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To provide a scalable and flexible tool for 3D shape classification, this paper proposes 
an iterative 3D shape classification method by integrating incrementally updating, online 
learning and user intervention. It classifies the collection of 3D shapes iteratively by comb-
ing unsupervised clustering with online metric learning, and puts the user intervention 
into the loop of each iteration. The features of our method lie in three aspects. Firstly, it 
discovers the potential groups in the collection group by group without any pre-labeled 
samples or any pre-trained classifiers. Secondly, the users can get the desirable classes by 
directly confirming the required members of each group and annotate them with any free 
label to suit for different applications. Finally, the scalable collection can be handled dy-
namically and efficiently by our incrementally updating mechanism based on the online 
metric learning. The experimental results prove the effectiveness of the proposed method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

3D shape classification is a fundamental problem in digital geometry processing, which is important for browsing, man-
aging and organizing large 3D shape collections. Most existing works (Csakany and Wallace, 2003; Biasotti et al., 2006;
Huber et al., 2004; Tabia et al., 2011, 2013; Marini et al., 2011; Barra and Biasotti, 2014; Qin et al., 2014) have focused on 
learning a classifier by a large number of labeled samples to classify a given shape. As the training set utterly determines 
the scope of categories and the trained classifier is hardly updated, almost all of them cannot generalize well to unknown 
object category and multiple classification criterions to fit the needs of the diversity of taxonomies and the different appli-
cation requirements. Moreover, the practical classification task often faces the dynamic collection as an explosive amount of 
3D shapes in these days. Thus, it remains an open problem to provide a scalable and flexible tool for 3D shape classification.

From our knowledge, there should be at least three aspects of requirements for a scalable and flexible 3D shape classi-
fication tool. Firstly, no pre-labeled samples and pre-trained classifiers are required. The unsupervised clustering method (Everitt 
et al., 2011) is intuitively one of the best choices as used in the 3D shape classification (Donamukkala et al., 2005) and 
co-segmentation (Wang et al., 2012). Unfortunately, the class number of the data sets, which affects the clustering result 
heavily, must be the default known or specified by the user for most of the clustering methods, and the data sets are often 
classified in a one-pass batch process without any other user intervention. Obviously, 3D shape classification done only 
by the unsupervised clustering makes it inflexible. Secondly, the classification must be done online and interactively. In general, 
the user is accustomed to put some relatively similar data together into a group from the collection according to different 
applications and assign it with a label to distinguish it from other groups, rather than classify and label the data one by 
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one. Therefore, the task of classification is preferably performed group by group, instead of one by one as the traditional 
pre-trained classifier does. Meanwhile, a useful classification tool may work in an online circular manner to discover re-
currently the potential groups in the collection, and put the user in the loop of classification to interactively identify the 
member of each group and label each of groups. Though such a framework has recently been proposed for annotation of 
a large set of images (Galleguillos et al., 2014), how to classify 3D shape effectively in such a manner remains unopened. 
Thirdly, the scalable collections of 3D shape must be processed dynamically. The incremental learning and updating strategies 
have been widely used in the traditional classifier research, such as image classification (Ristin et al., 2014), object track-
ing (Collins et al., 2005) and shape segmentation (Zhang et al., 2015). However, the way of classifying the collection of 
3D shapes brings three aspects of new dynamic requirements: the size of the shape set might be too big to be handled 
at one time, the number of the remaining shapes after several recurrent grouping is too small to be categorized in the 
current context until enough shapes are added, and the new 3D shapes may be added dynamically to the collection. All of 
three requirements demand to design the novel incremental and updating mechanism of classification to avoid regrouping 
all of new and old shapes. In brief, to make the 3D shape classification of the collection be scalable and flexible, online 
learning, incremental updating and user intervention may be integrated into a framework without any pre-labeling and 
pre-training. Though there are many solutions for each of them individually within this framework (Galleguillos et al., 2014;
Ristin et al., 2014), how they can work as a cohesive whole is still expected to be solved.

In this paper, we propose an iterative 3D shape classification method to fit the needs of the diversity of classifications. 
It classifies the collection of 3D shapes iteratively by combing unsupervised clustering with online metric learning, and 
puts the user intervention into the loop of each iteration. The spectral clustering, one of the conventional unsupervised 
clustering, is used to generate the clusters of the unclassified shapes according to the optimized similarity metric, which 
measures the similarity between the shapes, and select the most prominent cluster as the candidate set of user judgement in 
each iteration. Online metric learning is adapted to optimize the similarity metric through minimizing ranking losses, which 
are defined by the newly classified shapes from user intervention during each iteration. The user is allowed to perform two 
types of interactions successively for the current cluster: (1) judge whether the shapes in the group are the positives or the 
negatives and remove the negatives back to the remainders of the collection, and (2) assign or create the group of shapes 
with a label of an existing or a novel category. After each iteration, all the remaining shapes will be clustered according to 
the optimized metric in the next iteration. In summary, the features of our method lies in three aspects.

1. The collection of 3D shapes can be classified group by group and iteratively. The unsupervised clustering, online metric 
learning and user intervention are integrated into a framework and work as a cohesive whole. It discovers the potential 
groups in the collection repetitively without any pre-labeled samples or pre-trained classifiers, and let user intervention 
to ensure the composition of the group and create its label, instead of classifying all the shapes at once without any 
user intervention as the one-pass batch process does.

2. The users can classify the 3D shape collection flexibly and freely. They can get the desirable shape classes by directly 
confirming the required members of each group and annotate them with any free label to suit for different applications. 
They can also create the categories of the collection online without any prior determinations about the scope and 
number of categories. These overcome the inflexibility and limitation of the traditional pre-trained classifier.

3. The scalable collection can be handled dynamically and efficiently. Firstly, the large scaled data set can be classified 
as a block processing, rather than processing at one time. Secondly, when several shapes are too small to construct 
a certain category, they are allowed to be kept unclassified until enough similar shapes are added. Finally, the newly 
added dataset can be processed incrementally without performing the classification on the whole set repeatedly.

2. Related work

Through the state-of-the-art, we can find mainly several families of related work: 3D shape comparison, 3D shape clas-
sification, clustering and metric learning. While our algorithm uses some of the same underlying techniques, none of these 
methods alone are sufficient to meet the goals of this paper.

2.1. 3D shape comparison

To measure the similarity between a pair of 3D models, many shape distance measure methods have been proposed, such 
as feature-based descriptors (Bronstein et al., 2011; Li et al., 2014) and graph-based descriptors (Barra and Biasotti, 2013). 
And these methods are widely used for shape retrieval (Tangelder and Veltkamp, 2008; Biasotti et al., 2014). However, any 
single distance measure among the shapes will not be sufficiently accurate to induce a reliable metric. So in our work, we 
adopt some feature-based distances to construct the initial similarity metric, and optimize the metric by an online metric 
learning method.

2.2. 3D shape classification

Most existing shape classification methods usually use the labeled model set as the training data, and train a classifier 
based on the supervised learning methods, such as nearest neighbor classifier (Csakany and Wallace, 2003; Donamukkala et 
al., 2005; Biasotti et al., 2006), Bayesian classifier (Huber et al., 2004), SVM (Marini et al., 2011; Barra and Biasotti, 2014), 



194 M. Song et al. / Computer Aided Geometric Design 35–36 (2015) 192–205
belief function (Tabia et al., 2013) and deep neural network classifier (Qin et al., 2014). A recent work presented by Huang 
et al. (2013b) uses a semi-supervised method for fine-grained 3D shape classification with several pre-labeled samples. 
However, the drawback of these methods is that they require a large amount of labeled examples. A few works have 
addressed this issue without any assistance of the pre-labeled models. Donamukkala et al. (2005) use an agglomerative 
clustering method to classify a set of vehicles into several disjoint groups. But this method is limited to specific datasets. 
For a heterogeneous collection of shapes, Huang et al. (2013a) use a quartet analysis method to generate a categorization 
tree by an optimized metric. But their categorization tree is hierarchical for interactive shapes exploration, which is different 
from the goal of our method. Overall, all existing unsupervised methods have generally focused on grouping all the models 
as a one-pass “batch” process, and their categorization result is difficult to control. Besides, when the shape set is expanded, 
they need performing the analysis method over a whole pipeline. In contrast, our iterative method classifies the models 
group by group more flexibly, and handles the scalable model set more efficiently.

2.3. Clustering

One of the best practiced means of classifying a set of elements is clustering analysis (Everitt et al., 2011). Unsupervised 
clustering methods have been used in some geometry processing tasks, such as 3D shape classification (Donamukkala et 
al., 2005) and co-analysis of shape sets (Wang et al., 2012). Most clustering methods generate all the disjoint groups from 
the data set at once. Unfortunately, the clustering result heavily depends on the similarity metric and the given number of 
clusters, which are difficult to be determined prior. In general, the set of potential categories is effectively unbounded, and 
may grow over time. Thus, several image annotation works (Galleguillos et al., 2014; Lee and Grauman, 2011) interleave 
unsupervised clustering and metric learning iteratively to generate the sets of similar images group by group, and put the 
user into the loop of the online processing. Our framework is inspired by these works, but our method incorporates the 
online metric learning method to optimize the metric more efficiently without re-training all the labeled samples from 
scratch.

2.4. Metric learning

The quality of any clustering method will ultimately depend upon the similarity metric between a pair of elements. 
Because the shape distance measure is often unreliable, it is less effective to directly cluster the collection of shapes using 
the native distance measure. Metric learning (Kulis, 2013) is one important technique that learns a distance function tuned 
to a particular task, which has been used in image retrieval (Kulis et al., 2009), category discovery (Galleguillos et al., 2014), 
face recognition (Guillaumin et al., 2009) and 3D model segmentation (Wang et al., 2012). Most metric learning methods 
(Bar-Hillel et al., 2005; Xing et al., 2003) often adopt batch machine learning approaches. However, the metric has to be 
re-trained from scratch whenever there is new training data. In recent years, some metric learning studies have explored 
online learning techniques to tackle the tasks (Shalev-Shwartz et al., 2004; Chechik et al., 2010). From existing methods, we 
choose the online algorithm for scalable image similarity learning method (OASIS) (Chechik et al., 2010), which is an online 
dual approach based on the passive–aggressive algorithm. The OASIS method is used to improve the efficiency of image 
retrieval in their work, and we use it to handle the scalable shape collection effectively. To the best of our knowledge, this 
is the first time to introduce online metric learning into 3D shape classification.

3. Overview

Depending on the size and increasing of 3D shape collection, there are four typical scenarios of classification. Scenario 1 
is the basic scenario, i.e., the initial collection has the suitable size for classification at one time. Scenario 2 indicates 
the size of the initial collection, which is too large to be handled at one time. Scenario 3 introduces the incremental 
problem of the collection, which means an incremental collection is provided for classification after several collections have 
already been classified. Scenario 4 is the version that the user cannot determine the categories of the remaining shapes 
after several recurrent grouping, thus some shapes are allowed to be kept unclassified in the current context. To achieve 
the consistent classification result in all the above scenarios, our framework incorporates three main modules (as shown 
in Fig. 1): incrementally updating, online learning and user intervention. The incrementally updating module handles the 
loading of the shape collection and the updating record from various scenarios. The online learning module takes the loaded 
collection as input, and interleaves the candidate cluster creation with the similarity function optimization iteratively. The 
user intervention module takes the candidate set as input in each iteration, and asks the user to perform member selection 
and group labeling successively to create a required group of shapes.

Incrementally updating. The main goal is to prepare the shape collection and the similarity function for the online learning 
module, and this information should be extracted appropriately from various scenarios. According to the four scenarios, the 
input collection can be divided into two classes: the initial collection and the incremental collection. If no classification 
task has been done, the collection is the initial collection, otherwise, it is the incremental collection. The incremental 
collection, which is loaded by the incremental loader, is often composed of two parts: the new collection and the suspended 
shapes. Both the initial collection and the new collection are provided by the user. And the suspended shapes are the 
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Fig. 1. The framework of our method.

remainder shapes that return from the incrementally updating module or the online learning module. After obtaining the 
input collection, whether initial or incremental, the size of the collection should be judged. If the size is smaller than a 
certain threshold S (the default is 2000), the collection of shapes can be imported into the shape pool by the data loader 
for online learning. Otherwise, the collection is firstly partitioned into several blocks, and the size of each block is no more 
than S . Then one of the blocks is selected randomly to be imported into the shape pool by the data loader, while the 
remaining blocks are returned as the suspended shapes. The processing of the initial and incremental collections has only 
one difference: when the incremental collection is imported into the shape pool, the state controller will receive a message 
of a loaded state, which triggers to load the updating record into the online learning module. Specially, when some shapes 
are kept unclassified in scenario 4, these shapes are return as the suspended shapes, meanwhile, the similarity function will 
be saved into the updating record.

Online learning. The module includes the core process of the whole pipeline, which interleaves unsupervised clustering and 
metric optimization iteratively. At each iteration, it proceeds as the following four steps: first, the similarity between each 
shape of the collection is measured by the similarity function. Second, the collection is grouped by spectral clustering 
according to the similarity measurement. Third, the primary cluster with the smallest average intra-cluster distance is 
selected for user intervention from the clustering results, while other clusters are returned into the shape pool. In general, 
smaller intra-cluster distance implies higher purity. Thus, compared with other clusters, the user can determine the majority 
category of the primary cluster easily and remove the negatives from this cluster with fewer number of operations. Finally, 
the similarity function is trained/updated by an online metric learning method according to some constraints, which are 
defined by the newly labeled shapes. The process repeats until there are not enough shapes for grouping. The algorithm 
details of this module will be introduced in Section 4.

User intervention. The user intervention is incorporated into each iteration of online learning. The user is asked to perform 
two types of interactions successively for the primary cluster: first, the user can judge each shape within the cluster either 
(a) mark the positive instances that belong to the major category of the cluster; or (b) mark the negative instances that 
do not belong to the majority category. In a word, the user always chooses to perform the fewest assignments in order to 
create the largest group of instances corresponding to a single category. Second, the user can label the group by a novel or 
an existing category tag. The newly classified shapes can be saved into the labeled shape collection.

4. Algorithm

In this section, we will describe the whole online learning module in details.

4.1. Model representation

Note that we cannot know a priori which descriptors will be discriminative for 3D shape classification. We therefore 
opt to include many different descriptors, and represent each shape as a collection of n feature descriptors {χi}n

i=1. In our 
setting, we employ four descriptors: the Light Field Descriptor (LFD) (Chen et al., 2003), Cord and Angle Histograms (CAH) 
(Paquet and Rioux, 1997), Shape Distribution (SD) (Osada et al., 2002) and 3D complex function fast Fourier transform 
descriptor (cFFFTD) (Vranic and Saupe, 2002). In order to integrate heterogeneous descriptors effectively, we first apply 
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multi-dimensional scaling (MDS) to reduce the dimension of each descriptor, and then combine these lower-dimensional 
descriptors linearly to compute the similarity between a pair of shapes with an optimized metric.

Each descriptor χi defines a high-dimensional feature space. To improve the efficiency of shape classification, multi-
dimensional scaling is first used to reduce the initial feature spaces into to a lower-dimensional Euclidean space. Suppose 
the input shape collection in the shape pool is denoted by M = {Mi, i = 1, . . . , m}. Given the distance matrix D of the input 
collection M by the descriptor χ , MDS generates m data points φ1, φ2, . . . , φm in a lower-dimensional space, where these 
data points are found as minimizer of the following cost function

min
φ1,...,φm

∑

j<k

(‖φ j − φk‖ −D jk)
2 (1)

where, D jk = d(χ j, χk) and d(·, ·) is the distance between the two feature descriptors. Different descriptors are compared 
by different distance functions, for example, LFD is compared by inner-distance (Ling and Jacobs, 2007), CAH and SD are 
compared by chi-square distance. Accordingly, we can obtain n lower-dimensional spaces corresponding to the n descriptors, 
which are denoted by {φ1, . . . , φn}.

Then the similarity between the two shapes p and q can be measured by a linear combination of all the lower-
dimensional features {φ1, . . . , φn}

f (p,q) =
n∑

i=1

1

σi
SW i (φi(p),φi(q)) (2)

where, σi is set as the half of the maximum pair-wise similarity between the shapes by using the ith low-dimensional 
feature φi , automatically estimated from the input collection M. And W i is a positive semi-definite matrix, which defines 
the similarity between φi(p) and φi(q) by a parametric similarity function that has a bi-linear form

SW i (φi(p),φi(q)) = φi(p)T W iφi(q) (3)

The matrix W i will be optimized to make the similar shapes more closer during the online learning process. Initially, all 
W i are identity matrix.

4.2. Clustering and primary cluster creation

To create the primary cluster for user judgement, we perform spectral clustering (Ng et al., 2001) to generate several 
groups from the collection in the shape pool. Our decision to use spectral clustering is motivated mainly by the non-linear 
feature of the descriptors. The spectral clustering method is performed with the aid of spectral embedding, which take 
the non-linear and anisotropic structures in the data and unfold them into a new space, so that the similarities between 
data points are translated into geometric proximity. Accordingly, we first embed the shapes into a new space using the 
eigenvectors of the affinity matrix. Then the normal K-means clustering can succeed in the embedded space by simply 
considering Euclidean distances. Finally, the primary cluster is selected as the candidate set of user judgement.

Embedding. We first use the similarity function f (·, ·) to compute the affinity matrix W of the input collection M. By 
defining a diagonal matrix Di,i = ∑

j Wi, j , we can construct a matrix L = D−1/2WD1/2. We then compute the eigendecom-
position of the matrix L, and extract the largest k eigenvectors x1, x2, . . . , xk to form a matrix X = [x1x2...xk]. Finally, each 
row of the matrix X is normalized to be unit length, and the shape Mi can be represented by the ith row of matrix X .

Clustering. After obtaining the embedded space, the pairwise distance d(p, q) between two shapes p and q can be computed 
as the Euclidean distances between the corresponding vectors of matrix X . A simple K-means clustering algorithm (Kanungo 
et al., 2002) is used to cluster the collection M into several groups. The number of clusters k is equal to the column number 
of the matrix X .

Primary cluster creation. After clustering, we select the primary cluster according to the average intra-cluster distance and 
the size of the cluster. On one hand, the size of the cluster should be larger than a certain threshold δ (the default value 
is 20). On the other hand, the average intra-cluster distance should be small. Accordingly, the selection criterion of the 
primary cluster can be express by:

dintra(c) = 1

|c| · (|c| − 1)

∑

p �=q
p,q∈c

d(p,q)

c∗ ← arg min
c, s.t.|c|>δ

dintra(c) (4)

where, d(p, q) is the distance between the two shapes in the embedded space, which is used in the previous clustering 
process. We expect that the larger and tighter cluster can be selected by the above criterion. If the selected cluster is large, 
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many shapes may be labeled in each iteration. When it is tight, it may have the high purity, thus the majority of the shapes 
within the cluster will be labeled. The selected cluster is provided for user judgement, and each instance within the cluster 
is explicitly confirmed by the user. According to user intervention, a group of newly classified shapes can be generated from 
the primary cluster.

4.3. Online metric learning

After creating the group of newly classified shapes, we can use these shapes to optimize the similarity metric by an 
online metric learning method (Chechik et al., 2010). As the metric is optimized with the accumulation of the classified 
shapes progressively, the shapes belonging to the same category can be drawn closer. Consequently,compared with using 
the native metric, we expect to generate larger, tighter and purer clusters with the optimized metric. In this section, we first 
create a constraint set from user intervention, then OASIS (Chechik et al., 2010) is used to optimize the similarity function 
for satisfying these constraints.

To use OASIS to optimize the metric for our task, we first create a set of training triplets (p, p+, p−). Given the primary 
cluster, the user identifies two shape sets: the positive set P f and the negative set Pu . In the classification task, two 
samples are relative if two samples belong to the same category. Otherwise, the two samples are irrelative. Thus given any 
two shapes p and p+ in P f and any shape p− in Pu , the similarity between p and p+ should be larger than that between 
p and p− . Accordingly, a set T of training triplets can be generated from two sets P f and Pu :

T = {(p, p+, p−),∀p, p+ ∈ P f , p− ∈ Pu} (5)

Then OASIS receives the triplet from the T one by one, and updates the matrices W i for each descriptor incrementally. 
Specially, the goal of this method is to learn the similarity function SW (·, ·) (Eq. (3)) that assigns higher similarity scores to 
pairs of more relevant samples, i.e.

SW (p, p+) > SW (p, p−),∀p, p+, p− ∈ P

such that r(p, p+) > r(p, p−) (6)

where r(·, ·) reflects the relevance between two samples.
Given a set of triplets {pt , p+

t , p−
t }, OASIS finds a parametric similarity function SW such that all triplets satisfy the 

following constraints:

SW (pt, p+
t ) > SW (pt , p−

t ) + 1 (7)

The hinge loss function for each triplet is defined by

lW (pt , p+
t , p−

t ) = max{0,1 − SW (pt , p+
t ) + SW (pt, p−

t )} (8)

In order to minimize this loss, the Passive–Aggressive algorithm (Crammer et al., 2006) is used iteratively over triplets to 
optimize W . The online optimization problem is formulated as

W t = arg min
W

1

2
‖W − W t−1‖2

F ro + ClW (pt, p+
t , p−

t ) (9)

where ‖ · ‖ is the Frobenius norm. At each iteration, W t is selected to optimize a trade-off between remaining close to 
the previous W t−1 and minimizing the loss on the current triplet {pt , p+

t , p−
t }. The parameter C controls this trade-off. 

Accordingly, the online solution of updating W is

W t = W t−1 + τt V t (10)

where τt = min{C, lW t−1 (pt ,p+
t ,p−

t )

‖V t‖2 } and V t = pt(p+
t − p−

t ). For more details of the optimization we refer the reader to 
Chechik et al. (2010).

After updating, the similarity between the remaining shapes are computed according to Eq. (2) with the set of optimized 
matrices W i .

4.4. Stop criterion

The iterative algorithm terminates when the distribution of the remaining shapes is sparse. It means that any two shapes 
are difficult to form a group. To measure the sparse degree of the remaining shape collection in the shape pool, we compute 
the uniform degree of the distances (Beyer et al., 1999) by

ζ = MaxDis − MinDis

MinDis
(11)

where MaxDis and MinDis are the distance between the farthest and closest shapes respectively. The whole iteration stops, 
when ζ is lower than a certain threshold, or the size of the remaining shapes is lower than the cluster number k. The 
remaining shapes are returned as the suspended shapes.
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Fig. 2. User intervention. (a): Member selection; (b): Group labeling.

Table 1
The selected data set of SHREC2014.

Class Size Class Size Class Size Class Size

train 175 armchair 333 bed 169 bookshelf 202
chair 632 keyboard 142 table 601 helicopter 162
guitar 185 airplane 314 fish 204 cell_phone 170
knife 152 laptop 188 tree 224 potted_plant 169
sword 245 cabinet 208 head 189 motorbike 172

Table 2
The four shape collections.

Dataset PSB SHREC2009 SHREC2011 SHREC2012
Size 1814 800 600 1200
Number of category 53 40 30 60

5. User intervention

During each iteration of online learning, the primary cluster is provided for the user. The user can perform two types of 
interactions successively to create a required group of newly labeled shapes: member selection and group labeling (Fig. 2).

Through the member selection interface, the users can judge each shape within the cluster in turn. They can either (a) 
mark the positive instances that belong to the major category of the cluster; or (b) mark the negative instances that do not 
belong to the majority category. The interaction is shown as Fig. 2(a). Since the number of positive instances is larger than 
half of the size of cluster, the user selects the ‘negative mode’, and removes the two negative instances from the cluster.

By the group labeling interface, the user can label the group with a novel or an existing category tag. The interaction is 
shown as Fig. 2(b). Since there is no ‘airplane’ label in the existing categories, the user creates an ‘airplane’ tag and labels 
the group of shapes with it. Meanwhile, the tag ‘airplane’ becomes an existing category. Our interface can achieve the shape 
classification and category discovery simultaneously. Besides, the label for every shape is explicitly confirmed by the user in 
at least one group, thus the classification result is very consistent with the user intention.

6. Results

In this section, we describe the experimental results and demonstrate the effectiveness and efficiency of our classification 
approach. The experiment environment is Intel(R) Core(TM) i5-2400 3.10 GHz with 8 GB of memory.

Data set. We evaluate our iterative classification method on the large scale comprehensive 3D shape set from the SHape 
Retrieval Contest 2014 (Li et al., 2014, 2015). The SHREC2014 collection is a complex database, which collects the relevant 
models from eight 3D object retrieval benchmarks. The SHREC2014 Large Scale Comprehensive Retrieval Track Benchmark 
has 8987 models, categorized into 171 classes. From the 171 classes, we choose 20 largest classes from the data set, and the 
size of each class is larger than 140. The selected classes and the size of each class are shown in Table 1. The benchmark 
gives the standard classification of these shapes. Besides, we also evaluate our method on four easier shape collection: 
Princeton Shape Benchmark (PSB) (Anon, 2004), SHREC2009 New Generic Shape Benchmark (SHREC2009) (Godil et al., 
2009), SHREC2011 Non-rigid Track Benchmark (SHREC2011) (Lian et al., 2011), and SHREC2012 Generic Track Benchmark 
(SHREC2012) (Li et al., 2012). The size and the number of category of these four collection are shown in Table 2.

6.1. Evaluation of online metric learning

In order to evaluate the quality of the learned similarity space, we assess the purity of clusters generated from the data 
set. From the 20 classes of shapes, we choose 100 samples from each class to create the evaluation set, which includes 
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Fig. 3. The curve of the average cluster purity. (a): Training with one whole group; (b): Training with 4 classes; (c): Training with 8 classes; (12): Training
with 12 classes.

2000 shapes. At each time, we divide the evaluation set into two sets: training set and testing set. Galleguillos’s method 
(Galleguillos et al., 2014) and our method are used to train a distance function respectively. Then the learned distance and 
the native distance are used to cluster the testing set respectively. We vary the number of clusters from 10 to 50 (the step 
size is 2), and for each of them, compute the average purity of the clustering with the ground-truth labels, where the purity 
of a cluster B is computed by

purity(B) = max
l∈L

|{x′ ∈ B ∧ l(x′) = l}|
|B| (12)

where, L is the label set of all the categories, and l(x′) is the ground-truth label of sample x′ .
We use 5-fold cross validation to measure whether the learned distance can improve the average purity of clusters. The 

evaluation set is divided into five groups, and each group has 20 classes of shapes while the size of each size is the same. 
Each time, we extract the training data from one group while the other four groups are used as the testing data. One group 
can be selected as the training set. Beside, we randomly select 4, 8 and 12 classes of shapes from one group to construct 
the training set. The goal is to measure whether the learned distance can improve the clustering result when the testing set 
has some unknown categories.

The resulting curves are shown in Fig. 3. From the figure, we can see that the average purity achieved by our method 
lies above that of the native space, and gets a close performance to the offline metric learning method (Galleguillos et al., 
2014). When the testing data includes some unknown categories, the average purity also lies significantly above the native 
distance, especially when the number of clusters is smaller than 30 (Figs. 3(b)–3(d)). However, when the category number 
of the training set is small, the performance of our method is lower than that of the batch metric learning method. With 
the increase of the category number, the performance can converge to that of the batch metric learning method.

An important feature of our method is that it can update the metric online without training the metric from scratch. We 
also use 5-fold cross validation to measure the average purity of clustering result. In this experiment, we use one group as 
the test training set, and add the other four groups incrementally as the training set. We then measure the average purity 
and the training time once one group has been trained. Table 3 shows the evaluation results. From the table, we can see 
that the learned metric can be more and more accurate with the accumulation of shapes, while the incrementally training 
time is stable with respect to the same amount of the incremental training data.
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Table 3
The average purity with the increase of the training set.

Number of training set 1 2 3 4
Average purity 23.1% 32.4% 42.5% 44.8%
Training time (s) 5.48 5.63 5.56 5.43

Table 4
The user effort for different classes of collections from SHREC2014. NC denotes the number of the clusters used in the clustering algorithm.

Classes 5 10 15 20

Distance type Native Batch Online Native Batch Online Native Batch Online Native Batch Online

NC = 10 0.29 0.24 0.23 0.48 0.42 0.43 0.60 0.52 0.54 0.91 0.79 0.82
NC = 20 0.25 0.17 0.16 0.30 0.27 0.27 0.30 0.29 0.27 0.50 0.47 0.47
NC = 30 0.30 0.23 0.27 0.29 0.23 0.26 0.26 0.22 0.24 0.37 0.30 0.34

6.2. The iterative classification of initial collection

In this section, we evaluate the efficiency of the iterative classification method. We only consider the classification of the 
initial collection, i.e., the initial metric matrix is identity matrix, which has not been optimized. We assume the size of the 
collection is 2000, which can be loaded into the shape pool at once. The setting of the evaluation set is the same as the set 
in Section 6.1.

To evaluate whether our method can improve the annotation efficiency, we compute the average number of operation 
required for classifying one shape. In our method, the user effort includes two aspects: member selection and group labeling. 
The interaction amount is computed as follows: if the user performs to select a shape within the primary cluster, whether 
positive or negative, the interaction amount is added by one; if the user performs to label the group of shapes, whether 
novel or existing, the interaction amount is added by one. We denote the size of the collection is M, and the class number 
of the collection is C . The best case possible would to require only C group labeling operations, when the clustering result 
is perfect, i.e. every cluster is pure and includes all the shapes belong to the same category. The worst case possible would 
to be require 2M operation, when there is only one positive instance in the given cluster at each iteration. Accordingly, the 
user is required to perform one member selection operation and one group labeling operation for each shape. We assume 
the interaction amount is α when M shapes have been labeled. Then we compute the number of operations μ required 
per shape by

μ = α/M (13)

Our experiment uses μ to represent the user effort for comparing the efficiency of the classification method. We compute 
the values of μ when the collection has different number of classes and the clustering is performed with various number 
of clusters. We compare three types of distances: the native distance, the distance learned by our online method, and the 
distance learned by the batch processing method (Galleguillos et al., 2014). Table 4 shows the statistical result. From the 
table, we can see that the learned distance outperforms the native distance across all number of cases (12.4% improvement 
of the mean value), especially when the number of clusters is small. Besides, the performance of our method gets a close 
performance to the batch processing method.

In practice, due to the unreliable quantitative distance measure, we cannot achieve the perfect clustering result (Huang 
et al., 2013a), so the value μ is difficult to approach the theoretical minimum C/M. From Table 4, we can see that hundreds 
of operations are still required when there are thousands of models. Consider the state-of-the-art classification algorithms 
based on supervised learning (Huber et al., 2004; Tabia et al., 2013; Marini et al., 2011; Barra and Biasotti, 2014), the 
accuracies of classification are from 54% to 96% depending on the number of categories and their generality. To correct 
the error of the classification result, the user is required to perform two operations per shape: (1) select the incorrect 
classified shape, and (2) correct the label of the shape. So the value μ of the supervised classification algorithm equals 
twice of the classification error (from 0.08 to 0.92). Thus, our method is comparable with the existing supervised algorithms 
in the aspect of interactive complexity (the mean of all the values μ is 0.358, which is equal to the user effort when 
the classification accuracy of the supervised algorithm is 82.1%). The above discussion shows that our method provides a 
potentially useful solution of 3D shape classification.

To show the scalability of our method, we also evaluate the efficiency by the following four 3D model collections: PSB, 
SHREC2009, SHREC2011, and SHREC2012. We compute all the values of μ by using the four collections with different 
numbers of the clusters. The result is shown in Table 5. From the table, we can see that the learned distance outperforms 
the native distance across almost of all the four collections (13.8% improvement of the mean value), but a bit lower than 
that of the batch process method. The statistical result demonstrates the generality of our method.

6.3. The combination of multiple features

One of the strengths of our online metric learning method is the combination of several features. In our method, we 
choose four well-known shape features but others could be used as well. To illustrate the strength of combining multiple 
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Table 5
The user effort for different 3D model collections. NC denotes the number of the clusters used in the clustering algorithm.

Collections PSB SHREC2009 SHREC2011 SHREC2012

Distance type Native Batch Online Native Batch Online Native Batch Online Native Batch Online

NC = 10 0.60 0.54 0.56 0.79 0.64 0.66 0.72 0.57 0.64 0.52 0.42 0.41
NC = 20 0.35 0.30 0.33 0.56 0.36 0.42 0.30 0.25 0.25 0.47 0.35 0.37
NC = 30 0.32 0.26 0.28 0.51 0.39 0.41 0.24 0.21 0.24 0.47 0.28 0.36

Fig. 4. The comparison between the combination of different number of features.

Fig. 5. Different criterions of classification. (a): The unclassified shapes; (b): The result of the semantic classification; (c): The result of the functional 
classification.

distances, we compare the user effort μ when only a subset of the features is used. The setting of the evaluation set is the 
same as the set in Section 6.1.

The four features used are listed in Section 4.1, which are denoted by χi , i = 1, . . . , 4. Let Q j be the set of all the 
possible combined features, where j is the number of the combined features. For example, Q 1 = {χ1, χ2, χ3, χ4}, and 
Q 2 = {χ1 + χ2, χ1 + χ3, . . . , χ3 + χ4}, etc. For each Q j , we compute the set of the value μ corresponding to the combined 
features in Q j (e.g., there are six μ values for Q 2), and calculate the average value as the required user effort. The results 
of these average values are shown in Fig. 4. The figure shows that the average value μ using two kinds of features is 
significantly smaller than using a single feature. Similarly, using a combination of three or four distances also increase the 
efficiency but less significantly. Hence, we choose to combine all four features in all our experiments.

6.4. The expression of user intention

Since shape classification is generally a basic procedure of many other applications, it is necessary to classify shapes in 
different ways according to the specific application requirements. By our interface, the users can control the number and 
categories of the collection, which are not restricted by the standard benchmark. To show the expression of user intention, 
we ask some users to define some different criterions. Some users prefer the semantic criterion, which is consistent with the 
benchmark. And other users may prefer the function-level criterion. Fig. 5 shows the multiple classification results. Given 
the shape collection in Fig. 5(a), the user can classify them into four groups by their semantic information or two groups 
according to their functional information.

According to the function of the shapes, the whole shape collection can be reclassified into several groups, as shown 
in Table 6. We then evaluate the human effort required for the two classification results by the value μ. Table 7 shows 
the statistical result. From the table, we can see that the functional classification requires more human effort than the 
semantic one. The reason is that our descriptors are purely geometric, which does not include any functional information. 
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Table 6
The data set classified by function.

Class Composition Class Composition

traffic airplane, helicopter, motorbike, train animals fish, head
furniture armchair, bed, bookshelf, cabinet, chair, table plant potted_plant, tree
electronics cell_phone, keyboard, laptop instrument guitar, knife, sword

Table 7
The user effort for different criterions. NC denotes the number of the clusters used in the clustering algorithm.

Classification NC = 10 NC = 20 NC = 30

semantic 0.61 0.29 0.14
functional 0.60 0.31 0.21

Table 8
The user effort for the incremental collections. NC denotes the number of the clusters used in the clustering algorithm.

Group id Distance type NC = 10 NC = 20 NC = 30

2 Native 0.55 0.51 0.44
Learned 0.42 0.37 0.30

3 Native 0.59 0.52 0.50
Learned 0.50 0.47 0.37

This implies that the success of the online metric learning method still depends on the quality of the features and the 
similarity distances employed.

6.5. The classification of incremental and large-scaled collection

We then evaluate the classification of the incremental and large-scaled collection. Since the large-scaled collection can 
be turned into the streaming data, which arrives block by block, the process of the large-scaled collection is as same as 
that of the incremental collection. Accordingly, we measure whether our incrementally updating module can improve the 
efficiency of classifying the incremental collection. Since an optimized distance function is saved into our updating record, 
we can use the learned metric to classify the incremental collection directly. We then compare the user effort by μ with 
the native and optimized distance function.

In our experiment, we partition the whole collection into three groups. After classifying the first group, we will classify 
the second group with the optimized distance, meanwhile the distance is optimized during the classification process. Then 
the third group is handled as the same way. Table 8 shows the statistical result. From the table, we can see that the 
incrementally learned distance outperforms the native distance significantly. The average improvement of the user effort 
is 20.8%.

6.6. User study

We perform a user study, where we ask 15 participants to classify 600 models selected from the PSB collection. The 
users in our study have not used our system before, and start to classify the model collection directly after we briefly 
describe the function and usage of our system. We do not tell the users the constitution of the model collection, so they 
do not know the scope and number of categories of the model collection. During the classification process, they can only 
browse the classified models and the models in the primary cluster.

After all the models have been classified, we find that the classification results are not very consistent. The category 
number of the classification results is from 6 to 17, which shows the significant diversity of taxonomies. Fig. 6 shows three 
of the classification results. Fig. 6(a) shows a fine-grained classification with 17 categories, where the ‘airplane’ models are 
classified into three types according to the shape of the wing. Fig. 6(c) shows the most coarse level of classification, and the 
collection is classified into six categories. Fig. 6(b) shows one of the intermediate level of classification. Most participants 
prefer the intermediate level, and have different requirements for different coarse categories of models. For example, some 
participants classify the ‘traffic’ models into the fine-grained level, but classify the ‘furniture’ models into the coarse level. 
These examples just prove that our method can fit the needs of the diversity of classifications, and the users can classify 
the collection flexibly and freely.

Fig. 7 shows the average times required for classifying the collection into different numbers of categories. In general, the 
users can complete the classification process in under 7 minutes, and the time cost depends on the number of category 
of the classification results. The fasted participant use only about 260 seconds to classify all the 600 models. From the 
figure, we can see that the time cost increases with the increase of the number of category slightly, and achieves the 
convergence when the number of category is more than 14. All the participants say the usage is intuitive. Besides, they 
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Fig. 6. Three different classification results. (a): Result 1; (b): Result 2; (c): Result 3.

Fig. 7. Timing results from the user study.

can create the required groups from the primary cluster during each iteration fast, because the member selection interface 
only requires the judgement of the positives and negatives. One suggestion for improvement is to add the ability to provide 
some candidate labels of the majority category of the primary cluster, because the label selection of the grouping labeling 
interface is a little tedious. When the number of existing labels becomes larger, they may require more time to determine 
the correct label. This may explain the result in Fig. 7. When the number of category is small, the label selection is more 
faster and the time cost is much lower.

6.7. Limitation and discussion

Though online metric learning can improve the similarity function, the learned metric is still limited on the quality of 
the initial descriptors. When the initial shape distances are not consistent with users’ requirement, the user effort is heavy. 
Especially at the early stage when the metric is not optimized, the purity of the given cluster is often very low, and the user 
is difficult to determine the required members within the cluster. Active learning (Settles, 2010) is an effective method to 
find which examples are more informative to be annotated, which may be our future work. Besides, OASIS and MDS are in 
general the linear learning methods, however, most shape descriptors are often nonlinear and high-dimensional. Introducing 
the online multiple kernel-based learning techniques (Xia et al., 2014) will be another important improvement. Moreover, 
the efficiency and friendliness of our interface can be improved by providing more useful hints of classification, such as the 
candidate labels of the primary cluster.

7. Conclusion

In this paper, we propose an iterative 3D shape classification method using online metric learning. The features of our 
method lie in three aspects. Firstly, the collection of 3D shapes can be classified group by group and iteratively. The unsu-
pervised clustering, online metric learning and user intervention are integrated into a framework and work as a cohesive 
whole. Secondly, the users can classify the 3D shape collection flexibly and freely. They can get the desirable shape classifi-
cation result without the prior determination about the scope and number of the categories. Finally, the scalable collection 
can be handled dynamically and efficiently. By our updating mechanism, our method can process the large scaled data set, 
and the dynamic increasing data set. Experimental results show that the proposed method improves both the effectiveness 
and efficiency of 3D shape classification.
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