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Mapping from one planar polygonal domain to another is a fundamental problem in com-
puter graphics and geometric modelling. Exploiting the properties of harmonic maps, we 
define smooth and bijective maps with prescribed behaviour along the domain bound-
ary. These maps can be approximated in different ways, and we discuss the respective 
advantages and disadvantages. We further present a simple procedure for reducing their 
distortion and demonstrate the effectiveness of our approach by providing examples of 
applications in image warping and surface cross-parameterization. Moreover, we briefly 
discuss the extension of our construction to 3D and its application to volumetric shape 
deformation.
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1. Introduction

Many applications in computer graphics and geometric modelling require constructing a smooth map f : �0 → �1 be-
tween a source polygon �0 ⊂ R

2 with n source vertices v0
1, . . . , v

0
n and a target polygon �1 ⊂R

2 with the same number of 
target vertices v1

1, . . . , v
1
n , and f should have certain properties.

Bijectivity of f prevents fold-overs, which cause undesirable artefacts in almost all applications. Moreover, it is a nec-
essary requirement for having symmetry, in the sense that the construction should give f −1 as the mapping from �1 to 
�0, which in turn allows the user to “undo” a map in an interactive application. It is further desirable that f has a specific 
boundary behaviour and maps each source edge to the corresponding target edge, which implies interpolation at the vertices. 
Finally, f should have low distortion, so that metric quantities measured in �0 are close to those measured in �1.

1.1. Related work

One of the applications of such mappings is image warping, but despite the vast literature on this topic, most approaches 
cannot guarantee all the requirements stated above. Smooth deformation methods based on radial basis functions (Arad 
et al., 1994), B-splines (Lee et al., 1997), or biharmonic weights (Jacobson et al., 2011) are not necessarily bijective, so that 
the target image may exhibit artefacts resulting from fold-overs. Conformal maps (Weber et al., 2009; Weber and Gotsman, 
2010), as well as recent techniques based on the minimization of some deformation energy (Poranne and Lipman, 2014)
guarantee bijectivity, but do not possess the desired boundary behaviour.

Surface parameterization methods (Floater and Hormann, 2005; Sheffer et al., 2006) can be used to create bijective maps 
that are piecewise linear along the boundary by interpreting �0 as a (planar) mesh and parameterizing it over the domain 
�1. However, they require triangulating �0 and provide only piecewise linear solutions (Weber and Zorin, 2014). The same 
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Fig. 1. Smooth bijective maps between polygons (left) and parametric surface patches (right).

restriction holds for quasi-conformal maps (Weber et al., 2012) and variational methods that minimize the distortion of the 
map (Aigerman et al., 2014; Lipman, 2012; Schüller et al., 2013).

Barycentric mappings (Hormann and Floater, 2006; Weber et al., 2011) naturally provide smooth solutions with piece-
wise linear boundary behaviour, but they are not necessarily bijective. This limitation can be overcome by introducing a 
set of intermediate polygons and defining composite barycentric mappings (Schneider et al., 2013), but the overall con-
struction is not symmetric and the derivatives of the mapping are tedious to compute. Another option is to restrict the 
set of possible domains. Wachspress mappings are known to be bijective as long as both the source and the target poly-
gon are convex (Floater and Kosinka, 2010), and barycentric mappings based on harmonic coordinates (Joshi et al., 2007)
are bijective as long as the target polygon is convex. The latter is not surprising, once we notice that they are in fact 
harmonic maps and hence bijective as a consequence of the Radó–Kneser–Choquet theorem (Choquet, 1945; Kneser, 1926;
Radó, 1926).

1.2. Contribution

In this paper, we propose to combine two harmonic maps to define a smooth and bijective map between two arbitrary 
planar polygons (Section 2). This construction is symmetric, and the maps can be approximated in different ways (Section 3), 
each with its own pros and cons. The different implementations provide a high degree of flexibility, ranging from an efficient 
computation to exact pointwise evaluation. While these methods are guaranteed to generate bijective maps only in the limit, 
as they converge to the exact solution, our experiments show that they produce bijective results in practice.

The behaviour of the map along the boundary can be prescribed (for example, to be piecewise linear), giving the user an 
intuitive way of controlling the map in applications such as image warping and surface cross-parametrization (see Fig. 1). 
Moreover, the distortion appears to be lower compared to previous work (Section 4).

The simplicity of our construction allows for several extensions (Section 5), including a simple non-linear optimization 
procedure to reduce the distortion of the map without compromising the other properties and a strategy which appears 
to give almost conformal results. Moreover, our method trivially extends to smooth volumetric maps between polyhedral 
domains, and although the theoretical guarantees on bijectivity are lost (Laugesen, 1996), our experiments demonstrate that 
the maps are bijective even for non-trivial examples.

Our contributions can be summarized as follows:

• We propose a symmetric construction for defining smooth and bijective maps between two arbitrary polygonal domains 
with prescribed boundary behaviour.

• We compare and analyse in depth three numerical strategies for approximating these bijective maps.
• We describe a simple optimization strategy for decreasing the distortion of the map.
• We present some results on the extension of our method to the volumetric setting.

2. Smooth bijective maps

Given two planar domains �, �′ and a bijective boundary mapping b: ∂� → ∂�′ , the unique map ϕ: � → �′ that solves 
the Laplace equation

�ϕ = 0 (1a)

subject to the continuous Dirichlet boundary condition

ϕ|∂� = b (1b)

is called a harmonic map. The map ϕ is smooth, and it follows from the Radó–Kneser–Choquet theorem that ϕ is bijective if 
�′ is convex.
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Fig. 2. Main idea for defining smooth bijective maps.

In order to define the smooth bijective map f between �0 and �1, we simply introduce an intermediate convex polygon 
� with n vertices, combine the two harmonic maps ϕ0: �0 → � and ϕ1: �1 → � as shown in Fig. 2, and let

f = ϕ−1
1 ◦ ϕ0. (2)

For simplicity, we can use a regular n-gon as � and piecewise linear boundary constraints b0 and b1, but it is possible to 
deviate from these default choices (Sections 5.1 and 5.2).

The concept of constructing bijective maps in this way has already been used in the context of mesh parameteriza-
tion (Weber and Zorin, 2014), mesh morphing (Kanai et al., 1997), and surface correspondences (Lipman and Funkhouser, 
2009), but only in the discrete setting. Instead, we consider smooth maps, and we also discuss several extensions (Section 5).

3. Implementation

The approach described in Section 2 poses two practical challenges. First, we need to solve the boundary value prob-
lem (1), and the exact solution is known only for simple domains like rectangles. However, an approximate solution can be 
computed in different ways (Section 3.1). Second, we have to invert the map ϕ1, and again we treat this problem numeri-
cally (Section 3.2).

3.1. Solving the Laplace equation

There are three main methods for solving the Laplace equation: the finite element method (FEM) (Strang and Fix, 2008), 
the boundary element method (BEM) (Hall, 1994; Rustamov, 2007), and the method of fundamental solutions (MFS) (Fairweather 
and Karageorghis, 1998; Martin et al., 2008). Each method comes with certain advantages and disadvantages. Since these 
methods are designed to find harmonic functions ϕ: � → R, we apply them to both components of our harmonic maps 
ϕ0, ϕ1 separately.

3.1.1. Finite element method
By calculus of variations, ϕ solves (1a), if and only if∫

�

�ϕ ψ = 0 (3)

for a certain set of test functions ψ . In the finite element approach this set contains all functions that vanish on the boundary 
of �. Using this fact and integration by parts, the weak form (3) can be rewritten as∫

�

∇ϕ ∇ψ = 0. (4)

In our implementation, we consider the space of piecewise linear functions over a constrained Delaunay triangulation of �, 
spanned by the hat functions B1, . . . , Bm: � → R, and the approximation 

∑m
i=1 ci Bi of ϕ . Assuming that the first k < m

basis functions correspond to the interior nodes and thus vanish at the boundary, the weak form (4) becomes
m∑

i=1

ci

∫
�

∇Bi∇B j = 0, j = 1 . . . ,k.

The coefficients ck+1, . . . , cm are given by the boundary condition (1b), and the others can be found by solving a sparse 
linear system of size k, where the off-diagonal elements are the well-known cotangent weights (Eck et al., 1995; Pinkall and 
Polthier, 1993; Strang and Fix, 2008).
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Fig. 3. Nodes used by BEM (left) and nodes and sites used by MFS (right).

3.1.2. Boundary element method
The principal idea of the boundary element method is to first solve a small problem on the boundary and then extend 

this solution to the interior. To this end, we use the divergence theorem to rewrite (3) as∫
∂�

∂ϕ

∂n
ψ −

∫
�

∇ϕ ∇ψ = 0

and then apply integration by parts to the last term to obtain∫
∂�

∂ϕ

∂n
ψ −

∫
∂�

∂ψ

∂n
ϕ +

∫
�

ϕ �ψ = 0,

where n is the unit normal to ∂�. In the boundary element approach, the set of test functions is {Gx : x ∈ �}, where

Gx(y) = − 1

2π
log(‖x − y‖) (5)

are 2D Green’s functions. Since �Gx(y) = δ(x − y), we obtain the boundary integral equation∫
∂�

∂ϕ

∂n
Gx −

∫
∂�

∂Gx

∂n
ϕ + ω(x)ϕ(x) = 0, x ∈ �, (6)

where

ω(x) =
{ α(x)

2π , for x ∈ ∂�,

1, otherwise,

with α(x) denoting the exterior angle at x ∈ ∂�, that is, α(x) = π along the open edges of �.
In our implementation, we sample the boundary of � with the nodes x1, . . . , xm , which include the vertices vi (see 

Fig. 3), and consider the corresponding space of piecewise linear functions, spanned by the one-dimensional hat functions 
B1, . . . , Bm: ∂� → R. This allows us to use

ϕ(x) =
m∑

i=1

ci Bi(x),
∂ϕ

∂n
(x) ≈

m∑
i=1

di Bi(x)

for all x ∈ ∂�, so that (6), evaluated at x j , turns into

m∑
i=1

di

∫
∂�

Bi Gx j ≈
m∑

i=1

ci

( ∫
∂�

∂Gx j

∂n
Bi + ω(x j)Bi(x j)

)

for j = 1, . . . , m. Since the ci are given by the boundary condition (1b), we then determine the coefficients di by solving a 
dense linear system of size m. After solving this small system on the boundary, we are ready to evaluate ϕ at any x ∈ � by 
rearranging (6),

ϕ(x) ≈ 1

ω(x)

m∑
i=1

(
di

∫
∂�

Bi Gx − ci

∫
∂�

∂Gx

∂n
Bi

)
.

We employ Gaussian quadrature for evaluating all required boundary integrals numerically, because they do not have closed 
forms.

3.1.3. Method of fundamental solutions
The main idea of the method of fundamental solutions is to exploit the fact that Green’s functions (5) and linear functions 

are harmonic by construction. We approximate ϕ by

ϕ̂ =
m∑

wi Gsi + A

i=1
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Fig. 4. Behaviour of the different approximations to the harmonic mapping ϕ from � to the regular hexagon � near the boundary. The curves correspond 
to the images of the boundary and boundary offsets at distances 0.001, 0.002, 0.004, and 0.008 (from dark to light), relative to the size of the bounding 
box of �.

for certain sites s1, . . . , sm (see Fig. 3) and some linear function A. In order to avoid singularities inside the domain �, the 
sites need to be placed outside the polygon, and we follow the strategy of Martin et al. (2008) to determine their positions. 
The unknown weights wi and the coefficients of A are then determined by minimizing

k∑
j=1

|ϕ̂(x j) − b(x j)|2

for k � m uniformly spaced nodes x j ∈ ∂�, which can be done by solving a dense over-determined linear system of size 
k × (m + 3) in the least squares sense.

3.1.4. Comparison
The main advantages of FEM are speed and robustness, but it provides only piecewise linear approximations of the exact 

solution. Consequently, the first derivatives are constant per triangle and higher derivatives vanish, which is a disadvantage 
for applications that rely on these quantities being smooth. Another disadvantage is that FEM requires choosing the trian-
gulation a priori, resulting in a fixed resolution of the result. If later a higher resolution is needed, the problem needs to 
be solved again from scratch. Finally, the result is not guaranteed to be bijective, because the cotangent weights can be 
negative. Although non-bijectivity usually does not occur in practice, especially at high resolution, it can be prevented by 
replacing the cotangents with positive weights (Weber and Zorin, 2014). The resulting piecewise linear mapping is then 
guaranteed to be bijective, but it does no longer approximate the harmonic solution.

The principal benefits of BEM and MFS are that they give smooth closed-form approximations of ϕ and that derivatives 
can be computed analytically. For BEM, every function evaluation requires calculating 2m boundary integrals, which is rather 
slow, whereas evaluating the MFS approximation and its derivatives is fast, because they have simple closed forms. The main 
disadvantage of both methods is that the boundary conditions are not satisfied exactly and hence they do not guarantee 
to linearly map the edges from source to target polygon. Instead, the image of ∂� can exhibit oscillations, especially near 
concave corners, as shown in Fig. 4. This effect extends to the interior, but disappears quickly with increasing distance to 
the boundary. Moreover, these oscillations shrink as we raise the number m of basis functions. In the case of BEM, this 
behaviour stems from the fact that the normal derivative at the boundary of � is only approximated by a piecewise linear 
function. For MFS, it is a consequence of enforcing the boundary constraints only in a least squares sense and at k discrete 
nodes.

On a theoretical level, this lack of linear precision along the boundary means that the target domain is not convex, and 
even though both the BEM and the MFS approximations are harmonic by construction, the Radó–Kneser–Choquet theorem 
cannot be used to conclude their bijectivity. However, as m increases, both methods converge to the exact harmonic and 
bijective solution, and so they are bijective for a sufficiently large m. In all our examples we observe that even moderately 
large values of m (less than 1000) are enough to obtain mappings which are practically bijective, in the sense that the 
Jacobian is positive at a dense set of sample points. However, BEM is usually more precise near the boundary than MFS and 
seems to converge faster.

Fig. 5 shows an example of a smooth bijective map and the determinant of its Jacobian, approximated with the different 
methods. The close-ups confirm that the FEM solution is only piecewise linear, while the others are smooth, and that the 
MFS solution has artefacts near the boundary due to the oscillations mentioned before. Table 1 summarizes the pros and 
cons of the methods.

3.2. Inverting ϕ1

Inverting the FEM approximation of ϕ1 is simple, because it is a piecewise linear map between a Delaunay triangulation 
of �1 and a corresponding triangulation of �. Hence, for any x ∈ � we search for the triangle T in � that contains x using 
a k-d tree, compute the local coordinates of x with respect to T , and apply them to the corresponding triangle in �1. This 
gives an approximation of ϕ−1(x), where the accuracy depends on the size of T . However, even if the triangles in �1 are 
1
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Fig. 5. Comparison between different methods to approximate a smooth bijective map between �0 and �1. The top row visualizes the mapping itself, while 
the determinant of its Jacobian is colour-coded in the bottom row.

Table 1
Pros and cons of the different methods.

Smooth Meshless Exact on ∂� Precise near ∂� Fast

FEM × × � � �
BEM � � × � ×
MFS � � × × �

Fig. 6. One step of the adaptive refinement strategy: regions with big triangles in � are detected (grey) and the corresponding regions in �1 are refined by 
inserting new points, so that the big triangles are removed from �.

small, their images under ϕ1 in � can be big and the only way to improve the accuracy is to recompute the approximation 
of ϕ1 with a denser mesh.

For BEM and MFS we can proceed similarly by first triangulating �1 and then mapping the nodes, which induces a 
triangulation of �. Since both methods provide smooth solutions, we can now employ an adaptive refinement strategy that 
finds all big triangles in �, refines the corresponding triangles in �1, and repeats this process until all triangles in � are 
sufficiently small (see Fig. 6), which in practice requires only few steps.

A better option is to exploit the fact that BEM and MFS provide gradients and Hessians of the solution. Hence, we can 
use efficient numerical solvers to approximate ϕ−1

1 (x) more accurately. In our implementation we use Ipopt (Wächter and 
Biegler, 2006) to minimize the function d(y) = ‖x − ϕ1(y)‖2, which is convex and guaranteed to be zero at the optimal 
solution y∗ . This minimization needs to constrain y to the interior of �1, because the harmonic function ϕ1 is undefined 
outside �1. This is no problem for convex domains, but we need to be careful if �1 is concave. In that case we decompose 
�1 into triangles and constrain the optimization to the triangle T whose image ϕ1(T ) contains x. If the solver finds a 
minimum at some y with d(y) > 0, then we know that the optimal y∗ needs to be found in some other triangle. But when 
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Fig. 7. Inverting ϕ1 with a piecewise linear approximation (left) and pointwise minimization (right).

Fig. 8. Deforming a source image (left) with smooth bijective maps (centre) and composite mean value maps (right). The results are globally similar, but 
our method has less distortion (grey boxes).

Fig. 9. Using a smooth surface cross-parameterization to transfer a colour-valued signal from S0 to S1.

this happens, y lies on one of the edges of T and we keep searching in the neighbouring triangle which shares this edge. 
However, this approach is much slower, because it requires several evaluations of ϕ1 and its derivatives.

Fig. 7 illustrates the results obtained by both inversion procedures. The close-ups clearly show that the first method pro-
vides only piecewise linear results, while the result of the second approach is smooth. However, the minimization procedure 
takes several minutes, whereas the other procedure can be computed in a few seconds.

4. Results

4.1. Image warping

Figs. 1 and 8 show the results of applying smooth bijective maps to deform images. For this application, we use FEM, 
trading smoothness for speed, because images are discrete and the piecewise linear solution is sufficient if the triangulation 
density matches the image resolution.

4.2. Surface cross-parameterizations

Another application of our method is the construction of a map between two surface patches S0: �0 → R
3 and

S1: �1 → R
3, which are parameterized over the planar domains �0 and �1, respectively. Such a surface cross-parame-

terizations g: S0 → S1 is simply given by

g = S−1
1 ◦ f ◦ S0.

For this application, we prefer MFS with smooth inverse, because the surface patches are smooth and it is natural to 
expect the same from the mapping. Moreover, it is faster than BEM, and as long as we are not interested in derivatives, the 
artefacts near the boundary are negligible. Two examples are shown in Figs. 1 and 9.
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Fig. 10. Comparison of our method (left) with Schneider et al. (2013) (right). The energy plots show the conformal distortion per point, clamped at 10. The 
overall L2-distortion of our map is 7.03, compared to 203.77 for Schneider et al. (2013).

Fig. 11. Effect of mapping from �0 (centre) to �1 using a regular (left) and an irregular (right) intermediate polygon.

4.3. Comparison

To the best of our knowledge, the only other approach for constructing smooth bijective maps is described by Schneider 
et al. (2013). The example in Fig. 8 suggests that our method gives maps with lower distortion. To support this hypothesis, 
we measured and compared the actual distortion of both maps.

In Fig. 10 we visualize the conformal distortion σ1/σ2 + σ2/σ1 (Hormann and Greiner, 2000), where σ1 and σ2 are the 
singular values of the Jacobian of the map. The energy plot and the close-ups illustrate that our map behaves better around 
the concave corners of the target polygon, and the overall distortion is much lower. A similar behaviour can be observed in 
Fig. 13, where the isometric distortion max(σ1, 1/σ2) (Sorkine et al., 2002) is considered. We performed similar tests with 
different polygons and energies, and since the results are all similar, we decided to show only a few prototypical examples.

For these comparisons we use BEM, because it provides the most reliable derivative data, which is needed for computing 
the distortion.

5. Extensions

5.1. Reducing the distortion

An interesting fact to observe is that the mapping f depends on the shape of �, as illustrated in Fig. 11. In this example 
we compare the result of using a regular polygon versus an irregular cyclic polygon with edge lengths proportional to the 
average lengths of corresponding source and target edges.

This flexibility can actually be used to reduce the distortion of the map. We implemented a simple strategy, which 
minimizes a given distortion energy by moving one vertex of � at a time under the constraint that � remains convex. 
More specifically, to optimize the position of a vertex v of �, we approximate the gradient of the distortion energy with 
respect to v , using finite differences, resulting in a displacement vector �v . We then move v to v + �v and check if this 
new position violates the convexity constraints of �. If that is the case, then we iteratively halve �v until the constraints 
are met.

An example of this optimization procedure, where we reduce the overall conformal distortion of the map by about 10%, 
is shown in Fig. 12. A similar improvement can be obtained for the isometric distortion of the map, as illustrated in Fig. 13, 
which also compares the result to the result by Schneider et al. (2013). Table 2 summarizes the distortions obtained with 
our method, using regular and optimized intermediate polygons, and with the method proposed by Schneider et al. (2013)
for all examples shown in this paper.
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Fig. 12. Optimizing the shape of � for the example in Fig. 10 reduces the overall conformal distortion from 7.03 to 6.45.

Fig. 13. Comparison of smooth bijective maps generated by Schneider et al. (2013) (left) and our method for an irregular (centre) and the optimized (right) 
intermediate polygon. The respective overall isometric distortions are 7.34, 3.02, and 2.49.

Fig. 14. Effect of changing the behaviour of the boundary conditions for ϕ1 from linear (left) to quadratic (right).

5.2. Boundary conditions

Most applications require linearity on the boundary, but with our method we can also impose a different boundary 
behaviour, similar to how it is suggested by Weber et al. (2011). In the example in Fig. 14 we specify a linear behaviour 
for the edges of �0 and a quadratic behaviour for the edges of �1. That is, the boundary condition b1 for any point 
p = (1 − t)v1

1 + tv1
2 on the edge [v1

1, v
1
2] of �1 is set to b1(p) = (1 − t2)w1 + t2 w2, where [w1, w2] is the corresponding 

edge of �, and similarly for the other edges. This increases the density of the grid lines near the concave as well as the 
lower left target vertex and also happens to reduce the conformal distortion. It remains future work to exploit this flexibility 
to further reduce the distortion of the mapping.
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Schneider et al. (2013) � �′

01 57.53 96.80 83.17

88.14 68.61 —

99.25 94.30 —

75 122 576 1883.76 1679.25

14 99.98 97.79 84.67

100.00 82.35 —
Table 2
Average and maximum conformal and isometric distortions for composite mean value maps (Schneider et al., 2013) and our smooth bijective maps 
polygons �′ .

Figure Average distortion Maximum distortion

conformal isometric conformal

Schneider et al. (2013) � �′ Schneider et al. (2013) � �′ Schneider et al. (2013) � �′

5 2.93 2.84 2.78 2.85 2.60 2.15 104.86 89.53 75.

8 2.91 2.85 — 2.10 1.95 — 96.59 96.07 —

11 7.99 6.41 — 3.63 3.59 — 99.96 99.41 —

12 203.77 7.03 6.45 232.05 5.57 5.18 107 402 2481.40 1968.

13 9.32 4.85 4.53 7.34 3.02 2.49 99.76 99.86 89.

14 9.26 6.13 — 8.28 5.02 — 99.61 83.26 —
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Fig. 15. Effect of replacing Dirichlet boundary conditions (left) with mixed Neumann/Dirichlet boundary conditions (right).

Fig. 16. Using a smooth volumetric mapping to transfer a colour-valued signal from one polyhedron to another.

Fig. 17. Smooth volumetric mapping between two polyhedral domains with quadrilateral faces.

Another extension consists of imposing natural boundary conditions, which requires � to be the unit square, pos-
sibly with side nodes. This particular choice allows us to interpret the components of ϕ as two coordinate functions 
x, y:� → [0,1]. We then solve for x by specifying Dirichlet boundary conditions on the two horizontal and Neumann 
boundary conditions on the two vertical edges of the unit square and vice versa when solving for y. For the example in 
Fig. 15, this approach produces more conformal results, but we have not further investigated this behaviour, yet.

5.3. Three dimensional mappings

Our approach easily extends to volumetric mappings between two polyhedral domains in R3 with the same topology, 
as shown in Fig. 16. Unfortunately, the Radó–Kneser–Choquet theorem does not hold in R3, and there is no mathematical 
guarantee that our mapping is bijective. However, in our experiments we did not observe any problems, and it even works 
for the rather extreme example in Fig. 17.

6. Conclusions

The smooth maps f between two polygonal domains in (2) satisfy most of the properties requested by common appli-
cations in computer graphics and related fields. They are bijective and symmetric, and we can fully control their boundary 
behaviour. In addition, the construction of f is transitive in the sense that fk ◦ fk−1 ◦ . . . ◦ f1 = g , where f i: �i−1 → �i , 
i = 1, . . . , k and g: �0 → �k . This guarantees an intuitive behaviour in an interactive image warping application where the 
user modifies an image in several steps by moving the vertices of the control polygon. The transitivity then assures that the 
result is independent of the way and the order in which the vertices are moved to arrive at the target positions. Moreover, 
if the user moves the vertices back to their initial positions, the image will be restored, because g will be the identity.
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While the smooth maps from Section 2 remain theoretical for now, unless in a few simple cases where closed form 
solutions of harmonic maps are known, we present and compare three approximation methods in Section 3. In a nutshell, 
FEM is the method of choice for visualization purposes and other applications where only a fixed resolution and no deriva-
tive values are required. BEM and MFS are instead preferable for numerical simulations and other applications that require 
continuous derivatives of the mapping. Among the two, MFS is considerably faster, but BEM provides more reliable values 
close to the boundary of the domain. Hence, in applications like image warping, where the interpolation property on the 
boundary is not essential, a reasonable guideline is to make sure that some minimal distance is kept between the image 
and the surrounding polygon, so that the deformation can be computed faithfully and efficiently with MFS.

A limitation of our method is that we cannot provide any bounds on the distortion of the maps, even though we describe 
how to reduce it. Compared with state-of-the-art methods for generating piecewise linear bijective maps, our results usually 
have a higher distortion, because the optimization is limited by the rigidity of the harmonic functions ϕ0 and ϕ1. But 
compared to the only other method that we are aware of for computing smooth bijective maps (Schneider et al., 2013), our 
maps usually have considerably lower distortion.

An advantage of our approach is its simplicity, which allows it to be extended in several ways. While we have only 
touched on this versatility and reported some preliminary results, it remains future work to fully explore and understand 
these extensions.
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