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This paper proposes a methodology to create a hybrid volumetric representation from a 
2-manifold without boundaries represented with untrimmed B-spline surfaces. The product 
consists of trivariate tensor product B-splines near the boundary and unstructured higher-
order Bézier tetrahedral elements in the interior of the object with C0 smoothness across 
their interfaces. The B-spline elements are constructed by offsetting the input surface into 
its interior. Then, an intermediate interface consisting of Bézier triangles is built to match 
the inner boundary of the B-spline representation. The rest of the space, bounded by the 
intermediate interface, is then filled with unstructured Bézier tetrahedral elements. Our 
approach to constructing stiffness and mass matrices takes into account the dependencies 
of interior Bézier tetrahedral elements on exterior B-spline elements along their interface, 
so that C0 smoothness is automatically maintained when performing computer graphics 
simulations, representing material properties, or performing isogeometric analysis. We 
apply our methodology on a variety of 3-D objects and demonstrate a fast convergence 
rate with our 2-D studies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The bivariate tensor product B-spline representation for piecewise polynomials is widely used in computer aided ge-
ometric design for representing shapes with sculptured surface boundaries. At the same time, volumetric representations 
are needed to represent product attributes and material properties on which simulations can be performed. It is frequently 
the case that the volumetric representation is generated from the original representation with either classic finite elements 
such as linear tetrahedra and trilinear hexahedra (Owen, 1998; Si, 2004), or collections of smooth trivariate tensor product 
B-splines (Wang et al., 2008; He et al., 2009; Li et al., 2010; Martin et al., 2009; Martin and Cohen, 2010; Nieser et al., 2011;
Gregson et al., 2011). These approaches generally involve creating a full volumetric hexahedral representation, at the cost of 
losing the original higher-order representation of the input surface.

Other approaches are aimed at maintaining the exact boundary representation. R. Sevilla introduced NEFEM (Sevilla et 
al., 2008, 2011), which used curved elements on the NURBS boundary and straight-sided (linear) tetrahedral elements in 
the interior. More recently, Martin et al. (2012a) presented an approach to generate a hybrid volume. In that approach 
trivariate NURBS based on the boundary NURBS surface representation are created and then the volume is completed with 
interior linear tetrahedral elements. That same representation is used as a basis for simulation, and so fully implements the 
isogeometric analysis paradigm, which means using the same basis functions for both modeling and simulation.
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Fig. 1. Hybrid representation: tri-cubic B-splines (beige) at the boundary. Degree-six Bézier tetrahedra (green) in the interior. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Our approach can be considered an improvement of these methods since

1. Unlike having linear tetrahedral and higher-order NURBS elements adjacent to each other, between which there exists 
a natural discontinuity, as in Martin et al. (2012a), we are able to always maintain C0 smoothness across the interface 
between interior Bézier tetrahedra and boundary trivariate B-splines (Fig. 1). Thus it is a full representation of the 
volume, with no gaps or overlaps. The improved hybrid model is demonstrated to require significantly fewer elements 
in order to have a stable behavior in simulation.

2. In 2-D studies, the proposed approach is demonstrated to have a faster convergence rate. It does not require refining 
the boundary B-splines to better match interior linear tetrahedra on the interface.

3. While Sevilla et al. (2008, 2011) keep the boundary geometry, it is an all tetrahedral representation with only C0

smoothness, except on the boundary surface representation. It also uses a different polynomial basis for the simulation. 
The proposed hybrid representation uses smooth trivariate B-splines near the boundary. These layers combined with the 
proposed higher order Bézier tetrahedra for representing geometrical, material and functional attributes, and performing 
simulation, retain many of the benefits of a full trivariate NURBS representation, but also can complete the volumetric 
representation for difficult shapes.

4. The proposed representation allows for generalizing constraints to allow those tetrahedra that do not touch the interface 
to be linear. The interior can be refined, as long as adapted interface constraints are met.

5. Stiffness and mass matrices embed the interface dependences so the control mesh is updated as a whole. Added con-
straints for different orders for the interior tetrahedra or further refinement to attain better tetrahedral mesh quality 
are maintained in this way.

We construct the exterior trivariate B-spline elements by offsetting the boundary model inward. The offset can be based 
on a variety of strategies. One is to create harmonic distance functions based on a midstructure representation, generated 
automatically or semi-automatically with methods such as those in Martin et al. (2012b), Dey and Goswami (2003), Miklos 
et al. (2010), Au et al. (2008) or Huang et al. (2013) to define the offset function for the exterior surface. In this paper, the 
boundary and a coarse skeleton that is generated in a preprocess are used as end conditions for a Laplacian. The solution 
harmonic function is used as a distance function to offset from the 3-D B-spline boundary representation, similarly to 
Martin et al. (2012a). This approach needs only a set of points that lie roughly around media axis and does not require 
proper topological connectivity. Even approximate medial axes as generated in Miklos et al. (2010) are suitable for shapes 
that have widely varying distance to boundary. These harmonic functions do not have intersections among the offset paths 
and therefore, they can be free from introducing degenerated elements. Other offset methods without using midsturctures 
are discussed in Kallinderis et al. (1996) and Wang and Murgie (2006), where the matching direction is decided based 
on local geometric constraints or solutions to the Eikonal equation. The choice of offset strategy is left to the user, as are 
the number of layers of trivariate B-spline elements and how far along the distance field to offset the boundary surface is 
(results with different settings are discussed in Section 6).

An intermediate interface representation that matches the inner boundary of the B-spline representation is built of Bézier 
triangles and its interior is filled with unstructured Bézier tetrahedral elements. Although higher-order Bézier tetrahedra 
require more simulation computation, results of higher quality can be produced using fewer elements, so the total number 
of degrees of freedom may not be significantly higher. As illustrated in Fig. 8 of the convergence study, the accuracy result 
that we achieved with 500 nodes needs more than 4000 nodes if using method in Martin et al. (2012a). Our framework 
is also applicable to NURBS models. The bivariate tensor product boundary NURBS representation can be modified as it is 
offset inward in creating the volumetric representation until the inner boundary surface is fully polynomial. For simplicity 
of presentation, and without loss of generality, we focus on polynomial B-splines.

The remainder of the paper is organized as follows. Related work is discussed in Section 2, the construction of the hybrid 
representation is introduced in Section 3. Section 4 demonstrates the improvement in convergence rate. The paper discusses 
results in Section 5 and concludes in Section 6.



182 S. Zeng, E. Cohen / Computer Aided Geometric Design 35–36 (2015) 180–191
Fig. 2. Simulation results with: (a) A hybrid mesh with C2 B-spline elements on the boundary and linear nodal triangle elements in the interior. (b) Cubic 
Bézier triangles. (c) A hybrid mesh with C2 B-spline elements near the boundary and C0 Bézier triangles in the interior, done with our approach. Left and 
middle columns undergo element flips, while our approach stays smooth on the boundary with no element flips.

2. Related work

Hybrid meshing, which benefits from mixing different types of elements in a model representation, has had the attention 
of researchers for some time; although the representations of the elements usually are as linear as possible. Kallinderis et al.
(1996) presented the generation of hybrid prismatic/tetrahedral grids by creating prisms to cover the region close to domain 
surface and tetrahedra elsewhere. This idea is applied to complex turbomachinery and aerospace geometries in Khawaja and 
Kallinderis (2000). Similar idea is applied to viscous flow analysis in Park et al. (2013) where a transition layer composed 
of tetrahedra is used to connect the gap between prisms near the object’s boundary and an axis-aligned Cartesian grid in 
the rest of the domain. Hmorph (Owen and Saigal, 2000) created a hexahedral-dominant mesh by iteratively converting the 
input tetrahedral mesh into a hexahedral mesh using an advancing front technique. For tetrahedral elements that cannot 
be converted into hexahedral elements, the transition to hexahedra is accomplished using pyramids. In these methods, 
C0 continuity between two element types is maintained. However, they did not address the case involving higher-order 
boundary representation.

NEFEM, as presented in Sevilla et al. (2008, 2011) uses straight sided elements (linear geometric elements) internally 
and triangles or tetrahedra with isoparametric curved edges or faces for those that intersect with the NURBS boundary. 
It maintains the exact input surface in the output representation. Specific strategies based on Lagrange polynomials are 
designed for the numerical integration of those boundary elements. However, they did not provide a uniform way to define 
a nodal distribution that could ensure an appropriate condition number for the resulting element matrices, especially when 
the curved elements have complex edges or faces.

Our work generalizes the results in Martin et al. (2012a). That approach keeps the original NURBS surface representation, 
offsets it into its interior to form a NURBS volume with arbitrary thickness and number of layers, and the rest of the domain 
is then completed with unstructured tetrahedal mesh. They introduced for the first time an approach to combine higher 
order elements with linear elements, for both the geometry and simulation bases. However, linking linear nodes with 
higher-order nodes results in discontinuity and gaps that can be closed in the limit with refinement.

In our approach, the interior mesh is filled with unstructured higher-order Bézier tetrahedral elements. One issue is 
to maintain the C0 smoothness between elements of different types and polynomial degrees. In our approach, when con-
structing stiffness and mass matrices, we take into account the dependencies of interior elements on exterior elements along 
their interfaces, so that C0 smoothness is automatically maintained for representing material properties and attributes when 
performing computer graphics simulations or isogeometric analysis (Fig. 2).

3. Volumetric representation

Let the domain of interest S be a 2-manifold without boundaries represented by a collection of tensor product B-spline 
surfaces {sk(u, v)}k , that have C1 or higher continuities within each surface and at least C0 smoothness between them. As 
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needed we designate S to mean the surface or the collection of B-spline representations of the surface. Each s(u, v) ∈ S is 
defined as

s(u, v) =
n1∑

i1=0

n2∑
i2=0

αi1,i2 Ni1,n1,τu (u)Ni2,n2,τv (v) (1)

where Ni1,n1,τu (u) and Ni2,n2,τv (v) are B-spline basis functions as defined in Cohen et al. (2001). τu and τv are the local 
knot vectors of the particular surface s(u, v), of degree n1 and n2 in directions of u and v , respectively. The coefficients 
αi1,i2 define a rectangular control mesh of dimension (n1 + 1) × (n2 + 1). Note that the index (i1, i2) is local to s. Of course 
those subscripts are mapped to a global numbering system, where subscript is a single letter, and the same coefficient in a 
different s, no matter the local numbering, will share that global subscript for the simulation. In what follows, we develop 
the approach on a surface by surface basis and so omit the subscript designating the surface whenever possible.

If the user chooses to create a harmonic distance function, the algorithm requires S and an associated point-sampled 
midstructure. We assume S has been preprocessed and the sampled midstructure was previously generated.

3.1. Pipeline

We adopted the following pipeline to generate the hybrid volumetric representation.

1. Triangulate the quadrilaterals of the control mesh and create an unstructured tetrahedral mesh containing the point-
sampled midstructure and the triangulated control mesh.

2. Construct a harmonic function over the tetrahedra by solving the Laplacian between the boundary and midsurface.
3. Offset the initial surface using the harmonic distance function, allowing the user to specify the thickness (in terms of 

the harmonic function isovalue) of the resulting semi-structured volumetric B-spline representation. Ensure that the 
topology of the innermost offset surface matches that of the original boundary surface.

4. Extract the inner boundary of the trivariate B-spline representation and build three representations for it: a tensor 
product B-spline surface, a tensor product Bézier surface, and a Bézier triangle surface. These three intermediate rep-
resentations are used to develop the interface constraints that connect the interior and exterior elements and maintain 
C0 smoothness between them. The Bézier triangle surface representations form the final boundary of the inner Bézier 
tetrahedra (Section 3.2).

5. Generate a tetrahedralization of the interior using the linearized version of the Bézier triangle boundary surface. Create 
higher-order Bézier tetrahedral representations, using the Bézier triangles on those tetrahedra that touch the interface 
(Section 3.3).

The output of the pipeline is a hybrid volumetric representation, defined by the tuple

H = (V,T ,CI )

where V is the collection of exterior trivariate B-spline elements, T is the collection of interior higher-order Bézier tetra-
hedral elements, and CI is the set of interface constraints that connect V and T and maintain C0 smoothness between 
them, i.e., each node of T on one side of the interface must be a linear combination of nodes of V on the other side of the 
interface, as derived at the end of Section 3.3.

The first three steps are analogous to those presented in Martin et al. (2012a). After the third step, V is represented as 
a collection of volumetric tensor product B-splines {vk}k . Each v ∈ V is defined as

v(u, v, w) =
(n1,n2,n3)∑
�i=(0,0,0)

β�i N�i(u, v, w), �i = (i1, i2, i3) (2)

where

N�i(u, v, w) = Ni1,n1,τu (u)Ni2,n2,τv (v)Ni3,n3,τw (w) (3)

Note that the index �i is local to a particular v and will be mapped to a global index l.

3.2. Construct the boundary of the interior Bézier tetrahedal representation

To establish the constraints in CI , a second representation of the inner boundary (S̄) of V is created, called P . It is 
represented as a collection of tensor product Bézier patches. P will be used to generate one more representation of S̄
called G that consists of a collection of Bézier triangles. It serves as the boundary representation of the Bézier tetrahedra 
touching S̄ . Note that P and G are auxiliary tools and are not included in the final volumetric representation.

We extract S̄ , the inner surface representation for the boundary of V , shown in Fig. 3(c). S̄ has the same topology as 
S and is defined similarly as a collection of bivariate tensor product B-splines s̄(u, v) with coefficients ᾱi1,i2 . For a given k, 
s̄k(u, v) has the same knot vectors τu and τv as sk(u, v).
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Fig. 3. Hybrid volume completion pipeline. (a) B-spline surface model S and a point-sampled midstructure. (b) Harmonic function solution over the inter-
mediate tetrahedral mesh. (c) Offset the initial surface to generate the trivariate B-splines. The red surfaces S̄ form the volumetric B-spline representation 
inner boundary. (d) Fill the interior with higher-order Bézier tetrahedra (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.).

Fig. 4. Transform a single B-spline surface (left) to a set of tensor product Bézier surface patches (right).

For a given s̄k , with its knot vectors τu , τv and degrees n1 and n2, elevate the multiplicity of each distinct knot in τu

to n1 and each distinct knot in τv to n2, then the representation for sk is now the union of Bézier surface patches, one for 
each rectangle of distinct knot values. For parametric region [ur , ur+1] × [vc, vc+1] the Bézier representation is

sk (ur + u(ur+1 − ur), vc + v(vc+1 − vc)) = pr,c(u, v) =
n1∑

i1=0

n2∑
i2=0

γi1,i2 Bn1
i1

(u)Bn2
i2

(v). (4)

It has been transformed to the parametric domain [0, 1] × [0, 1] (Fig. 4). Bn1
i1

(u) and Bn2
i2

(u) are 1-D Bernstein polynomials, 
defined as Bn

i (u) = (n
i

)
ui(1 − u)n−i , 0 ≤ i ≤ n for 0 ≤ u ≤ 1. For all i1, i2, γi1,i2 ∈ R3, are the coefficients local to pr,c(u, v)

and can be calculated though the Oslo Algorithm (Cohen et al., 2001). Scalars di1 ,i2, j1, j2 are determined using it such that

γi1,i2 =
∑
j1, j2

di1,i2, j1, j2 ᾱ j1, j2 (5)

Each ᾱ j1, j2 maps to a global coefficient βh ∈ V and let each m = m(k, r, c, i1, i2), for each global index m, the above equation 
can be written as

γm =
∑

dm,hβh (6)

The global index for counting each of the Bézier patches is a function of k, the B-spline surface, and r and c, its local 
number within that surface, i.e., l = l(k, r, c). Then P = ∪l pl(u, v). Clearly from Eq. (6), each coefficient of each of the Bézier 
patches of P is a linear combination of inner boundary coefficients of V .

A Bézier triangle of degree n with coefficients {δ�i}�i has representation

g(u, v) =
∑
|�i|=n

δ�i Bn
�i (u, v), �i = (i1, i2, i3), u ≥ 0, v ≥ 0, u + v ≤ 1. (7)

Bn
�i (u, v) are triangular Bernstein polynomials, defined as,

Bn
�i (u, v) = n!

ui1 vi2(1 − u − v)i3 , �i = (i1, i2, i3), |�i| = n (8)

i1!i2!i3!
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Fig. 5. Partition a tensor product Bézier surface patch (beige) to an upper Bézier triangle (red) and a lower Bézier triangle (green). The first row shows their 
parametric domains. The second row shows their geometric shapes and coefficients. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

The Bézier triangle representation for G is constructed as follows. Each tensor product Bézier surface patch p(u, v) ∈ P
is partitioned to an upper Bézier triangle gU (a, b) and a lower Bézier triangle gL(a, b). Note we omit subscripts here as the 
process is done on a patch by patch basis. Both gU (a, b) and gL(a, b) have expressions as in Eq. (7) with degree n1 +n2 and 
parametric domain a + b ≤ 1, a ≥ 0, b ≥ 0, as shown in Fig. 5.

Clearly, for gU (a, b) to match the upper part of p(u, v),

gU (a,b) = p(u(a,b), v(a,b)) = p(1 − a,1 − b) (9)

that is,

∑
|�i|=n1+n2,

i1≥0,i2≥0,i3≥0

δU
�i Bn1+n2

�i (a,b) =
n1∑

j1=0

n2∑
j2=0

γ j1, j2 Bn1
j1

(1 − a)Bn2
j2

(1 − b), �i = (i1, i2, i3) (10)

Let c = 1 − a − b and insert in the definition of the 1-D Bernstein and Eq. (8), we have

∑
|�i|=n1+n2,

i1≥0,i2≥0,i3≥0

δU
�i

(n1 + n2)!
i1!i2!i3! ai1 bi2 ci3 =

n1∑
j1=0

n2∑
j2=0

γ j1, j2

n1!
j1!(n1 − j1)! (b + c) j1an1− j1

n2!
j2!(n2 − j2)! (a + c) j2 bn2− j2

(11)

By fully expanding the expressions on both sides of the equation, we see both are polynomials in a, b and c of degree of 
n1 + n2. We performed the expansion with Symbolic Math Toolbox in MATLAB. The expanded result is not shown here as it 
contains tens of terms associated with complicated coefficient expressions on both sides for n1 = n2 = 3, each term has the 
form of aib jck , where i ≥ 0, j ≥ 0, k ≥ 0 and i + j + k ≤ n1 + n2. By matching the coefficients of aib jck from both sides, we 
determine the linear relationship between δU

�i and γ j1, j2 .

A similar approach is applied to the lower triangle gL(a, b). Note that even though upper triangles and lower triangles are 
differentiated during the process of generation, they are treated no differently thereafter. Once created, gU (a, b) and gL(a, b)

are collected into a global set of Bézier triangles G and re-indexed as {gk(a, b)}k . Correspondingly, local coefficients δU
�i and 

δL
�i are collected and mapped to global coefficients δr . Now G = ∪k gk(a, b) is another representation for S̄ geometrically. 
G serves as the boundary of the interior representation and be used to construct T in Section 3.3.

As γi1,i2 maps to global γm in Eq. (6), the relationship between δr and γm revealed by Eq. (11) can be expressed with 
scalars er,m , such that

δr =
∑

m

er,mγm =
∑

m

er,m

∑
dm,hβh =

∑
fr,hβh and fr,h =

∑
m

er,mdm,h (12)

Hence, we established the linear relationship between the coefficients of G and those of V .
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Fig. 6. Construction of inner Bézier tetrahedra T . (a) Construct a triangle mesh Ḡ (green) from the corner vertices of Bézier triangles on surface G (red). 
(b) Tetrahedralize the space bounded by Ḡ. Transform each tetrahedron to a Bézier tetrahedron tk , specifying coefficients η�i . (c) Move the coefficients η̄r

onto G and adjust remaining coefficients through smoothing (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.).

3.3. Construct the interior mesh

Connecting the three corner vertices of a Bézier triangle gk(a, b) ∈ G gives us a planer triangle, denotes ḡk(a, b), as shown 
in Fig. 6(a). Thus we obtain a triangle mesh Ḡ = ∪k ḡk(a, b) from G as its linearized surface.

Now tetrahedralize the space bounded by Ḡ . Only a coarse tetrahedralization is required, as each tetrahedron will be 
transformed to a Bézier tetrahedral element tk of degree n1 + n2, represented as

tk(u, v, w) =
∑

�i
η�i Bn1+n2

�i (u, v, w) (13)

where

Bn1+n2
�i (u, v, w) = (n1 + n2)!

i1!i2!i3!i4!ui1 vi2 wi3(1 − u − v − w)i4 , �i = (i1, i2, i3, i4), |�i| = n1 + n2 (14)

are tetrahedral Bernstein polynomials. As all edges and faces of tk are linear at this moment, coefficients η�i ∈ R3 can be 
calculated simply as the Greville points, as shown in Fig. 6(b). As always, local coefficients η�i are assembled and mapped to 
global coefficients ηm .

At present T = ∪ktk is bounded by Ḡ instead of G . To solve this issue, we build a connected graph L by linking each 
coefficient ηm to its neighbors. Let η̄r be the subset of ηm that is located on Ḡ , it is easy to find the correspondence between 
η̄r and δr (nodes on G), see Fig. 6(b) for illustration. Let η̄r = δr , we then adjust the remaining coefficients of T through a 
Laplacian scheme (Freitag, 1997) applied to L. This step results in curved edges and faces in elements of T , as shown in 
Fig. 6(c). The procedure to construct the interior mesh in 2-D is similar and illustrated in Fig. 10.

According to Eq. (12) and the fact that η̄r = δr , the interface constraints CI between V and T may thereafter be expressed 
as tuples (η̄r , fr,h , βh), which means

η̄r =
∑

fr,hβh (15)

Note η̄r are interface nodes on the Bézier tetrahedral side and depend on interface nodes on the B-spline side, thus do not 
represent independent degrees of freedom.

Our approach to generate the interior mesh is straightforward. However, when gk is not convex and differs significantly 
from ḡk , pathological cases where nonboundary coefficients of T end up outside of its boundary may occur. One way to 
solve this issue is to damp off the variation of gk as part of the process for creating the trivariate tensor product B-splines. 
The other is to apply local refinement of gk as the refined Bézier triangles converge to their linearized versions. The refined 
coefficients can also be expressed in terms of βh , thus the interface constraints continue to hold. Note that when the Bézier 
tetrahedra on the surface are big, the risk of getting pathological cases is much lower. We have used two successful ways to 
get big boundary Bézier tetrahedra in our experiments, one is to use a coarse tetrahedralization to construct T ; the other 
is to offset Ḡ inward as we did for the input boundary to get a shrunk version G̃ , tetrahedralize its interior and for vertices 
connected to G̃ , we connect them to Ḡ in a similar fashion, as illustrated in Fig. 7. The quality of the elements in T is 
also affected by the tetraheralization. Since the tetrahedralization scheme is not the focus of this paper, there are several 
possible tetrahedral mesh generators or improvers and schemes aimed at quality tetrahedral meshing that can be used. We 
used Tetgen (Si, 2004), which allows users to specify quality control parameters.

In our current framework, CI contains only the constraints to maintain the C0 smoothness across the interface between 
the interior and exterior representation, more constraints can be added to it in a similar fashion, so as to:

1. Allow those tetrahedra that do not touch the interface to be linear.



S. Zeng, E. Cohen / Computer Aided Geometric Design 35–36 (2015) 180–191 187
Fig. 7. Left: shrink Ḡ to G̃ and tetrahedralize its interior. Right: connect the vertices that are connected to G̃ to Ḡ in a similar fashion, so as to get big 
boundary tetrahedra.

2. Allow for the interior to be refined.
3. Achieving C1 or higher continuities between higher-order elements of the same or different types.

3.4. Stiffness and mass matrix for interface element

To maintain CI in the hybrid mesh during physical simulation, we developed an approach to construct the local stiffness 
and mass matrix for each Bézier tetrahedal element on G , so that only independent coefficients are used.

Let tk be a Bézier tetrahedral element which has at least one face on G . We assume it contains independent coeffi-
cients ηs , that lie completely on the Bézier side, and dependent coefficients η̄r which are located on G ,

tk(u, v, w) =
a∑

s=0

ηs Bs(u, v, w) +
b∑

r=0

η̄r B̄r(u, v, w) (16)

Br and B̄r are basis functions (3-D Bernstein polynomials) associated with coefficients ηs and η̄r .
Let’s first ignore the interface constraints on η̄r as specified in CI and treat tk as an independent Bézier tetrahedral 

element, whose local stiffness matrix K̄e and mass matrix M̄e , associated with ηs and η̄r , can be calculated using standard 
methods as presented in Müller et al. (2008).

Suppose η̄r depend on βh as shown in Eq. (15),

tk(u, v, w) =
a∑

s=0

ηs Bs(u, v, w) +
b∑

r=0

c∑
h=0

fr,hβh B̄r(u, v, w)

=
a∑

s=0

ηs Bs(u, v, w) +
c∑

h=0

βh

b∑
r=0

fr,h B̄r(u, v, w)

︸ ︷︷ ︸
Ch(u,v,w)

(17)

i.e., tk(u, v, w) is actually an element with independent coefficients ηs and βh , associated with basis functions Bs(u, v, w)

and Ch(u, v, w).
As ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η0

...

ηa

η̄0

...

η̄b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1

ω0,0 · · · ω0,c

...
...

ωb,0 · · · ωb,c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η0

...

ηa

β0

...

βc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

the correct local stiffness matrix Ke associated with ηs and βh can then be calculated as

Ke = AT K̄e A (19)

Similarly we also have the local mass matrix

Me = AT M̄e A (20)
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Fig. 8. 2-D studies with disks generated with our approach (a), using the approach in Martin et al. (2012a) (b and c), and with triangle only representa-
tion (d).

Fig. 9. (a) Methodology applied to various objects. (b) Elastic simulation with the created hybrid mesh.

4. Convergence study in 2-D

We examine a similar study in 2-D as in Martin et al. (2012a) to show that our produced hybrid mesh has greatly 
improved the simulation results.

Given the smooth function g : Ω → R

g(x, y) := J (4, J0(4,2)r(x, y)) sin(4θ(x, y)) (21)

where r(x, y) := √
x2 + y2, and θ(x, y) defines the angle between vector (x, y) and the Cartesian coordinate axes, i.e., r(x, y)

and θ(x, y) convert (x, y) into polar coordinates. Ω in this study represents a disk centered at the origin with a radius of 1 
with boundary ∂Ω . Furthermore, J (n, z) is the nth Bessel function of the first kind at z ∈ R , and J0(n, m) is the mth zero 
of the nth Bessel function of the first kind. Since g(x, y) = 0 at ∂Ω , the Dirichlet boundary condition at ∂Ω is set to zero. 
In the following experiment, let f (x, y) := ∇2 g .

In this study we investigate Poisson’s equation −∇2 g̃ = f , solved using Galerkin’s method on three disk representations: 
(1) a hybrid disk with B-spline elements at the boundary and Bézier triangles in the interior using our proposed approach, 
(2) a hybrid disk with linear triangles in the interior using approach in Martin et al. (2012a), (3) a disk represented with 
triangles only. All three types of representations are generated from periodic B-splines representing a unit circle, under 
various refinement levels. The error is calculated as 

∫
Ω

|g̃(x, y) − g(x, y)|dΩ . The corresponding results are shown in Fig. 8.

5. Results

We applied the proposed approach to the various closed input objects, represented with the bi-cubic B-spline patches, 
as shown in Fig. 9. In all cases, a cubic knot vector is used to create the trivariate (or bivariate, in 2-D) B-spline model 
for the depth direction (towards the interior of the model). The examples use a harmonic function as the interior distance 
from boundary for the 3-D models, so the input to these examples assumes preprocessing to obtain a coarse midstructure. 
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Fig. 10. The 2-D procedure to construct the interior representation. (a) Offset the boundary B-spline curve inward to form a surface; transform each segment 
of the inner boundary to a Bézier curve. (b) Connect the first and last control points of every Bézier curve and triangulate the bounded region. (c) Transform 
each triangle to a Bézier triangle, using control points calculated with bilinear interpolation. (d) Move the control points on the boundary of the interior 
mesh to match those of the Bézier curves in (a). (e) Adjust the remaining control points with Laplacian smoothing. (f) The final result. Note the edges of 
the interior elements are curved.

Fig. 11. The effect from varying depths of the B-spline representation in 2-D cases. A thicker B-spline layer would lend stability to physical simulation.

If the midstructure from preprocessing is close to the medial axis, then the resulting offset using the harmonic function 
is in approximately the same direction as the standard normal inward offset from the boundary, although it never allows 
overlaps of regions.

For the 2-D object the degree of the interior filling Bézier triangles is the same as that of the bounding B-spline curve. 
However, for a 3-D object with bi-cubic B-spline representation, the resulting hybrid volume has its internal space filled 
with degree-six Bézier tetrahedral elements.

Our method dealt with the complicated shapes of our test cases well, even without refinement to the boundary curves 
or interior elements. Unlike other methods, our approach allows multiple faces or edges of a tetrahedra to touch the inner 
B-spline boundary, and it requires no special provisions. Further, the proposed approach does not have the geometric shape 
constraints apparent in other methods, caused by making the interior triangles as linear as possible. In Fig. 10, coarse 
Bézier triangles with multiple curved edges are generated. The results are shown in Fig. 11, demonstrating geometry and 
simulation results with curved boundaries.

In addition to the 2-D convergence study as presented in Section 4, we studied the effects from varying the depths of 
the B-spline representation in 2-D cases. It turns out given the same triangulation in the interior, a thicker B-spline layer 
would lend stability to physical simulation as shown in Fig. 11. This might be for several reasons. One possibility is that 
although the B-spline elements have C2 smoothness across their adjacent boundaries, the Bézier tetrahedral elements have 
only C0 continuity across element boundaries. The thinness of the B-spline elements might allow the effects of the C0

tetrahedra to overrule the quality of the B-splines, especially where relatively sharp features of the boundary are present. 
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Another possible cause is that the ratio of the lengths of the sides of the B-spline elements is small, and so might cause poor 
behavior. However, it can be seen in the third column of Fig. 11 that 2 thin layers still give good results. The composition 
of the hybrid object is only one factor in the experimental results. It is also affected by the material and geometry of the 
object, so there is not an absolute answer for the optimal thickness of the B-spline layer. In our experiments, we chose a 
thicker B-spline layer to attain a more elastic and complex object. A more quantitative study will be explored in the future.

6. Conclusion

In this paper we present a framework to create a hybrid volumetric representation as a generalization of Martin et al.
(2012a). The product consists of trivariate B-spline elements on the exterior and unstructured higher-order Bézier tetrahedral 
elements in the interior of the object. The B-spline representation can be constructed by offsetting the boundary inward 
in a variety of ways. The rest of the space is then filled with Bézier tetrahedral elements whose boundaries match an
intermediate surface consisting of Bézier triangles extracted from the inner surface of the B-spline representation. Our 
approach maintains a C0 continuity across the common boundary between exterior and interior mesh by including the 
interface constraints in the construction of stiffness and mass matrices.

The resulting hybrid volumetric representation is feasible for representing complex materials and properties and isoge-
ometric analysis simulations. It is a geometry completion and overcomes the problems of gaps and overlaps in Martin et 
al. (2012a). It is more general than Sevilla et al. (2008) and Sevilla et al. (2011) in that it provides for simulations with 
smoothly adjacent hexahedra near the boundary. Our test cases demonstrate that it improves the convergence rate and has 
a more stable behavior during simulations (Fig. 2).

Higher degree interior Bézier tetrahedral elements (3-D) or triangle elements (2-D) can be initially thought as a disad-
vantage over using linear interior tetrahedra, because of the extra degrees of freedom, or hexahedral completion, because 
the interior is only C0 continuous. One aspect demonstrated in Section 4 is that fewer elements are necessary to attain good 
convergence. Thus the overall number of degrees of freedom may not be higher, although the computation is more complex. 
This direction bears further study. Also, there are no generally applicable algorithms that can keep an initial B-spline surface 
representation of a model and perform high quality volume completion. This approach can serve as a bridge, allowing true 
isogeometric simulation and also supporting volume completion for arbitrary shapes.

There are several approaches to lowering computational complexity that we will explore in the future. One approach 
would be to have the layer of all tetrahedra that touch the tensor product B-spline boundary remain high degree, but their 
faces (edges) that touch only other tetrahedra could be required to be linear or at least lower degree. That would be a set of 
constraints on the boundary coefficients of those tetrahedra and create 3 regions. However the set of interface constraints C I

could simply be generalized to contain those as well during the simulation. Another approach is to use those extra degrees 
of freedom to constrain the Bézier tetrahedra to have C1 smoothness between them and across the interface to the tensor 
product representation. However, in 2-D the Bézier triangles are only cubic and do not have enough degrees of freedom to 
create C1 smoothness between them. We will continue to explore other approaches to reducing complexity of computation 
while maintaining flexibility of representation, for example, by adapting the approach in Bargteil and Cohen (2014) to this 
more general representation.
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