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In a recent paper (Lee et al., 2014) a family of rational Pythagorean–hodograph (PH) curves 
is introduced, characterized by constraints on the coefficients of a truncated Laurent series, 
and used to solve the first-order Hermite interpolation problem. Contrary to a claim made 
in this paper, it is shown that these rational PH curves have rational arc length functions 
only in degenerate cases, where the center of the Laurent series is a real value.

© 2015 Elsevier B.V. All rights reserved.

A Pythagorean–hodograph (PH) curve1 r(t) = (x(t), y(t)) has the distinctive property that its derivative r′(t) =
(x′(t), y′(t)) satisfies

x′ 2(t) + y′ 2(t) = σ 2(t) , (1)

with σ(t) lying in the same space of functions as x(t), y(t). Thus, r(t) is said to be a polynomial or rational PH curve when 
(1) is satisfied by polynomial or rational functions, respectively. Both have rational unit tangents.

Since the function σ(t) represents the parametric speed of the curve r(t), i.e., the derivative ds/dt of arc length s with 
respect to the parameter t , the cumulative arc length function s(t) is simply the indefinite integral of σ(t). Consequently, 
polynomial PH curves necessarily have polynomial arc length functions, but in general rational PH curves do not have 
rational arc length functions, since the integral of a rational function may involve transcendental (logarithmic or arctangent) 
terms. Since “simple” (polynomial/rational) arc length functions are important for real-time motion control (Farouki et al., 
1998, 1999; Farouki and Shah, 1996; Tsai et al., 2001) the polynomial PH curves possess a clear advantage in this context.

The intent of this short communication is to emphasize the fundamental difference between the arc lengths of poly-
nomial/rational PH curves — which is often glossed over, or totally misrepresented. For example, a recent paper (Lee et 
al., 2014) begins with “The Pythagorean–hodograph (PH) curves . . . are a special class of polynomial/rational curves with 
polynomial/rational speed functions. They have polynomial/rational arc lengths . . .” In fact, as shown below, the rational PH 
curves in Lee et al. (2014) do not in general have rational arc lengths.

✩ This paper has been recommended for acceptance by Oleg Davydov.
E-mail address: farouki@ucdavis.edu.

1 For brevity, only planar PH curves are discussed here: the results also hold for spatial PH curves. A comprehensive treatment of PH curves may be 
found in Farouki (2008).
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A geometrical approach to the construction of rational PH curves is based (Fiorot and Gensane, 1994; Pottmann, 1995)
on the dual representation, in which a plane curve is interpreted as the envelope of a family of tangent lines, rather than 
a point locus. In Lee et al. (2014), on the other hand, the complex model (Farouki, 1994) is adopted, with the Cartesian 
components of a curve being regarded as real and imaginary parts of a complex-valued function r(t) = x(t) + i y(t) of a real 
parameter t . In particular, the authors consider rational curves defined by truncated Laurent series of the form

r(t) =
n∑

k=−m

ak(t − c)k ,

and investigate the conditions on the complex values a−m, . . . , a0, . . . , an and c such that σ(t) = |r′(t)| is a rational function. 
They focus, in particular, on the case (m, n) = (1, 3) and show that for a non-polynomial curve (a−1 �= 0) these conditions 
amount to

a2 = 0 and a2
1 + 12 a3a−1 = 0 . (2)

The case a1 = 0 is discounted, since the conditions (2) then imply that a3 = 0 if a−1 �= 0, and the locus r(t) = a−1/(t −c) +a0
simply defines (Zwikker, 1963) a circular arc with center a0 + i a−1/2 Im(c) and radius |a−1/2 Im(c)|. The length of a circular 
arc is obviously determined by its angular extent, which involves an arctangent dependence upon the parameter t .

Subject to the above conditions, differentiation of the rational curve

r(t) = a−1

t − c
+ a0 + a1(t − c) + a3(t − c)3 (3)

yields the rational parametric speed function

σ(t) = |r′(t)| = |6 a3(t − c)2 + a1 |2
12 |a3| |t − c|2 . (4)

Note that Im(c) �= 0 must be assumed to exclude real points at infinity.
The fact that integrating σ(t) does not yield a rational arc length function can be verified as follows. Consider first the 

case Im(c) �= 0. By expanding (4) and performing a partial fraction decomposition, we obtain

σ(t) = 3 |a3| (t2 − 2 Re(c) t + |c|2)
+ 1

|a3|
[

Re(a3a1) + i Im(c)
(

a3a1

t − c
− a3a1

t − c

)]

+ |a1|2
24 |a3| i Im(c)

[
1

t − c
− 1

t − c

]
.

Forming the indefinite integral then yields the arc length function

s(t) = |a3| (t3 − 3 Re(c) t2 + 3 |c|2t)

+ 1

|a3| [Re(a3a1) t + i Im(c) (a3a1 ln(t − c) − a3a1 ln(t − c)) ]

+ |a1|2
24 |a3| i Im(c)

[ ln(t − c) − ln(t − c) ] .

This can be further reduced by using the complex logarithm expansion ln z = ln |z| + i arg(z) and noting that ln |t − c| =
ln |t − c|, arg(t − c) = − arg(t − c) to obtain

s(t) = α3t3 + α2t2 + α1t + α0 + β ln |t − c| + γ arg(t − c) , (5)

where

α3 = |a3| , α2 = −3 |a3|Re(c) , α1 = 3 |a3| |c|2 + Re(a3a1)

|a3| ,

β = 2 Im(a3a1) Im(c)

|a3| , γ = |a1|2
12 |a3| Im(c)

− 2 Re(a3a1) Im(c)

|a3| ,

and the integration constant α0 = γ arg(c) − β ln |c| yields s(0) = 0. Clearly, one must have β = γ = 0 if the arc length 
(5) is to be a rational (actually, polynomial) function. As noted above, for a true rational curve with a−1 �= 0 we have 
a1 = 0 ⇐⇒ a3 = 0 from (2), and this special case identifies a circle. Otherwise, when a1, a3 are non-zero, β cannot vanish 
if Im(c) �= 0. Thus, none of the rational curves defined by (2) and (3) with a−1 �= 0 and Im(c) �= 0 has a rational arc length. 
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The type of rational function integration performed above is well-known in the context of PH curves, e.g., in computing the 
elastic bending energy (Farouki, 1996), and rotation-minimizing frames (Farouki, 2002) on space curves.

For the degenerate case with Im(c) = 0, however, the situation is different. When c has the real value c, the parametric 
speed (4) becomes

σ(t) = |r′(t)| = |6 a3(t − c)2 + a1 |2
12 |a3| (t − c)2

, (6)

and the arc length is a rational function only in this special case, namely

s(t) = |a3|(t − c)3 + Re(a3a1)

|a3| t − |a1|2
12|a3|(t − c)

. (7)

A real value c for the center of the Laurent series generates a point at infinity on the curve r(t) — an undesirable feature 
in most practical applications — although for a finite curve segment one can always choose c to lie outside the prescribed 
curve parameter domain t ∈ [ a, b ].

The residue of a rational function at a pole t = c is the coefficient of the term (t − c)−1 in its partial fraction expansion, 
and the general condition for a rational function to have a rational integral is that the residues at each of its poles must 
vanish (Henrici, 1974, §7.2). If Im(c) �= 0, the function (4) has the distinct simple poles t = c and t = c, with corresponding 
residues

(t − c)σ (t) | t=c = |a1|2
24|a3| i Im(c)

, (t − c)σ (t)
∣∣

t=c = − |a1 − 12a3 i Im(c)|2
24|a3| i Im(c)

.

Clearly, these values cannot both vanish when a1, a3 are non-zero. On the other hand, when Im(c) = 0, and c has the real 
value c, the function (6) has only the double pole t = c. The residue of σ(t) at this pole is

d

dt
(t − c)2σ(t)

∣∣∣∣
t=c

= 0 ,

and hence s(t), the integral of σ(t), is a rational function.

Example 1. Consider the rational curve (3) defined by the values

a−1 = −2 i , a0 = 2 + i , a1 = 6 + 6 i , a3 = 3 , c = 1 − i .

Since these values satisfy the conditions (2), they specify a rational PH curve, for which the parametric speed (4) is

σ(t) = 9 t4 − 36 t3 + 78 t2 − 72 t + 26

t2 − 2 t + 2
.

Omitting the integration constant α0, the corresponding arc length function (5), satisfying s′(t) = σ(t), is

s(t) = 3 t3 − 9 t2 + 24 t + 12 ln
√

t2 − 2t + 2 + 10 tan−1 1

t − 1
.

In this case, the arc length is clearly not a rational function of the parameter.

Example 2. We use the same values as in the previous example, except that the real value c = 2 is substituted for c. The 
parametric speed (6) is then

σ(t) = 9 t4 − 72 t3 + 222 t2 − 312 t + 170

(t − 2)2
.

Again omitting the integration constant α0, the corresponding arc length (7) is defined by the rational function

s(t) = 3 t4 − 24 t3 + 78 t2 − 108 t + 46

t − 2
.

The vanishing-residue criterion might, in principle, be used as the point of departure for identifying more general classes 
of rational PH curves with rational arc lengths. However, it is not obvious how to impose this condition in a geometrically 
meaningful manner, and in practice it may prove quite restrictive. Clearly, the polynomial arc lengths of polynomial PH 
curves offer a much simpler and more robust framework for real-time motion control.
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