1 ∪ G2 ⊗ Ĝ)

=Min⊆(G1 ∪ Ĝ)= G1 ⊗ Ĝ = Ĝ. �
Proposition 4.3. For any admissible meshes G1, G2 ∈Ap,q, the overlay G1 ⊗ G2 is also admissible.

Proof. Consider the set of admissible elements which are coarser than elements of the overlay,

M := {
K ∈⋃

Ap,q | ∃K ′ ∈ G1 ⊗ G2 : K ′ � K
}
.

Then G1 ⊗ G2 is the coarsest partition of � into elements from 
⋃

Ap,q that refines all elements occurring in M. Note also 
that M satisfies

∀ K , K ′ ∈⋃
Ap,q : K ∈M∧ K ⊆ K ′ ⇒ K ′ ∈M. (11)

For j = 0, . . . , J =max �(M) and Ḡ0 := G0, set

M j := {K ∈M | �(K )= j}
and Ḡ j+1 := bisect(Ḡ j,M j). (12)

Claim 1. For all j ∈ {0, . . . , J } holds M j ⊆ Ḡ j .
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This is shown by induction over j. For j = 0, the claim is true because all admissible elements with zero level are in G0. 
Assume the claim to be true for 0, . . . , j − 1 and assume for contradiction that there exists K ∈M j \ Ḡ j .

Since K has not been bisected yet, Ḡ j does not contain any K ′ with K ′ ⊂ K . Consequently, there exists K ′ ∈ Ḡ j with 
K ⊂ K ′ and hence �(K ′) < �(K ) = j. From (11) follows K ′ ∈M�(K ′) ∈M, and �(K ′) < j implies that K ′ has been refined in 
a previous step. This yields K ′ /∈ Ḡ j , which is the desired contradiction.

Claim 2. For all j ∈ {0, . . . , J }, the bisection (12) is admissible.

Consider K ∈M j for an arbitrary j. By definition of M, there exists K ′ ∈ G1 ⊗ G2 ⊆ G1 ∪ G2 with K ′ � K . Without loss 
of generality, we assume K ′ ∈ G1. Since G1 ∈ Ap,q , there is a sequence of admissible meshes G0 = G1|0, G1|1, . . . , G1|I = G1
and i ∈ {0, . . . , I − 1} such that G1|i+1 = bisect(G1|i, {K }). The fact that G1|i+1 ∈Ap,q (and that levels do not decrease during 
refinement) implies

min�(Gp,q
1 (K ))≥min�(Gp,q

1|i (K ))≥ �(K )= j. (13)

Assume for contradiction that there is K̃ ∈ Gp,q
j (K ) with �(K̃ ) < �(K ) = j. This implies K̃ /∈M (otherwise K̃ would have 

been bisected in a previous step). Moreover, (13) and Corollary 2.15 yield that there is K̃ ′ ∈ Gp,q
1 (K ) with K̃ ′ ⊂ K̃ and hence 

K̃ ∈M in contradiction to K̃ /∈M from before. This proves Claim 2.
The proven claims show M j = Ḡ j \ Ḡ j+1 for all j = 0, . . . , J and hence for the admissible mesh Ḡ J+1 that there is no 

coarser partition of � into elements from 
⋃

Ap,q that refines all elements in M. This property defines a unique partition 
and hence

G1 ⊗ G2 = Ḡ J+1 ∈Ap,q. �
Lemma 4.4. For all G1, G2 ∈Ap,q holds

# (G1 ⊗ G2)+ #G0 ≤ #G1 + #G2 .

Proof. By definition, the overlay is a subset of the union of the two involved meshes, i.e.,

G1 ⊗ G2 = Min⊆(G1 ∪ G2) ⊆ G1 ∪ G2 . (14)

Define the shorthand notation G(K ) := {K ′ ∈ G | K ′ ⊆ K }. To prove the lemma, it suffices to show

∀ K ∈ G0, #(G1 ⊗ G2)(K )+ 1≤ #G1(K )+ #G2(K ) .

Case 1. G1(K ) ⊆ (G1 ⊗ G2)(K ). This implies equality and hence

#(G1 ⊗ G2)(K )+ 1= #G1(K )+ 1≤ #G1(K )+ #G2(K ) .

Case 2. There exists K ′ ∈ G1(K ) \ (G1 ⊗ G2)(K ). Then (G1 ⊗ G2)(K ) = (G1 ⊗ G2)(K ) \ {K ′} and hence

#(G1 ⊗ G2)(K ) = #
(
(G1 ⊗ G2)(K ) \ {K ′}) (14)≤ #

(
(G1 ∪ G2)(K ) \ {K ′})

≤ #(G1 \ {K })+ #G2(K ) = #G1(K )− 1+ #G2(K ). �
5. Nestedness

This section investigates the nesting behavior of the T-spline spaces corresponding to admissible meshes. In order to 
prove that nested admissible meshes induce nested spline spaces, we make use of Theorem 6.1 from Li and Scott (2014). 
Before presenting the theorem, we briefly introduce necessary notations.

Definition 5.1 (Refinement relation). For any partitions G1, G2 of �, we introduce the refinement relation “�”, which is 
defined using the overlay (see Section 4),

G1 � G2 ⇔ G1 ⊗ G2 = G2.

Corollary 5.2. Denote the skeleton of a mesh G by Sk(G) := hSk(G) ∪ vSk(G). Then for rectangular partitions G1 , G2 of � holds the 
equivalence

G1 � G2 ⇔ Sk(G1)⊆ Sk(G2).
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Definition 5.3 (Extended mesh). Given a rectangular partition G of �, denote by extp,q(G) the union of all T-junction exten-
sions in the mesh G . Then the extended mesh Gext is defined as the unique rectangular partition of � such that

Sk(Gext)= Sk(G)∪ extp,q(G).

Definition 5.4 (Mesh perturbation). Given a partition G of � into axis-aligned rectangles, we define by Ptb(G) the set of all 
continuous and invertible mappings δ : �→ � such that the corners (0, 0), (M, 0), (M, N), (0, N) are fixed points of δ and

δ(G)= {
δ(K ) | K ∈ G}

is also a partition of � into axis-aligned rectangles.

This definition differs from the definition of perturbations given in Li and Scott (2014), which we found difficult to 
reproduce in a formal manner. The subsequent Proposition 5.5 shows that our definition includes the understanding of 
perturbations from Li and Scott (2014).

Remark. For δ ∈ Ptb(G), the perturbed mesh δ(G) has the skeleton Sk(δ(G)) = δ(Sk(G)). Hence, global index vectors can be 
defined according to Definition 3.3, and since all T-junctions in δ(G) are of axis-parallel types (�, ⊥, �, or �), we can also 
apply Definition 3.4 for T-junction extensions in the perturbed mesh. Note in particular that the perturbation δ does not 
in general map T-junction extensions to the corresponding extensions in the perturbed mesh, i.e., if T is a T-junction in G , 
then

extp,q
δ(G)(δ(T )) != δ(extp,q

G (T )).

Proposition 5.5. For any rectangular partition G of �, there is some δ∗ ∈ Ptb(G) such that any two T-junction face extensions in 
δ∗(G) are disjoint.

In the context of Li and Scott (2014), this means that δ∗(G) has no crossing vertices and no overlap vertices.

Proof. If all T-junction extensions in G are pairwise disjoint, then δ∗ is the identity map. If there exist T-junctions T1, 
T2 in G with intersecting face extensions, then T1 and T2 are either both vertical or both horizontal T-junctions. Assume 
w.l.o.g. that T1 and T2 are vertical T-junctions. Since their (vertical) face extensions overlap, both T-junctions have the same 
x-coordinate t0. Let T1 = (t0, t1) and T2 = (t0, t2), and assume t1 < t2. There exists t1.5 with t1 ≤ t1.5 ≤ t2 such that at least 
one of the open segments {t0} × (t1, t1.5) and {t0} × (t1.5, t2) does not intersect with the vertical skeleton vSk(G). Assume 
that {t0} × (t1, t1.5) ∩ vSk(G) = ∅ and define

�x=t0 :=
{
(x, y) ∈ � | x= t0

}
and Gx=t0 :=

{
K ∈ G | K ∩ �x=t0 != ∅

}
.

Let h be the length of the shortest edge in G , and set ε := h/2. We define δT1 T2 by

δT1 T2(x, y)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, y) if (x, y) ∈⋃
(G \ Gx=t0)

(x− ε, y) if x= t0 and y < t1

(x+ ε, y) if x= t0 and y > t1.5(
x+ ε (2y−t1−t1.5)

t1.5−t1
, y

)
if x= t0 and t1 ≤ y ≤ t1.5

and elsewhere by horizontal linear interpolation, which is illustrated in Fig. 7. The map δT1 T2 then satisfies the following 
properties.

1. δT1 T2 is in Ptb(G).
2. The T-junction extensions of δT1 T2 (T1) and δT1 T2 (T2) do not intersect.
3. δT1 T2 does not lead to intersecting of T-junction extensions that did not intersect in the unperturbed mesh G .

A straight-forward proof shows that perturbations can be concatenated in the sense that

δ1 ∈ Ptb(G), δ2 ∈ Ptb(δ1(G)) ⇒ δ2 ◦ δ1 ∈ Ptb(G).

This allows for the subsequent conclusion of the proof. Given the mesh G0 := G choose an arbitrary pair (T0, T ′0) of 
T-junctions in G such that their face extensions intersect, and set G1 := δT0 T ′0 (G0). Then choose (T1, T ′1) such that T1 and 
T ′ are T-junctions with intersecting face extensions in G1, construct δT T ′ as above, accounting that h and ε may have 
1 1 1
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Fig. 7. Example for a perturbation δT1 T2 . In the shaded area, δT1 T2 equals the identity map. In the non-shaded region, we underlaid a red grid to illustrate 
the behavior of δT1 T2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

changed. Set G2 := δT1 T ′1 (G1). Repeat this until in a mesh Gn , there are no intersecting T-junction face extensions. Then 
δ∗ := δTn−1 T ′n−1

◦ . . . ◦ δT0 T ′0 is in Ptb(G) and satisfies that all T-junction face extensions in δ∗(G) are pairwise disjoint. �
Theorem 5.6. (See Li and Scott, 2014, Theorem 6.1.) Given two analysis-suitable meshes G1 and G2 , if for all δ ∈ Ptb(G2) holds

(
δ(G1)

)ext � (
δ(G2)

)ext
,

then the T-spline spaces corresponding to G1 and G2 are nested.

The main result of this section is the following.

Theorem 5.7. Any two meshes G1, G2 ∈Ap,q that are nested in the sense G1 � G2 satisfy for all δ ∈ Ptb(G2)(
δ(G1)

)ext � (
δ(G2)

)ext
.

Proof. According to Corollary 5.2, we have to show that

extp,q(δ(G1)
)∪ Sk

(
δ(G1)

) ⊆ extp,q(δ(G2)
)∪ Sk

(
δ(G2)

)
.

We prove this for G2 being an admissible bisection of G1. The claim then follows inductively for all admissible refinements 
of G1. Let K ∈ G1 ∈ Ap,q and G2 := bisect(G1, K ) ∈ Ap,q . Since “�” denotes an elementwise subset relation, it is preserved 
under the mapping δ. Thus, from G1 � G2 follows δ(G1) � δ(G2) and consequently Sk

(
δ(G1)

) ⊆ Sk
(
δ(G2)

)
. It remains to 

prove that

extp,q(δ(G1)
) ⊆ extp,q(δ(G2)

)∪ Sk
(
δ(G2)

)
.

Denote by T1 and T2 the set of T-junctions in G1 and G2, respectively. Assume w.l.o.g. that �(K ) is even, and consider 
an arbitrary T-junction T δ in the mesh δ(G1). Since δ is continuous and invertible, there is a one-to-one correspondence 
between the T-junctions in G1 and δ(G1), i.e., there is T ∈ T1 with δ(T ) = T δ , and T and T δ are of the same type (�, ⊥, �, 
or �).

Case 1. T /∈ K . Then T is still a T-junction after bisecting K , i.e., T ∈ T2. Consequently, T δ is also a T-junction in δ(G2).
Case 1a. T is a vertical T-junction. Since �(K ) is assumed to be even, its bisection does not affect the horizontal skele-

ton, i.e., hSk(G1) = hSk(G2) and hence hSk(δ(G1)) = hSk(δ(G2)). Consequently, the T-junction extensions of T and T δ are 
preserved,

extp,q
G1

(T )= extp,q
G2

(T ) and extp,q
δ(G1)

(T δ)= extp,q
δ(G2)

(T δ)⊆ extp,q (
δ(G2)

)
.

Case 1b. T is a horizontal T-junction. We will show that the corresponding T-junction extension in the perturbed mesh is 
preserved, i.e.,

extp,q
δ(G1)

(T δ)= extp,q
δ(G2)

(T δ).

Assume for contradiction that extp,q
δ(G1)

(T δ) != extp,q
δ(G2)

(T δ). The bisection of K generates a vertical edge E K ⊇ vSk(G2) \
vSk(G1), and we denote

Eδ := δ(E K )⊇ vSk(δ(G2)) \ vSk(δ(G1)).
K
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Obviously, Eδ
K intersects with extp,q

δ(G1)
(T δ), otherwise the T-junction extension would be the same in δ(G2). Given K =

[μ, μ + μ̃] ×[ν, ν+ ν̃], we define the half-open domain Kho := ]μ,μ+ μ̃[×[ν, ν+ ν̃], which is the rectangle K without its 
vertical edges. Then E K ⊂ Kho and hence Eδ

K ⊂ K δ
ho := δ(Kho). Together, we have that extp,q

δ(G1)
(T δ) intersects with K δ

ho. Since 
the bisection of K is admissible, we know from the proof of Theorem 3.6 that extp,q

G1
(T ) does not intersect with Kho in the 

unperturbed mesh G1. Define the T -environment

U (T ) :=
⋃

K ′∈G1
K ′ho∩extp,q(T ) !=∅

K ′,

as the union of all K ′ ∈ G1 such that extp,q(T ) intersects the corresponding half-open K ′ho. Then U (T ) is a rectangular 
domain that does not intersect with Kho. Since for each K ′ ⊆ U (T ), the image δ(K ′) is a rectangle and since δ is continuous, 
δ
(

U (T )
)

is a rectangular domain that does not intersect with K δ
ho. Moreover, since all edges and vertices in U (T ) are 

continuously mapped into δ
(

U (T )
)
, we have U (T δ) ⊆ δ

(
U (T )

)
. Together, we get that U (T δ) does not intersect with K δ

ho, 
hence extp,q

δ(G1)
(T δ) does not intersect with K δ

ho, which is the desired contradiction.

Case 2. T ∈ K . In Section 2, we assumed that p, q ≥ 2. This implies that all neighbors of K are in Gp,q
1 (K ) and that K is in 

the patch of all those neighbors as well. Since G1 is admissible, the level of a neighbor of K is either �(K ) or �(K ) +1. Since 
�(K ) is even, T must be a vertical T-junction, and T δ is a vertical T-junction as well. Since T is on the boundary of K , and 
the bisection of K generates a vertical edge, T is not a T-junction anymore in G2. Hence T δ is a vertex, but not a T-junction 
in δ(G2). The T-junction extension extp,q(T δ) hence only exists in δ(G1). Consider the edge extension of T δ .

Case 2a. extp,q
e (T δ) ⊆ vSk(δ(G2)). There is no problem with that.

Case 2b. extp,q
e (T δ) � vSk(δ(G2)). Then there exists some T̃ δ ∈ extp,q

e (T δ) which is a T-junction in δ(G2), such that

extp,q
e (T δ)⊂ extp,q

δ(G2)(T̃ δ)⊆ extp,q(δ(G2)).

Cases 2a and 2b hold analogously for the face extension extp,q
f (T δ). Together, we have

extp,q(T δ)⊆ extp,q(δ(G2))∪ vSk(δ(G2)),

which concludes the proof. �
The combination of Theorems 5.6 and 5.7 reads as follows.

Corollary 5.8. For any two meshes G1, G2 ∈ Ap,q that are nested in the sense G1 � G2 , the corresponding T-spline spaces are also 
nested.

6. Linear complexity

This section is devoted to a complexity estimate in the style of a famous estimate for the Newest Vertex Bisection on 
triangular meshes given by Binev et al. (2004) and, in an alternative version, by Stevenson (2007). The estimate reads as 
follows.

Theorem 6.1. Any sequence of admissible meshes G0, G1, . . . , G J with

G j = refp,q(G j−1,M j−1), M j−1 ⊆ G j−1 for j ∈ {1, . . . , J }
satisfies

∣∣G J \ G0
∣∣ ≤ C p,q

J−1∑
j=0

|M j| ,

with C p,q = (3 +√2)(4dp + 1)(4dq +
√

2) and dp, dq from Lemma 6.4 below.

Remark. Theorem 6.1 shows that, with regard to possible mesh gradings, the refinement algorithm is as flexible as succes-
sive bisection without the closure step. However, this result is non-trivial. Given a mesh G ∈Ap,q and an element K ∈ G to 
be bisected, there is no uniform bound on the number of generated elements #(refp,q(G, {K }) \G). This is illustrated by the 
following example.

Example 6.2. Consider the case p = q = 2 and the initial mesh G0 given through M = 3 and N = 4. Mark the element in the 
lower left corner of the mesh and compute the corresponding refinement G1; repeat this step k times. Then there exists an 
element Kk in Gk such that #(ref1,1(Gk, Kk) \ Gk) ≥ k. This is illustrated in Fig. 8.
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Fig. 8. The mesh G3 and the mesh G8 from Example 6.2. The rectangles K3 and K8 are marked blue. The closures clos1,1(G3, {K3}) and clos1,1(G8, {K8})
are marked in light blue. Since the closure of K3 consists of 7 elements, 14 elements will be generated if K3 is bisected. Analogously, marking K8 would 
cause the generation of 34 new elements. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 9. Generated and marked elements for randomly refined (3, 3)-admissible meshes. Each black dot corresponds to a sequence of random admissible 
refinements. The red line depicts the highest observed ratio (≈ 5.95). The median of the observed ratios is ≈ 4.09. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Example 6.3. The large constant C p,q is not observed in practice. For p = q = 3, we constructed for each J ∈ {1, . . . , 2000} a 
sequence G0, G1, . . . , G J with G j+1 = bisect(G j, K j) and K j ∈ G j of uniform random choice. The ratio 

∣∣G J
∣∣/ J was below 6

(see Fig. 9), instead of the theoretical upper bound C3,3 ≈ 6042 from Theorem 6.1. We applied this procedure for p, q =
2, . . . , 9. The results are listed in Fig. 10. In Fig. 11, we listed similar results for J ∈ {1, . . . , 100}, always marking the element 
in the lower left corner. In that case, the observed ratios are higher, but still orders of magnitude below the corresponding 
theoretical bounds.

We devote the rest of this section to proving Theorem 6.1.

Lemma 6.4. Given M ⊆ G ∈Ap,q and K ∈ refp,q(G, M) \ G , there exists K ′ ∈M such that �(K ) ≤ �(K ′) + 1 and

Dist(K , K ′)≤ 2−�(K )/2(dp, dq),

with “≤” understood componentwise and constants

dp :=
(
1+ 2−1/2) p + 1+ 5

4

√
2, dq :=

(
1+√2

)
q+ 3

2 +
√

2.
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����p
q

2 3 4 5 6 7 8 9

2 5 5 7 7 7 7 8 8
3 6 6 7 7 8 8 9 11
4 7 8 8 8 11 10 10 12
5 7 7 9 10 10 12 11 13
6 7 8 10 10 11 12 12 16
7 8 11 10 13 12 12 16 14
8 9 10 11 17 13 13 15 15
9 9 11 12 14 14 16 16 23

Fig. 10. Maximal observed ratios of generated and marked elements for random refinement.

����p
q

2 3 4 5 6 7 8 9

2 24 33 46 56 69 78 91 100
3 33 46 65 78 97 109 128 140
4 46 65 91 110 136 154 179 198
5 56 78 110 132 163 186 216 238
6 69 97 136 164 202 229 268 295
7 78 110 154 186 229 260 304 335
8 91 128 180 217 268 304 355 391
9 100 141 198 239 295 335 391 431

Fig. 11. Maximal observed ratios of generated and marked elements when refining the lower left corner.

Proof. The coefficient Dp,q(k) from Definition 2.4 is bounded by

Dp,q(k)≤ (
(p +√2)2−1−k/2, (q+√2)2−(k+1)/2) for all k ∈N.

Hence for K̃ ∈ G ∈Ap,q , any K̃ ′ ∈ Gp,q(K̃ ) satisfies

Dist(K̃ , K̃ ′)≤ 2−�(K̃ )/2
(

p+√2
2 ,

q√
2
+ 1

)
. (15)

The existence of K ∈ refp,q(G, M) \ G means that Algorithm 2.9 bisects K ′ = K J , K J−1, . . . , K0 such that K j−1 ∈ Gp,q(K j)

and �(K j−1) < �(K j) for j = J , . . . , 1, having K ′ ∈M and K ∈ child(K0), with ‘child’ from Definition 2.6. Lemma 2.14 yields 
�(K j−1) = �(K j) − 1 for j = J , . . . , 1, which allows for the estimate

Dist(K ′, K0) ≤
J∑

j=1

Dist(K j, K j−1)
(15)≤

J∑
j=1

2−�(K j)/2
(

p+√2
2 ,

q√
2
+ 1

)

=
J∑

j=1

2−(�(K0)+ j)/2
(

p+√2
2 ,

q√
2
+ 1

)

< 2−�(K0)/2
(

p+√2
2 ,

q√
2
+ 1

) ∞∑
j=1

2− j/2

= (1+√2)2−�(K0)/2
(

p+√2
2 ,

q√
2
+ 1

)

= (2+√2)2−�(K )/2
(

p+√2
2 ,

q√
2
+ 1

)
.

The estimate Dist(K0, K ) ≤ 2−2−�(K0)/2
(
1, 
√

2
)

and a triangle inequality conclude the proof. �
Proof of Theorem 6.1.

(1) For K ∈⋃
Ap,q and K̃ ∈M :=M0 ∪ · · · ∪M J−1, define λ(K , K̃ ) by

λ(K , K̃ ) :=
{

2(�(K )−�(K̃ ))/2 if �(K )≤ �(K̃ )+ 1 and Dist(K , K̃ )≤ 21−�(K )/2(dp,dq),

0 otherwise.

(2) Main idea of the proof.

∣∣G J \ G0
∣∣= ∑

K∈G J \G0

1
(4)≤

∑
K∈G J \G0

∑
K̃∈M

λ(K , K̃ )

(3)≤
∑
˜

C p,q = C p,q

J−1∑
j=0

|M j|.

K∈M
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(3) For all j ∈ {0, . . . , J − 1} and K̃ ∈M j holds

∑
K∈G J \G0

λ(K , K̃ ) ≤ (3+√2)(4dp + 1)(4dq +
√

2) = C p,q .

This is shown as follows. By definition of λ, we have

∑
K∈G J \G0

λ(K , K̃ )≤
∑

K∈⋃Ap,q\G0

λ(K , K̃ )

=
�(K̃ )+1∑

j=1

2( j−�(K̃ ))/2 #
{

K ∈⋃
Ap,q | �(K )= j and Dist(K , K̃ )≤ 21− j/2(dp,dq)

}
︸ ︷︷ ︸

B

.

Since we know by definition of the level that �(K ) = j implies |K | = 2− j , we know that 2 j
∣∣⋃ B

∣∣ is an upper bound of #B . 
The rectangular set 

⋃
B is the union of all admissible elements of level j having their midpoints inside a rectangle of size

22− j/2dp × 22− j/2dq.

An admissible element of level j is not bigger than 2− j/2 × 2(1− j)/2. Together, we have

∣∣⋃ B
∣∣≤ 2− j(4dp + 1)(4dq +

√
2),

and hence #B ≤ (4dp + 1)(4dq +
√

2). The claim is shown with

�(K̃ )+1∑
j=1

2( j−�(K̃ ))/2 =
1∑

j=1−�(K̃ )

2 j/2 <
√

2+
∞∑
j=0

2− j/2 = 2
√

2−1√
2−1
= 3+√2.

(4) Each K ∈ G J \ G0 satisfies

∑
K̃∈M

λ(K , K̃ ) ≥ 1.

Consider K ∈ G J \ G0. Set j1 < J such that K ∈ G j1+1 \ G j1 . Lemma 6.4 states the existence of K1 ∈M j1 with Dist(K , K1) ≤
2−�(K )/2(dp, dq) and �(K ) ≤ �(K1) + 1. Hence λ(K , K1) = 2�(K )−�(K1) > 0. The repeated use of Lemma 6.4 yields j1 > j2 >

j3 > . . . and K2, K3, . . . with Ki−1 ∈ G ji+1 \ G ji and Ki ∈M ji such that

Dist(Ki−1, Ki)≤ 2−�(Ki−1)/2(dp,dq) and �(Ki−1)≤ �(Ki)+ 1. (16)

We repeat applying Lemma 6.4 as λ(K , Ki) > 0 and �(Ki) > 0, and we stop at the first index L with λ(K , K L) = 0 or 
�(K L) = 0. If �(K L) = 0 and λ(K , K L) > 0, then

∑
K̃∈M

λ(K , K̃ )≥ λ(K , K L)= 2(�(K )−�(K L))/2 ≥√2.

If λ(K , K L) = 0 because �(K ) > �(K L) + 1, then (16) yields �(K L−1) ≤ �(K L) + 1 < �(K ) and hence

∑
K̃∈M

λ(K , K̃ )≥ λ(K , K L−1)= 2(�(K )−�(K L−1))/2 ≥√2.

If λ(K , K L) = 0 because Dist(K , K L) > 21−�(K )/2(dp, dq), then a triangle inequality shows

21−�(K )/2(dp,dq) < Dist(K , K1)+
L−1∑
i=1

Dist(Ki, Ki+1) ≤ 2−�(K )/2(dp,dq)+
L−1∑
i=1

2−�(Ki)/2(dp,dq),

and hence 2−�(K )/2 ≤
L−1∑
i=1

2−�(Ki )/2. The proof is concluded with

1 ≤
L−1∑
i=1

2(�(K )−�(Ki))/2 =
L−1∑
i=1

λ(K , Ki) ≤
∑

K̃∈M
λ(K , K̃ ). �
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7. Conclusion

We presented an adaptive refinement algorithm for a subclass of analysis-suitable T-meshes that produces nested T-spline 
spaces, and we proved theoretical properties that are crucial for the analysis of adaptive schemes driven by a posteriori 
error estimators. As an example, compare Assumptions (2.9) and (2.10) from Carstensen et al. (2014) to Theorem 6.1 and 
Lemma 4.4, respectively. The presented refinement algorithm can be extended to the three-dimensional case, which is 
our current work. The factor C p,q from the complexity estimate is affine in each of the parameters p, q and increases 
exponentially with growing dimension. We aim to apply the proposed algorithm to proof the rate-optimality of an adaptive 
algorithm for the numerical solution of second-order linear elliptic problems using T-splines as ansatz functions. Similar 
results have been proven for simple FE discretizations of the Poisson model problem by Stevenson (2007), Cascon et al.
(2008), and recently for a wide range of discretizations and model problems by Carstensen et al. (2014).
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