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We study how to use bivariate splines for scattered data interpolation with nonnegativity 
preservation of the given data values. That is, we propose a constrained minimal energy 
method to find a C1 smooth interpolation of nonnegative data values over scattered 
locations using bivariate splines. We establish the existence and uniqueness of the 
minimizer under mild assumptions on the data locations and triangulations. Next we 
show some approximation properties of the minimizer. We then use the classic projected 
gradient algorithm to find the minimizer using a simplified nonnegative constraint. 
Some synthetic as well as a real life example demonstrate the performance, producing 
nonnegative interpolatory spline surfaces from nonnegative data values. Experimental 
results also show that the approximation of the nonnegative interpolatory spline surfaces is 
slightly better than the approximation of the classic minimal energy interpolatory splines.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Bivariate splines are smooth piecewise polynomial functions over a triangulation � which can be used to find a smooth 
interpolation to scattered data. Many approximation properties of such interpolatory and fitting splines have been studied 
(cf. e.g. Lai, 2008). In this paper, we explore how to find an interpolatory spline which preserves its nonnegativity and has 
some approximation property. Many computer aided design problems require fitting surfaces with nonnegative constraints 
for visualization of scattered data and/or for surface control. It also emerges in the study of data fitting problems on 
population or concentration data, as exemplified in the quantification of oxygen anomalies in the deep ocean following 
the Deepwater Horizon oil spill (see Section 4.2). In general, given a set of data {(xi, yi, zi); i = 1, . . . , N}, one wishes to 
construct a surface S which resembles the given data in the following senses:

1) if the data values zi are obtained from a smooth function f , i.e. zi = f (xi, yi), then S should be smooth;
2) if the data values are nonnegative, so is S;
3) if the data exhibit a monotone property, then S should have similar monotone property;
4) if data values are from a convex function or the data have a convex property, e.g., the piecewise linear interpolant is 

convex, then S should also be convex;
5) if the data values vary within a range, then the values of S should be also within the same range;
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6) if the data values are from a smooth function f , then S should approximate f when the number of data locations and 
values increases.

Note that the requirement 6), i.e. the data fidelity is the most important requirement in the data fitting problem.
As the data values are scattered over a domain of irregular shape, it is convenient to use triangulation based methods 

for data interpolation. Let � be a triangulation of a domain which contains all data locations {(xi, yi, zi); i = 1, . . . , N}, for 
which we can define bivariate splines as follows: For two positive integers r ≥ 1 and d > r,

Sr
d(�) := {s ∈ Cr(�) : s|t ∈ Pd,∀t ∈ �} (1)

is the bivariate spline space of smoothness r and degree d over triangulation �, where Pd is the space of all polynomials of 
total degree ≤ d and t ∈ � stands for a triangle in �. For convenience, let us assume � is a closed set. Piecewise bivariate 
polynomial functions over a triangulation are efficient for computation. It is known that Sr

d(�) can be used to approximate 
any function in C1(�) as the size |�| of the triangulation goes to zero, where |�| is the length of the longest edge of |�| (cf. 
Lai and Schumaker, 2007). Therefore, we adopt these functions to approximate the given nonnegative data values. We refer 
to Lai and Schumaker (2007) for the theory on bivariate splines and to Awanou et al. (2006) and Lai and Schumaker (2009)
for computations with bivariate splines. A classic approach to find the data interpolatory splines is to use the minimal 
energy method satisfying the data resemblance requirements 1) and 6): That is, one looks for

min
s∈C1(�)

{E(s) : s(xi, yi) = zi, i = 1, · · · , N}, (2)

where � is a closed polygonal domain containing data locations, C1(�) is the collection of all continuously differentiable 
functions over �, and E(s) is the well-known thin-plate energy functional

E(s) =
∫
�

(
|D2

x s|2 + 2|Dx D ys|2 + |D2
ys|2

)
dxdy.

Here Dx and D y stand for partial derivatives with respect to x and y. As C1(�) is an infinitely dimensional space, we use 
bivariate splines to approximate the minimizer in (2) by considering the following minimization:

min
s∈Sr

d(�)
{E(s) : s(xi, yi) = zi, i = 1, · · · , N}, (3)

where r ≥ 1 and � is a triangulation of �. See Awanou et al. (2006) for numerical solution of (3) and Von Golitschek et 
al. (2002) for approximation property of the minimizer of (3) which is called minimal energy interpolant. To construct pos-
itive preserving interpolatory splines fulfilling data resemblance requirements 1) and 2), Schumaker and Speleers proposed 
an algorithm to use C1 quadratic splines based on Powell–Sabin refinement of a triangulation of the given data locations 
(Schumaker and Speleers, 2010), assuming nonnegative data values and known gradient vectors at all locations. Similarly, 
they proposed algorithms using the C1 cubic spline space on the Clough–Tocher refinement of a triangulation of the given 
data locations with additional gradient values, and showed that their nonnegative spline interpolation can approximate a 
nonnegative function f when the size of triangulation goes to zero. In addition, Schumaker and Speleers (2010) presented 
an excellent summary of many local schemes to construct nonnegative preserving interpolatory functions and sufficient con-
ditions of polynomials or rational functions to be nonnegative over a triangle. See Saaban et al. (2011) for the performance 
of several local schemes for interpolatory surfaces with positive preservation. More recent developments of some rational 
functions for nonnegative preserving interpolation can be found in Hussain and Hussain (2011) and Sarfraz et al. (2012).

In practice, data locations usually do not cover the entire domain evenly. Although one can add more vertices to have a 
triangulation with better quasi-uniform property, i.e.

|�|
ρ�

≤ β < ∞ (4)

where ρ� is the smallest of the radii of the inscribed circles of all triangles in �. The nonnegative preserving schemes 
mentioned above would require data values at all vertices. In contrast, here, we study the data fitting problem with the 
resemblance requirements 1), 2) and 6) by formulating the problem in the following minimization problem:

min
s∈Sr

d(�)
{E(s) : s(xi, yi) = zi, i = 1, · · · , N; s(x, y) ≥ 0,∀(x, y) ∈ �}. (5)

That is, we use a global minimization approach to choose all the spline coefficients except for those which are at the 
given data locations based on a triangulation with a reasonable quasi-uniform constant β . Note that β appears in the 
approximation constant (cf. Lai and Schumaker, 2007). The smaller the β the better for the approximation. Certainly, the 
approach in (5) is not a brand-new approach. See Willemans and Dierckx (1995), Saaban et al. (2011) and Sarfraz et al.
(2012).
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Fig. 1. An interior edge e is active.

Fig. 2. Conversion of inactive edges e1 into active edges in two settings.

We shall first show that under some trivial conditions on data locations and a condition on triangulation, the minimiza-
tion above has a unique solution (see Theorem 2.1 in the next section). We next show that the minimizer Sz ∈ Sr

d(�) will 
approximate f if zi = f (xi, yi) for i = 1, . . . , N as |�| goes to zero. Two versions of the approximation property of Sz will be 
given. One is the convergence under the assumption that f is strictly positive and |�| can be sufficiently small, i.e. we are 
given a sufficiently amount of data values over locations which are spread out evenly to cover the entire domain. Another 
version is to show the approximation of Sz for any nonnegative f over any given triangulation. With these preparations, we 
discuss how to numerically solve this constrained minimization (5). There are many algorithms for constrained minimiza-
tion problem such as the projected gradient method (cf. Ciarlet, 1989), the Uzawa algorithm (cf. Ciarlet, 1989), the penalty 
function method and the barrier function method (cf. Nesterov, 2004). In this paper we use the projected gradient algorithm 
(cf. Ciarlet, 1989). To do so, we use a simplified sufficient condition for the constraint s(x; y) ≥ 0. Then we establish that our 
numerical algorithm is convergent (see Theorem 2.5) and apply it to several test cases. Our approach can also be extended 
to deal with range restricted data interpolation problem. See Example 4.2. In addition, data values often are noisy. Thus, one 
may also consider penalized least squares data fitting with preservation of nonnegativity, which leads to an unconstrained
minimization problem.

2. Main results and proofs

Let us begin with a new concept. We say an interior edge e of triangulation � is active if letting Q e = T1 ∪ T2 be two 
triangles from � sharing e, the line segment connecting the two tipping vertices of Q e (two vertices of Q e which are not 
in e) intersects e. See Fig. 1 for two triangles T1, T2 and e which is an active edge. One can easily change an inactive edge 
e1 to an active one by connecting u and v by a line segment (see Fig. 2, left panel), or introducing new edges (Fig. 2, right 
panel).

Theorem 2.1. Assume that the data (N ≥ 3) are not located on one line. For r = 1 and 2 ≤ d ≤ 4, we use the Powell–Sabin refinement 
�PS of � and use S1

d(�PS) for the Sr
d(�) in the minimization (5). For r = 1 and d ≥ 5, we assume that all the interior edges of � are 

active and we simply use S1
d(�) for the Sr

d(�) in (5). Then there exists a unique spline Sz ∈ Sr
d(�) solving the minimization (5).

Proof. We first show that the feasible set U = {s ∈ S1
d(�); s(xi, yi) = zi, i = 1, . . . , N; s(x, y) ≥ 0} is not empty. For d = 2, we 

can use Algorithm 1 in Schumaker and Speleers (2010) to have a nonnegative spline interpolant S0. If data values are not 
given at some vertices of �, we simply use any nonnegative values, say 1 for these values. For d = 3 and d = 4, we know 
S1

2(�PS) ⊂ S1
d(�PS) and hence, U is not an empty set. These show that the feasible set U is nonempty for 2 ≤ d ≤ 4 over 

a Powell–Sabin refinement �PS of a triangulation of the given data locations. For d ≥ 5, we can construct a nonnegative 
interpolatory spline S f ∈ S1

5(�) as shown in Fig. 3.
Indeed, one usually uses the Bernstein–Bézier polynomials to express each spline function over the triangulation. That 

is, in terms of B-coefficients, we can write a spline function s(x, y) as

s(x, y) =
∑

i+ j+k=d

ct
i jk Bt

i jk(x, y), if (x, y) ∈ t ∈ � (6)

where c = (ct
i jk; i + j + k = d; t ∈ �) of size DT N × 1, and Bt

i jk; i + j + k = d are Bernstein–Bézier polynomials of degree d
over triangle t (see Chapter 2 in Lai and Schumaker, 2007), D = (d + 1)(d + 2)/2 and T N is the number of total triangles 
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Fig. 3. A construction of nonnegative interpolation.

in �. Consider a triangle T = 〈vi, v j, vk〉 ∈ �. In Fig. 3, we show the B-coefficients of a spline interpolant S f ∈ S1
5(�)

over T . First, we immediately see that S f interpolates f at vertices of vi , v j , vk . It is easy to verify that these coefficients 
satisfy the C1 smoothness conditions across edges [vi, v j] and [vi, vk]. In Fig. 3, the polynomial coefficients ct

i jk are given by 

a1 = b1 f j+b3 f i
1+|b2| , where vm = b1v j + b2vk + b3vi with b1 + b2 + b3 = 1. Similarly, a2 = c1 f i+c3 fk

1+|c2| , where vn = c1vi + c2v j + c3vk

with c1 + c2 + c3 = 1. a3 is similar to a1 and a2 if the edge 〈v j, vk〉 is an interior edge. If 〈v j, vk〉 is a boundary edge, we 
let a3 = ( f j + fk)/2. Since these interior edges [vi, v j] and [vi, vk] are active, b1 ≥ 0, b3 ≥ 0 and c1 ≥ 0, c3 ≥ 0. Thus all the 
coefficients over T are nonnegative and hence, S f on T is a nonnegative polynomial on T . As the spline function S f is so 
defined for all triangles in �, S f is a nonnegative interpolant in S1

5(�). This shows that the feasible set U is nonempty for 
d ≥ 5.

Next, we can write J (c) := E(s) if a spline function s is written in terms of (6). Then it is easy to see J (c) is a continuous 
function of c. One can show that the boundedness of c is equivalent to the boundedness of J (c) by using the Markov 
inequality. J (c) achieves its minimum over the domain of c such that J (c) ≤ J (c0), where c0 is the coefficient vector of the 
nonnegative interpolant S f ∈ U .

Finally we show the minimizer Sz is unique. Otherwise, let us say Sz and S w are two minimizers. Then Sα = αSz + (1 −
α)S w is also in U for all α ∈ (0, 1) and E(Sα) also achieves the minimum. Then ∂d

dα E(Sα)|α=0+ = 0 and ∂d
dα E(Sα)|α=1− = 0

imply ∫
�

D2
x S w D2

x(Sz − S w) + 2Dx D y S w Dx D y(Sz − S w) + D2
y S w D2

y(Sz − S w) = 0

and ∫
�

D2
x Sz D2

x(Sz − S w) + 2Dx D y Sz Dx D y(Sz − S w) + D2
y Sz D2

y(Sz − S w) = 0.

It follows that E(Sz − S w) = 0. The smoothness condition, i.e. C1 condition implies that Sz − S w is a linear polynomial. As 
the given data set has 3 or more data locations which are not on the same line, the linear polynomial is zero at the data 
locations and hence, the linear polynomial Sz − S w = 0 or Sz = S w everywhere on �. These complete the proof. �

We next show some approximation properties of Sz . Let W 2∞(�) be the space of all twice differentiable functions over 
� with bounded maximum norm of the second order derivatives, that is, | f |2,∞,� < ∞. Next we recall the following 
approximation property (cf. Lai and Schumaker, 2007).

Theorem 2.2 (Optimal approximation order). Assume d ≥ 3r + 2 and let � be a triangulation of �. Then there exists a quasi-
interpolatory operator Q ( f ) ∈ Sr

d(�) mapping f ∈ C(�) into Sr
d(�) such that Q ( f ) achieves the optimal approximation order: if 

f ∈ Cm+1(�),

‖Dα Dγ
(Q ( f ) − f )‖C(�) ≤ C |�|m+1−α−γ | f |m+1,� (7)
1 2
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for all α + γ ≤ m + 1 with 0 ≤ m ≤ d, where D1 and D2 denote the derivatives with respect to the first and second variables and the 
constant C depends only on the degree d and the smallest angle θ� and may be dependent on the Lipschitz condition on the boundary 
of �. Here ‖ f ‖C(�) is the maximum norm of f over the closed domain � and | f |m+1,� = maxα+γ =m+1 ‖Dα

x Dγ
y f ‖C(�) .

We are now ready to study some approximation properties of the spline minimizer in (5). Let us begin with an easy case 
when f is strictly positive.

Theorem 2.3. Suppose zi = f (xi, yi), i = 1, . . . , n for a smooth positive function f ∈ W 2∞(�). Let d ≥ 3r +2 and � be a triangulation 
of the data sites {(xi; yi); i = 1; . . . ; N}. Suppose that |�| is sufficiently small. Then

‖Sz − f ‖L2(�) ≤ C |�|2| f |2,∞,�, (8)

where C > 0 is a constant dependent on d and the smallest angle ρ� of � as well as the Lipschitz constant associated with the boundary 
∂� if � is not convex.

Proof. A proof follows from the ideas in Lai (2007, 2000). For convenience, we include the detail. Recall Lemma 6.1 from 
Von Golitschek et al. (2002). That is, suppose g defined on a triangle T = 〈v1; v2; v3〉 satisfying g(vi) = 0 for i = 1; 2; 3. Then

‖g‖∞,T ≤ C |T |2| f |2,∞,� (9)

for a constant C > 0 dependent on the smallest angle of T . Fix each triangle T ∈ �. Since g = Sz − f is zero at the vertices 
of T, we have

‖Sz − f ‖∞,T ≤ C |T |2|Sz − f |2,∞,� ≤ C |T |2(|Sz|2,∞,� + | f |2,∞,�). (10)

Using the stability property of Bernstein–Bézier polynomial Sz over T (see Theorem 1.1 in Lai and Schumaker, 2007) we 
have

|Sz|2,∞,� ≤ K

A1/2
T

(E(Sz|T ))1/2, (11)

where AT is the area of triangle T and K is a positive constant dependent only on d. It follows that

∫
�

|Sz − f |2dxdy =
∑
T ∈�

∫
T

|Sz − f |2dxdy ≤
∑
T ∈�

2C2|T |4 AT (| f |22,∞,T + K 2

AT
E(Sz|T ))

≤ 2C2|�|4| f |22,∞,�

∑
T ∈�

AT + 2C2|�|4 K 2
∑
T ∈�

E(Sz|T )

= 2C2|�|4| f |22,∞,� A� + 2C2|�|4 K 2 E(Sz),

where A� stands for the area of domain �.
Note that when f ≥ ε > 0 over �, we use Q ( f ) from the above theorem to have

min
(x,y)∈�

Q ( f )(x, y) ≥ min
(x,y)∈�

f (x, y) − ‖ f − Q ( f )‖C(�) ≥ ε − K |�|m+1| f |m+1,�.

When |�| is small enough, we can have min(x,y)∈� Q ( f )(x, y) ≥ 0. Note that the construction of Q ( f ) shows that Q ( f )
interpolates f at all the vertices of f . Thus, Q ( f ) ∈ U and hence, E(Sz) ≤ E(Q ( f )).

Furthermore, for α + γ = 2 in (7) above, we have

E(Q ( f )) ≤ 2E(Q ( f ) − f ) + 2E( f ) ≤ 2A�|Q ( f ) − f |22,� + 2A�| f |22,� ≤ K1 A�| f |22,�

for a positive constant K1. That is, E(Sz) ≤ K2| f |22,� for another positive constant K2. We now summarize the discussion to 
conclude the desired approximation property (8) with another positive constant K for d ≥ 3r + 2. �

We continue to discuss the approximation property of Sz . Mainly, we study the approximation of Sz without assuming 
that f is strictly positive and |�| is sufficiently small. Let us consider the case for d = 2, 3, 4 first. As discussed before, we 
use a Powell–Sabin refinement of a triangulation associated with the data locations. Let I+

PS( f ) be the positive interpolatory 
spline function from Schumaker and Speleers (2010). The following approximation property was established in Schumaker 
and Speleers (2010):



JID:COMAID AID:1466 /FLA [m3G; v1.149; Prn:20/03/2015; 8:43] P.6 (1-13)

6 M.-J. Lai, C. Meile / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 4. An example of spline representation over a triangle.

Theorem 2.4. (See Schumaker and Speleers, 2010.) Suppose f is a nonnegative function in Ck+1(�) with 0 ≤ k ≤ 2. For any tri-
angulation � of (xi, yi), i = 1, · · · , n, let PS� be an associated Powell–Sabin refinement of �. Then the nonnegative fit I+

PS( f ) of f
constructed in Schumaker and Speleers (2010) satisfies

‖ f − I+
PS( f )‖∞,� ≤ C L1( f )|�| + C2|�|k+1| f |k+1,∞,�, (12)

with L1( f ) being a constant dependent on | f |1,∞,� .

For our application, we need to have an estimate for I+
PS( f ). The inequality in (12) is not very helpful as we have 

to compute all the second order derivatives of I+
PS( f ) for the evaluation of E(I+

PS( f )) in (5). To do so, let us consider 
a special nonnegative interpolant S f ,0 := I+

PS( f ) using Dx f (v) = 0 = D y f (v) for all vertices v of �. Let us present the 
Bernstein–Bézier representation of S f ,0 as in Fig. 4, where the point with barycentric coordinate (1/2, 1/4, 1/4) of a triangle 
is chosen as the split point P and the line connected to P and the split point of a neighboring triangle intersects the 
common edge at the middle point of the edge. When the point P is not in such a special location, there will be more ratios 
of areas of subtriangles shown in the figure. We are now able to calculate Dxx S f ,0 using the B-coefficients shown in Fig. 4.

A straight-forward calculation of Dxx S f ,0(x, y) at any one subtriangle t of T shows that

‖Dxx S f ,0(x, y)‖∞,t ≤ C

|t|2 max{| f1 − f2|, | f2 − f3|, | f1 − f3|}

≤ C1

|t| | f |1,∞,t ≤ C2

|T | | f |1,∞,T (13)

for a positive constant C2 dependent on the ratios of subtriangles t and T . Similar for Dx D y S f ,0(x, y) and D yy S f ,0(x, y). It 
follows

E(S f ,0) =
∑
T ∈�

E(S f ,0|T ) ≤
∑
T ∈�

C2
2 AT

|T |2 | f |22,∞,T ≤ C2
2 A�

|�|2 | f |22,∞,�

for a positive constant C3 > 0 dependent on the β quasi-uniformality of � only. As discussed above, we have∫
�

|Sz − f |2dxdy ≤ 2C2|�|4| f |22,∞,� A� + 2C2|�|4 K 2 E(S f ,0)

≤ 2C2|�|4| f |22,∞,� A� + 2C2|�|2 K 2C2
3 A�| f |21,∞,�.

Hence, we have ‖Sz − f ‖L2(�) ≤ C |�|2| f |2,∞,� + C |�|| f |1,∞,� . This motivates the following

Theorem 2.5. Suppose zi = f (xi, yi), i = 1, · · · , N for a smooth nonnegative function f ∈ W 2∞(�). Let �PS be a Powell–Sabin refine-
ment of a triangulation of the data sites (xi, yi), i = 1, · · · , N. The minimizer Sz of (5) in S1

d(�PS) for d ≥ 2 satisfies

‖Sz − f ‖L2(�) ≤ K1|�|2| f |2,∞,� + K2|�|| f |1,∞,�, (14)
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where K1, K2 are positive constants dependent on d, the area A�, and the smallest angle ρ� of � as well as the Lipschitz constant 
associated with the boundary ∂� if � is not convex.

Similarly, for d ≥ 5 we use the Bernstein–Bézier representation of S f ,0 in Fig. 3 to compute Dxx S f ,0 over T . A similar in-
equality as in (13) can be established based on a straightforward calculation of D2

vi −v j
S f ,0, Dvi−v j Dvi−vk S f ,0 and D2

vi−vk
S f ,0

which can be bounded by max{| f i − f j |, | f i − fk|, | f j − fk|}. The rest is done as the same as the proof of Theorem 2.5. 
Therefore, we have the following

Theorem 2.6. Suppose zi = f (xi, yi), i = 1, · · · , N for a smooth nonnegative function f ∈ W 2∞(�). Let �PS be a Powell–Sabin refine-
ment of a triangulation of the data sites (xi, yi), i = 1, · · · , N. Suppose that all the edges of � are active. Then the minimizer Sz of (5)
in S1

d(�) for d ≥ 5 satisfies the approximation property in (14).

3. The projected gradient method for nonnegative preserving interpolation

We finally discuss how to numerically solve the minimization in (5). Let us first recall a classic method for solution of a 
general convex constrained minimization: find c∗ ∈ U ⊂ R

n , where U is a convex set such that

J (c∗) = min
c∈U

J (c), (15)

where J (c) is a convex functional. Let us motivate this method as follows: suppose we have the kth iterative solution 
c(k) ∈ U for k ≥ 0. We compute the next iterative solution by solving

ck+1 = arg min
c∈U

〈∇ J (c(k)), c − c(k)〉 + L

2
‖c − c(k)‖2. (16)

Let P U be the projection of U , i.e., P U (c) ∈ U for any c ∈ R
n . When J is convex and U is a closed convex set, ck+1 can be 

computed using the projection P U . This leads to a projected gradient algorithm as follows:

Algorithm 3.1 (The classic projected gradient algorithm). For a given initial guess c(0), find ck+1 ∈R
n such that

c(k+1) := P U (c − c(k) + 1

L
∇ J (c(k))) (17)

for k ≥ 0 until the maximal number of iterations is achieved, where L > 0 is a number dependent on the Lipschitz condition 
of ∇ J .

In terms of our spline notation, we let J (c) = c�Ec be the thin-plate energy functional and U = {c ∈ R
n, Hc = 0,

Ic = z, c ≥ 0} be the convex set, where Hc = 0 stands for all smoothness conditions, Ic = z are a collection of all inter-
polatory conditions, i.e., S(xi, yi) = zi with c being the spline coefficients of S . In terms of the projected gradient method, 
we have

Algorithm 3.2 (Nonnegative spline fitting algorithm). Start with an initial guess solution, say c(0) associated with the minimal 
energy interpolatory spline satisfying (3). For k ≥ 1, we compute

min{〈∇ J (c(k)), c − c(k)〉 + L

2
‖c − c(k)‖2, subject to Hc = 0, Ic = z, c ≥ 0} (18)

to find c(k+1) . That is, we find ck+1 by the projection

c(k+1) = arg min{‖ck − 1

L
∇ J (ck) − c‖, Hc = 0, Ic = z, c ≥ 0} (19)

for k = 0, 1, 2, · · · until the maximal number of iterations is achieved.

It is known that when J is strongly convex, i.e., elliptic (cf. Ciarlet, 1989), the projected gradient method is convergent 
linearly. See Theorem 8.6-2 in Ciarlet (1989). That is, we say that a minimizing functional J is elliptic if J is differentiable 
and there exists a positive constant μ such that

〈∇ J (a) − ∇ J (b),a − b〉 ≥ μ‖a − b‖2, ∀a,b ∈R
n. (20)

One can easily see that the energy functional J (c) = E(s) is not strongly convex. Indeed, the strong convexity for twice 
differentiable functional such as J is equivalent to the fact that Hessian of J is positive definite. However, for the data 
values which are from any linear polynomial, we know that the Hessian of J is singular. Thus, we have to use a more 
refined convergence result for the projected gradient method.
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Fig. 5. A nonnegative surface and a triangulation.

Theorem 3.1. Suppose that the minimization problem (5) has a unique minimizer c∗. Suppose that J is Lipschitz differentiable. Then 
the sequence {ck, k ≥ 1} from Algorithm 3.1 converges and satisfies

J (ck) − J (c∗) = O (
1

k
), ∀k → ∞.

We refer to Theorem 4 in Nesterov (2013) for a proof. This explains that our Algorithm 3.2 will converge as it is clear 
that our J is Lipschitz differentiable. Our Algorithm 3.2 can also be extended to compute the range restricted interpolatory 
splines. We shall use the projected gradient method to compute the following

min
s∈Sr

d(�)
{E(s) : s(xi, yi) = zi, i = 1, · · · , N; A ≤ s(x, y) ≤ B,∀(x, y) ∈ �}, (21)

for any two numbers A, B with A < B . See, e.g. Chan and Ong (2001) for study of range-restricted interpolations.

4. Numerical results

4.1. Simulation results

We implemented our Algorithm 3.2 using bivariate spline functions based on MATLAB programs discussed in Awanou 
et al. (2006) and applied them to several example problems to assess their performance. The major computational step 
of Algorithm 3.2 is the minimization of the quadratic functional (19), for which we use the Lagrange multiplier method. 
ck+1 can be solved by using least squares method as the following system of linear equations is not of full rank or by using 
the iterative method discussed in Awanou et al. (2006):( I B� H�

B 0 0
H 0 0

)[ ck+1

α
γ

]
=

[ ck − hEc(k)

z
0

]

for Lagrange multipliers α and γ , where I is the matrix associated with interpolatory conditions, i.e. Bc = z with z being 
the vector of given function values, and H is the matrix associated with smoothness conditions.

Example 4.1. We begin with an academic example: a given set of data is from the following function:

f (x, y) =

⎧⎪⎨
⎪⎩

1 y − x ≥ 1/2
2(y − x) 0 ≤ y − x ≤ 1/2
1
2 cos(4π

√
(x − 3/2)2 + (y − 1/2)2) + 1/2 (x − 3/2)2 + (y − 1/2)2 ≤ 1/16

0 otherwise
on the domain [0, 2] × [0, 1] (cf. Kong et al., 2004; Saaban et al., 2011; Schumaker and Speleers, 2010). A data set and an 
associated triangulation is shown in Fig. 5. We use bivariate spline space S1

5(�) to find the standard minimal energy interpo-
lation spline by the algorithm in Awanou et al. (2006) and nonnegative preserving interpolatory spline by our Algorithm 3.2. 
These two interpolatory surfaces are shown in Fig. 6.

One can see that the minimal energy interpolatory spline method is not able to preserve the nonnegativity. It has 
negative value as low as −0.13667 while our nonnegative preserving interpolatory spline is nonnegative.



JID:COMAID AID:1466 /FLA [m3G; v1.149; Prn:20/03/2015; 8:43] P.9 (1-13)

M.-J. Lai, C. Meile / Computer Aided Geometric Design ••• (••••) •••–••• 9
Fig. 6. Minimal energy interpolation and positive preserving interpolation based on triangulation in Fig. 5.

Table 1
Numerical results of range restricted interpolatory splines.

Level of refinement Min Max Accuracy of interpolation Accuracy of smoothness Maximum error

0 0 1 1.124e−16 8.710e−5 0.9986
1 0 1 4.422e−16 1.370e−4 0.50843
2 0 1 5.551e−16 2.277e−4 0.13119
3 0 1 1.332e−15 3.621e−4 0.04679
4 0 1 1.221e−15 5.603e−4 0.01126

Table 2
Numerical results of minimal energy interpolatory splines.

Level of refinement Min Max Accuracy of interpolation Accuracy of smoothness Maximum error

0 −0.1002 1.0779 9.771e−15 2.564e−14 1.076
1 −0.1242 1.0857 4.851e−14 1.483e−12 0.5118
2 −0.1032 1.046 2.216e−13 1.270e−12 0.1393
3 −0.0327 1.0216 2.658e−12 6.369e−12 0.0496
4 −0.0102 1.0106 1.416e−10 3.260e−10 0.02383

Example 4.2. This is a continuation of Example 4.1. We mainly show how well our nonnegative preserving interpolatory 
splines can approximate the given nonnegative surface. Similar to an example in Schumaker and Speleers (2010), we first 
divide the domain [0, 2] × [0, 1] into a triangulation �0 of 8 triangles. Then we refine �0 uniformly and repeatedly to 
have refined triangulations �n , n = 1, 2, · · · , 6. We use C1 quintic splines in S1

5(�n) to approximate the same function f
given in Example 4.1 by using both the minimal energy interpolatory spline method and range restricted interpolatory 
spline method (see the minimization problem in (21)) using the vertices as the data locations and the values of the given 
function f at these locations. Our numerical results are shown in Tables 1 and 2. We use the accuracy of interpolation, i.e. 
max{| f (xi, yi) − S f (xi, yi)|, i = 1, · · · , N} and the accuracy of smoothness, i.e. the maximum norm of the vector Hc as well 
as the maximum norm of f − S f over 201 × 101 equally-spaced locations to measure how well both spline methods can 
approximate f .

From the numerical values from Tables 1 and 2 we can see that the range restricted interpolatory splines are able to 
satisfy the given range restriction and interpolate the given data values with a slight loss of the accuracy of smoothness 
condition. We looked into detail of the smoothness conditions and saw that all the smoothness conditions are satisfied very 
well except for those around the bottom of the peak of the surface f , where f is only continuous anyway. This reflects 
an advantage of our method as the interpolatory spline surface from our approach follows the smoothness pattern of the 
given data function. Also, our numerical results show that the maximum errors at various levels are consistent with the 
maximum errors in Schumaker and Speleers (2010). Our method does not need Hermite derivatives at any vertices of 
underlying triangulation while the methods in Schumaker and Speleers (2010) do. This is another advantage of our method. 
However, the methods in Schumaker and Speleers (2010) do not require solving a minimization problem which can be 
expensive for problems of large size.
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Fig. 7. A triangulation and its uniform refinement of a city.

Fig. 8. Minimal energy interpolation and positive preserving interpolation based on triangulation (the left one in Fig. 7).

Example 4.3. In this example, we explain an application of the nonnegative preserving interpolation. Suppose that we are 
given a set of data values on population density. As the density is a nonnegative function, we can use the method discussed 
in this paper to generate density distribution from point observations on a complex domain (Fig. 7). We again use the 
minimal energy interpolatory spline method and nonnegative preserving interpolatory spline method to find interpolatory 
surfaces of an artificial population density function f (x, y) = sin(5π(x2 + y2)) + 1. We first use all the vertices of triangula-
tion as data locations. One can see that the minimal energy interpolatory surface has a negative value −0.15256 as in Fig. 8
and −0.005656 as in Fig. 9 over two different triangulations as in Fig. 7 while the nonnegative preserving interpolatory 
surfaces are indeed nonnegative for both triangulation. Also, the nonnegative preserving interpolatory surface approximates 
the exact function f (x, y) slightly better in the sense that the maximum error is smaller (0.26367 vs. 0.3000) as shown in 
Fig. 8 and (0.0001486 vs. 0.01909) as shown in Fig. 9.

In general, we may not be given so many data values at all data locations. The number of vertices in the triangulation 
(on the left of Fig. 7) is 440. We randomly choose 200 and 300 vertices from the triangulation and find the nonnegative 
preserving interpolatory surfaces. They are shown in Fig. 10. These surfaces show that the nonnegative preserving interpola-
tory splines can approximate the exact function well as the number of points increases and the points are distributed over 
the domain evenly.

4.2. An application to oxygen anomalies in the aftermath of the Deepwater Horizon oil spill

We are now ready to apply our nonnegative preserving interpolatory spline method to deal with real life problems. 
The Deepwater Horizon oil spill in 2010 injected approximately 4.9 billion barrels of oil (cf. McNutt et al., 2011) and large 
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Fig. 9. Minimal energy interpolation and positive preserving interpolation based on triangulation (the right one in Fig. 7).

Fig. 10. Positive preserving interpolatory surfaces interpolating at 200 and 300 randomly chosen vertices from the triangulation (the left one in Fig. 7).

quantities of methane (cf. Joye et al., 2011) into Gulf of Mexico deep waters. A fraction of the hydrocarbons injected at 
a water depth of 1500 m partitioned into the water column (Diercks et al., 2010), with poorly constrained impacts on 
the deep water ecosystems. The breakdown of hydrocarbons leads to a consumption of molecular oxygen. Analysis of O 2
concentration profiles in the Gulf of Mexico measured in the aftermath of the oil spill allows one to quantify oxygen 
deficits in the water column, which can be indicative of such decomposition processes. From the measured concentration 
profiles, O 2 deficits can be determined, resulting in O 2 anomaly profiles that are 0 (no O 2 missing) or positive (indicating 
O 2 that has been consumed) but – in the absence of O 2 generating processes in the deepwater – never negative. Then, 
these anomalies were vertically integrated to represent the O 2 deficit in mass per unit surface area. Using standard spatial 
interpolation techniques, e.g. kriging (cf. Myers, 1994), an estimated 3–3.9 × 1010 moles of O 2 have been consumed in the 
deep water of the Gulf of Mexico as reported in Kessler et al. (2011). We demonstrate our nonnegative preserving data 
interpolating scheme by applying it to data collected on the NOAA ship Pisces Cruise IV between August 19 and September 
2, 2010, predominantly southwest of the Deepwater Horizon drill site (National Oceanographic Data Center, National Oceanic 
and Atmospheric Administration).

We first chose a triangulation which fits very tightly the locations where the research vessel collected water column 
profiles as in Fig. 11. We then manually added additional points to make this triangulation have a better quasi-uniform 
property (see (4) in order to have a better approximation constant (see Theorem 2.3)).

We constructed a fitting spline with as small variation of the fitting surface as possible and preserving the non-negativity 
of the interpolatory spline as negative anomalies would indicate a source of O 2, which does not make physical sense. We 
thus used our Algorithm 3.2 to find such a nonnegative preserving interpolatory spline function of the given oxygen anomaly 
values.

Example 4.4. We first use a standard minimal energy spline interpolatory method to find the total O 2 anomaly in a layer 
at a given water depth. We can see that the most negative value of the interpolatory spline surface is very large as shown 
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Fig. 11. A triangulation with rescaled measurement locations (in blue dots; left, using scaled coordinates) and an image of the seafloor topography (right, 
with longitudes and latitudes) with measurement locations (in red crosses) and added vertices (black dots). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 12. A minimal energy interpolatory spline surface with negative values as low as −0.36092. The x and y axes denote scaled locations (see Fig. 11, left); 
The z axis denotes the oxygen anomaly in mg/liter at water depth 1108 meter.

Fig. 13. A nonnegative preserving interpolatory spline surface based on the same scattered data as in Fig. 12.
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in Fig. 12. Next let us show the performance of our Algorithm 3.2 in Fig. 13. We can see from that our spline O 2 anomaly 
surfaces with nonnegative preservation behaves much better than the minimal energy interpolatory method.

In addition, as shown in Fig. 13, we can see that both interpolatory surfaces have no over-shooting and under-shootings 
in the sense that there are no extreme spline values which are much away from the given data values.
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