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This article deals with interpolatory subdivision schemes generalizing the tensor-product 
version of the Dubuc–Deslauriers 4-point scheme to quadrilateral meshes of arbitrary 
manifold topology. In particular, we focus our attention on an extension of the C1

regular stencils that respectively exploits (N + 2)-point and (2N + 8)-point stencils for the 
computation of an edge-point and a face-point in the vicinity of an extraordinary vertex of 
valence N �= 4 not lying on a boundary. The aim of our work consists in identifying which 
constraints are required to be respected by the weights appearing in the above stencils in 
order to get closed limit surfaces that are C1-continuous at extraordinary points, have both 
principal curvatures bounded and at least one of them nonzero. The obtained constraints 
are used to easily check these features in the limit surfaces resulting from the application 
of special extraordinary rules proposed in the literature by different authors. Moreover, the 
conditions derived on the stencil weights are exploited to design new extraordinary rules 
that can produce closed limit surfaces of the same quality as the existing proposals, but at 
a reduced computational cost.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Subdivision schemes are computationally efficient algorithms for representing smooth surfaces by applying a few steps of 
a refinement operator to a given polygonal mesh, roughly describing the desired limit shape. Each application of the refine-
ment operator aims at splitting the edges and faces of the current mesh to obtain a finer and smoother version. Compared 
with parametric surface representations, subdivision schemes are no longer restricted to work with tensor-product meshes, 
but can advantageously operate on polygonal meshes of arbitrary manifold topology in order to generate surfaces of arbi-
trary topology. Polygonal meshes consisting entirely of quadrilateral faces are called quadrilateral meshes. Using the term 
valence to refer to the number of edges incident to a vertex, we have that, in case of quadrilateral meshes, all vertices of 
valence 4 are regular or ordinary, whereas vertices of valence other than 4 are extraordinary. In case of quadrilateral meshes, 
the refinement operator responsible for producing the finer mesh from the coarser one is specified by a set of topological 
and geometrical rules that can vary according to the properties that the limit surface is required to satisfy. More precisely, 
if the limit surface is required to pass through all the vertices of the given initial mesh, then the refinement operator re-
lies upon topological rules that retain the vertices of the coarser mesh and insert new vertices in correspondence to the 
midpoint of its edges and the centroid of its faces. Such vertices are respectively called edge-points and face-points, and are 
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Fig. 1. Edge-point and face-point rules for regular regions.

Fig. 2. Edge-point and face-point rules in the neighborhood of extraordinary vertices of valence N ≥ 5 (top) and N = 3 (bottom).

hereinafter denoted by E and F (see Figs. 1, 2). A refined mesh is then obtained by constructing new edges and faces in 
the following way: first, we create all new edges of the refined mesh by connecting each face-point to the edge-points of 
the edges surrounding the face, and each mesh vertex to the edge-points of the edges incident on it; then, all new faces 
are simply obtained by the loop of four new edges. The role of the geometrical rules is instead to specify the positions 
of the new points. Edge-point and face-point rules consist in computing affine combinations of the vertices lying in the 
neighborhood of each edge or face of the coarser mesh. The choice of the weights to be used in the affine combination has 
been always considered a difficult problem. In fact, in order to maximize the global smoothness of the limit surface it is 
necessary to apply special edge- and face-point rules in the neighborhood of all extraordinary vertices. Such rules, besides 
being expected to be dependent on the valence of the extraordinary vertex, should involve the least possible number of 
control points in its vicinity in order to increase the locality of the scheme and consequently reduce the computational cost 
of each refinement step. The major challenge in designing subdivision schemes thus consists in finding a suitable trade-off 
between the locality of the subdivision rules and the visual quality of the resulting limit surface.

Focusing on the class of quad-based interpolatory subdivision schemes generalizing the tensor-product version of the 
Dubuc–Deslauriers 4-point scheme, we can find proposals featured by edge-point rules that either involve 2N + 2 vertices 
from the coarser mesh or only a subset of N + 2 of them. The existing schemes falling into the first group (see Kobbelt, 
1996; Li and Ma, 2007; Li and Zheng, 2012), besides more computationally expensive, are C1-smooth with unbounded 
curvature at extraordinary points. As a matter of fact, dealing with refinement rules of larger size not only increases the 
computational costs for generating the limit surface, but remarkably complicates the tuning of the weights appearing in 
the affine combination such that bounded curvature at extraordinary points is hardly satisfied. In light of this, we believe 
strategic to restrict our attention to the subclass of interpolatory subdivision schemes for closed quadrilateral meshes that 
compute

(i) new edge-points near extraordinary vertices of valence N by means of an affine combination of N + 2 vertices from the 
coarser mesh;
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(ii) new face-points near extraordinary vertices of valence N by means of an affine combination of 2N + 8 vertices from 
the coarser mesh.

Due to requirement (i), the rule for positioning a new vertex on an edge relies only on edge adjacent vertices and not 
on face adjacent vertices (see Fig. 2). This assumption not only allows the algorithm to reduce the computational costs 
for generating the limit surface, but reveals that the subdivision scheme can also be thought of as a subdivision scheme 
for curve networks (Schaefer and Warren, 2003). To the best of our knowledge, the only existing interpolatory subdivision 
schemes with the property that the position of new edge points is determined exclusively by edge adjacent vertices, are 
the ones proposed by Schaefer and Warren (2003), Li et al. (2005) and Deng and Ma (2013). All such schemes have been 
shown independently by their authors to be suitable for generating limit surfaces that are globally C1 continuous, but while 
the two most recent ones (namely Li et al., 2005; Deng and Ma, 2013) have also both principal curvatures bounded at 
extraordinary points, that is not the case for their precursor in Schaefer and Warren (2003). The goal of this article thus 
consists in identifying the constraints that the weights involved in the edge-point and face-point stencils are required to 
meet to obtain limit surfaces that are C1 continuous at extraordinary points with both principal curvatures bounded and at 
least one of them nonzero.

The remainder of this article consists of six sections. In Section 2 we describe the edge-point and face-point rules 
characterizing the class of interpolatory subdivision schemes discussed in this work. For such schemes, in Section 3 we 
construct the local subdivision matrix providing a compact representation of a single refinement step in the vicinity of 
an extraordinary vertex of valence N , and in Section 4 we derive the explicit formulation of the associated characteristic 
polynomial and all its roots. In Section 5, we first recall some known results from the literature and then we derive which 
conditions have to be satisfied by the weights of the extraordinary rules to guarantee C1 smoothness of the limit surface 
and boundedness of curvature at extraordinary points. Finally, in Section 6 we exploit the derived conditions to easily 
check these features in the limit surfaces obtained by the application of special extraordinary rules recently proposed in 
the literature. We also show that the obtained constraints can be used to design new extraordinary rules able to produce 
limit surfaces of the same quality as the existing proposals, but at a reduced computational cost. Conclusions are drawn in 
Section 7.

2. Edge-point and face-point rules

We consider an interpolatory subdivision scheme on quadrilateral meshes generalizing the tensor-product of the 4-point 
Dubuc–Deslauriers scheme (Deslauriers and Dubuc, 1989; Dubuc, 1986). This means that, when the mesh is regular, that is 
each vertex has valence N = 4, the rule for computing the edge-point E4 is nothing but the 4-point scheme applied to the 
vertices P−1, P1, P0, P5 (see Fig. 1), i.e.

E4 = − 1

16
P−1 + 9

16
P1 + 9

16
P0 − 1

16
P5, (2.1)

while the rule for computing the face-point F4 is exactly the tensor-product of the edge-point rule, namely

F4 = 1

256

(
P−3 + P−8 + P−6 + P6

) + 81

256

(
P0 + P1 + P2 + P3

)
− 9

256

(
P−1 + P−2 + P−4 + P−5 + P4 + P5 + P7 + P8

)
. (2.2)

On the other hand, for meshes of arbitrary manifold topology, special edge-point and face-point rules are defined in the 
vicinity of extraordinary vertices of valence N �= 4. This work deals with subdivision schemes that apply an (N + 2)-point 
and a (2N + 8)-point stencil respectively for computing edge- and face-points in the neighborhood of an extraordinary 
vertex of valence N �= 4 (see Fig. 2). More precisely, the edge-point rule used in presence of an extraordinary vertex P0 of 
valence N = 3 is

E3 = − 1

16
P−1 + 9

16
P0 + α1,3 P1 + α3,3 P3 + α5,3 P5, (2.3)

with α1,3, α3,3, α5,3 ∈ R, while the general edge-point rule to be used when P0 has valence N ≥ 5 reads as

E N = − 1

16
P−1 + 9

16
P0 +

N∑
j=1

α2 j−1,N P2 j−1 (2.4)

with α2 j−1,N ∈ R for all j = 1, . . . , N . Thus for all N �= 4 the edge-point rule is defined by an affine combination involving 
P−1, P0 and all vertices connected to P0 by an edge. Analogously, for the face-point rule we consider an affine combination 
of the four vertices identifying the face of insertion (i.e., P0, P1, P2, P3) plus the first ring of vertices around it. In formulas, 
the face-point rule for the case N = 3 is given by



228 P. Novara, L. Romani / Computer Aided Geometric Design 35–36 (2015) 225–242
F3 = 1

256
(P−3 + P−6 + P7) + 81

256
P0 − 9

256
(P−1 + P−2 + P−4 + P−5)

+ β1,3 P1 + β3,3 P3 + β5,3 P5 + γ2,3 P2 + γ4,3 P4 + γ6,3 P6, (2.5)

with β1,3, β3,3, β5,3 ∈ R and γ2,3, γ4,3, γ6,3 ∈ R, while for the general case N ≥ 5 it reads as

F N = 1

256
(P−3 + P−6 + P−2N) + 81

256
P0 − 9

256
(P−1 + P−2 + P−4 + P−5)

+
N∑

j=1

β2 j−1,N P2 j−1 +
N∑

j=1

γ2 j,N P2 j (2.6)

with β2 j−1,N , γ2 j,N ∈ R for all j = 1, . . . , N . In order to guarantee the symmetry of the scheme and a good visual quality of 
the limit surface we require the above coefficients to be such that

|α1,N | > |α2 j−1,N |, j = 2, . . . , N,

|β1,N | = |β3,N | > |β5,N | = |β2N−1,N | > |β2 j−1,N |, j = 4, . . . , N − 1,

|γ2,N | > |γ4,N | = |γ2N,N | > |γ2 j,N |, j = 3, . . . , N − 1.

Taking into account that the regular rules in (2.1)–(2.2) are well-known to generate C1 limit surfaces (see Deslauriers and 
Dubuc, 1989; Dubuc, 1986), the goal of this work is to identify the conditions that the free parameters involved in the 
extraordinary rules have to satisfy in order to guarantee C1 smoothness also at extraordinary points. To this end, we start 
by considering the necessary conditions for convergence, inferred by the requirement that the weights of the edge- and 
face-point stencils sum up to 1 (Peters and Reif, 2008).

Condition 1.a. For all N �= 4 the necessary conditions for convergence can be shortly written as

AN
0 = 1

2
and B N

0 + C N
0 = 13

16

by introducing the auxiliary notation

AN
0 :=

N∑
j=1

α2 j−1,N , B N
0 :=

N∑
j=1

β2 j−1,N , C N
0 :=

N∑
j=1

γ2 j,N . (2.7)

3. The local subdivision matrix

By ordering the points counterclockwise along every ring of each sector proceeding outwards from the extraordinary 
vertex and labeling compatibly within the sectors, the subdivision rules in (2.1)–(2.2) and (2.4)–(2.6) allow one to construct 
a local subdivision matrix S[N] ∈R

(6N+1)×(6N+1) of the form

S[N] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
w M0 M1 · · · MN−2 MN−1
w MN−1 M0 M1 · · · MN−2

w MN−2
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . M1

w M1 · · · MN−2 MN−1 M0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where 0 = (0, 0, 0, 0, 0, 0), w = ( 9
16 , 81

256 , 0, 0, 0, 0)T and

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1,N 0 − 1
16 0 0 0

β1,N γ2,N − 9
256 − 9

256
1

256 − 9
256

1 0 0 0 0 0
9

16
9

16 0 0 0 − 1
16

0 1 0 0 0 0
9 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α3,N 0 0 0 0 0

β3,N γ4,N − 9
256

1
256 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
9 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

0 16 0 − 16 0 0 16 − 16 0 0 0 0
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Mi =

⎛
⎜⎜⎜⎜⎜⎝

α2i+1,N 0 0 0 0 0
β2i+1,N γ2i+2,N 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , i = 2, . . . , N − 2, MN−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α2N−1,N 0 0 0 0 0

β2N−1,N γ2N,N 0 0 0 1
256

0 0 0 0 0 0

0 − 1
16 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

S[N] thus provides a compact representation of a single refinement step restricted to the vertices within the 2-ring of an 
extraordinary vertex P0 of valence N ≥ 5. Introducing the notation

R j :=
( 1

N 0
w
N M j

)
∈R

7×7, j = 0, . . . , N − 1,

we construct the N × N block-circulant matrix

R[N] =

⎛
⎜⎜⎜⎜⎜⎜⎝

R0 R1 · · · RN−2 RN−1
RN−1 R0 R1 · · · RN−2

RN−2
. . .

. . .
. . .

...
...

. . .
. . .

. . . R1
R1 · · · RN−2 RN−1 R0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and applying a discrete Fourier transform to the blocks R j , j = 0, . . . , N − 1, we obtain the blocks

Ŝν =
N−1∑
j=0

R jω
jν, ν = 0, . . . , N − 1 with ω = e

2π i
N ,

defining the block-diagonal matrix

Ŝ[N] =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ŝ0 0 · · · 0 0
0 Ŝ1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 ŜN−2 0
0 · · · 0 0 ŜN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈R
7N×7N

for which N − 1 eigenvalues are zero and all the others are exactly the eigenvalues of S[N] . For each rotational frequency 
component ν = 0, . . . , N − 1 the general block Ŝν ∈R

7×7 is of the form

Ŝν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w N
0,ν 0 0 0 0 0 0

w N
1,ν AN

ν 0 − 1
16 0 0 0

w N
2,ν B N

ν C N
ν − 9+9ων

256
−9+ωv

256
1

256
−9+ω(N−1)ν

256
0 1 0 0 0 0 0

0 9
16

9−ω(N−1)ν

16 0 0 0 − 1
16

0 0 1 0 0 0 0

0 9
16ων 9−ων

16 0 − 1
16 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)

where

AN
ν :=

N∑
j=1

α2 j−1,N ω( j−1)ν , B N
ν :=

N∑
j=1

β2 j−1,N ω( j−1)ν , C N
ν :=

N∑
j=1

γ2 j,N ω( j−1)ν , (3.2)

and

w N
0,ν := 1

N

N−1∑
j=0

ω jν = δν,0, w N
1,ν := 1

N

N−1∑
j=0

9

16
ω jν = 9

16
δν,0, w N

2,ν := 1

N

N−1∑
j=0

81

256
ω jν = 81

256
δν,0, (3.3)

with δν,0 denoting the Kronecker delta function.

Remark 3.1. Definition (3.2) implies that AN
ν , B N

ν , C N
ν ∈ C for ν �= 0. Indeed, we will show in Subsection 5.2 that choosing 

AN
ν , C N

ν ∈ R for all ν = 0, . . . , N − 1 we can obtain a local subdivision matrix S[N] with the desired spectrum.
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4. The characteristic polynomial

Let λν
j , j = 0, . . . , 6 denote the eigenvalues of the matrix Ŝν in (3.1). Furthermore, whenever μ is an eigenvalue of Ŝν , 

we call ν the Fourier index of μ and we write F(μ) = ν .
The results in Section 3 allow us to write the complete spectrum of the local subdivision matrix Ŝ[N] as


[N] =
N−1⋃
ν=0

{λν
0 , λν

1 , λν
2 , λν

3 , λν
4 , λν

5 , λν
6}.

Now let In denote the n × n identity matrix. To work out the explicit expressions of the eigenvalues of each block Ŝν we 
have to compute the roots of the characteristic polynomial det(Ŝν − λ I7). Using Laplace Expansion Theorem we can write

det(Ŝν − λ I7) =
(

w N
0,ν − λ

)
· det(M̂ν − λ I6), (4.1)

where M̂ν is the 6 × 6 sub-matrix of Ŝν given by

M̂ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

AN
ν 0 − 1

16 0 0 0

B N
ν C N

ν − 9+9ων

256
−9+ωv

256
1

256
−9+ω(N−1)ν

256
1 0 0 0 0 0
9

16
9−ω(N−1)ν

16 0 0 0 − 1
16

0 1 0 0 0 0
9

16ων 9−ων

16 0 − 1
16 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2)

As a straightforward consequence of the factorization in (4.1) we have that the eigenvalue of the real matrix Ŝ0 that firstly 
emerges is λ0

0 = w N
0,0 = 1. Thus F(1) = 0. In contrast, for ν = 1, . . . , N − 1, we find λν

0 = w N
0,ν = 0, so obtaining all N − 1

zero eigenvalues of Ŝ[N] . To compute the remaining eigenvalues of the matrix Ŝν (i.e. λν
j , j = 1, . . . , 6 in our notation), we 

have to compute the eigenvalues of its submatrix M̂ν , i.e. the roots of the characteristic polynomial det(M̂ν − λI6). For this 
purpose we consider the permutation matrix

P2,3 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

and observe that, applying P2,3 to the left and to the right of M̂ν , we get the block-triangular matrix

M̃ν = P2,3M̂νP2,3 =
(

K1 O
K2 K3

)
(4.3)

where O is the 2 × 2 null matrix, K1 ∈ R
2×2, K2 ∈ R

4×2 and K3 ∈ R
4×4. Hence, the roots of the characteristic polynomial 

of M̂ν can be more easily found by computing the roots of the characteristic polynomial of M̃ν since the latter can be 
conveniently factorized as

det(M̃ν − λI6) = det(K1 − λI2) · det(K3 − λI4).

The six eigenvalues of M̃ν are indeed the two roots of

det(K1 − λI2) = λ2 − AN
ν λ + 1

16 ,

and the four roots of

det(K3 − λI4) = λ4 − C N
ν λ3 + gνλ2 + hνλ + 1

216

where

gν := −3(3ω2ν − 22ων + 3)

211ων
= − 3

210

(
3 cos

(
2πν

N

)
− 11

)
and
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hν := −1 + 18ων + 256C N
ν ω2ν − 162ω2ν + 18ω3ν − ω4ν

216ω2ν

= 1

215

(
128C N

ν − 80 + 18 cos

(
2πν

N

)
− 2 cos2

(
2πν

N

))
.

Computing the roots of the quadratic polynomial we find

λν
1 = 2AN

ν + √
4(AN

ν )2 − 1

4
, λν

2 = 2AN
ν − √

4(AN
ν )2 − 1

4
, (4.4)

while computing those of the quartic one we get

λν
3 = C N

ν

4
− Sν + 1

2

√
−4S2

ν − 2Rν + Tν

Sν
, λν

4 = C N
ν

4
− Sν − 1

2

√
−4S2

ν − 2Rν + Tν

Sν
,

λν
5 = C N

ν

4
+ Sν + 1

2

√
−4S2

ν − 2Rν − Tν

Sν
, λν

6 = C N
ν

4
+ Sν − 1

2

√
−4S2

ν − 2Rν − Tν

Sν
(4.5)

where

Rν = 8gν − 3(C N
ν )2

8
, Tν = −(C N

ν )3 + 4C N
ν gν + 8hν

8
,

�ν,0 = g2
ν + 3C N

ν hν + 3

214
, �ν,1 = 2g3

ν + 9C N
ν gνhν + 27

216
(C N

ν )2 + 27h2
ν − 9

213
gν,

Q ν =
3

√√√√�ν,1 +
√

�2
ν,1 − 4�3

ν,0

2
, Sν = 1

2

√
−2

3
Rν + 1

3

(
Q ν + �ν,0

Q ν

)
.

Note that since the blocks M̃ν , ν = 1, . . . , N − 1 come in complex conjugate pairs, i.e. M̃N−ν = (M̃ν)∗ , ν = 1, . . . , N − 1, then 
λν

j is eigenvalue of M̃ν if and only if λν
j is eigenvalue of M̃N−ν , i.e. F(λν

j ) = {ν, N − ν}, ν = 1, . . . , N − 1.

5. Constraints on the weights of edge- and face-point extraordinary rules

We start by providing a brief summary of known results concerning the analysis of bivariate subdivision schemes at 
extraordinary points, since they are needed to understand the content of the following subsections. To get more detailed 
explanations and see the related proofs we refer the reader to Peters and Reif (2008), Reif (1995), Zorin (1997, 2000).

5.1. Known results from the literature

Let λi , i = 0, . . . , 6N denote the eigenvalues of the local subdivision matrix S[N] sorted in decreasing order of their 
modulus, and let zi denote the associated eigenvectors. If all λi s have magnitude less than 1, except λ0 = 1 which has 
Fourier index 0 and a single cyclic subspace of size 1 with eigenvector z0 = 1, then the subdivision scheme converges 
(Zorin, 1997). For symmetric subdivision schemes, in order to achieve C1 smoothness we need to further assume that the 
ordered eigenvalues of S[N] satisfy

1 = λ0 > λ := λ1 = λ2 > |λ3|, λ ∈R
+, F(λ) = {1, N − 1}, (5.1)

i.e. the sub-dominant eigenvalue λ is real and double, and its Fourier indices are 1 and N − 1. Moreover, to assert that a 
symmetric subdivision scheme with a double sub-dominant eigenvalue R+ � λ < 1 generates C1 limit surfaces for almost all 
initial data, we have also to require that the characteristic map � , defined by the two sub-dominant eigenvectors, is regular 
and injective (see Reif, 1995; Zorin, 2000). Finally, to design a good C1 scheme with bounded principal curvatures at the 
extraordinary point, we additionally need

• the sub-dominant eigenvalue to be λ = 1
2 ;

• the subsub-dominant eigenvalue to be η = λ2;
• η to be at least triple and F(η) ⊇ {0, 2, N − 2}.

In the following we start by analyzing the case of valence N ≥ 5 and then we focus on the special case N = 3 (see Subsec-
tion 5.4).
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5.2. Constraints inferred from eigenvalues analysis

As previously observed in Section 4, 1 is eigenvalue of the local subdivision matrix S[N] and F(1) = 0. Moreover, in view 
of Condition 1.a, z0 = 1 is the associated eigenvector. Thus, provided that all remaining eigenvalues of S[N] are smaller than 1, 
the subdivision scheme will be convergent. In the following we identify the constraints to be imposed on the weights of the 
extraordinary rules such that this can happen. Moreover, in order to fulfill also the necessary conditions to obtain a good 
C1 scheme, we will require that the sub-dominant eigenvalue is 1

2 , double and such that its Fourier indices are 1, N − 1, as 
well as that the subsub-dominant eigenvalue is 1

4 , at least triple and such that 0, 2, N − 2 belong to the set of its Fourier 
indices, as recalled in Subsection 5.1.

As previously emphasized, since M̃N−1 = (M̃1)
∗ , to identify the conditions regarding the sub-dominant eigenvalue we can 

simply focus on the case ν = 1. Thus, we select ν = 1 and observe that, if setting AN
1 = 5

8 , from the eigenvalues expressions 
in (4.4) we can easily get

λ1
1 =

2AN
1 +

√
4(AN

1 )2 − 1

4
= 1

2
,

as desired, and also

λ1
2 =

2AN
1 −

√
4(AN

1 )2 − 1

4
= 1

8
.

Hence, analogously, the setting of AN
N−1 = 5

8 will provide λN−1
1 = 1

2 and λN−1
2 = 1

8 .

Condition 2.a. The constraint

AN
1 = AN

N−1 = 5

8
, ∀N ≥ 5

guarantees the existence of the sub-dominant eigenvalue λ = 1
2 with Fourier index F(λ) = {1, N − 1}.

Next, we consider ν = 0, 2, . . . , N − 2 and observe that, if setting AN
ν = 1

2 , then from Eq. (4.4) we obtain

λν
1 = 2AN

ν + √
4(AN

ν )2 − 1

4
= 1

4
, ν = 0,2, . . . , N − 2

as well as

λν
2 = 2AN

ν − √
4(AN

ν )2 − 1

4
= 1

4
, ν = 0,2, . . . , N − 2.

Condition 3.a. The constraint

AN
ν = 1

2
, ∀ν = 0,2, . . . , N − 2 and N ≥ 5,

guarantees the existence of the subsub-dominant eigenvalue η = 1
4 with multiplicity m(η) = 2N − 4 and Fourier index F(η) ⊇

{0, 2, N − 2}.

Finally, we have to find an additional condition that can guarantee that all other eigenvalues λν
3 , λν

4 , λν
5 , λν

6 are such that 
|λν

j | ≤ 1
4 for all j = 3, 4, 5, 6 and ν = 0, 1, . . . , N − 1. Since the explicit expressions of these eigenvalues exclusively depend 

on C N
ν , as shown in Eq. (4.5), to achieve our objective we assume C N

ν to be a function within the family of real functions

f N
ν,σ : [−1,1] → R

cos
(

2πν
N

)
�→ 25

64 − σ
(

1 + cos
(

2πν
N

))
, (5.2)

whose members are identified by a specific choice of σ .
Fig. 3 shows the behavior of the family members f N

ν,σ for different values of σ . Plotting also the behavior of the eigenval-

ues λν
3 , λν

4 , λν
5 , λν

6 , ν = 0, 1, . . . , N −1, obtained with C N
ν = f N

ν,σ , σ ∈ [ 13
210 , 45

210 ] (see Fig. 4), we can observe that |λν
3 |, |λν

4 |, |λν
6 |

are always smaller than 1
4 , while |λν

5 | is not greater than 1
4 only if C N

ν = f N
ν,σ with σ ≥ 29

210 . Moreover, we notice that λν
5 = 1

4

whenever ν = N
2 since C N

N = f N
N = 25

64 for all σ ≥ 29
210 .
2 2 ,σ
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Fig. 3. The family of functions f N
ν,σi

with σi = 13+4i
210 , i = 0, 1, . . . , 8. The solid thicker (red) curve identifies f N

ν, 29
210

. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Behavior of eigenvalues λν
3 , λν

4 , λν
5 , λν

6 , ν = 0,1, . . . , N − 1 when C N
ν = f N

ν,σi
and σi = 13+4i

210 , i = 0,1, . . . ,8.
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Condition 4.a. Let ν ∈ {0, 1, . . . , N − 1}. Setting

C N
ν = 25

64
− σ

(
1 + cos

(
2πν

N

))
with σ ≥ 29

210
, (5.3)

we obtain

|λν
3 | < 1

4
, |λν

4 | < 1

4
, |λν

5 | < 1

4
, |λν

6 | < 1

4
, if ν �= N

2
and

|λν
3 | < 1

4
, |λν

4 | < 1

4
, λν

5 = 1

4
, |λν

6 | < 1

4
, if ν = N

2
.

Remark 5.1. Conditions 3.a and 4.a imply that the subsub-dominant eigenvalue η = 1
4 has multiplicity

m(η) =
{

2N − 4, if N odd,
2N − 3, if N even.

Remark 5.2. To guarantee that the local subdivision matrix S[N] has the desired spectrum, we have no conditions on B N
ν . 

Looking at Eqs. (4.2)–(4.3) this can be easily understood. In fact, B N
ν appears only in the block K2 which has no influence 

on the characteristic polynomial and thus on the computation of the eigenvalues of M̃ν .

5.3. Constraints inferred from eigenvectors analysis

If an interpolatory subdivision scheme with extraordinary stencils in Fig. 2 fulfills Conditions 1.a, 2.a, 3.a, 4.a, then 
it is convergent and satisfies the necessary conditions to achieve also C1-continuity and bounded curvature at ex-
traordinary points of valence N ≥ 5. The achievement of C1-continuity is subject only to the additional fulfillment 
of the condition regarding the regularity of the characteristic map. In fact, since we already proved that the Fourier 
indices of the subdominant eigenvalue are 1, N − 1, once the regularity has been proven the injectivity follows im-
mediately (Peters and Reif, 2008). The characteristic map is a special parametrization that allows one to express the 
limit surface around an extraordinary point as a differentiable function of two variables. Such parametrization de-
pends not only on the mesh connectivity, but also on the weights defining the extraordinary rules, and can be ob-
tained as the planar limit surface generated by the so-called characteristic mesh, i.e. the control mesh provided by 
the eigenvectors z1, z2 corresponding to the sub-dominant eigenvalue λ := λ1 = λ2 (Peters and Reif, 2008; Reif, 1995;
Zorin, 2000). This planar limit surface is made by a ring of regular surface patches of the tensor-product interpolatory 
Dubuc–Deslauriers 4-point scheme, and the characteristic mesh contains the control points for the definition of such 
patches. By the property of rotational symmetry around the extraordinary vertex, the characteristic mesh can be conve-
niently decomposed into N segments. By normalizing the eigenvectors z1, z2 such that the characteristic mesh is centered 
at (0, 0) and the furthest corner in the first segment is at (1, 0) of the global (x, y)-coordinate system (see Fig. 5), we can 
obtain the so-called normalized characteristic mesh. Exploiting the results presented by Deng and Ma (2013, Appendix A), 
we here show a standard procedure which allows one to verify if a bivariate interpolatory subdivision scheme defined by 
the extraordinary stencils in Fig. 2 and satisfying Conditions 1.a, 2.a, 3.a, 4.a, has a regular characteristic map, and is thus 
of class C1. Before showing the pseudo-code of the procedure, we underline the fact that the eigenvectors z1 and z2, used 
to define the characteristic mesh, must be computed from a local subdivision matrix S[N] ∈ R

(42N+1)×(42N+1) . This is due to 
the fact that, in the univariate case, for the Dubuc–Deslauriers interpolatory 4-point scheme, a limit curve segment between 
two consecutive vertices is defined by a set of 6 vertices. For the class of schemes considered in this article, a limit surface 
patch bounded by 4 vertices defining a quadrilateral face is thus identified by a set of 6 × 6 vertices, being a tensor-product 
surface patch of the Dubuc–Deslauriers interpolatory 4-point scheme (see Fig. 5).

Pseudo code of procedure.

1. Compute the subdivision matrix S[N] ∈ R
(42N+1)×(42N+1) , where each block M� ∈ R

42×42 for � = 0, 1, . . . , N − 1.
2. Following the reasoning in Section 3, compute the 43 × 43 block Ŝ1 and consider its 42 × 42 sub-matrix M̂1.
3. Compute the dominant eigenvector of M̂1, that is the eigenvector v ∈C

42 related to the eigenvalue 1
2 .

4. Re-order the entries vk, k = 1, . . . 42 of v defining a matrix V ∈ C
7×6 of the form

(Vi, j) 1≤i≤7
1≤ j≤6

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1 v3 v7 v13 v21 v31
v2 v4 v8 v14 v22 v32
v6 v5 v9 v15 v23 v33
v12 v11 v10 v16 v24 v34
v20 v19 v18 v17 v25 v35
v30 v29 v28 v27 v26 v36

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

v42 v41 v40 v39 v38 v37
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Fig. 5. First segment of the normalized characteristic mesh: entries of the 7 × 6 matrix V (marked by ∗) and entries of the first row of V rotated counter-
clockwise by 2π

N (marked by +).

5. Denoting by x := R(V) and y := I(V) the real and imaginary part of V, respectively, define the x and y coordinates of 
the points marked by ∗ in Fig. 5. Notice that they all depend on B N

1 and C N
1 .

6. Rotating rows and columns of V clockwise and counterclockwise by 2π
N , construct all the 6 × 6 sets of control points 

defining the 12 surface patches bounded by the vertices of the quadrilateral faces highlighted in Fig. 5.
7. For the surface patch bounded by the four vertices 

(
R(Vi, j), I(Vi, j)

)
, 

(
R(Vi, j+1), I(Vi, j+1)

)
, 

(
R(Vi+1, j), I(Vi+1, j)

)
, (

R(Vi+1, j+1), I(Vi+1, j+1)
)
, let 

(
R(Vm,n) = xm,n, I(Vm,n) = ym,n

)
, m = i − 2, . . . , i + 3, n = j − 2, . . . , j + 3 identify its 

6 × 6 set of control points. Then compute

cx
m = maxn= j−1,..., j+2{|2xm,n − xm,n−1 − xm,n+1|}, m = i − 2, . . . , i + 3,

�x
m = max{xm+1, j − xm, j, xm+1, j+1 − xm, j+1}, m = i − 2, . . . , i + 2,

δx
m = min{xm+1, j − xm, j, xm+1, j+1 − xm, j+1}, m = i − 2, . . . , i + 2, (5.4)

and verify the fulfillment of

Condition 5.a.

(i)
(cx

m+1 + cx
m)

δx
m

< 4 ∀m = i − 2, . . . , i + 2,

(ii)
1

K
≤ 4δx

m+1 − (cx
m+2 + cx

m+1)

4�x
m + (cx

m+1 + cx
m)

≤ K ∀m = i − 2, . . . , i + 1,

(iii)
1

K
≤ 4�x

m+1 + (cx
m+2 + cx

m+1)

4δx
m − (cx

m+1 + cx
m)

≤ K ∀m = i − 2, . . . , i + 1,

with K = 3 + 2
√

2.

Remark 5.3. Conditions 5.a(i), 5.a(ii), 5.a(iii), together with Conditions 1.a, 2.a, 3.a, 4.a, have been proven by Deng and 
Ma (2013) to guarantee the positivity of the x and y components of the first derivative of a surface patch along the u
direction, and thus, in view of Peters and Reif (2008, Theorem 5.25) provide sufficient conditions for the regularity of 
the characteristic map.

8. Compute the values in (5.4) for the y-coordinates and check if Condition 5.a is satisfied.
9. Repeat steps 7, 8 for all the 12 surface patches contained in the first sector of the normalized characteristic map.

10. If for all such patches Condition 5.a is verified for both x- and y-coordinates, then the characteristic map is regular. 
Conversely, if a patch does not satisfy these equations, subdivide it into four subpatches and check Condition 5.a for 
both x- and y-coordinates of each subpatch. If Condition 5.a is not satisfied within a predefined number of refinement 
steps (say 10), then no proof of regularity of the characteristic map is available.
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Table 1
Weights proposed by Li–Ma–Bao for the edge- and face-point rule around extraordinary vertices of valence N ≥ 5 (a) and N = 3 (b).

(a)

α1,N
1
2 + 1

4N

α2 j−1,N , j = 2, . . . , N 1
4N cos

( 2π( j−1)
N

)
β1,N = β3,N

63
256 + 3

32N

(
2 + cos

( 2π
N

) + sin
( 2π

N

))
β5,N = β2N−1,N − 3

256 + 3
32N

(
1 + cos

( 4π
N

) + sin
( 4π

N

)
+ cos

( 2π
N

) − sin
( 2π

N

))
β2 j−1,N j = 4, . . . , N − 1 3

32N

(
1 + cos

( 2π( j−1)
N

) + sin
( 2π( j−1)

N

)
+ cos

( 2π( j−2)
N

) − sin
( 2π( j−2)

N

))
γ2,N

11
32 − 7

64N

γ4,N = γ2N,N − 3
128 − 1

64N

(
3 + 4 cos

( 2π
N

))
γ2 j,N , j = 3, . . . , N − 1 − 1

64N

(
3 + 4 cos

( 2π( j−1)
N

))

(b)

α1,3 = 7
12 α3,3 = α5,3 = − 1

24

β1,3 = β3,3 = 75
256 +

√
3

64 β5,3 = − 3
128 −

√
3

32

γ2,3 = 59
192 γ4,3 = γ6,3 = − 11

384

5.4. The case N = 3

The analysis conducted for the case N ≥ 5 can be exploited also for the special case N = 3, just introducing the following 
changes when formulating Conditions 1.a, 2.a, 3.a and 4.a.

Condition 1.b. The constraints A3
0 = 1

2 , B3
0 + C3

0 = 13
16 imply that λ0 = 1 with F(1) = 0 and z0 = 1.

Condition 2.b. The constraints A3
1 = A3

2 = 5
8 imply that λ := λ1 = λ2 = 1

2 with F(λ) = {1, 2}.

Condition 3.b. The constraint A3
0 = 1

2 yields η := λ3 = 1
4 with F(η) = {0}.

Remark 5.4. We thus point out that, when N = 3, the limit surface is not L2-hyperbolic because both 2 and N − 2 do not 
belong to the Fourier indices of the subsub-dominant eigenvalue 1

4 (Peters and Reif, 2008).

Condition 4.b. The constraint C3
ν = 25

64 − σ(1 + cos( 2πν
N )) with σ ≥ 29

210 for all ν ∈ {0, 1, 2} guarantees that |λi| < 1
4 for all i ≥ 4.

Finally, to check the regularity of the characteristic map, and thus the C1-continuity of the scheme in the neighborhood 
of an extraordinary point of valence N = 3, we can again use the procedure proposed in Subsection 5.3.

6. Numerical examples: special weights settings

In this section, we consider interpolatory subdivision schemes from the literature which fall into the general class studied 
in this paper. Such schemes are featured by

(i) the regular rules in (2.1)–(2.2), obtained from the tensor-product of the Dubuc–Deslauriers interpolatory 4-point scheme 
(Deslauriers and Dubuc, 1989; Dubuc, 1986);

(ii) the extraordinary rules in (2.4)–(2.6) and (2.3)–(2.5) for the cases N ≥ 5 and N = 3, respectively.

Moreover, they satisfy the constraints appearing in Conditions 1.a, 2.a, 3.a, 4.a and 5.a for any N �= 4, and thus guarantee 
convergence, C1-continuity and boundedness of principal curvatures at extraordinary points. We thus exclude from our 
discussion the proposal in Schaefer and Warren (2003) since, although fulfilling requirements (i)–(ii), it fails to satisfy 
boundedness of curvature.

6.1. Li–Ma–Bao’s subdivision scheme

The weights α2 j−1,N , β2 j−1,N , γ2 j,N , j = 1, . . . , N for the extraordinary rules proposed by Li et al. (2005) are shown in 
Table 1 for the cases N ≥ 5 and N = 3, respectively. For such weights setting we prove that the constraints in Conditions 1.a, 
2.a, 3.a, 4.a are all satisfied for any N �= 4.

Proposition 6.1. Li–Ma–Bao’s subdivision scheme satisfies the constraints in Condition 1.a for all N ≥ 5.
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Proof. From Table 1a we have that

AN
0 =

N∑
j=1

α2 j−1,N = 1

2
+ 1

4N
+ 1

4N

N∑
j=2

cos

(
2π( j − 1)

N

)
.

Since 
∑N

j=2 cos
(

2π( j−1)
N

)
= −1 for all N ≥ 5, then AN

0 = 1
2 . In order to compute B N

0 , we observe that

3

32N

N∑
j=1

(
1 + cos

(2π( j − 1)

N

)
+ sin

(2π( j − 1)

N

)
+ cos

(2π( j − 2)

N

)
− sin

(2π( j − 2)

N

))
= 3

32
∀N ≥ 5,

and the latter yields B N
0 = 3

32 + 2 · 63
256 + 2 ·

(
− 3

256

)
= 9

16 . In a similar way we can compute C N
0 by noticing that

− 1

64N

N∑
j=1

(
3 + 4 cos

(
2π( j − 1)

N

))
= − 3

64
∀N ≥ 5,

which yields C N
0 = − 3

64 + 11
32 + 2 ·

(
− 3

128

)
= 1

4 . Hence B N
0 + C N

0 = 13
16 . �

For the following propositions we recall that ω = e
2π i
N = cos

(
2π
N

)
+ i sin

(
2π
N

)
.

Proposition 6.2. Li–Ma–Bao’s subdivision scheme satisfies the constraints in Condition 2.a for all N ≥ 5.

Proof. Since

1

4N

N∑
j=1

cos

(
2π( j − 1)

N

)
ω( j−1) = 1

8
∀N ≥ 5,

thus AN
1 = 1

8 + 1
2 = 5

8 for all N ≥ 5. Analogously we can also prove that AN
N−1 = 5

8 for all N ≥ 5. �
Proposition 6.3. Li–Ma–Bao’s subdivision scheme satisfies the constraints in Condition 3.a for all N ≥ 5.

Proof. In Proposition 6.1 we have already proven that AN
0 = 1

2 . Thus, we have to prove the claim for ν = 2, . . . , N − 2 only. 
Since for all N ≥ 5 and ν = 2, . . . , N − 2

1

4N

N∑
j=1

cos

(
2π( j − 1)

N

)
ω( j−1)ν = 0,

then AN
ν = 1

2 for all N ≥ 5 and ν = 2, . . . , N − 2. �
Proposition 6.4. Li–Ma–Bao’s subdivision scheme satisfies the constraints in Condition 4.a for all N ≥ 5.

Proof. Using the coefficients in Table 1a we can compute C N
ν for all ν = 0, . . . , N − 1.

• If ν = 0, then C N
0 = 1

4 as it was already shown in Proposition 6.1.
• If ν = 1, we observe that for all N ≥ 5

− 1

64N

N∑
j=1

(
3 + 4 cos

(
2π( j − 1)

N

))
ω( j−1) = − 1

32
,

so that

C N
1 = 5

16
− 3

128

(
ω + ωN−1

)
∀ N ≥ 5.

Analogously, we can also show that C N = 5 − 3 (
ω + ωN−1

)
, for all N ≥ 5.
N−1 16 128
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Table 2
Weights proposed by Deng–Ma for the edge- and face-point rule around extraordinary vertices of valence N ≥ 5 (a) and N = 3 (b).

(a)

α1,N
1
2 + 1

4N

α2 j−1,N , j = 2, . . . , N 1
4N cos

( 2π( j−1)
N

)
β1,N = β3,N

153
512 + 9

128N

(
1 + cos

( 2π
N

))
β5,N = β2N−1,N − 9

512 + 9
128N

(
cos

( 4π
N

) + cos
( 2π

N

))
β2 j−1,N , j = 4, . . . , N − 1 9

128N

(
cos

( 2π( j−1)
N

) + cos
( 2π( j−2)

N

))
γ2,N

81
256

γ4,N = γ2N,N − 9
256

γ6,N = γ2N−2,N
1

512

γ2 j,N , j = 4, . . . , N − 2 0

(b)

α1,3 = 7
12 α3,3 = α5,3 = − 1

24

β1,3 = β3,3 = 159
512 β5,3 = − 15

256

γ2,3 = 81
256 γ4,3 = γ6,3 = − 17

512

• If ν = 2, . . . , N − 2, we notice that for all N ≥ 5

− 1

64N

N∑
j=1

(
3 + 4 cos

(
2π( j − 1)

N

))
ω( j−1)ν = 0,

thus yielding

C N
ν = 11

32
− 3

128

(
ων + ω(N−1)ν

)
∀N ≥ 5 and ν = 2, . . . , N − 2.

Finally, re-writing the above results in the compact form

C N
ν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4 if ν = 0;
23
64 − 3

64

(
1 + cos

(
2π
N

))
if ν = 1, N − 1;

25
64 − 3

64

(
1 + cos

(
2πν

N

))
if ν = 2, . . . , N − 2

we get

C N
ν =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f N
0, 9

128
if ν = 0;

f N
1, 3

64 + 1
32(1+cos( 2π

N ))

if ν = 1, N − 1;

f N
ν, 3

64
if ν = 2, . . . , N − 2.

Since 9
128 > 29

210 , 3
64 > 29

210 and 3
64 + 1

32(1+cos( 2π
N ))

> 3
64 > 29

210 , then for all 0 ≤ ν ≤ N − 1 the constraints in Condition 4.a are 

satisfied. �
Remark 6.5. From Table 1b we obtain that, when N = 3, Li–Ma–Bao’s scheme satisfies the constraints in Conditions 1.b
and 3.b since A3

0 = 1
2 and B3

0 = 9
16 , C3

0 = 1
4 , so providing B3

0 + C3
0 = 13

16 . Additionally, since A3
1 = A3

2 = 7
12 − 1

12 cos
(

2π
3

)
= 5

8 , 

the constraints in Condition 2.b are also fulfilled. Furthermore, since C3
0 = 1

4 = f 3
0, 9

128
and C3

1 = C3
2 = 43

128 = f 3
1, 7

64
with 

9
128 > 29

210 and 7
64 > 29

210 , thus the constraints in Condition 4.b are satisfied too for all 0 ≤ ν ≤ 2.

Finally, using the numerical procedure summarized in Subsection 5.3, we checked that Li–Ma–Bao’s scheme also satisfies 
Condition 5.a for all 3 ≤ N ≤ 50 after 7 refinement steps, thus showing convergence, C1-smoothness and boundedness of 
principal curvatures at extraordinary points with these valences.

6.2. Deng–Ma’s subdivision scheme

For the subdivision scheme recently proposed by Deng and Ma (2013), the weights defining the edge-point and the 
face-point stencil are shown in Table 2 for N ≥ 5 and N = 3. As already shown for Li–Ma–Bao’s subdivision scheme, we 
now prove that also the coefficients defining the extraordinary rules of Deng–Ma’s scheme satisfy the constraints in Condi-
tions 1.a, 2.a, 3.a and 4.a.
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Remark 6.6. Comparing Tables 1a and 2a, we notice that the coefficients α2 j−1,N , j = 1, . . . , N are the same for both 
schemes. Thus, Propositions 6.2 and 6.3 immediately yield that Deng–Ma’s subdivision scheme satisfies the constraints in 
Conditions 2.a and 3.a.

Proposition 6.7. Deng–Ma’s subdivision scheme satisfies the constraints in Condition 1.a for all N ≥ 5.

Proof. From Remark 6.6 we have that AN
0 = 1

2 . Now, in order to compute B N
0 we observe that, for all N ≥ 5,

9

128N

N∑
j=1

(
cos

(
2π( j − 1)

N

)
+ cos

(
2π( j − 2)

N

))
= 0,

so that B N
0 = 2 · 153

512 + 2 ·
(
− 9

512

)
= 9

16 . Additionally, from Table 2a we have that C N
0 = 1

4 so obtaining B N
0 + C N

0 = 13
16 . �

Proposition 6.8. Deng–Ma’s subdivision scheme satisfies the constraints in Condition 4.a for all N ≥ 5.

Proof. From Table 2a we find that, for all N ≥ 5 and ν = 0, . . . , N − 1,

C N
ν = 81

256
− 9

128
cos

(
2πν

N

)
+ 1

256
cos

(
4πν

N

)
= f N

ν,
10−cos

(
2πν

N

)
128

with
10 − cos

(
2πν

N

)
128

>
29

210
.

Then the constraints in Condition 4.a are fulfilled. �
Remark 6.9. From Table 2b we immediately find that A3

0 = 1
2 , B3

0 = 9
16 , C3

0 = 1
4 , so that B3

0 + C3
0 = 13

16 . Hence Deng–Ma’s 
subdivision scheme satisfies the constraints in Conditions 1.b and 3.b. Additionally, since A3

1 = A3
2 = 7

12 − 1
12 cos

(
2π
3

)
= 5

8 , 

the constraints in Condition 2.b are also fulfilled. Furthermore, by the fact that C3
0 = 1

4 = f 3
0, 9

128
, C3

1 = C3
2 = 179

512 = f 3
1, 21

256
and 

9
128 > 29

210 as well as 21
256 > 29

210 , thus the constraints in Condition 4.b are satisfied too.

Finally, we conclude by observing that, using the numerical procedure in Subsection 5.3, Deng–Ma’s scheme also satisfies 
Condition 5.a for all 3 ≤ N ≤ 50 with 8 refinement steps, and thus guarantees convergence, C1-continuity and boundedness 
of principal curvatures at extraordinary points with these valences.

6.3. A new scheme with simplified face-point stencils

The goal of this section is to show how easily new C1 subdivision schemes with bounded curvature at extraordinary 
points can be designed by suitably choosing the weights α2 j−1,N , β2 j−1,N , γ2 j,N , j = 1, . . . , N such that all the constraints 
previously found are fulfilled. Keeping the regular rules in (2.1)–(2.2) and the choice of α2 j−1,N , j = 1, . . . , N for all N �= 4 as 
in Li–Ma–Bao’s and Deng–Ma’s proposal, we focus our attention on the selection of the weights appearing in the face-point 
rule only. Our idea is to simplify the expressions of the coefficients used in the above proposals and to reduce the number 
of vertices involved. To this purpose we choose the weights for the face-point stencil as follows:

• if N = 3, we set

β1,3 = β3,3 = 79

256
, β5,3 = − 19

256
, γ2,3 = 85

256
, γ4,3 = γ6,3 = − 1

32
, (6.1)

• if N ≥ 5 we choose

β1,N = β3,N = 81

256
, β5,N = β2N−1,N = N − 38

512(N − 2)
, β2 j−1,N = − 9

128(N − 2)
, j = 4, . . . , N − 1

γ2,N = 81

256
, γ4,N = γ2N,N = − 9

256
, γ2 j,N = 0, j = 3, . . . , N − 1. (6.2)

Regarding the new choice of the coefficients β2 j−1,N , j = 1, . . . , N we observe that they have a simpler expression than those 
proposed by Li–Ma–Bao and Deng–Ma. Moreover, the coefficients γ2 j,N , j = 1, . . . , N are independent of the valence N and 
only 3 of them are non-zero. Thus the choice in (6.1)–(6.2) is computationally cheaper since we simplify the expressions of 
β2 j−1,N and γ2 j,N , and reduce the number of vertices involved in the face-point rule definition.

In the following we show that the new weights fulfill all the necessary conditions required for C1-continuity and 
bounded curvature at extraordinary vertices of valence N = 3 and N ≥ 5.
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Fig. 6. Limit surfaces obtained by the subdivision scheme proposed in Subsection 6.3 after 6 steps of refinement.

Proposition 6.10. The interpolatory subdivision scheme with coefficients in (6.1) and (6.2) satisfies Conditions 1.b, 2.b, 3.b, 4.b for 
valence N = 3 and Conditions 1.a, 2.a, 3.a, 4.a for valence N ≥ 5.

Proof. Since we keep the same α2 j−1,N j = 1, . . . , N proposed by Li–Ma–Bao and Deng–Ma, from Remarks 6.5 and 6.9 we 
immediately have that for N = 3 Conditions 2.b and 3.b are verified and, in the same way, from Propositions 6.2 and 6.3
we have that for N ≥ 5 Conditions 2.a and 3.a are fulfilled. Additionally, we can easily see that B3

0 + C3
0 = 13

16 , thus satisfying 
Condition 1.b. For N ≥ 5 we notice that 

∑N−1
j=2

(
− 9

128(N−2)

)
= − 9

128 . It easily follows that B N
0 = 145

256 and, since C N
0 = 63

256 , 

we have B N
0 + C N

0 = 13
16 and Condition 1.a is verified. Furthermore, by the fact that, for N = 3, C3

0 = 69
256 = f 3

0, 31
512

and 

C3
1 = C3

2 = 93
256 = f 3

1, 7
128

where 31
512 > 29

210 as well as 7
128 > 29

210 , Condition 4.b is satisfied too. In a similar way, we find

C N
ν = 81

256
− 9

128
cos

(
2πν

N

)
= f N

ν, 9
128 + 1

256 cos
(

2πν
N

)

and since 9
128 + 1

256 cos
(

2πν
N

) > 29
210 for all 0 ≤ ν ≤ N − 1, then for all 0 ≤ ν ≤ N − 1 Condition 4.a is fulfilled. �

Finally, using the numerical procedure in Subsection 5.3, we have verified that the new interpolatory subdivision scheme 
satisfies Condition 5.a for all 3 ≤ N ≤ 50 after 9 refinement steps, and thus guarantees convergence, C1-continuity and 
boundedness of principal curvatures at extraordinary points with these valences.

In Fig. 6 we show four examples of initial control meshes refined by using the new interpolatory subdivision scheme. 
In Fig. 7 we compare the limit surfaces obtained by the new extraordinary rules with the ones obtained via Li–Ma–Bao’s 
and Deng–Ma’s proposals. Analyzing the behavior of the reflection lines it turns out that the new scheme produces limit 
surfaces of the same quality as Deng–Ma’s and Li–Ma–Bao’s schemes, but at a reduced computational cost.

7. Conclusions

In this work we studied which constraints are required to be respected by the weights of the extraordinary stencils 
shown in Fig. 2 to obtain a limit surface that is C1-continuous and with bounded curvature at the extraordinary points. 
The necessary conditions defined by analyzing the eigenvalues of the subdivision matrix are summarized in Table 3 for all 
extraordinary points of valence N �= 4. Moreover, a standard procedure that checks sufficient conditions for the regularity 
of the characteristic map has been presented in Subsection 5.3. These conditions allow one to define a large variety of 
C1-interpolatory schemes with bounded curvature. After proving that the schemes proposed in literature by Li–Ma–Bao 
and Deng–Ma satisfy all the above constraints, we have derived a new subdivision scheme characterized by a smaller and 
simplified face-point stencil, which behaves closely to Deng–Ma’s and Li–Ma–Bao’s schemes.
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Fig. 7. First and third row: comparison of C1 limit surfaces (obtained after 6 steps of refinement) displayed with reflection lines. Second and fourth row: 
closeup views at extraordinary vertices of valence 3 and 6, respectively.
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Table 3
Summary of the conditions required on the coefficients α2 j−1,N , β2 j−1,N , γ2 j,N , j = 1, . . . , N for all valences 
N �= 4.

1.
N∑

j=1

α2 j−1,N = 1

2
for all N �= 4,

N∑
j=1

(β2 j−1,N + γ2 j,N ) = 13

16
for all N �= 4

2.
N∑

j=1

α2 j−1,N ω( j−1)ν = 5

8
for all N �= 4 and ν = 1, N − 1

3.
N∑

j=1

α2 j−1,N ω( j−1)ν = 1

2
for N ≥ 5 and ν = 0,2, . . . , N − 2

4.
N∑

j=1

γ2 j,N ω( j−1)ν = 25

64
− σ

(
1 + cos

(
2πν

N

))
with σ ≥ 29

210 for all N �= 4 and ν = 0,1, . . . , N − 1
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