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Recent advances in 3D printing technologies bring wide range of applications from fast
prototyping to product manufacturing. However, one intrinsic limitation of 3D printing
is that we cannot fabricate a single object that is larger than the working volume of
a 3D printer. To address this issue, we may partition the given object into 3D parts of
manageable sizes for printing, and then assemble the object from the printed 3D parts.
Rather than using connectors, glue, or skew, we propose to connect the printed 3D parts
by 3D interlocking such that the assembled object can be not only repeatedly disassembled
and reassembled, but also strongly connected by the parts’ own geometry. To achieve
these, we develop a voxelization-based approach to partition a given 3D model into 3D
interlocking parts. To guarantee the generated 3D parts to be structurally sound and well-
connected by 3D interlocking, we deform the local geometry of the 3D model to avoid
voxel fragmentation, employ internal voxels to create initial interlocking parts, and analyze
the local shape within voxels to guide the final parts construction. We demonstrate the
effectiveness of our approach on 3D models with a variety of shapes, and realize some of
them by 3D printing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

3D printing is an additive manufacturing technology, facilitating convenient and rapid fabrication of physical objects of 
almost any shape. It has a wide range of practical applications, from fast product prototyping, product development, 3D 
visualization, to distributed manufacturing of larger-sized objects such as machine parts.

However, 3D printing has an intrinsic limitation: a 3D printer cannot directly print an object whose size is greater than 
the printer’s working volume. This practical limitation has been pointed out recently by Luo et al. (2012), who proposed a 
solution to partition a given 3D object into parts for 3D printing and then assemble the printed parts together to recon-
struct the object. Besides addressing the intrinsic limitation, this approach has several other advantages. First, it facilitates 
cost-effective maintenance since we only need to print a replacement part for a corresponding broken part rather than 
reprinting the entire object. Second, this approach is good for storage and transport since we can disassemble a large 3D 
object to save space and avoid breaking it during the transportation. Lastly, similar to Lego bricks, we could reassemble an 
existing 3D object, change some of its parts, and even reconfigure it for alternative designs and appearance.
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To connect 3D printed parts, there are some common approaches, e.g., by male and female connectors (Luo et al., 2012;
Lo et al., 2009) and by glue (Shapeways, 2014). For the case of male and female connectors, though they are generally 
practical, they may not provide sufficient structural strength to sustain the parts connections. Moreover, for these tiny 
printed features, they may be broken easily during the object assembly or the transportation. For the case of glue, though it 
could tightly join the printed 3D parts together, it is a permanent connection, discouraging object reassembly, cost-effective 
maintenance, and reconfiguration. In sharp contrast, we take a 3D interlocking approach (Xin et al., 2011; Song et al., 2012)
to construct and connect printed 3D parts to form an object assembly. By this, we can overcome the above mentioned 
issues.

Connecting parts by 3D interlocking has several advantages: i) first, parts connections are achieved by the parts’ own 
geometry without requiring the creation of extra tiny connectors such as male and female connectors; ii) the assembled 
object can be repeatedly disassembled and reassembled, facilitating cost-effective maintenance, storage, and transportation; 
iii) 3D interlocking is known to be strong, evidenced by its usage in long-standing architectural wooden structures; hence, 
this connection method allows us to achieve stronger 3D parts connections, which are in fact supported by inter-parts 
blockage with their geometry; and iv) lastly, it enables us to produce 3D parts with clean and smooth surface without hole 
drilling and protrusion.

In this paper, our goal is to partition a given 3D object into interlocking parts for 3D printing and object assembly. 
This is a highly challenging and unexplored problem, since we have to enforce not only the complicated 3D interlocking 
requirement (Xin et al., 2011; Song et al., 2012), but also the geometric and dimensional requirements on the printed 3D 
parts, as well as maintaining the 3D object appearance after its assembly. The requirements to be considered when we 
develop the computational method are listed as below:

• 3D interlocking: the printed 3D parts should interlock one another, yet can be assembled and disassembled;
• Printable parts: while being not too small, each printed 3D part should fit into the working volume of the target 3D 

printer;
• Structural soundness: we should avoid thin and/or weak features on the 3D parts since such features could be easily 

broken during the object printing, assembly, or transportation;
• Strong connection: we should achieve strong 3D parts connections by ensuring strong blockage among the 3D parts in 

the 3D interlocking assembly; and
• Aesthetics: lastly, we should avoid having cutting seams that pass through salient regions on the assembled object 

surface since this affects the object appearance.

Note that state-of-the-art methods (Xin et al., 2011; Song et al., 2012) for creating 3D interlocking structures are insufficient 
to handle the problem since they mainly focus on the 3D interlocking requirement without considering the 3D printing 
issues such as structural soundness and object appearance.

To achieve the above requirements, we develop a novel voxelization-based approach to construct interlocking 3D parts 
from a given 3D model. Our technical contributions are three-fold. First, we develop a new framework that can create 
interlocking 3D parts from 3D models of general shape, where novel ideas include voxelizing the 3D model with local shape 
analysis, employing internal voxels to create initial interlocking parts, and attaching boundary voxels to initial parts while 
retaining the 3D interlocking. Second, we propose to deform the input model surface subject to the voxelization, which 
helps to avoid fragmented and disconnected shape features on the generated 3D parts. Lastly, we propose the shape and 
saliency connection graphs encoding local shape information to guide the parts geometric construction for achieving the 
parts structural soundness and aesthetics requirements. We have demonstrated the effectiveness of our approach on 3D 
models with a variety of shapes, and fabricated some of them by 3D printing to validate the parts connection capability, as 
well as their structural soundness.

2. Related work

3D fabrication. A number of research works in computer graphics have studied different aspects of 3D fabrication, e.g., 
deformation behavior (Skouras et al., 2013), mechanical characters (Coros et al., 2013; Ceylan et al., 2013), articulated 
models (Bächer et al., 2012; Calì et al., 2012), spinnable fabrication (Bächer et al., 2014), 3D shape balancing (Prévost et al., 
2013), and printing material reduction (Wang et al., 2013; Lu et al., 2014).

Specifically, some of them focus on structural issues in 3D printing. Telea and Jalba (2011) devised several metrics to 
assess the printability of 3D shapes. Stava et al. (2012) proposed an automatic method to detect and correct structural issues 
in 3D models before printing them. Zhou et al. (2013) determined the worst-case loads in printing a 3D object. Umetani 
and Schmidt (2013) detected structural weakness of 3D objects for 3D printing optimization.

Fabrication by 3D parts. Partitioning an object into parts for 3D fabrication can be used for creating 3D furniture models 
with assemblable parts (Lau et al., 2011), for approximating objects with planar boundary pieces (Chen et al., 2013) or 
planar slices (McCrae et al., 2011; Hildebrand et al., 2012; Schwartzburg and Pauly, 2013), and for building architectural 
structures (Pottmann et al., 2007). Recently, Zhou et al. (2014) proposed a method to produce 3D printing objects that can 
be folded into a box.

In particular, some research works focus on partitioning a solid 3D shape into disjoint parts for 3D fabrication. Medellín 
et al. (2007) subdivided a 3D shape into parts based on a regular grid. Hao et al. (2011) decomposed a large complex model 
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into simpler 3D parts by using curvature-based partitioning. Luo et al. (2012) partitioned a large 3D object into smaller parts 
by using planer cuts, where male and female connectors are generated on parts for making the connections. Hildebrand et 
al. (2013) addressed the directional bias issue in 3D printing by segmenting a 3D model into a few parts and assigning an 
optimal printing orientation for each part. Vanek et al. (2014) improved the 3D printing efficiency by converting 3D objects 
into shells and breaking them into parts that can be glued together.

Our work also partitions a 3D shape into smaller parts for 3D fabrication. But in sharp contrast, we achieve 3D parts 
connections by 3D interlocking rather than by glue or by tiny geometry like male and female connectors. Our approach has 
several distinctive advantages over existing approaches as highlighted earlier in the introduction.

3D interlocking puzzles. Designing 3D interlocking puzzles is extremely difficult even for highly skilled puzzle design-
ers (Coffin, 1990). So far, there are only a few computational methods that can construct 3D interlocking structures. Xin 
et al. (2011) created interlocking puzzles from 3D models by replicating and connecting a specific six-piece burr config-
uration, but since this method requires a centralized bulky structure to achieve 3D interlocking, it is highly restrictive, 
and could not deal with complex shapes and general topology. Later, Song et al. (2012) developed a recursive method to 
construct 3D interlocking structures by iteratively extracting puzzle pieces from a voxelized model. The produced puzzle 
pieces are polycubes with cubical appearance, and cutting seams are randomly arranged on the object surface, resulting 
in rather distracting appearance. If we directly apply constructive solid geometry (CSG) operations to refine their puz-
zle pieces with the original object surface, disconnected, fragmented, and weakly-connected components would be easily 
produced on the puzzle pieces, making (Song et al., 2012) inadequate for 3D printing, see Section 6 for detailed compari-
son.

Compared with the above works, our method enforces various fabrication requirements while achieving 3D interlocking, 
which is already nontrivial on its own. In particular, our method not only can automatically and flexibly create interlocking 
3D parts from a given object model of general shape, but also can produce 3D parts that are structural sound and avoid 
obvious cutting seams on salient features of the object. By this, a given object is ready for being 3D printed with its parts.

3. Overview

In this section, we first discuss the challenges of partitioning a given 3D shape into interlocking 3D parts, and then give 
an overview of our approach.

Challenges of 3D shape partitioning. For a given 3D shape, there exist different ways of partitioning it into parts, 
for example, plane – (Luo et al., 2012), curvature – (Hao et al., 2011), and voxelization-based (Medellín et al., 2007;
Zhou et al., 2014) approaches. This work employs the voxelization-based partitioning approach to create interlocking parts 
since i) cubical voxel space facilitates the design of interlocking structures like (Song et al., 2012); ii) shape analysis 
of parts can be simplified by computing the local shape within voxels and connecting local shapes between neighbor-
ing voxels to form component parts; and iii) parts dimension can be easily controlled by the bounding box in voxel 
space.

However, there are two major challenges to construct interlocking parts by voxelization. First, when voxelizing a 3D 
model, a voxel may be full, partial, or empty according to the local shape within the voxel, see Fig. 1(a). More importantly, 
a resulting partial voxel may have various kinds of local shapes, e.g., a tiny fragment (Fig. 1(b) (case 1)), disconnected 
fragments within a voxel (Fig. 1(b) (case 2)), or a thin structure (Fig. 1(b) (case 3)). Hence, a naive voxelization could 
easily produce a large amount of partial voxels with undesired (e.g., tiny or disconnected) local shapes. Second, when we 
later connect neighboring voxels to form 3D component parts in the assembly, some problematic parts can be generated if 
we arbitrarily connect neighboring voxels into parts, e.g., parts with a weak fragment (see P1 in Fig. 1(c)) and parts with 
disconnected fragments (see P2 in Fig. 1(c)). For the case of P2, we may not just solve it by separately attaching the two 
fragments to different parts since this may violate the 3D interlocking.

To address the above issues, we propose to analyze the local shape within each partial voxel, and apply the information 
to guide the voxelization process as well as the 3D parts construction. By this, we can achieve structurally-sound component 
parts (see P3 in Fig. 1(c)) in the 3D interlocking assembly.

Overview of our approach. We take a 3D watertight surface as input since only meshes with well-defined exterior boundary 
and closed volume can be 3D printed, see Fig. 2(a). Note that an input mesh that does not satisfy this requirement (e.g., 
with self-intersections) can be repaired by methods such as (Attene, 2014).

Given an input watertight surface, we first place a voxel grid in the 3D object space and slightly adjust the voxel size to 
reduce the number of undesired partial voxels. Then, we voxelize the input model. For partial voxels with tiny fragment(s), 
we avoid the fragment(s) by slightly deforming the model geometry locally. Next, we measure the connection strength 
between neighboring (partial) voxels and build a shape connection graph by analyzing the local shapes (Fig. 2(b)). We 
also identify salient appearance features on the model by (Lee et al., 2005), and represent the information by a saliency 
connection graph.

After the above preparation works, we construct an initial set of interlocking 3D parts from the internal voxels (Fig. 2(c)). 
Hence, the initial 3D parts can fulfill the structural soundness and strong connection requirements since all employed 
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Fig. 1. Voxelization-based shape partitioning. (a) A 2D shape and its voxelization; (b) full (in green) and partial (in orange/blue/red/purple) voxels: the three 
partial voxels in blue, red, and purple show cases of tiny fragments (case 1), disconnected fragments (case 2), and thin structures (case 3), respectively; 
(c) naively connecting voxels into component parts could easily produce thin and disconnected 3D parts (in purple and red) rather than structurally-sound 
3D parts (in green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Overview. (a) A 3D watertight model as input; (b) voxelization and shape analysis; (c) creating initial interlocking parts; (d) attaching boundary 
voxels to the parts; and (e) refining the parts’ geometry by CSG intersection with the input mesh model.

voxels are large enough and thus provide sufficient blockage to enforce the 3D interlocking. After that, we attach the 
remaining partial voxels one by one to the constructed interlocking parts as guided by the shape connection graph (Fig. 2(d)) 
without breaking the fulfilled requirements. Later, we enforce the aesthetics requirement by reassigning boundary voxels 
among neighboring parts as guided by the saliency connection graph, aiming to avoid cutting seams on salient object 
features.

Lastly, we construct the geometry of the final 3D parts (Fig. 2(e)) by using CSG intersection between the voxelized parts 
(Fig. 2(d)) and the input mesh (Fig. 2(a)).

4. Voxelization and shape analysis

This section presents the various preparation works we have before constructing the geometry of interlocking 3D parts 
from an input 3D model. This includes voxelization, local shape deformation, and the generation of shape connection graph 
and saliency connection graph.

Voxelization method. Given the input watertight 3D model, we first voxelize it by (Nooruddin and Turk, 2003), which casts 
parallel rays through the model and uses parity count to classify voxels as interior or exterior. We improve this method by 
casting additional parallel rays to not only classify voxels but also estimate the local shape within each voxel. For a bounded 
volume of W × H × D voxels, we first build a (K × W + 1) × (K × H + 1) × (K × D + 1) uniform 3D point grid within it, 
where we have K + 1 sample points along the edge of each voxel. Then we cast (K × W + 1) × (K × H + 1) rays through 
the model to classify each sample point as interior or exterior, where each ray passes through (K × D + 1) sample points. 
Note that we can do ray casting along any of the three major axis of the grid. Fig. 3 illustrates our voxelization method with 
a 2D example having K = 6.

Next, we calculate properties of the local shape within each voxel based on the classified sample points:

• Local shape volume is estimated by counting the number of interior sample points and then computing their coverage 
percentage within the voxel;

• Type of the voxel is classified as full, partial, or empty based on the value of local shape volume, i.e., 1, (0, 1), and 0, 
respectively;

• Contacting face area for a partial voxel is estimated by computing the percentage of interior sample points on the voxel’s 
contacting face with its neighbor, see the yellowish-green sample points in Fig. 3(b);
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Fig. 3. (a) We take a 2D shape to illustrate our voxelization method; (b) classified interior and exterior sample points are in green and gray, respectively; 
the bottom-right voxel is detected as a disconnected partial voxel by breadth first search from an interior sample point (see red circles). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Deform the model’s local geometry (a & b) to remove a partial voxel with a tiny fragment, and (c & d) to resolve a partial voxel with disconnected 
local shape.

• Local shape connectivity in a partial voxel is checked by i) breadth first search from an interior sample point, and ii) 
checking whether it reaches all interior sample points in the voxel.

To facilitate shape partitioning, partial voxels with tiny or disconnected local shape should be avoided, see again Fig. 1. 
Hence, for voxel grid with a given resolution, we first adjust the voxel size slightly to reduce the number of undesired 
partial voxels. This is achieved by randomly sampling the voxel size within a small range and selecting the voxel size 
corresponding to the least number of undesired voxels. Note that we do not adjust the 3D model pose (orientation) to avoid 
undesired partial voxels since this could result in non-axis-aligned cuts on the model, affecting both object aesthetics and 
parts assembly.

Local deformation to avoid tiny fragments. For undesired partial voxels in the voxelization, we propose to resolve them by 
locally deforming the 3D model geometry. To constrain the local deformation within an undesired voxel and its neighbors, 
we remesh the 3D model (Alliez et al., 2008; Botsch et al., 2010) such that the mesh triangles are regular and much smaller 
than the voxel size. Note that we can detect tiny fragments by looking at partial voxels whose local shape volume is smaller 
than a threshold, which is set as 0.01 in our experiments.

For a partial voxel with a tiny fragment (Fig. 4(a)), we compute three variables for the fragment by examining (averaging) 
the mesh triangles related to the tiny fragment in the voxel: its centroid V c , mean surface normal �N , and radius of a 
bounding sphere r. For a partial voxel with disconnected tiny fragments (Fig. 4(c)), the same three variables are computed 
for each tiny fragment. To avoid a tiny fragment, we could locally deform the 3D model geometry by iteratively moving the 
related mesh vertices by using

V i
k+1 = V i

k − α (2r − dist(V i
k, V c)) �N , (1)

where V i is a mesh vertex within a bounding sphere centered at V c with radius 2r, and α is a parameter to control the 
deformation, where we put α as 0.01 in our implementation. Note that we have to recompute the three variables (i.e., V c , 
�N , and r) for the deformed tiny fragment in each iteration, and the iterative process terminates when the tiny fragment 
vanishes in the related voxel, see Fig. 4(b & d).

Internal and boundary voxels. Partial voxels mostly cannot provide sufficient blocking strength for enforcing interlocking. 
Hence, one key strategy to achieve parts interlocking is by considering full voxels to produce interlocking parts and later attaching 
partial voxels to the parts. However, for most 3D models, the number of full voxels could be rather small, thus restricting the 
construction of interlocking parts, especially when the voxel grid has low resolution.
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Fig. 5. Voxelizing Duck. (a) Full voxels in the model; (b) internal voxels identified; (c) voxelized model; and (d) shape connection graph for the boundary 
voxels.

Fig. 6. (a) Internal (green) and boundary voxels; (b) shape connection graph for the boundary voxels, where none, weak, normal, and strong connections 
are indicated in gray, red, yellow, and green, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 7. (a) The saliency map on Duck; (b) the saliency connection graph with the same color coding as Fig. 6(b).

To include more voxels for achieving the interlocking, we also take some partial voxels into account based on the follow-
ing constraints: i) large local shape volume; ii) no voxel face with tiny contacting area; and iii) has at least one full voxel as 
its neighbor. We call such partial voxels and the full voxels the internal voxels, which form the internal volume, and we call 
the remaining partial voxels outside the internal volume the boundary voxels, see Fig. 5.

Shape connection graph. For the boundary voxels, we build shape connection graph to describe their structural connection 
strength with neighboring voxels, see Fig. 5(d) and Fig. 6(b) for examples. Such connection can be identified as none, weak, 
normal, or strong depending on the normalized contacting face area we computed earlier (in our experiments, the values 
are set to be 0, (0, 0.05], (0.05, 0.25], [0.25, 1.0] respectively). The shape connection graph will later help to guide the 
attachment of boundary voxels to initial interlocking parts, aiming to avoid the creation of disconnected or fragile 3D parts.

Saliency connection graph. In addition, we build saliency connection graph for boundary voxels to later avoid putting 
cutting seams (between interlocking 3D parts) on salient object features. In detail, we first apply (Lee et al., 2005) to 
compute the saliency value at every mesh vertex (see Fig. 7(a)), and then estimate the saliency value of each boundary voxel 
by averaging the saliency values of all mesh vertices it contains. The saliency connection strength between two neighboring 
boundary voxels is defined as the product of the two voxels’ saliency values, since we have a strong saliency connection 
only when the two related voxels have large saliency values, see Fig. 7(b) for an example.
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5. Generating 3D interlocking parts

Given the various inputs we prepared in Section 4, there are four major steps in generating 3D interlocking parts:

Step 1: Generating initial 3D interlocking parts. First, taking the voxels in the internal volume as input, we employ (Song et 
al., 2012) to construct an initial set of interlocking 3D parts, see Fig. 2(c). Here we give a short description of the randomized 
algorithm in (Song et al., 2012), which takes a general voxelized shape as input and iteratively extracts puzzle pieces from it 
to create interlocking puzzles. A formal model is proposed in (Song et al., 2012) to ensure global interlocking of all extracted 
puzzle pieces by enforcing local interlocking requirement on every three consecutive intermediate puzzle pieces. To achieve 
this local interlocking requirement, the geometry of each puzzle piece is constructed based on a family of strategies that 
manipulate voxel blocking mechanics.

Here we revise (Song et al., 2012) in two aspects:

• General interlocking. We generalize the formal model in (Song et al., 2012) to support the creation of both general inter-
locking and recursive interlocking structures such that we can generate interlocking parts from a given 3D model more 
flexibly. That is, the extracted 3D parts are general interlocking (recursive interlocking) if we enforce local interlocking 
requirement on every K > 3 (K = 3) consecutive intermediate parts when constructing them.

• Parts’ size. To meet the printable parts requirement, the size of each 3D part should not exceed the 3D printer’s working 
volume. Hence, when constructing a 3D part, we keep updating its bounding box when it grows according to the 
procedure in (Song et al., 2012), and we attach a new voxel to it only if its bounding box is still contained within the 
3D printer’s working volume.

By the above considerations, we can enforce the 3D interlocking and printable parts requirements for the initial 3D parts. 
Moreover, since the internal voxels involved here do not have tiny/thin fragments, and they have large local shape volume 
to support 3D parts blocking, they can help to fulfill the structural soundness and strong connection requirements for the 
initial 3D parts.

Step 2: Attaching boundary voxels to initial 3D parts. To assemble back the given 3D object, all boundary voxels have to be 
attached to the initial 3D parts while maintaining the various fabrication requirements. Note that attaching voxels to the 
initial 3D parts could strengthen the parts blocking, so the strong connection requirement can always be maintained.

We develop an iterative method to attach boundary voxels one by one to the initial 3D parts, see Algorithm 1 for the 
details. Note that for a given set of n interlocking 3D parts, we assume the disassembly order to be P1, P2, . . . , until Pn , 
with P1 as the key part that locks the entire assembly structure. For a given boundary voxel, we try to find one of its 
neighboring parts to attach the voxel, without violating the fabrication requirements. Here we employ the shape connection 
graph to ensure a boundary voxel is attached to a 3D part only when they share strong structural connection (i.e., large 
contacting area).

In Algorithm 1, we need to perform the voxel attachment (i.e., the 1st for loop) for several iterations (i.e., the while loop) 
such that the boundary voxels that are failed to be attached in current iteration could be attached in the next iteration. This 
is because a boundary voxel can have more choices of parts to be attached to after its neighboring boundary voxels have 
been assigned to certain parts. Due to the many constraints on the voxel attachment, our algorithm does not guarantee all 
boundary voxels can be attached, especially for 3D models with complex shapes such as the Budda in Fig. 9. In such case, 
we could regenerate initial 3D parts and then repeat Algorithm 1.

Step 3: Cutting seam refinement. We further enforce the aesthetics requirement by reassigning voxels among neighboring 
parts to avoid putting cutting seams across salient object features. We first identify pairs of neighboring boundary voxels 
that have strong saliency connection (using the saliency connection graph) but belong to different 3D parts. Then, we try 
to put each boundary voxel pair into the same 3D part by searching for possible ways to swap voxels among different 3D 
parts within the neighborhood. During such voxel reassignment, we have to maintain the interlocking requirement for the 
modified 3D parts, as well as avoid structural issue. Fig. 8(b & c) shows an example of refining cutting seams by reassigning 
voxels as guided by the mesh saliency (see Fig. 8(a & d)).

Step 4: Parts surface refinement. To account for the machine fabrication tolerance, there should be sufficient empty space 
in-between 3D parts. Hence, we create the empty spacing by thinning the voxels on each part according to the voxels’ 
local connectivity with their neighbors. The final parts’ geometry can then be obtained by CSG intersection between each 
voxelized part and the original 3D model, see Fig. 8. Comparing Fig. 8(e & f), we can see that our voxel-reassigning strategy 
can help avoid undesirable cutting seams on the assembled object surface.

6. Results

Our method enables us to create 3D interlocking parts from object models of various shapes, see Fig. 9. All the generated 
3D parts are well-connected by interlocking upon the parts assembly, see Fig. 10 for three more examples.
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Algorithm 1: Attaching boundary voxels to initial 3D parts.
Input: Initial interlocking 3D parts;

All the boundary voxels.

Output: Flag to indicate if the attachment succeeds;
Modified parts with boundary voxels attached.

Put all boundary voxels into a set S ;
while S is non-empty do

Initialize number of attached boundary voxel m = 0 ;

for each boundary voxel V i in S do
Find all the neighboring parts of V i ;
for each neighboring part Pk do

if there is no or weak shape connection between V i and Pk (using the shape
connection graph) then

continue ;
end
if attaching V i to Pk violates the dimension constraint of Pk then

continue ;
end
if attaching V i to Pk blocks the movement of any piece from P1 to Pk then

continue ;
end
Push Pk into a candidate part vector S P ;

end
if S P is non-empty then

Select a part Ps in S P which has the largest contacting area with V i ;
Attach V i to Ps ;
Remove V i from S ;
m++;

end
end

if m is equal to 0 then
Return false ;

end
end
Return true ;

Fig. 8. (a) Saliency connection graph for Maxplanck; (b & c) voxelized 3D parts before and after cutting seam refinement; (d) saliency map on Maxplanck; 
(e & f) CSG-refined 3D parts without and with cutting seam refinement. Note that the reassigned voxels and undesirable cutting seams are marked by black 
circles in (b) and (e).

Fig. 9. Various 3D interlocking models created by our approach: 8-parts Bimba, 10-parts Mickey, 16-parts Rabbit, 10-parts Vase, 16-parts Pumpkin, and 
20-parts Buddha (from left to right).
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Fig. 10. Assembly of a 10-parts Ball (top), a 12-parts Turtle (middle), and a 12-parts Duck (bottom).

Table 1
Timing statistics and printing volume reduction.

Timing statistics Saving printing volume

# Model 
vertices

Volume 
resolution

# Parts Timing 
(s)

Max model 
length

Max part 
length

Length ratio

Duck 3290 9 × 10 × 11 6 25 2.00 1.33 66.5%
Bimba 15 653 10× 11 × 7 8 42 2.00 1.27 63.5%
Maxplanck 49 132 7 × 11 × 8 10 62 2.00 1.23 61.5%
Bunny 15 002 12 × 12 × 9 12 43 2.00 1.51 75.5%
Rabbit 10 139 7 × 16 × 8 16 32 2.00 0.89 44.5%
Buddha 44 973 11 × 16 × 11 20 150 2.00 1.16 58.0%

Implementation and performance. We implemented our method in C++ and ran our experiments on a desktop computer 
with a 3.4 GHz CPU and 8GB memory. For a given 3D model, users can specify the number of parts to be generated. 
Although our method allows the creation of a large number of 3D parts from a given model, we suggest partitioning the 
model into around 10 parts since a larger number of parts require more time for 3D printing and physical assembly. In some 
situations, we disable certain fabrication requirements to speed up the procedure of generating parts: i) we can disable the 
printable parts requirement for small objects, e.g., the ring in Fig. 13; and ii) we can disable the aesthetics requirement for 
object without salient features, e.g., the sphere in Fig. 10.

Table 1 presents the performance of our method. From the timing statistics shown on the 5th column from the left, 
we can see that our method can generate interlocking parts fairly efficiently. Note that such time performance depends on 
several factors: the number of 3D parts, the complexity of the model’s shape, the resolution of the input mesh, and the 
resolution of the voxelization. Columns 6 to 8 in the table estimate how much printing volume could be reduced after 
partitioning an input model into six to twenty parts. Such performance depends not only on the number of 3D parts but 
also on the shape complexity, since complex shapes impose stronger constraints on the parts structure and aesthetics, which 
may conflict with the parts dimension constraint. For example, considering the 20-parts Buddha (see Fig. 9 and Table 1), 
the printing volume reduction is not that obvious since there are many salient details on its surface.

Table 2 shows the performance of our voxelization method in resolving partial voxels with tiny or disconnected frag-
ments, as well as in considering partial voxels for creating the interlocking. Columns 3 and 4 from the left show that in the 
initial voxelization, there are a few voxels with disconnected fragments (i.e., disconnected voxels) and several voxels with 
tiny fragments (i.e., tiny voxels). By applying local deformation on the 3D model, disconnected voxels can be avoided in the 
voxelization (i.e., either be removed or become a connected voxel) while tiny voxels can also be successfully removed. In 
addition, columns 6 and 7 in the table show that our voxelization method can effectively include a large amount of partial 
voxels to construct a larger internal volume for creating initial 3D interlocking parts.

Comparison with Song et al. (2012). To apply (Song et al., 2012) for 3D printing, we need to refine the interlocking polycubes 
generated from (Song et al., 2012) by performing CSG intersection with the model surface. However, this straightforward 
solution has several problems. First, Song et al. (2012) do not consider the structural constraint when connecting voxels 
to form 3D parts (see again Fig. 1), so their generated 3D parts could have tiny and/or thin shape features after the CSG 
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Table 2
Voxel statistics of our voxelization method.

Volume 
resolution

Before deformation After deformation

# Disconnected 
voxels

# Tiny 
voxels

# Total 
voxels

# Full 
voxels

# Internal 
voxels

# Boundary 
voxels

# Total 
voxels

Duck 9 ×10 × 11 2 16 547 146 270 260 530
Bimba 10 ×11 × 7 3 15 425 75 206 202 408
Maxplanck 7 ×11 × 8 1 18 364 80 170 176 346
Bunny 12 ×12 × 9 4 32 536 116 224 276 500
Rabbit 7 ×16 × 8 0 17 533 123 260 256 516
Buddha 11 ×16 × 11 24 25 1096 381 665 402 1067

Fig. 11. Duck (12 parts) created by (Song et al., 2012) (top) and our method (bottom). (a & d) Voxelized 3D parts assembly; (b & e) CSG-refined parts 
assembly; and (c & f) three example 3D parts.

surface refinement. Second, some of these 3D parts may even be disconnected, see the red piece in Fig. 11(c). Third, since 
Song et al. (2012) do not consider the aesthetics constraint, it could generate a lot of distracting cutting seams across salient 
features on the object assembly, see Fig. 11(b). Through the local shape analysis procedure, our method can avoid putting 
cutting seams on salient object features, see Fig. 11(e), as well as avoiding the generation of tiny, thin, and disconnected 
shape features on the 3D parts, see Fig. 11(f).

Printed examples. We use 3D printers of three different types of printing technology to fabricate our interlocking 3D parts: 
Fused Deposition Modeling (FDM) with PLA plastic material (MakerBot Replicator 2 (Makerbot, 2014)), Selective Laser Sinter-
ing (SLS) with nylon material (Sinterstation HiQ SLS (3D Systems, 2014)), and Stereolithography (SLA) with VisiJet Proplast 
(ProJet 3500 HDMax (3D Systems, 2014)).

To validate the effectiveness of our method for printing a large 3D object with parts, we fabricate a 6-parts Duck model 
(30 cm × 27 cm × 25 cm) using a DIY FDM 3D printer of working volume 25 cm × 25 cm × 45 cm. Since the object is too 
large for the printer’s working volume, we partition it into 6 interlocking 3D parts with smaller sizes (Fig. 12(a)), among 
which the maximum length is only 20 cm. Hence, we can fabricate each part by our 3D printer. To validate the connection 
capability by 3D interlocking, we assemble the printed parts of various models (Fig. 12), and shake the parts assemblies. 
The parts assemblies are found to be steady and stable upon shaking, see the supplementary video.

Besides the Duck, we fabricate a 12-parts Bunny (Fig. 12(b)) and a 10-parts Vase with four different colors (Fig. 12(c)) 
using the MakerBot FDM printer, from which we can see that the generated 3D parts are strong enough for printing and 
assembly. Note that this FDM printer can only print with a maximum resolution of 0.2 mm. To fabricate models with details, 
we print the 10-parts Maxplanck model (Fig. 12(d)) by using a 3D Systems SLS printer with 0.06 mm printing resolution, 
so that we can achieve smoother appearance on the assembled model.

Interlocking puzzle ring. Lastly, we apply our method to create a 22-parts interlocking ring puzzle shown in Fig. 13. It 
has a diameter of 3.2 cm, and we fabricate its parts by a 3D Systems SLA printer with 0.025 mm printing resolution. The 
assembled ring can be worn on a finger. We specially design its key piece: to take it out from the puzzle, we need to first 
lift it up for a short distance and then move it toward the ring center (see the supplementary video). Hence, when we 
wear this puzzle ring on our finger, our finger can block the movement of the key piece, thus preventing the ring from 
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Fig. 12. 3D-printed interlocking parts (left) and the corresponding assembled object (right). (a) 6-parts Duck by FDM; (b) 12-parts Bunny by FDM; 
(c) 10-parts Vase by FDM; and (d) 10-parts Maxplanck by SLS.

Fig. 13. The 22-parts interlocking ring created by our method. (a) Virtual puzzle ring model; (b) the fabricated (assembled) ring model; (c) the twenty two 
3D parts, individually printed by SLA; and (d) the ring being worn on a finger.

disassembly. Note that such interlocking puzzle could be easier to play with than those from Song et al. (2012) since object 
features on the 3D parts could give hints to the puzzle assembly.

7. Conclusion

This paper presents a novel voxelization-based method to partition a given 3D object model of general shape into inter-
locking 3D parts such that the 3D object can be printed with smaller parts that are connected by 3D interlocking. We first 
voxelize the input 3D model and analyze the local shape within each voxel, where a local deformation strategy is developed 
to avoid voxel fragmentation in the voxelization. Second, we differentiate internal and boundary voxels according to the 
local shape contained and employ internal voxels to create initial 3D interlocking parts. Lastly, we apply the local shape 
information encoded by shape and saliency connection graphs to guide the construction of final parts’ geometry. By these, 
we can generate 3D parts that are structurally sound and strongly connected by 3D interlocking, without obvious cutting 
seams across salient object features. We validate the performance of our method by fabricating a variety of models using 
different types of 3D printers, and also demonstrate its feasibility by designing and making the 22-parts interlocking ring.

Limitations. First, our method cannot generate interlocking 3D parts from a hollowed object with thin boundary since we 
need a solid volume to create parts blocking. Second, our method cannot control the positions of cutting seams on the 
input model and some of the cuts will be visible after the parts assembly. Third, the original shape of the input model 
could be changed slightly in the local deformation, so our current results may not be suitable for applications that require 
high model precision. Lastly, our shape analysis method cannot detect weak connections locally in a voxel; this issue could 
be circumvented by (Zhou et al., 2013), or alleviated by increasing the voxel grid resolution.

Acknowledgements

The authors would like to thank Yael Friedman, a jewelry designer, for her various helpful comments on designing the 
22-parts interlocking ring. The project is partially supported by the National Natural Science Foundation of China (61403357, 



148 P. Song et al. / Computer Aided Geometric Design 35–36 (2015) 137–148
61222206), the Fundamental Research Funds for the Central Universities (WK0110000044), One Hundred Talent Project of 
the Chinese Academy of Sciences, and MOE AcRF Tier2 funding (MOE2011-T2-2-041 (ARC 5/12)), Singapore.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cagd.2015.03.020.

References

3D Systems, 2014. http://www.3dsystems.com/.
Alliez, P., Ucelli, G., Gotsman, C., Attene, M., 2008. Recent advances in remeshing of surfaces. In: Shape Analysis and Structuring, Mathematics and Visual-

ization, pp. 53–82.
Attene, M., 2014. Direct repair of self-intersecting meshes. Graph. Models 76 (6), 658–668.
Bächer, M., Bickel, B., James, D.L., Pfister, H., 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. (SIGGRAPH) 31 (4), article 47.
Bächer, M., Whiting, E., Bickel, B., Sorkine-Hornung, O., 2014. Spin-It: optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (SIGGRAPH) 33 

(4), article 96.
Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B., 2010. Polygon Mesh Processing. AK Peters/CRC Press.
Calì, J., Calian, D.A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., Weyrich, T., 2012. 3D-printing of non-assembly, articulated models. ACM Trans. Graph. 

(SIGGRAPH Asia) 31 (6), article 130.
Ceylan, D., Li, W., Mitra, N.J., Agrawala, M., Pauly, M., 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 

(SIGGRAPH Asia) 32 (6), article 186.
Chen, D., Sitthi-amorn, P., Lan, J.T., Matusik, W., 2013. Computing and fabricating multiplanar models. Comput. Graph. Forum (EuroGraphics) 32 (2), 305–315.
Coffin, S.T., 1990. The Puzzling World of Polyhedral Dissections. Oxford University Press.
Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R.W., Matusik, W., Bickel, B., 2013. Computational design of mechanical characters. 

ACM Trans. Graph. (SIGGRAPH) 32 (4), article 83.
Hao, J., Fang, L., Williams, R.E., 2011. An efficient curvature-based partitioning of large-scale stl models. Rapid Prototyping J. 17 (2), 116–127.
Hildebrand, K., Bickel, B., Alexa, M., 2012. crdbrd: shape fabrication by sliding planar slices. Comput. Graph. Forum (EuroGraphics) 31 (2), 583–592.
Hildebrand, K., Bickel, B., Alexa, M., 2013. Orthogonal slicing for additive manufacturing. Comput. Graph. (SMI) 37 (6), 669–675.
Lau, M., Ohgawara, A., Mitani, J., Igarashi, T., 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graph. (SIGGRAPH) 30 

(4), article 85.
Lee, C.H., Varshney, A., Jacobs, D.W., 2005. Mesh saliency. ACM Trans. Graph. (SIGGRAPH) 24 (3), 659–666.
Lo, K.-Y., Fu, C.-W., Li, H., 2009. 3D polyomino puzzle. ACM Trans. Graph. (SIGGRAPH Asia) 28 (5), article 157.
Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., Chen, B., 2014. Build-to-last: strength to weight 3D printed objects. ACM 

Trans. Graph. (SIGGRAPH) 33 (4), article 97.
Luo, L., Baran, I., Rusinkiewicz, S., Matusik, W., 2012. Chopper: partitioning models into 3D-printable parts. ACM Trans. Graph. (SIGGRAPH Asia) 31 (6), 

article 129.
Makerbot, 2014. http://www.makerbot.com/.
McCrae, J., Singh, K., Mitra, N.J., 2011. Slices: a shape-proxy based on planar sections. ACM Trans. Graph. (SIGGRAPH Asia) 30 (6), article 168.
Medellín, H., Lim, T., Corney, J., Ritchie, J.M., Davies, J.B.C., 2007. Automatic subdivision and refinement of large components for rapid prototyping production. 

J. Comput. Inf. Sci. Eng. 7 (3), 249–258.
Nooruddin, F.S., Turk, G., 2003. Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9 (2), 191–205.
Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., Wang, W., 2007. Geometry of multi-layer freeform structures for architecture. ACM Trans. Graph. (SIG-

GRAPH) 26 (3), article 65.
Prévost, R., Whiting, E., Lefebvre, S., Sorkine-Hornung, O., 2013. Make it stand: balancing shapes for 3D fabrication. ACM Trans. Graph. (SIGGRAPH) 32 (4), 

article 81.
Schwartzburg, Y., Pauly, M., 2013. Fabrication-aware design with intersecting planar pieces. Comput. Graph. Forum (EuroGraphics) 32 (2), 317–326.
Shapeways, 2014. Gluing 3D printed parts. http://www.shapeways.com/tutorials/gluing_3d_printed_parts_tutorial.
Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., Gross, M., 2013. Computational design of actuated deformable characters. ACM Trans. Graph. (SIG-

GRAPH) 32 (4), article 82.
Song, P., Fu, C.-W., Cohen-Or, D., 2012. Recursive interlocking puzzles. ACM Trans. Graph. (SIGGRAPH Asia) 31 (6), article 128.
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