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The existing approaches for topological structure analysis of volumetric data are mainly 
based on discrete methods, and the results usually need to be simplified and smoothened 
for further use. In this paper we propose a novel framework to extract the topology of 
volumetric data distinguished from the commonly-used piecewise linear framework. The 
data is reconstructed into a C2-continuous quasi-interpolated space first by 7-directional 
box spline, where the value evaluation and differential calculations are both direct and 
accurate. Then Newton–Armijo method and homotopy continuation method are combined 
to solve critical points, and topological structures are extracted by connecting saddle-
extremum arcs generated by a kind of numerical integral method. The parallel architecture 
of GPU is also applied to ensure the efficiency of our algorithms. A number of examples 
illustrate that our framework provides much smoother and clearer results compared with 
the piecewise linear framework.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Volumetric data are the discrete representation of a 3D scalar field which are widely used in scientific researches, such 
as medical science, chemistry, materials science and other fields. The topology of volumetric data can be used to enhance 
visualization or help further scientific analysis. However, exploring the topology of discrete scalar fields is one of the most 
challenging problems in volumetric data studies.

Critical points are important topological features where the gradients vanished. For 3D data the critical points are clas-
sified into four types according to their indices, i.e. minima, 1-saddles, 2-saddles and maxima. Maxima and minima can 
be found easily in a discrete field, while the indices of saddles are not explicit. The discrete approaches depend on dis-
crete Betti numbers to extract and classify critical points based on a piecewise-linear (PL) manifold. The isosurfaces of 
vertices are computed by marching cubes based methods, and the neighbour grids are partitioned into positive and neg-
ative connected components. A lookup table is used to determine whether the current vertex is a critical point and its 
index (Gerstner and Pajarola, 2000). When the marching cubes method is extended to trilinear interpolant (Nielson, 2003;
Carr and Max, 2010), a similar lookup table is also used to get critical points in the trilinear field (Weber et al., 2002). 
All these methods are limited to isolated critical points, while many volumetric data models have constant areas, which 
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Fig. 1. Left: an example of extracting the topological skeleton by the method proposed in this paper. The first image shows the direct volume rendering 
result of Hydrogen data; the second image shows the skeleton formed by 2-saddle-maximum arcs (the red spheres are maxima and the yellow ones are 
2-saddles), and the enhanced volume rendering result according with transfer function designed by the extracted critical values; Right: the comparison 
graph of different process flows between the existing discrete framework and the proposed continuous framework.

lead to critical regions. Weber et al. (2003) connect two graphs to represent the positive-connected and negative-connected 
neighbourhoods of a constant region, and classify regions according to the number of connected components in both graphs.

Many topology-related visualization and scientific analysis methods are based on the relationship between critical points. 
Contour tree abstracts the connectivity of level sets, which merge or split only at critical isovalues (Carr et al., 2003). Reeb 
graph extends contour tree that allows loops, and becomes another effective tool to analyze the topology of volumetric data 
(Pascucci et al., 2008). Some researchers devote their efforts to simplifying the topology (Carr et al., 2010) and generalizing 
the representation to multivariate fields (Carr and Duke, 2014).

Morse theory is a basic tool to define the relationship between critical points (Milnor, 1963). Morse–Smale (MS) com-
plexes partition a data field into regions where the interior gradient flows are uniform (Edelsbrunnery et al., 2003). 
The discrete Morse theory combines CW complexes to form the quasi-Morse–Smale complex (Forman, 1998). Common 
approaches are based on PL framework. The main idea is to march from maxima and minima to form the ascend-
ing and descending manifolds, and then the MS complex is computed by intersecting these manifolds (Edelsbrunner et 
al., 2001, 2003). Due to the noise in the data and rounding off, there are many redundant critical points extracted by 
the former methods. Therefore the MS complex usually needs to be simplified to reflect the topology. Simplification of 
MS complex is done via removing insignificant critical points and merging the manifolds (Gyulassy et al., 2005). Later 
methods present new data structures and algorithms to speedup the simplification process and make the algorithms 
practical for real applications (Gyulassy et al., 2006, 2007, 2008). However the entire MS complex is still too compli-
cated for visualization or analysis. Most of the time the purpose of computing the MS complex is to extract a summary 
skeleton of the volumetric data. The skeleton can be visualized directly to reflect the topology (Beketayev et al., 2011;
Correa et al., 2011), or provides information to enhance the volume rendering result via improving the transfer func-
tion (Takahashi et al., 2004). The geometric features of the skeleton are also used for further analysis, for example, the 
structures of protein molecules can be learnt from the MS complex skeleton (Bajaj et al., 2012).

Although PL framework has been well studied and the performance is acceptable, there are some limitations of discrete 
approaches. The critical points extracted by discrete methods are always on the sample lattice, so the positions of critical 
points are not accurate for some low-resolution models. The algorithm of computing MS complex is difficult to implement, 
and the simplified result still hardly reflects the structure of scanned data with heavy noise. Besides, because the complex 
is defined on CW complexes, the borders of the manifolds are not smooth. Thus the gradient path from one critical point to 
another in discrete MS complex is along the sample vertices, which makes the visual result zigzag. Weinkauf et al. (2010)
apply a bi-Laplacian filter to reconstruct a C1-continuous scalar field to issue the problem. Norgard and Bremer (2013)
compute the MS complex on a bilinear interpolated field so that the framework is continuous. However these methods are 
only designed for 2D scalar fields where the topology of saddles is simple.

To address these problems, we attempt to propose a unified framework to apply continuous methods on discrete volu-
metric data, though the topology-related computation on a continuous space is known as impractical because the critical 
points are difficult to solve (Forman, 1998). The framework is supposed to extract topological features with high accuracy 
in practical running time. Morse theory works for spaces with C2-continuity, so the reconstructed data model should have 
the same or higher continuity. The basic tool to reconstruct the C2-continuous scalar field is the 7-directional box spline 
proposed by Entezari and Möller (2006). This spline is often used for isosurface visualization due to the good spherical 
symmetry of its convolution kernel. We extend Kim and Peter’s fast evaluation algorithm (Kim and Peters, 2008) to the 
topological computation and implement the critical points solver on GPU. The topological skeleton is connected by integral 
lines, which can be naturally computed on the C2-continuous model. Fig. 1 illustrates the process flow of the framework.

Different from the discrete framework which uses combinatory structures of neighbour vertices to detect topological 
features, our framework solves critical points directly and skips the manifolds intersection to build the skeleton. The gradient 
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path is the real integral line in the space which is smooth and accurate. Moreover, the interpolation of the spline smoothen 
the data and the unsimplified result is fairly good to reflect the topology of the data.

The details of C2-continuous reconstruction are discussed in Section 2. Some preprocessing operators are introduced to 
reduce computational cost and improve the quality of the result. In Section 3 we show how critical points are extracted by 
solving some polynomial systems within our framework. We also construct the directed gradient flow graph to represent 
the topological skeleton via connecting integral lines between critical points. These computations are explained in Section 4. 
At last we give the results and discuss the efficiency of our framework in Section 5.

2. Model reconstruction

Because solving critical points on a C2-continuous field is the most time-consuming step, the interpolation method 
needs to be chosen carefully. The 7-directional box spline is the basic tool to reconstruct the C2-continuous model in our 
framework. The polynomial form of the interpolation has lower degree than the tri-cubic B-spline so that it is easier to 
solve all critical points in later steps. The quasi-interpolation method based on box splines is mainly applied in visualizing 
isosurfaces of volumetric data (Entezari and Möller, 2006; Kim et al., 2008; Kim, 2013). We will demonstrate that this 
tool is useful for topological analysis as well. We first review the definition and properties of 7-directional box splines in 
Section 2.1, and then we introduce a pre-processing step that removes degeneracy for the later reconstruction in Section 2.2. 
The details of evaluation are explained in Section 2.3.

2.1. Box spline

A box spline M� is specified by a set of n ≥ s vectors {ξ1, ξ2, . . . , ξn} in Rs , which are the columns of matrix �. The 
spline is nonzero at point x only if ∃t ∈ [0,1)n that x = �t , which means the support of the box spline suppM� is the 
convex combination of these n vectors.

In the simplest case n = s, the box spline is defined as the characteristic function of its support:

M�(x) =
⎧⎨
⎩

1

|det �| if x ∈ suppM�

0 otherwise

(1)

When n > s, the spline is the convolution of additional n − s vectors with the basic spline constructed by s vectors. We have 
the following recursive definition:

M[�,ξ ](x) =
1∫

0

M�(x − tξ)dt (2)

The box spline is a piecewise polynomial with degree less than or equal to n − s on suppM� . If there are at most m vectors 
in columns of � that do not span Rs , the spline forms a Cn−m−2-continuous function. The proofs of the properties can be 
found in de Boor et al. (1993).

In this paper we only focus on 3D volumetric data, thus s = 3. We adopt the 7-directional box spline proposed in Entezari 
and Möller (2006). The spline matrix � is given as the following:

� =
⎡
⎣1 0 0 1 −1 −1 1

0 1 0 −1 1 −1 1

0 0 1 −1 −1 1 1

⎤
⎦ (3)

In this case, the support of the spline is a truncated rhombic dodecahedron embedded in 
[
− 5

2 , 5
2

]3
(see Fig. 2a). The entire 

support set is joined by 1272 tetrahedra (see Fig. 2b) and the spline function is a 4-degree polynomial in each tetrahedron. 
Due to that there are at most 3 vectors that do not span R3 (for example (0, 0, 1)T , (1, −1, −1)T and (−1, 1, −1)T ), the 
function is C2-continuous.

Given a discrete 3D volumetric data set with a scalar function f : Z3 �→ R defined on it, we can reconstruct the contin-
uous model via quasi-interpolation:

F (x) =
∑
j∈Z3

f ( j)M�(x − j). (4)

2.2. Pre-processing

The topology of the background is always not concerned in applications, so we label background regions first and do not 
search critical points in them to reduce the computational load. The background regions are commonly zero in simulated 
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Fig. 2. (a) The support set of the 7-directional box spline. (b) The tetrahedra that join as the support of the 7-directional box spline. (c) Six plains partition 
a unit cell into 24 tetrahedra.

data, but for some scanned data the noise makes the background nonzero. After setting a threshold to discard these nonzero 
background points, we set zero points on the border of the data set as the seeds of background regions. Then we traverse 
background points in breadth-first order and add the zero neighbour to the region.

The sample values of many volumetric data are nonnegative integers. Due to rounding off, the data sometimes have 
constant regions. From Eq. (4) we know that the interpolated values are constant if the sample values in the support of the 
box spline are constant. The index of a critical point is calculated by the eigenvalues of its Hessian matrix, so the constant 
regions should be removed to make the Hessian matrix non-degenerate. In PL framework, a symbolic perturbation is used 
to remove degeneracy (Gyulassy et al., 2007). Though we can do the same to the sample points in the supports of potential 
degenerate critical points, proving a general piecewise polynomial has no degenerate critical points is a difficult task. Our 
experiment shows that the degenerate critical points hardly appear in non-constant regions in the interpolated field for real 
volumetric data. Thus we just apply a filter operator μ to remove non-zero constant regions.

F (x) =
∑
j∈Z3

μ f ( j)M�(x − j) (5)

This filter is supposed to smooth the discrete scalar function and make the center of a constant region be the critical point 
and other points regular. In our implementation μ consists of a major identity operator plus a minor Gaussian filter.

μ f ( j) =
∑

k∈[−l,l]3

g(k) f ( j + k) ≈ f ( j) (6)

where

g(k) =

⎧⎪⎨
⎪⎩

εe− ‖k‖2

2 if k 
= 0

1 −
∑
k 
=0

g(k) if k = 0 (7)

ε is a small constant term so that the filtered value approximates the original one. To ensure there are no constant regions 
left, the radius of the convolution kernel l should be greater than the radius of the largest inscribed sphere of constant 
regions in the interpolated field, for which 3 is enough in our implementation for most models. Fig. 3 gives a 2D example of 
how the filter works to remove degeneracy. The size of the support of 2D box spline is 3 × 3, if there is a non-zero constant 
region with larger size, the interpolated model would still include a smaller non-zero constant region in the center of the 
original constant region. The filter μ adjusts the values in constant regions and usually leaves a single extremum in the 
center.

2.3. Evaluation

Let x̄ be the nearest grid point of x, and χ = (x − x̄) ∈
[
− 1

2 , 1
2

)3
. Eq. (5) can be rewritten as the following:

F (x) =
∑
j∈S

μ f (x̄ − j)M�(χ + j) (8)

where S = [−2,2]3 ∩Z3.
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Fig. 3. The original function (a) has a constant region with scalar value equals to 1 colored in gray, so the interpolated function still may have constant 
regions as illustrated in (b). While after applying our filter, no constant region remains in (c), and the data is similar to that in (b). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

The primitive method to compute M� is given by de Boor (1993). Kim and Peters (2008) prove that the polynomial 
pieces of a box spline can be represented in BB-form (Bernstein–Bézier-form) with coefficients in Q.

M�(χ + j) =
∑
α

c j,αbα[βσ (χ + j)] (9)

βσ maps χ + j in simplex σ onto its barycentric coordinates (x, y, z, w) that x + y + z + w = 1. α is a 4-dimensional vector 
(α1, α2, α3, α4) that αi ∈ {0, 1, 2, 3, 4} and 

∑
αi = 4 for 1 ≤ i ≤ 4. There are 

(7
3

) = 35 different α from the definition. c j,α
are rational coefficients, and bα are Bernstein basis polynomials:

bα(x, y, z, w) = 24

α1!α2!α3!α4! xα1 yα2 zα3 wα4 (10)

Fig. 2c shows the six plains partitioning a unit cube into 24 tetrahedra. If we shift χ by j ∈ Z3, the new position locates at 
the same tetrahedron of the unit cube which contains j. Hence the barycentric coordinates of χ + j are the same as those 
of χ . We denote these equivalent coordinates by βχ = (β1, β2, β3, β4).

Substituting the BB-form into Eq. (8), we have the final evaluation function:

F (x) =
∑
j∈S

[
μ f (x̄ − j)

∑
α

c j,αbα(βχ )

]

=
∑
α

⎡
⎣∑

j∈S

c̃ j,αμ f (x̄ − j)

⎤
⎦βα

χ (11)

where c̃ j,α = 24
α1!α2!α3!α4! c j,α are constant rational coefficients, and βα

χ = β
α1
1 β

α2
2 β

α3
3 β

α4
4 . The constant coefficients are pre-

computed by solving a 35 × |S| = 4375 dimensional linear system for each tetrahedron. Since there are 24 tetrahedra, we 
get 4375 × 24 = 105 000 coefficients. These coefficients are stored in a big table to be accessed.

For each evaluation, we need to do 4375 multiplications and sum them up to get all coefficients of βα
χ in Eq. (11). To 

reduce the computation cost, we mark all zero-constant coefficients that multiplying data points outside the support of the 
spline. There are 1272/(24 × 125) = 42.4% nonzero constant coefficients left.

To compute the first and second order gradients of F (x), we need to know the partial derivative function on each 

dimension. Take gx(x) = ∂ F (x)

∂x
as an example:

gx(x) =
∑
α

⎡
⎣∑

j∈S

c̃ j,αμ f (x̄ − j)

⎤
⎦ ∂βα

χ

∂x
(12)

Noting that the barycentric mapping is a linear transform, the right partial derivative part of Eq. (12) is a polynomial of x
with degree less than or equal to 3. Rewriting gx in BB-form, the number of Bernstein bases is 

(6
3

) = 20. This means that 
we have 2500 constant coefficients to compute the partial derivative value for each tetrahedron on each dimension. For the 
second order gradients, the BB-form polynomial has 

(5
3

) = 10 terms for each entry in the Hessian matrix. We pre-compute 
and store these constant coefficients together with those of F (x).

3. Extracting critical points

A point in a scalar field is a critical point if its gradient is zero. A critical point is non-degenerate if its Hessian matrix 
is non-singular. The index of a critical point is the number of negative eigenvalues of its Hessian matrix. For 3D volumetric 
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data, the indices classify critical points into four types. Indices equal to 0, 1, 2, 3 for minima, 1-saddles, 2-saddles, and 
maxima respectively.

For a C2-continuous model reconstructed by our method, a point x is a critical point means that x is the root of 
polynomial piece in the tetrahedron where x locates. Therefore we take two steps to extract all critical points. In the first 
step, we pick out the tetrahedra that may contain one or more critical points. In the second step, we solve the polynomial 
systems in these candidate tetrahedra to find out the accurate critical points.

3.1. Candidate tetrahedra

Supposing that the size of input volumetric data is L × W × H , the total number of tetrahedra is 24 × L × W × H . Because 
solving the polynomial systems is not fast enough for so many cases, we need to pick out candidate tetrahedra by discarding 
those impossibly containing critical points. The picking procedure needs to be fast and stable.

Let ξ be one column vector in �. The directional derivative of M� to ξ is the backward difference of M[�\ξ ].

Dξ M�(x) = M�\ξ (x) − M�\ξ (x − ξ) , (13)

Dξ F (x) =
∑
j∈S

μ f (x̄ − j)Dξ M�(χ + j)

=
∑
j∈S

∇ξμ f (x̄ − j)M�\ξ (χ + j) (14)

∇ξ is a difference operator, such that ∇ξμ f (x) = μ f (x) − μ f (x − ξ). Dξ F (x) is the partial derivative function with respect 
to x, y, z when ξ is ex, e y, ez respectively.

Noting that the box spline is nonnegative, if the scalar values of the control points around x are monotonic along a 
direction, the backward difference will have the same sign. In this case, the gradient function is always positive or negative 
and has no zero point. Therefore a tetrahedron σ contains critical points only if the scalar values of its control points are 
not monotonic. We pick these tetrahedra as the candidates and solve the derivative polynomials to find critical points.

In Section 2.2, we have clarified that background points are usually insignificant for topological analysis. Thus all tetra-
hedra in background unit cubes are rejected.

3.2. Newton solver

In this section, we solve the derivative polynomials in tetrahedron σ . The three derivative polynomials are in BB-form as 
Eq. (12). The coefficients of the BB terms, i.e. the part in the square brackets of Eq. (12), are independent of the barycen-
tric coordinates. Since the barycentric coordinates have three linear independent dimensions, we choose three of them 
(β1, β2, β3) and rewrite the four-variant BB-form polynomial into a ternary complete polynomial. We compute all the coef-
ficients of the ternary complete polynomial to determine the exact representation of the derivative functions. Denoting the 
three gradient polynomials by gx, g y and gz respectively, we have a ternary polynomial system. The solution of the polyno-
mial system is a critical point only if it locates in the current tetrahedron, which means the solution should be nonnegative 
and the sum of three variants is less than or equal to 1. Thus finding critical points in a tetrahedron is equivalent to solving 
the following constrained polynomial system:⎧⎨

⎩
gx(β1, β2, β3) = 0

g y(β1, β2, β3) = 0

gz(β1, β2, β3) = 0

s.t. β1, β2, β3 ≥ 0, β1 + β2 + β3 ≤ 1 (15)

Our experiment shows that the polynomial systems in most candidate tetrahedra are inconsistent, and a few have more 
than one solution. To speedup the solving procedure, we first use a general numerical method to check whether the poly-
nomial system has at least one solution. Newton–Armijo method is applied due to its fast convergence speed for smooth 
equations (Kelley, 2003). All candidate tetrahedra are streamed to a multithread Newton solver as the polynomial systems 
are independent of different tetrahedra. The initial guess for the solver of each system is set as the barycenter of the tetra-
hedron. Because the memory access is random and frequent when computing the coefficients of gradient polynomials, we 
implement this step on CPU. Once we find one available solution, the next step is to check whether the system has multiple 
solutions.

3.3. Homotopy continuation

There are two common approaches which can be used to solve all solutions of a polynomial system. One is the algebraic 
approach which computes the Gröner basis and performs eliminations iteratively to get all solutions, but the coefficients of 
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Fig. 4. Critical points extracted from Hydrogen model by (a) no homotopy continuation; (b) homotopy continuation with step length = 1/1000; (c) homotopy 
continuation with step length = 1/3000.

the polynomial must be rational. Our preprocess filter μ destroys the rationality of polynomial coefficients, so we adopt the 
other homotopy continuation method to solve the system.

Homotopy continuation is a general method to solve a polynomial system. Suppose that P is a polynomial system of 
n polynomial equations P1, P2, . . . , Pn in n unknowns, the number of its solutions is no more than 

∏
di , where di is the 

degree of Pi (Li, 1997). To solve the polynomial system P , a simple system with the same number of polynomials and 
variables is defined as Q . Q has exactly 

∏
di isolated solutions and all of them can be solved easily. One typical suggestion 

of Q is:⎧⎪⎨
⎪⎩

xd1
1 = a1

...

xdn
n = an

(16)

a1, . . . , an here are nonzero complex numbers that can be chosen randomly or manually. Because the solutions of the system 
(1 − t)Q + t P move smoothly as t varies from 0 to 1, we solve the problem by tracking the paths of the solutions from the 
initial system Q at t = 0 to the final system P at t = 1.

In our case, we have three ternary polynomials each with degree 3, which means there are at most 27 isolated roots 
in the entire complex space. If we use other interpolation whose polynomial form has degree more than 4, the number 
of possible isolated roots would be too large, which heavies the computational load. Assuming that the previously-used 
Newton iteration has solved one real solution (b1, b2, b3) in the tetrahedron, we design Q as the following:⎧⎪⎨

⎪⎩
β3

1 = b3
1

β3
2 = b3

2

β3
3 = b3

3

(17)

Therefore (b1, b2, b3) is always one of the solutions during the tracking process, and will not get lost if the homotopy 
continuation approaching is too fast. However, our experiment shows that many critical points are on the border of the 
tetrahedron. In this case, some components of the barycentric coordinates are zero, and β3

i = 0 is not an available initial 
polynomial because it has only one isolated solution. To address this problem, we adjust Q i into β3

i + βi = 0 so that Q has 
all 27 isolated solutions. However, the number of isolated solutions of P is usually less than Q . Some solutions merge to 
one during tracking, some diverge to infinite. Traditional homotopy continuation for a high dimensional polynomial system 
takes much effort to remove extraneous paths, but it’s unnecessary for our low dimensional case. We track all 27 solutions 
parallelly and check the constraint condition at last.

We implement the homotopy continuation method on GPU. A CUDA warp runs 32 threads parallelly, so each polynomial 
system to be solved can be packaged into one block, and each thread tracking one solution. We store coefficients of temper-
ate approaching polynomial system (1 − t)Q + t P in the shared memory together with P and Q . The tracking step length 
for t also influences the result. Shorter step length slows the approaching, but if the step length is too long, the current 
solution would be far away from the next solution on the continuation path, and some solutions may jump to another 
path. It results in missing some critical points. Fig. 4 shows the ring structures of Hydrogen model extracted by different 
homotopy continuation step lengths.

Our implementation set the step length to 1/1000, which is able to solve most multi-solution polynomial systems. 
Though there are still some critical points that may not be extracted for some special cases, the missing maxima can 
be found easily in later steps.

The index of a critical point is the number of negative eigenvalues of its Hessian matrix. Due to the C2-continuity of our 
framework, the Hessian matrix of a critical point can be computed directly. All extracted critical points are classified into 
minima, 1-saddles, 2-saddles and maxima according to their indices.
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Table 1
The running time of each step for different test data.

Bucky Neghip Fuel Hydrogen Vertebra (threshold = 1000)

32 × 32 × 32 64 × 64 × 64 64 × 64 × 64 128 × 128 × 128 256 × 256 × 256

preprocessing 0.02 s 0.17 s 0.14 s 0.17 s 1.59 s
Newton solver 1.13 s 2.19 s 0.65 s 1.07 s 2.82 s
homotopy continuation 6.49 s 1.57 s 3.53 s 1.6 s 16.76 s
connecting skeleton 0.68 s 0.39 s 0.19 s 0.16 s 0.62 s

4. Topological skeleton

In Morse theory, the ascending manifold of a minimum u is itself together with regular points whose integral lines 
originate at u. Symmetrically, the descending manifold of a maximum v is itself together with regular points whose integral 
lines end at v . The Morse–Smale complex partitions the space into regions in which the integral lines share common origins 
and destinations.

However, displaying the entire Morse–Smale complex is a difficult task, and usually we are only interested in the struc-
tures associated with extrema. Correa et al. (2011) use the directed gradient flow graph to approximate Morse–Smale complex. 
For 3D volumetric data, there are two directed gradient flow graphs. [0, 1] graph is the 1-saddles with arcs connecting to 
minima, and [2, 3] graph is the 2-saddles with arcs connecting to maxima. In discrete methods, the 3-manifolds are first 
computed, and then 2-manifolds that separate 3-manifolds are obtained (Gyulassy et al., 2007). 1-manifolds are found in a 
similar way to 2-manifolds.

Unlike the discrete method, 1-manifolds can be constructed directly within our framework. Because 1-saddles usually 
connect to the background region, [2, 3] graph is better to represent the structure of the data. To construct a [2, 3] graph, 
we traverse all 2-saddles and connect the arcs with maxima. For each 2-saddle, the Hessian matrix H is computed first. 
H has one positive eigenvalue, and that means the integral lines are outwards on the positive and negative directions of 
its corresponding eigenvector. We compute the integral lines along two directions of this eigenvector until they reach the 
maxima or go out of the space. These two integral lines are added to the graph as two arcs of the current 2-saddle.

Given a compact 3-manifold M and a smooth map f : M �→R defined on it, we call f a Morse function if all critical points 
are non-degenerate and have different values. An integral line is a maximal path in M whose tangent vectors agree with 
the gradients of f . Each integral line ends when it reaches a critical point where the gradient disappears. In our framework, 
the gradients of the reconstructed scalar function F are smooth. If we build a steady velocity field by the gradients of F , 
the integral line coincides with a streamline of the velocity field.

An integral line can be computed by numerical integral within our C2-continuous framework. Shorter step length gen-
erates smoother line but heavies the computational load. To balance the computational cost and the line quality, the step 
length of numerical integral is adaptive. The next step length is initialized by the smaller one of a maximum length l0 and 
k times of the currently applied step size. We test the next point and shorten the step by a ratio q < 1 iteratively if the next 
point breaks the monotonicity of the integral line or the orientation of the gradient change more than a threshold θ . Table 1
shows that extracting critical points is the most time-consuming stage in our experiment. Therefore we prefer a smaller step 
length in our implementation (l0 = 1/40, k = 2, q = 0.618 and θ = 45◦). If the maximum step l0 is small enough, the next 
point is likely to be in the same unit cell of the current point. In this case the control points are invariant, so we copy the 
values of control points to a local array to avoid the 3D index addressing and increase the cache hit ratio. If the l0 is smaller, 
the next point may locate in the same tetrahedron as the current point. We save the coefficients of the BB-terms in a buffer 
as well to avoid re-computing the coefficients.

5. Results

We test our method on several well-known volumetric data models. For each data, we extract the critical points and 
draw the topological skeleton. Fig. 5 compares the results between our framework and PL framework. The integral lines are 
quite smooth under our framework, so the skeleton structures are very clear, while those obtained by the discrete method 
in Gyulassy et al. (2007) are zigzag.

The computational complexity of the discrete framework to build the skeleton is related to the number of sample ver-
tices of volumetric data. While the performance of our approach mainly depends on the number of critical points in the 
reconstructed model because extracting critical points is the most time-consuming step. The box spline can be regarded as 
a filter of size 5 × 5 × 5. Together with the preprocessing filter, the topology of volumetric data is simplified naturally after 
reconstruction, and the number of critical points is reduced.

The extraction of critical points is well parallelized in our framework. The Newton solver which screens polynomial 
systems to be further solved is streamed with 4 threads on Intel i5 CPU, while the homotopy continuation method is 
implemented on NVIDIA GT640. The running time for each step is listed in Table 1. The table shows that the performance 
is acceptable, and for simulated models which have little noise, our method is faster than the discrete method (the running 
time of computing discrete skeleton for Neghip and Hydrogen model is 7s and 27s respectively in Gyulassy et al. (2007)).
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Fig. 5. The left column shows the volume rendering results of Fuel (a), Neghip (d), Bucky (g) and Vertebra (j) models with transfer functions customized 
by topological skeletons. The middle column shows the simplified 2-saddle-maximum arcs extracted by the discrete method proposed in Gyulassy et al.
(2007). The right column shows the results extracted by our method.

6. Conclusion and future work

We presented a novel and practical framework that allows us to apply numerical methods for topological analysis on 
discrete volumetric data. Compared with the discrete methods, our approach can extract accurate critical points and generate 
smooth integral lines between critical points. The extracted skeleton is clear for visualization and can be simplified by 
traditional methods for further analysis. The framework is parallelism-friendly and has good performance.
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However, for scanned data with large scale, high frequency noise makes the data bumpy in a local region. This phe-
nomenon leads to the increasing number of critical points, which slows down the extraction and makes the skeleton 
complicated. Though we can apply simplification to the complex skeleton iteratively as the discrete approach does to remove 
the noise, solving critical points takes too much time. We are exploring new methods in the preprocessing step to remove 
high frequency noise, so that the number of candidate tetrahedra and the number of polynomial system to be solved are 
reduced to an acceptable level.
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